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Control of a Point Absorber Using
Reinforcement Learning

Enrico Anderlini, David I. M. Forehand, Paul Stansell, Qing Xiao, and Mohammad Abusara

Abstract—This work presents the application of reinforcement
learning for the optimal resistive control of a point absorber.
The model-free Q-learning algorithm is selected in order to
maximise energy absorption in each sea state. Step changes are
made to the controller damping, observing the associated penalty,
for excessive motions, or reward, i.e. gain in associated power. Due
to the general periodicity of gravity waves, the absorbed power
is averaged over a time horizon lasting several wave periods. The
performance of the algorithm is assessed through the numerical
simulation of a point absorber subject to motions in heave in both
regular and irregular waves. The algorithm is found to converge
towards the optimal controller damping in each sea state. Addi-
tionally, the model-free approach ensures the algorithm can adapt
to changes to the device hydrodynamics over time and is unbiased
by modelling errors.

Index Terms—Wave energy converter (WEC), power take-off
(PTO) system, reinforcement learning (RL), Q-learning.

I. INTRODUCTION

WAVE power is a renewable energy source that can sig-
nificantly contribute to the reduction of our dependence

on fossil fuels in the future due to its enormous scale, with
a potential of up to 3 TW of wave power globally [1]. How-
ever, the commercialization of wave energy converter (WEC)
devices is still in its infancy, with a large number of possible
designs having been proposed. A comprehensive review of the
current technologies can be found in [2]. Point absorbers rep-
resent an established offshore WEC technology, with examples
being the devices produced by Ocean Power Technologies [2].
These devices comprise of a small floating body subject to wave
loading, whose motions are resisted by a power take-off (PTO)
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system of either hydraulic or electrical nature. Although point
absorbers are expected to be deployed in arrays so as to exploit
the advantage of economies of scale [3], in this work a single,
axisymmetric device is considered for simplicity, in particular
analysing only heaving motions.

Since the initial studies of WECs, different control strategies
have been analysed in order to maximize energy absorption, as
reviewed by [4]. A more recent review of the state-of-the-art
control methods can be found in [5]. From hydrodynamic con-
siderations, complex-conjugate control results in optimal power
extraction, as it aims to obtain resonance between the system
and the incident waves [4]. However, achieving optimal control
in practice may result in excessive motions of, and loads on,
the device in energetic sea states, and requires knowledge of the
future wave excitation. Since the 1970s, alternative suboptimal
control schemes have been developed, including physical con-
straints on the motions, forces and power rating of the device
[3]. These strategies usually optimize the control variables for
maximum time-averaged power extraction through an iterative
process [3].

Latching and model-predictive control are examples of
acausal real-time control strategies for WECs, since their per-
formance strongly depends on having future information of the
wave excitation force, typically over a short time horizon [5].
On the one hand, latching control, originally proposed by [6],
tries to maximize energy absorption by controlling the duration
of the time interval when the device is locked in place through
a special mechanism (as opposed to being linearly damped)
so as to achieve resonance conditions [7]–[9]. On the other
hand, at each time instant, model predictive control applies the
force that results in maximum future energy extraction over a
pre-defined time horizon, whilst still respecting any constraints
on the motions or loading of the device [10]–[12]. Whereas
latching control is difficult to scale to array problems, model
predictive control has been successfully applied to multi-body
devices and even small array problems [13]–[15]. However, the
greatest problem with the latter strategy is that the optimization
process is not guaranteed to converge, so that alternative solu-
tions may be required. Since this is performed in real-time, it
may impose a serious computational burden on the controller.
An additional real-time control strategy is the Simple but Effec-
tive control proposed by [16]. With this technique, the control
force is adjusted in order to meet a prescribed force or velocity
setpoint, which is obtained by modelling the current excita-
tion force as a narrow banded function [5]. The performance of
this simple method lies close to that of model predictive con-
trol and even outperforms it in long waves with a short wave
height [5].
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Alternatively, suboptimal causal control schemes have also
been researched extensively. Although they do not require any
future wave information, they employ time-averaged sea condi-
tions, thus requiring the assumption of stationary sea state for
a specified time interval [3]. Through numerical modelling, it
is possible to find the PTO linear damping (resistive or passive
control) or combination of damping and stiffness (reactive or
phase control) that result in maximum energy absorption for
each sea state, whilst still respecting displacement and force
constraints. Whereas this method results in a loss in efficiency
as compared with on-line control schemes [15], resistive and re-
active control are conceptually simple and have lower controller
computational cost than model predictive control. Moreover, the
control algorithm can be easily scaled up to arrays of WECs, as
considered by [3].

The main disadvantage of the aforementioned methods is
that they rely on internal models of the body dynamics to deter-
mine the optimal control variables. As a consequence, not only
do modelling errors affect negatively the energy absorption of
WECs, but also changes to the device over time, whether due
to slow marine growth or sudden non-critical subsystems fail-
ures, cannot be taken into account. Hence, this paper proposes
the application of reinforcement learning (RL) for the on-line,
model-free optimal control of WECs. This is a type of unsuper-
vised learning that has greatly contributed to the development of
autonomous robots over the past two decades [17]. Additionally,
[18] have recently used it for the improvement of the maximum
point tracking algorithm for the control of wind energy turbines.

As a first application, this paper focuses on the development
of RL-based passive control for a point absorber. The perfor-
mance of the novel control algorithm is assessed through the
numerical simulation of a single-degree-of-freedom point ab-
sorber. Realistic force constraints are applied to the generator
and the efficiency of the PTO system is taken into account. Ini-
tially, single sea states are considered for regular and irregular
waves. Afterwards, the device is tested in irregular waves with
varying sea state conditions.

II. OPTIMUM PASSIVE CONTROL OF A POINT ABSORBER

A. System Description

A diagram of the point absorber analysed in this work can be
seen in Fig. 1. The mechanical energy derived from the motions
of the float due to the wave excitation is converted into hydraulic
and then electrical energy by the PTO system. A hydraulic PTO
unit, whose design is taken from [19]–[21], is selected due to its
robustness, capacity for energy storage and speed control [21].
The motion of the float drives a two-way ram that pumps high-
pressure (HP) oil into the circuit. A rectifying valve ensures
the hydraulic motor is driven only in one direction. Addition-
ally, the motor rotational speed, ωm , is smoothed out through
a gas accumulator system, made of HP and low-pressure cylin-
ders, the latter designed to prevent cavitation [21]. The motor
is connected to an induction generator. The produced electrical
power, with current I , at voltage V , phase shift φ, is fed into the
electrical network after stepping up the voltage through a trans-
former. No expensive, fully-rated power converters are required

Fig. 1. Diagram of the grid-connected point absorber with its hydraulic PTO.

because the hydraulic PTO unit enables the controllability of
the output current [21]. The controller can increase or decrease
the flow in the hydraulic circuit by opening or closing the valves
connected to the accumulators based on the feedback value of
ωm . Furthermore, in order to maximize the output power, the
controller relies on knowledge of the vertical displacement, z,
and velocity of the float, ż, obtained through an accelerometer,
the wave elevation, ζ, fed-in by an external neighbouring wave
buoy, and the generated real power, P =

√
3IV cos φ.

B. Hydrodynamic Modelling

For simplicity, the point absorber is constrained to oscillations
in heave, which is indicated by the index 3. Assuming linear
wave theory and small body motions, the response of the device
can be obtained from the combination of the inertial, hydrostatic,
radiation and excitation forces in addition to the force exerted
by the controller [22]. Hence, using Cummin’s formulation for
the radiation force [23], the equation of motion of the device
can be expressed in the time domain as [21]:

(M + A3,3(∞)) z̈(t) +
∫ t

0
K3,3(t − τ)ż(τ)dτ

+ C3,3z(t) = F3(t) + FPTO(t), (1)

where M is the displaced mass of the device, C3,3 the hydrostatic
restoring stiffness coefficient, A3,3(∞) the added mass at infi-
nite wave frequency, and K3,3(t) the radiation impulse response
function. These variables can be calculated using the commer-
cial program WAMIT. Furthermore, in (1), F3 represents the
excitation force, which is calculated from the convolution of
the diffraction coefficients, calculated by WAMIT, and the wave
elevation as described in [24], and FPTO the control force.

Eq. (1) is represented by the block diagram in Fig. 2, where
the radiation convolution integral is approximated by a state-
space formulation due to its lower associated computational
cost. Frequency-domain system identification is employed in
order to obtain state-space matrices A, B, C, and D according
to the procedure described by [21].

C. Optimum Passive Control

In passive or resistive control, the controller action is mod-
elled as a damping term [3], as shown in Fig. 2, where the control
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Fig. 2. Block diagram used for the calculation of the motion of the float.

force is given by:

FPTO(t) = −BPTO ż(t). (2)

The PTO damping coefficient can be modified by changing
the pressure within the hydraulic circuit. Hence, this work fo-
cuses on the control of BPTO directly, without developing a
detailed wave-to-wire model. In practice, there is a limit FMax
on the force that can be exerted due to the rating of the mo-
tor. Hence, the magnitude of the PTO force is bounded within
±FMax in the simulation through the saturation block shown
in Fig. 2.

In the real device, power losses occur in the actuator, the
hydraulic system, and the electrical generator [3]. These are
modelled with an efficiency measure for the PTO system, η. In
this work, a value of 75% has been employed due to the low-
energy sea states analysed based on [3]. Hence, it is possible to
compute the generated real electrical power, which corresponds
to P =

√
3IV cos φ, as:

P = −ηFPTO ż. (3)

If there are no force constraints, the optimal PTO damping
coefficient for maximum power absorption, BPTO opt , is a func-
tion of the wave period, T , in regular waves [25], whilst it
depends on the mean zero-crossing period in irregular waves.
When the force clip is modelled, such a relationship does not
exist, since the significant wave height is important to determine
when the limit is applied. Hence, in order to find BPTO opt it is
necessary to run an optimization in each sea state, e.g. with the
Nelder–Mead simplex algorithm [3], using multiple wave traces
in irregular waves.

The optimal damping coefficient is stored for each sea state in
a table. During the actual operation of the device, the controller
tries to achieve the value corresponding to the current sea state
by changing the pressure in the hydraulic system. Nevertheless,
this approach can be heavily biased by the modelling errors and
it cannot take into account modifications to the hydrodynamics
of the device over time, e.g. due to marine growth.

In regular waves, the performance of passive control can be
assessed against the theoretical maximum limit on the power

Fig. 3. Performance of a point absorber using passive control with two PTO
efficiency values as compared with the case of theoretical maximum power
absorption.

extraction by using the concept of capture width, which is de-
fined to be the ratio at each frequency of the mean absorbed
power by a WEC to the mean wave power per unit width [26].
In deep water, the mean wave power per unit width is given
by [26]:

Pw =
1
4

ρg2A2

ω
, (4)

where ρ = 1000 kg/m3 is the water density, g = 9.80665 m/s2

the gravitational acceleration, A the wave amplitude and ω the
circular wave frequency. For an axisymmetric buoy moving in
heave, different authors have shown that the theoretical maxi-
mum capture width in deep water is given by [26]:

Lopt =
λ

2π
=

g

ω2 . (5)

For a cylindrical point absorber with a diameter of 10 m, and
a draught of 8 m (later used in Section IV), the capture width
of the device with passive control is shown in Fig. 3 in regular
waves of unit amplitude and with the circular wave frequency
ranging from 0 to 3 rad/s in steps of 0.005 rad/s. Two values
for the efficiency of the PTO system are used (100% and 75%).
The absorbed power has been calculated using the optimal PTO
damping coefficient for each wave frequency. This value has
been divided by the wave power per unit width for each wave
frequency as given by Eq. (4). The curves are compared against
the optimal capture width [see Eq. (5)], whose values are very
high for low wave frequencies. As it can be seen from Fig. 3,
with passive control the best performance is achieved at the
natural frequency of the device.

III. RL CONTROL

A. Background

In RL [27], an agent, which is in a particular state sn , interacts
with the surrounding environment by taking an action an , where
n defines the time step of the RL algorithm. The agent then
moves to a new state, sn+1 , and the action is followed by a
reward, rn+1 , depending on its outcome. The action selection
process is modelled as a Markov decision process based on
the value function, which expresses the estimate of the future
reward. The agent is expected to learn an optimal behaviour,
known as policy, over time for the maximization of the total
reward.
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Fig. 4. Block diagram of the RL control of the point absorber.

If the agent selects an action based purely on the aim of max-
imising the reward function (i.e. exploiting the environment), it
will never visit states other than the usual ones, and these other
states may in fact result in higher rewards. This is known as the
issue of exploration versus exploitation. Hence, it is still bene-
ficial to adopt an approach that ensures some exploration at the
expense of exploitation, particularly for the initial stages. Once
the simulation has been initialized, the balance may be shifted
towards exploitation.

RL methods can be divided into three main categories:
dynamic programming, temporal difference and Monte-Carlo
methods [27]. Of these, temporal difference strategies seem
most appropriate, since they present a real-time implementa-
tion. Additionally, in order to limit modelling errors and to
pick up changes in the device behaviour over time, model-free
techniques are of interest, which use the action-value function
Q(s, a). Of these methods, Q-learning has been selected, which
is extensively used in the robotics industry [17].

The one-step update of the algorithm is:

Qn+1 (sn , an ) = Qn (sn , an ) + αn

[
rn+1 + γ max

a ′∈A
Qn

× (sn+1 , a
′) − Qn (sn , an )

]
, (6)

where αn is known as the learning rate, which regulates how
much previous learning is retained in the update of the action-
value table, and γ is the discount factor, which determines
whether preference should be given to immediate or future re-
wards. As the optimal action-value function is estimated inde-
pendently of the current policy, Q-learning is classified as an
off-policy scheme.

B. Application to the Passive Control of WECs

As shown in Fig. 4, RL can be used to learn the optimal PTO
damping coefficient in each sea state by relying purely on obser-
vations of the environment, i.e. the device interacting with the
waves, rather than internal models. At each step, the controller
selects a change in BPTO , the action, which is implemented by
the hydraulic PTO unit, the agent. This results in a reward that
is a function of the generated power and in a change of state,
where each state is represented by one value for the significant
wave height, Hs , the mean zero-crossing period, Tz , and the
PTO damping coefficient.

Due to the oscillatory nature of gravity waves, the generated
power in the reward function needs to be averaged over at least
one wave cycle. The averaging is performed over a horizon, H ,

during which the state sn and action an−1 are constant, so that
all time steps n − 1, n, etc. now have length H . Then, a new
action an is selected, which results in an immediate change of
state to sn+1 and a new averaging process.

The state and action spaces, reward function, learning and
exploration rates, and discount factor of the WEC control RL
formulation are described in detail in the following sections.

1) State Space: As mentioned before, the state variables are
taken to be the significant wave height, mean zero-crossing
period and PTO damping coefficient so that the adopted RL
state space is:

S =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s|sj,k ,l = (Hs,j , Tz,k , BPTO ,l),

j = 1 : J,

k = 1 : K,

l = 1 : L

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

. (7)

A compromise needs to be found in the selection of J , K, and
L, since a large number of states may result in excessively slow
convergence, while small values may strongly affect the learning
accuracy [18]. The values of J and K are usually given by the
wave data at the site of deployment. Ranges of Hs = [0 : 9] m
and Tz = [5 : 15] s are typical, in steps of either 0.5 or 1 m or
s respectively [28]. With a hydraulic PTO system, the value of
L will be set by the number of accumulators. Indeed, as shown
in [19], the time series of the PTO force is characterized by a
number of discrete values.

2) Action Space: Considering the selected state space, for
passive control the action space is thus:

A = {a|(−ΔBPTO , 0,+ΔBPTO)}, (8)

where ΔBPTO = BPTO ,k+1 − BPTO ,k . The states correspond-
ing to the minimum or maximum damping coefficient, i.e.
BPTO ,1 and BPTO ,L , have a limited (from 3 to 2) number of ac-
tions in order to prevent the controller from exceeding the state
space boundary. For instance, for BPTO ,1 , the action −ΔBPTO
is precluded in the current state.

3) Reward: The reward function represents the goal that the
controller is expected to maximise. Hence, for the passive con-
trol of WECs, the reward function needs to be a function of the
absorbed power. However, the mean generated power, Pavg , is
more influenced by changes in the significant wave height than
variations in the PTO damping coefficient. This can be dealt
with by using Pavg/Hs

2 as a reward, since the absorbed power
is proportional to the square of the significant wave height [28].
In addition, due to the coarse discretization of the state variables
and the stochastic nature of irregular waves, not only should the
generated power in (3) be averaged over a horizon H to pro-
duce Pavg , but the reward function needs to be built on the
mean of a number M of these values for each state. This can
be achieved by storing the M most recent Pavg/Hs

2 values for
each state in a matrix, R, whose size is at most ns × M , with
ns = J × K × L being the number of states. It is then possible
to obtain the mean value in each state and express it with the
vector m = 〈R(s,m)〉m=1:(M ∨end) of size ns . It is important
to notice that in m the states are arranged with a vectorized
version of Eq. (7), so that discrete values of BPTO represent the
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inner-most loop, the discrete values of Hs the middle loop and
the discrete values of Tz the outermost loop.

Depending on the magnitude of ΔBPTO , for BPTO > 0 there
can be very little difference between the mean of neighbouring
PTO damping coefficient values. This could cause serious issues
for the convergence of the Q-learning algorithm, where the ben-
efit of picking the optimal damping coefficient in each sea state
should be evident. This problem can be addressed by raising
the values within m to a power. In order to avoid rewards that
require excessive memory, it is advantageous from a mathemati-
cal perspective to first normalize the value of the vector for each
state with the maximum value for each sea state. Hence, for the
state sn , the maximum value needs to be searched between the
indices o = floor

(
sn −1

L

)
L + 1 and p = floor

(
sn −1

L

)
L + L of

the vector m. The power value, u, needs to be an odd number in
order to keep the sign of the generated power values. The finer
the discretization of the PTO damping coefficient, the greater u
should be in order to speed up the learning process. However, a
very large value may cause convergence problems in irregular
waves due to the possible noise in the mean power values, so
care should be taken in the selection of u.

In addition, in extreme seas the selected optimal damping
coefficient may result in excessive motions [12], e.g. complete
submergence or emergence of the machine. This may cause
severe structural damage if not complete failure. In order to
prevent this, a penalty, p < 0, is returned when the magnitude
of the maximum displacement over the averaging horizon H
exceeds a set value, zMax . Using a penalty p = −2, the resulting
reward function is thus:

rn+1 =

⎧⎨
⎩

[
〈m (sn )〉

maxi=o:p〈m (i)〉

]u

, if |max(z)| ≤ zMax

−2, if |max(z)| > zMax .

(9)

4) Exploration Strategy, Learning Rate and Discount Factor:
In order to ensure exploration, an ε-greedy strategy has been
adopted [27]. This means that at each step of the Q-learning
algorithm, the action is selected as:

an =

{
arg maxa ′∈A Qn (sn , a′), with probability 1 − εn

random action, with probability εn ,

(10)

with εn being the exploration rate. During the initial stages of a
RL run, it is desirable to explore as many of the state-action pairs
as possible and then slowly shift the focus towards exploitation
as the learning progresses. Hence, the exploration rate can be
expressed as:

εn =

⎧⎨
⎩

ε0 , if N ≤ 0
ε0√
N

, if N > 0,
(11)

where N =
∑

i=1:na
Nn (sn , ai) − Nmin ε , with Nn (sn , an )

indicating the total number of visits to the current state-action
pair sn − an (na is the number of actions) and Nmin ε = 25 the
minimum number of visits for an initial random exploration.
The initial exploration rate is set to ε0 = 0.5.

Fig. 5. Flowchart of the Q-learning algorithm for the passive control of WECs.

Similarly, a high initial learning rate is selected which slowly
decays in order to ensure convergence of the Q-values:

αn =

{
α0 , if Nn (sn , an ) ≤ Nminα

α0
Nn (sn ,an ) , if Nn (sn , an ) > Nminα ,

(12)

where an initial learning rate α0 = 0.4 and Nminα = 5 are used
throughout this work.

From a comparison of (11) and (12), it is clear that a slower
decay is sought for the learning rate, so that sufficient explo-
ration is ensured even as the learning process goes on. In order
to ensure that changes to the device are taken into account, e.g.
due to marine growth or even subsystems failures, the learning
and exploration rates should be reset on a predefined, regular
basis.

In Q-learning, the controller seeks to maximise the total dis-
counted future rewards, so that it is necessary to specify a dis-
count factor [17]. A value of γ = 0.75 has been used throughout
this work as in [18].

C. Algorithm

The Q-learning algorithm used in this work can be seen in
Fig. 5. The first stage of the algorithm is the initialization of
all required variables. Q and N are matrices of dimensions
ns × na , where the number of actions is na = 3. The value of
L for the specification of the size of the matrix R has been set to
10 in regular waves and 25 in irregular waves. In order to speed
up convergence, the entries of the R matrix are precomputed
in a run in a similar wave trace, whilst taking random actions.
Simulations can also be used to initialize the R matrix for the
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full-scale device, since its entries will slowly be replaced from
those of the actual environment.

After the initialization phase, the algorithm is run indefinitely
until maintenance is due. At every time step m, with time step
length Δt, the desired damping coefficient value is stored by the
controller so that it can be implemented through changes in the
hydraulic pressure in the PTO unit. Additionally, the generated
power and vertical buoy displacement are sampled in order to
obtain, respectively, the mean absorbed power, and maximum
displacement at the end of each horizon after H time steps. Fur-
thermore, at each update of the Q-learning algorithm, an external
program returns the values of Hs and Tz , which are calculated
using spectral analysis and fast Fourier transforms (FFT) from
the record of the wave elevation, ζ, within the horizon as de-
scribed in [28], based on a unidirectional wave spectrum for
simplicity.

As can be seen from Fig. 5, the generated power in each state
is averaged over the horizon H only after an interval H1 ≈ 5Tz ,
over which transient effects due to the change in PTO damping
coefficient are dominant. In selecting the horizon length H a
compromise needs to be found between a small value for quicker
response and a large value for a more stable algorithm. Indeed,
although a sea state can be stationary for a period ranging from
15 to 30 minutes [28], individual neighbouring waves within
this time can present very different characteristics. Continuous
changes in the sea state from a step of the RL to the next prevent
the algorithm from converging, since by taking an action an

in state sn the agent may land in a different state every time
depending on the sea conditions. Hence, a value of H = 30Tz
is selected in irregular waves, whereas H = 10T may be used
in regular waves to speed up convergence. Furthermore, the
time discretization of the algorithm requires the horizon to be
expressed in time steps rather than seconds, so that:

H1 = round

(
5Tz

Δt

)
and H = round

(
30Tz

Δt

)
. (13)

IV. SIMULATION RESULTS

A. Simulation System

Numerical simulations have been run for the same device used
in [12], i.e. a floating vertical cylinder of radius 5 m and draught
8 m in deep water as shown in Fig. 1. The time domain solution
for this problem is standard, with this specific example being
treated also by [22]. As in [12], a fifth-order state-space system
has been used to approximate the radiation convolution. The
hydrodynamic model in Fig. 2 has been expressed in state-space
format and discretized with a bilinear transform [29], where the
sampling time has been set to Δt = 0.1 s. The maximum PTO
force has been assumed to be 1 MN, while the float displacement
has been limited to ±5 m.

The program used for the simulation of the point absorber
is summarized in Fig. 6 for clarity. A wave model is required
in order to determine the wave elevation time series, whereas
in reality buoy measurements will be used as in Fig. 1. For
irregular waves, it is necessary to specify the amplitude wave
spectrum S(ω) for a nω number of circular wave frequencies.

Fig. 6. Workflow diagram of the program used to simulate the point absorber.

The wave elevation is then computed from the superposition of
the nω individual wave components, each with a wave amplitude
A(ω) =

√
2S(ω)Δω, where Δω is the frequency step [24].

Not only is the wave elevation used to determine Hs and Tz in
each state, but also to compute the excitation force through the
diffraction convolution integral [24].

The PTO system of the device has been assumed to be com-
posed of 4 accumulators, with a maximum PTO damping coef-
ficient of 800 kN·s/m for the sea states under study. Hence, nine
RL states are used when a single sea state is considered, with the
linear damping coefficient ranging from 0 to 800 kN·s/m in steps
of ΔBPTO = 100 kN·s/m. With this discretization, a value of
u = 21 has been selected in order to decrease the learning time,
while avoiding possible problems with noise in the reward func-
tion in irregular waves. When the control is tested in multiple
sea states in random seas, only five damping coefficients values
are employed, with the same range but ΔBPTO = 200 kN·s/m,
in order to limit the overall number of states and thus speed up
convergence. However, a wider range and finer resolution are
likely to be required for a more realistic implementation.

B. Results in Regular Waves

Regular waves have been analysed first in order to assess the
convergence properties of the proposed RL control under deter-
ministic conditions. A single sea state (J = K = 1) with unit
wave amplitude and a wave period of 8 s has been considered,
with the time series lasting 4 hours.

Fig. 7(a) shows the convergence of the RL algorithm towards
the optimal PTO damping for this sea state, where the optimal
value has been calculated through a Nelder–Mead optimiza-
tion in a 20-minute wave trace. The difference in the mean
absorbed power obtained using RL and that obtained using the
optimal PTO damping coefficient can be seen in Fig. 7(b), with
Pavg ,opt = 70.210 kW.

Due to the low wave height selected in all simulations, the
PTO force never reaches its limit, with the maximum force
being 237.910 kN for the optimal BPTO in Fig. 7. In order
to analyse the effects of the force clip, or saturation, on the
optimal PTO damping coefficient and the learning process, the
force limit has been reduced to FMax = 237.910 kN. Then,
the wave amplitude has been slightly increased to 1.1 m. This
is analogous to the device reaching the original saturation limit
in more extreme waves, whilst the validity of the assumption of
linear wave theory in the hydrodynamic model is ensured.
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Fig. 7. RL-control-selected and optimal PTO damping coefficient (a) and
difference in the corresponding mean absorbed power (b) in regular waves of
unit amplitude and a wave period of 8 s.

Fig. 8. (a) RL-control-selected PTO damping coefficient and (b) correspond-
ing mean generated power in regular waves with Hs = 2.2 m and Tz = 8 s,
when FM ax = 237.910 kN.

The convergence of the RL algorithm towards a new PTO
damping coefficient and the corresponding mean absorbed
power can be seen in Fig. 8(a) and (b) respectively. Note that the
optimal BPTO value would be far beyond the state space we have
defined, so that it is saturated at 800 kN·s/m. The reason for this
behaviour can be understood by looking at Fig. 9, which shows
the variation of the PTO velocity and force over time with the
two different PTO damping coefficients, 300 and 800 kN·s/m, in
regular waves of unit amplitude and a wave period of 8 s. With
the lower saturation limit FMax = 237.910 kN, the controller

Fig. 9. PTO velocity and force over two wave periods in regular waves with
Hs = 2 m and Tz = 8 s for the cases of unsaturated (BPTO = 300 kN·s/m)
and saturated (BPTO = 800 kN·s/m) PTO force, when FM ax = 237.910 kN.

Fig. 10. (a) RL-control-selected and optimal PTO damping coefficient and
(b) difference in the corresponding mean absorbed power in irregular waves
with Hs = 2 m and Tz = 7 m, generated using a JONSWAP spectrum.

tries to maximise the absorbed power by maximising the area
under the curve of the PTO force through a square wave. The
limit on the PTO damping coefficient prevents the realization of
a fully non-linear, bang-bang type of control response.

C. Results in Irregular Waves

In irregular waves, longer wave traces are considered, each
lasting 12 hours and 15 minutes. In order to ensure the motions
of the model are fully developed, the RL control is run only
after 15 minutes from the start of the time series. In all cases
considered in this section, the force and displacement constraints
are not reached.

1) Single Sea State: Firstly, a wave trace generated using a
single JONSWAP spectrum [30] is considered, with a significant
wave height of 2 m and a peak wave period of 9 s, corresponding
to Tz = 7 s from the FFT analysis. Although there are oscilla-
tions in the predicted values of Hs and Tz over neighbouring
horizons, J = K = 1 have been used for simplicity, so that
ns = 9.
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Fig. 11. Significant wave height and mean zero-crossing period calculated
over each horizon (continuous lines) and over overlapping 15-minute windows
every minute (dotted lines) for the multiple sea state wave trace.

Fig. 10(a) shows the convergence of the RL-selected PTO
damping coefficient towards the optimum. The optimal value
has been calculated by taking the average of the results obtained
through Nelder–Mead optimizations in a 20-minute wave trace
with a JONSWAP spectrum with Hs = 2 m and a peak wave pe-
riod of 9 s using five different seed values. The difference in the
mean absorbed power obtained using RL and the optimal PTO
damping coefficient can be seen in Fig. 10(b), where the optimal
mean absorbed power has an average value of 25.686 kW over
the 12-hour wave trace.

2) Multiple Sea States: In ocean waves, sea states can last
from a minimum of 30 minutes to a maximum of six to eight
hours, with swells lasting typically between 3 and 6 hours [28].
Hence, a semi-realistic wave trace (see Fig. 11) has been gener-
ated from the concatenation of four sea states, each lasting three
hours and corresponding to a JONSWAP spectrum. In order to
achieve convergence, the wave trace has been repeated 4 times
for a total of 48 hours.

Although only four wave spectra are employed to generate
the sea state, determining the sea state over the horizon length H
results in four discrete values of both the significant wave height
(1–4 m, in steps of 1 m) and the mean zero-crossing wave period
(6–9 s, in steps of 1 s). As a result, J = 4 discrete Tz are used.
However, since the wave energy is too low for the generator to
reach its force limit within this wave trace, the optimal damping
coefficient is dependent only on the wave period. Therefore, it is
sufficient to employ only one discretized value for the significant
wave height, I = 1, in order to speed up the learning time. Thus,
ns = 1 × 4 × 5 = 20.

Fig. 12 shows the initial behaviour of the Q-learning algo-
rithm, while Fig. 13 shows the control performance after the
optimal PTO damping coefficient has been learnt in each sea
state. Figs. 12(a) and 13(a) also present the optimal value for
the PTO damping coefficient, calculated as described in the
previous section for the four individual sea states. However, as
opposed to the RL method, in this case the values of Hs and Tz
are obtained from 15-minute moving windows every minute, as
shown by the dotted lines in Fig. 11. In Figs. 12(b) and 13(b),
it is possible to see the difference in the mean absorbed power
obtained using RL and the optimal PTO damping coefficient,
where the optimal mean absorbed power has an average value
of 26.147, 56.429, 59.191, and 25.208 kW in each sea state
respectively, over the 3-hour wave traces.

Fig. 12. (a) Optimal and RL-control-selected (J = 1, K = 4, L = 5) PTO
damping coefficient and (b) corresponding mean absorbed power in irregular
waves with four sea states, generated from the combination of Hs = 2, 3 m and
Tz = 7, 8 s.

Fig. 13. (a) Optimal and RL-control-selected (J = 1, K = 4, L = 5) PTO
damping coefficient and (b) corresponding mean absorbed power in irregular
waves with four sea states, generated from the combination of Hs = 2, 3 m and
Tz = 7, 8 s after learning has occurred.

V. DISCUSSION

A. Regular Waves

As can be seen from Fig. 7, in regular waves the RL algorithm
can converge towards the optimal PTO damping coefficient for
passive control in less than 3 hours starting from a random
initialization. This is possible because of the deterministic nature
of regular waves, which also enables the use of a relatively short
averaging horizon. Similarly, the use of the tabular approach for
the reward function would not be necessary. It is also interesting
to notice that due to the selected exploration strategy, random
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actions may be taken even after the Q-table entries have fully
converged.

From Fig. 8, it is clear that the application of the force clip
results in the optimal PTO damping coefficient moving to the
upper limit. As aforementioned, the reason for this behaviour is
the fact that the control force tends to a square wave shape (see
Fig. 9), which maximises the area under the curve. Conversely,
due to the force saturation, the magnitude of the body veloc-
ity, which corresponds to the velocity at the PTO in this simple
case, is not significantly affected by the PTO force. Since the ab-
sorbed power is proportional to the product of the PTO velocity
and force, a square wave shape of the PTO force maximises the
amount of generated energy. Hence, the controller is able to turn
to a bang-bang type of control action when the force saturates,
which can result in greater energy absorption than resistive con-
trol, as for instance shown by [31], despite a stronger generator
loading. Nevertheless, as this work focuses on the application
of RL to resistive control, a relatively low limit has been im-
posed on the PTO damping coefficient to prevent the controller
behaviour from becoming strongly non-linear.

In Fig. 9, it is also interesting to notice that the saturated body
velocity, like the PTO force, is no longer sinusoidal. The two
curves are still in phase, but the velocity is affected by the higher
order harmonics of the PTO force due to the saturation.

Similarly, although the specified limit on the body displace-
ment is never reached in the tests considered, the RL control
would be expected to return a higher PTO damping coefficient
than the optimal value if this were the case. Indeed, stronger
damping is associated with a smaller motion amplitude.

B. Irregular Waves

The statistical reward function is proven to be very effective
in the treatment of irregular waves, as it is clear from Fig. 10.
However, a longer time is required for convergence to occur as
compared with regular waves. This is evident from the com-
parison of Figs. 12 and 13, which respectively show a random
response while the controller is learning and the optimal per-
formance once convergence is achieved. From this analysis of
multiple sea states, it is possible to deduce that the controller
needs to spend a minimum of 12 hours in each sea state in order
to learn the optimal policy by ensuring sufficient exploration,
when 5 values are used for the PTO damping coefficient (for a
total of 20 states, not all of which are encountered). This time is
likely to rise when a finer mesh is used for the RL state space. In
particular, assuming the learning time to be proportional to the
number of states, a very large number of discrete BPTO values
can seriously affect the convergence properties of the algorithm,
since the number of states is equal to the product of L and the
number of sea states.

Although a 12-hour learning time seems much longer than
the 20-minute window used for the Nelder–Mead optimization,
multiple iterations are required for convergence with any search
technique, so that RL does in fact converge faster in an on-line
application. In fact, a real-time, model-free implementation of
an exhaustive search method would be impossible. Since in the
real environment a wave trace is never repeated exactly, any

search scheme would be unable to recognize whether a change
in the cost function is due to the change in PTO damping or
wave noise. Conversely, as Fig. 13 shows, the proposed RL
strategy is able to start the optimization in any sea state from
where it left off the last time it entered that specific sea state.
Once convergence is achieved, the RL approach is reduced to a
look-up-table method until the exploration rate is increased in
order to check if there have been any changes in the dynamics
of the device. This can be done every season, but it will result
in much shorter learning times during which the performance
will never be far from the optimum, since the Q-table is already
initialized. Thus, as the operational life of a WEC is planned as
25 years, a relatively poor efficiency during the very first stages
of operation should not affect the economic performance of the
device.

From Fig. 13(a), it may look like the Q-learning algorithm
has still not fully learnt the optimal policy even after 48 hours,
despite a much better performance as compared with Fig. 12(a).
In fact, the Q-table has by now converged towards the correct
optimal PTO damping coefficient in each sea state. However,
the optimal values in the m vector, used to calculate the re-
ward function, lie closest to BPTO = 200 kN·s/m for Tz = 6 s,
BPTO = 400 kN·s/m for Tz = 7 s, BPTO = 600 kN·s/m for
Tz = 8 s, and BPTO = 800 kN·s/m for Tz = 9 s. Hence, the
oscillations in the PTO damping coefficient selected by the
Q-learning algorithm in fact correspond to changes in sea state,
as it is possible to understand from a close comparison with
Fig. 11. As a result, the RL method even presents higher power
absorption at some points as compared with the standard resis-
tive control in Fig. 13(b) despite the use of a very coarse RL
state space at this stage.

No comparison has been made at this stage with other con-
trol strategies, such as latching or model predictive control, be-
cause RL is considered to be a method to make existing control
strategies independent of the hydrodynamic model of the WEC.
Hence, its performance is only as good as the control scheme
itself.

VI. CONCLUSION

An on-line, model-free RL algorithm has been proposed in
order to obtain the optimal PTO damping in each sea state for
the resistive control of WECs, including penalties for large dis-
placements. Its performance has been assessed through numer-
ical simulations of a single-degree-of-freedom point absorber.
In regular waves, the control converges quickly towards the op-
timal coefficient due to their deterministic nature. In irregular
waves, convergence is ensured by employing a statistical reward
function, which returns the average over multiple power absorp-
tion values recorded in each state. This approach is shown to
be effective not only in a single sea state, but also in random
waves made from the concatenation of four sea states. Since
the control does not rely on internal models of the device, it
can be easily implemented on a full-scale machine and it can
account for changes to the unit over time, such as due to ma-
rine growth or non-critical failures. Additionally, this method
can be extended to the phase control of a WEC, although the in-
crease in complexity may result in slower learning times, during
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which considerable power losses could be incurred if random
actions are taken. Similarly, the technique can be generalised
and applied to the control of arrays of the devices.
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