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Measurements of the power spectrum from large-scale structure surveys have, to date, assumed an
equal-time approximation, where the full cross-correlation power spectrum of the matter density field
evaluated at different times (or distances) has been approximated either by the power spectrum at a fixed
time or in an improved fashion, by a geometric mean Pðk; r1; r2Þ ¼ ½Pðk; r1ÞPðk; r2Þ�1=2. In this paper we
investigate the expected impact of the geometric mean ansatz and present an application in assessing the
impact on weak-gravitational-lensing cosmological parameter inference, using a perturbative unequal
time correlator. As one might expect, we find that the impact of this assumption is greatest at large
separations in redshift Δz≳ 0.3 where the change in the amplitude of the matter power spectrum can be as
much as 10 percent for k≳ 5 h × Mpc−1. However, of more concern is that the corrections for small
separations, where the clustering is not close to zero, may not be negligibly small. In particular, we find
that for a Euclid- or LSST-like weak lensing experiment, the assumption of equal-time correlators may
result in biased predictions of the cosmic shear power spectrum, and that the impact is strongly dependent
on the amplitude of the intrinsic alignment signal. To compute unequal-time correlations to sufficient
accuracy will require advances in either perturbation theory to high k modes or extensive use of
simulations.
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I. INTRODUCTION

We consider evolving scalar fields in cosmology. We
define an evolving three-dimensional random field
Aðx; rðtÞÞ, where x labels a local three-dimensional coor-
dinate defined at a time t; t equivalently labels a coordinate
distance rðtÞ, and we may use these interchangeably. For
such an evolving three-dimensional random field, we can
choose a time coordinate t and define a local plane-wave
Fourier transform as

Aðk; rðtÞÞ ¼
Z

d3xe−ik·xAðx; rðtÞÞ; ð1Þ

where k is a three-dimensional wave number, and we use
the notation of [1]. Even this equation involves a subtlety;
we observe this on the past light cone, so measurements
are not made at a single time slice. In writing this we
evolve the fields to a common time slice, and we assume
in this paper that the integration volume and evolution are
small enough that this can be done essentially perfectly.
This then ensures that universal homogeneity is preserved
in these local fields labeled with t.

The field considered could be, for instance, the density
fluctuation δρðxÞ=ρ or the Newtonian potential ΦðxÞ
defined at time ti. For any two fields, each with a time
label, the cross-correlation power spectrum, which is
assumed to be isotropic, is defined by

hAðk; rðt1ÞÞA�ðk0; rðt2ÞÞi
¼ ð2πÞ3δ3ðk − k0ÞPðk; rðt1Þ; rðt2ÞÞ; ð2Þ

and we have exploited the homogeneity discussed above.
From here we will use the notation ri ¼ rðtiÞ for clarity.
The projection of a field A on the sky is defined using
projection kernels FA such that

~Aðn̂; rÞ ¼
Z

r

0

dr1FAðr; r1ÞAðr1n̂; r1Þ; ð3Þ

where r is a surface that labels the projection and character-
izes the time when the projection is performed, and n̂
represents the direction on the sky. A simple example
of FAðr; r1Þ is a Gaussian centered on r with a certain
width. Expanding ~A in terms of spherical harmonics, the
angular cross-power spectrum of two different projections,
CAB
l ðr; r0Þ, is defined as
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CAB
l ðr; r0Þ≡ h ~AlmðrÞ ~B�

lmðr0Þi

¼
Z

r

0

dr1

Z
r

0

dr2FAðr; r1ÞFBðr0; r2Þ
Z

d3k
ð2πÞ3 Pðk; r1; r2Þð4πÞ

2jlðkr1Þjlðkr2ÞYlmðk̂ÞY�
lmðk̂Þ

¼
Z

r

0

dr1

Z
r0

0

dr2FAðr; r1ÞFBðr0; r2Þ
Z

2dkk2

π
Pðk; r1; r2Þjlðkr1Þjlðkr2Þ; ð4Þ

where jl are spherical Bessel functions of order l and Ylm
are spherical harmonics. Here we consider the case in
which two fields A and B are different projections of the
same underlying field and hence probe the same underlying
power spectrum Pðk; r1; r2Þ but via different projection
kernels FAðr; r1Þ and FBðr; r2Þ, respectively. This is easily
generalized to different fields, in which case the cross-
power spectrum is involved.
In the full expression of Eq. (4), the power spectrum

Pðk; r1; r2Þ is that between two different, unequal, times.
We refer to Pðk; r1; r2Þ as the unequal-time correlator. In
cosmology, however, underlying power spectra are usually
only expressed as a function of k and a single time, i.e.,
Pðk; rÞ, encoding the Fourier correlations at a given
comoving distance, but not correctly describing the corre-
lations between comoving distances.
To overcome this issue, a mixed equal-time approxima-

tion was introduced in cosmology [2], where the geometric
meanof the two equal-time power spectra has been assumed:
Pðk; r1; r2Þ≃ ½Pðk; r1ÞPðk; r2Þ�1=2. This approximation is
justified by assuming that the correlation of the underlying
(matter overdensity) field is restricted to small scales in
cosmology, and that over such scales the look-back time is
approximately equal (r1 ≃ r2); therefore, either Pðk; r1Þ or
Pðk; r2Þ could be used instead ofPðk; r1; r2Þ. The geometric
mean approximation is then used as an algebraic conven-
ience such that the integrals in Eq. (4) can be separated.
A further justification is that the Bessel function integrals
may reduce to a delta function for r1 ≠ r2 for large kr. These
assumptions are tested in this paper.

II. UNEQUAL-TIME POWER SPECTRA

To compute the power spectrum Pðk; r1; r2Þ, we need to
refer to the correlation between the underlying fields
in Eq. (2). In the cosmological context, the underlying
field of interest is often the matter overdensity δðx; tÞ ¼
½ρðx; tÞ − ρ̄�=ρ̄, where ρðx; tÞ is the matter density at a
position x and comoving time t, and ρ̄ is the mean matter
density. This can be expanded [3,4] perturbatively in terms
of a growth factor DðtÞ, which is independent of scale, and
a transfer function

δðk; tÞ ¼
X∞
n¼1

DnðtÞfnðkÞ; ð5Þ

where δðk; tÞ is the three-dimensional Fourier transform of
δðx; tÞ. Note that fnðkÞ involves products and integrals of n
terms of δLðk; tÞ—which is the density field that can be
computed from linear gravitational theory [3]. For n > 3
such terms become complicated and numerically challeng-
ing to compute.
We can now take correlations of Eq. (5) in both the

unequal-time and the equal-time cases. For the unequal-
time correlation we have

PUETCðk; r; r0Þ ¼ hδðk; tÞδ�ðk; t0Þi

¼
X∞
n¼1

X∞
m¼1

DnðtÞDmðt0ÞhfnðkÞf�mðkÞi

¼
X∞
n¼1

X∞
m¼1

DnðtÞDmðt0ÞPnmðkÞ

¼DðtÞDðt0ÞP11ðkÞ þD2ðtÞD2ðt0ÞP22ðkÞ
þ ½D3ðtÞDðt0Þ þDðtÞD3ðt0Þ�P13ðkÞ þ � � � ;

ð6Þ

where PnmðkÞ are the power spectra corresponding to the
perturbatively expanded δðk; tÞ at order nm (see e.g., [4]).
Note thatDnðtÞ is the linear growth factor at comoving time
t to the nth power. In the fourth line we expand this
expression to include all terms up to P13ðkÞ.
The equal-time case can be written as

PETCðk; rðtÞÞ ¼ hδðk; tÞδ�ðk; tÞi

¼
X∞
n¼1

X∞
m¼1

DnðtÞDmðtÞhfnðkÞf�mðkÞi

¼
X∞
n¼1

X∞
m¼1

DnðtÞDmðtÞPnmðkÞ

¼ D2ðtÞP11ðkÞ þD4ðtÞP22ðkÞ
þ 2D4ðtÞP13ðkÞ þ � � � ; ð7Þ

where the functions D and Pnm are the same as in
Eq. (6).
The geometric mean equal-time ansatz is ½Pðk; r; r0Þ�2 ¼

PETCðk; rÞPETCðk; r0Þ. By squaring Eq. (6) and multiplying
Eq. (7) as required, the differences between the two cases
become clear:
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½PUETCðk; r; r0Þ�2 ¼ D2ðtÞD2ðt0ÞP2
11ðkÞ þD4ðtÞD4ðt0ÞP2

22ðkÞ þ ½D2ðtÞ þD2ðt0Þ�D2ðtÞD2ðtÞP2
13ðkÞ

þ 2D3ðtÞD3ðt0ÞP11ðkÞP22ðkÞ þ 2D2ðtÞD2ðt0Þ½D2ðtÞ þD2ðt0Þ�P11ðkÞP13ðkÞ
þ 2D3ðtÞD3ðt0Þ½D2ðtÞ þD2ðt0Þ�P22ðkÞP13ðkÞ; ð8Þ

and

PETCðk; rÞPETCðk; r0Þ ¼ D2ðtÞD2ðt0ÞP2
11ðkÞ þD4ðtÞD4ðt0ÞP2

22ðkÞ þ 4D4ðtÞD4ðtÞP2
13ðkÞ

þD2ðtÞD2ðt0Þ½D2ðtÞ þD2ðt0Þ�P11ðkÞP22ðkÞ þ 2D2ðtÞD2ðt0Þ½D2ðtÞ þD2ðt0Þ�P11ðkÞP13ðkÞ
þ 4D4ðtÞD4ðt0ÞP22ðkÞP13ðkÞ; ð9Þ

where each term can be compared. We see that many terms
are the same but a few coincide only if D2ðtÞ þD2ðt0Þ ¼
2DðtÞDðt0Þ, which evidently only holds when DðtÞ ¼
Dðt0Þ. From here we label comoving time with redshift
z, where the assumption of a cosmology is implicit. In
Fig. 1 we show the magnitude of this approximation as a
function of redshift for a concordance cosmology. In Fig. 2
we show PUETCðk; r; r0Þ and ½PETCðk; rÞPETCðk; r0Þ�1=2,
calculated using Eqs. (6) and (7) [5]. We see that the
impact of the equal-time approximation is largest at large
redshift separations and increases in amplitude at small
scales, where P22ðkÞ and P13ðkÞ become dominant. For
separations in redshift jz − z0j ≳ 0.3, the change in the
amplitude of the matter power spectrum can be as much as
10% for k≳ 5 hMpc−1. However, it is not clear yet whether
the large deviations at large jz − z0j are important, since the
correlation of the fields is likely to be very small here. We
will return to this later.
An alternative formulation of an unequal-time correla-

tion is to use an “eikonal” phase [7–11], where the matter
overdensity perturbations can be written as [10]

δðk; tÞ≃ exp

�Z
t
dt0

Z
d3k0

ð2πÞ3
k:k0

k02
δLðk; t0Þ

�
× δSðk; tÞ;

ð10Þ

where δSðk; rÞ represent fluctuations on short scales, and
δLðk; rÞ are linear-scale perturbations; this equation
assumes a growing mode only. The unequal-time power
spectrum is then expressed as the equal-time version
multiplied by an exponential damping term that depends
on the separation in time (see for example [10], Sec. II. B),
whereas the perturbative calculations in Eqs. (6) and (7)
depend approximately polynomially on the eikonal phases.
In this case unequal-time correlations are due to the mixing
of long wavelength (or “soft”) modes with shorter wave-
length modes. We find that for equal times, these have no
impact on the amplitude of the power spectrum, which is
consistent with the conclusion we find in this section, but
that for unequal times there can be significant changes [8].
Reference [12] shows how to link the eikonal phase
representation to a perturbation approach similar to that

2D(z)D(z')/[D2(z)+D2(z')]-1

z'
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FIG. 1. Left panel: The fractional difference between 2DðzÞDðz0Þ and D2ðzÞ þD2ðz0Þ, where DðzÞ is the linear growth factor, for a
ΛCDM cosmology with parameters set at the Planck [6] maximum likelihood values. Right panel: A cross section through the left panel
plot for z0 ¼ 1.
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used here. References [10,11] derive power spectrum and
bispectrum consistency conditions for the equal and
unequal-time cases using this formalism.
It is unclear at the current time whether perturbative or

eikonal phase calculations are the correct theoretical repre-
sentation of cosmological power spectra. Both approaches
should converge at high enough order, but given limited
numerical complexity, there will be differences. For exam-
ple, the eikonal phase calculations neglect some of the
mode-coupling terms of the one-loop perturbative calcu-
lations (which have a ≲10% effect in the mildly nonlinear
regime) but find an exponential damping for small scales and
sizable time differences. One approach to address these
issues is to use amatter density propagator (the sensitivity of
the final to the initial conditions) (see e.g., [13]). A full and
detailed comparison between these approaches is of sig-
nificant interest for the case of unequal-time correlations,
but it is beyond the scope of this paper.

A. Bessel/Lommel effects

Despite the fact that the amplitude of the underlying
power spectrum is different in the unequal-time and equal-
time cases, the integration over two Bessel functions in
Eq. (4) may be expected to downweight the impact of such
an effect for a projected field. Indeed, when integrating over
multiple Bessel functions, an orthogonality relation holds:Z

R

0

drr2jlðknrÞjlðkmrÞ ¼ jlþ1ðknRÞδKnm; ð11Þ

where knr are the arguments corresponding to zeros of the
spherical Bessel functions [14,15]. However, for the gen-
eral case, where nonzero parts of the spherical Bessel
function are integrated over, this orthogonality relation

does not hold. There have been several investigations into
the regimes where this expression is applicable for cosmol-
ogy [16,17]. In the case in which there are such integrals
over r, such a relation can be applied in the derivation of
quantities for cosmology. However, in the case of projected
fields, which we investigate here, this is not appropriate
because the equivalent expression that appears in Eq. (4)
involves an integral over the k mode. In the constant power
spectrum case, and an upper k-mode limit of K, we would
have expressions like

Z
K

0

dkk2jlðkrnÞjlðkrmÞ ¼ jlþ1ðKrnÞδKnm; ð12Þ

which is only applicable for a discretely sampled field in
comoving distance rn such that krn are zeros of the
spherical Bessel functions; this is clearly not the case. In
[2,18,19] the case of K → ∞ is discussed, which results in

Z
∞

0

dkk2jlðkrÞjlðkr0Þ ¼
π

2k2
δDðr − r0Þ; ð13Þ

but this is not a practical case for cosmology; furthermore,
the full expression for K < ∞ does not converge to the
limit, as we will discuss.
To investigate the effect of the Bessel integrations, we

explore the functions

Cδδ;UETC
l ðr1; r2Þ ¼

Z
2dkk2

π
PUETCðk;r1; r2Þjlðkr1Þjlðkr2Þ

Cδδ;ETC
l ðr1; r2Þ ¼

Z
2dkk2

π
½PETCðk;r1ÞPETCðk; r2Þ�1=2

× jlðkr1Þjlðkr2Þ; ð14Þ

z
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FIG. 2. The fractional difference between PUETCðk; r; r0Þ and ½PETCðk; rÞPETCðk; r0Þ�1=2 and for a ΛCDM cosmology with parameters
set at the Planck [6] maximum likelihood values. In the left panel we set z ¼ 1 and show the variation as a function of z0 for several k
modes. In the right panel we set z ¼ 1 and show the variation as a function of k modes for several z0 values.
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for the unequal-time and equal-time cases, respectively.
These enter in Eq. (4) (and similarly for the equal-time
case) and are then integrated over with the projection
kernels FAðr; r1Þ to generate the projected power spectra,

CAB
l ðr; r0Þ ¼

Z
r

0

dr1

Z
r0

0

dr2FAðr; r1ÞFBðr0; r2ÞCδδ
l ðr1; r2Þ:

ð15Þ
Equations (14) are also equal to the projected power spectra
ClðrA; rBÞ when the projection kernels are delta functions
e.g., δDðr − r1Þ. We assume the same Pðk; r1; r2Þ as in
Sec. II, where the integration is over the range 10−3 ≤ k ≤
15 hMpc−1 [20]. In Fig. 3 we show the functions for
several different lmodes and redshift values. It can be seen

that the functional form of Cδδ
l ðr1; r2Þ is sharply peaked

about r1 ¼ r2 but that it has a nonzero tail out to large
separations r1 − r2 ≫ 1. Again we find large differences
between the unequal-time and equal-time cases, with up to
a factor 100 difference for large separations in redshift. The
highly oscillatory nature of the functions is a real effect—
not noise in the calculation (estimated error bars from the
numerical integration are smaller than the linewidth in
Fig. 3). This highly oscillatory nature is a result of multiple
Bessel functions in the solution moving in and out of phase
as the values of r change. For the case of a constant power
spectrum (which is not a function of the k mode), Eqs. (14)
have an analytic solution given by Lommel’s integrals
[14,15], which are also rederived in [16],

Z
K

0

dkk2jlðkrÞjlðkr0Þ ¼
�

π

2ðrr0Þ1=2
��

K
r2 − r02

�
½rJl−1ðKrÞJlðKr0Þ − r2Jl−1ðKr0ÞJlðKrÞ�

Z
K

0

dkk2jlðkrÞjlðkrÞ ¼
�
π

2r

��
K2

2

�
½ðJlðKrÞÞ2 − Jl−1ðKrÞJlþ1ðKrÞ�; ð16Þ

where J are Bessel functions of the first kind. We note that
Lommel’s integrals do not converge to a delta function as
K → ∞ [Eq. (13)], but they become undefined. In Fig. 4 we
compare the numerical calculations used in this paper with
the analytic solution in Eqs. (16) and find that the difference
is at least a factor of 10 smaller than the amplitude of
Cδδðl; z; z0Þ.

B. Projection effects

The final part of Eq. (4) that we consider is the effect of
the projection kernels FAðr; r1Þ. In Fig. 3 and Eq. (14) we

have already investigated the case in which FAðr; r1Þ ¼
δDðr − r1Þ. Another case that has been investigated in [1] is
the case that j∂ lnFAðr; r1Þ=∂r1j ≪ 1, when the “Limber
approximation” can be applied to Eq. (4); this is applied in
the equal-time case when the limits on the k-mode integral
are 0 ≤ k ≤ ∞, and a Laplace transform can be used. We
note that in the unequal-time case, the derivation of [1] is
not applicable because the r1 and r2 integrations are not
separable.
To investigate the effect of the projection kernels,

we consider B to be at a fixed redshift, FBðr; r2Þ ¼
δDðr − r2Þ, and use a Gaussian projection kernel for

z
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FIG. 3. The functions Cδδ;UETC
l ðr1; r2Þ (blue) and Cδδ;ETC

l ðr1; r2Þ (red) for several different l modes and redshift values defined in
Eq. (14). The title of each plot gives the l mode and z value used.
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FAðr; r1Þ ∝ exp½−ðr − r1Þ2=2σ2r �. We choose rB to be the
comoving distance at z ¼ 1. We then vary the width of
the Gaussian projection kernel σr. In Fig. 5 we show the
fractional change in the projected power spectra for two
different rA corresponding to redshifts of z ¼ 0.5 and 0.9.
Again the nonsmooth nature of these plots is a real feature
of the oscillatory nature of the unequal-time computations.
As expected, projected cross-correlation power spectra

with large redshift separations are affected more by the
equal-time approximation, which can also be seen in Figs. 1
and 3. Narrow, well-separated kernels are affected the most.

Broader kernels integrate over a range of redshifts, including
separations where the effect is smaller, and reducing the
overall impact. We also find that high lmodes are modified
more than small l modes, which is consistent with the
underlying power spectrum being affected most at high k
(Fig. 2). For widely separated bins in redshift, the change in
the projected power spectrum can be over 10% over scales
102 ≲ l≲ 104. Therefore, the cases in cosmologywhere the
equal-time approximation is expected to have the greatest
impact are those where widely separated tomographic
redshift bins are used, with narrow projection kernels.
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FIG. 4. Left panel: Equation (16) as a function of r0 for r ¼ 3000. The red line is calculated using numerical integration, and the blue
line is the analytic solution multiplied by ten so that the functional form can be distinguished. The black line shows the absolute
difference between the two. Right panel: The same as the left except r ¼ 1000. Both plots are for l ¼ 1000 and K ¼ 10h Mpc−1.
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FIG. 5. Left panel: The fractional change in a projected power spectrum for a Gaussian projection kernel FAðr; r1Þ ∝
exp½−ðr − r1Þ2=2σ2r �, fixing FBðr; r2Þ ¼ δDðr − r2Þ. We set rB ¼ rðz ¼ 1Þ and rA ¼ rðz0 ¼ 0.9Þ. The lines correspond to different
widths of the projection kernel. Right panel: The same as the left panel except with rA ¼ rðz0 ¼ 0.5Þ.
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III. APPLICATION

As shown in the previous section the difference between
equal-time-approximated projected power spectra and the
full unequal-time case is expected to become important for
cross-correlations between widely separated redshift bins
of fields that have sharply peaked projection kernels.
An example of such fields in cosmology are the cross-
correlations between tomographic redshift bins of the weak
lensing intrinsic alignment effect.
Weak lensing is an integrated effect, whereby the image of

a distant galaxy is distorted by the gravitational lensing
effect caused by matter perturbations along a line of
sight and is therefore, by nature, a projected field. In weak
lensing the observed ellipticity is (to first order) a sum
of the following: the intrinsic (unlensed) ellipticity; the
additional ellipticity caused by the gravitational lensing
effect, γ, known as shear; and any noise effect, eobs ¼
eint þ γ þ enoise. When taking the covariance of these
quantities and constructing projected fields [as in Eq. (4)],
the result is a sum of four terms:

CTotal
l ðr; r0Þ ¼ CGG

l ðr; r0Þ þ CGI
l ðr; r0Þ þ CIG

l ðr; r0Þ
þ CII

lðr; r0Þ; ð17Þ

where GG refers to the shear-shear correlations, GI to the
cross-correlation between the intrinsic ellipticity and shear,
and II to intrinsic-intrinsic correlations. The correlation IG
is expected to be zero (or at least very small), but we include
it here for completeness.
The weak lensing observable is proportional to deriva-

tives of the Newtonian potential; therefore, the inner
integration over the k mode in Eq. (4) is over the power
spectrum of the Newtonian potential CΦΦ

l ðr1; r2Þ,

CGG
l ðr;r0Þ

¼
Z

r

0

dr1

Z
r0

0

dr2FGðr; r1ÞFGðr0; r2ÞCΦΦ
l ðr1; r2Þ; ð18Þ

for the GG case, where the inner power spectrum is related
to the matter power spectrum through Poisson’s equations,
which introduces a factor of k−4 so that (up to a cosmology-
dependent multiplicative constant)

CΦΦ
l ðr1; r2Þ ¼

ðlþ 2Þ!
ðl − 2Þ!

Z
2dk
πk2

Pðk; r1; r2Þjlðkr1Þjlðkr2Þ;

ð19Þ

and similarly for the equal-time case, which can be
compared to Eqs. (14) and (15). We include a factor of
ðlþ 2Þ!=ðl − 2Þ! here, which is the result of angular
derivatives relating the weak lensing observable (shear)
to the projected Newtonian potential (see [2,21]).

The unlensed observed ellipticity of a galaxy can be
affected by the local gravitational potential; therefore, the
projection kernel in Eq. (4) is proportional to a delta
function in this case. The shear effect is integrated along the
line of sight, and the projection kernel is a combination of
angular diameter distances that determine the geometric
gravitational lensing effect. We follow the notation of
[21,22] and define the power spectra using Eq. (4), where
the two fields are combinations of A ¼ fG; Ig and
B ¼ fG; Ig, with projection kernels given by

FGðr; r1ÞFGðr0; r2Þ ¼ CGðrÞCGðr0Þqðr; r1Þqðr0; r2Þ
FIðr; r1ÞFGðr0; r2Þ ¼ CIðrÞCGðr0Þpðr; r1Þqðr0; r2Þ
FGðr; r1ÞFIðr0; r2Þ ¼ CGðrÞCIðr0Þqðr; r1Þpðr0; r2Þ
FIðr; r1ÞFIðr0; r2Þ ¼ CIðrÞCIðr0Þpðr; r1Þpðr0; r2Þ; ð20Þ

where pðr; r1Þ is the comoving distance probability dis-
tribution for galaxies in a bin labeled with r. The shear
kernel is given by

qðr; r1Þ ¼
3H2

0ΩM

2c2
1

aðr1Þr1

Z
dr0pðr; r0Þ

�
r0 − r1
r0

�
wðr; r0Þ;

ð21Þ

where H0 is the current Hubble parameter, ΩM is the
current dimensionless matter density, c is the speed of
light in vacuum, aðrÞ is the dimensionless scale factor,
wðr; r0Þ ¼ 1 for r0 ≤ r and zero otherwise; here we assume
a flat geometry. The functions are CGðrÞ ¼ 1 and
CIðrÞ ¼ AIAc1ρ̄ðrÞ=DðrÞð1þ zðrÞÞ=r2, where DðzÞ is
the linear growth factor, ρ̄ðzÞ is the mean matter density
at redshift z, c1 ¼ 5 × 10−14h−2M−1⊙ Mpc3, and AIA is a
free parameter that has a fiducial value of AIA ¼ 1. This
model for the intrinsic alignment power spectrum is the
“linear alignment model” discussed in [23] (see [24] for a
recent review).
We use a fiducial Euclid-like [25] weak lensing survey

[26] (this is also similar to a LSST survey [27]), with
a survey area of 15,000 square degrees, a surface
number density of galaxies of n0 ¼ 30 per square arcmi-
nute, a number density distribution given by nðzÞ ¼
n0ð3z2=0.524Þ exp½−ðz=0.64Þ1.5�, and a Gaussian photo-
metric redshift distribution with standard deviation
σzðzÞ ¼ 0.03ð1þ zÞ; the function pðr; r1Þ is given by
the convolution of the nðzÞ in each tomographic redshift
bin and the photometric redshift distribution. We use five
tomographic redshift bins with central redshifts given by
f0.10; 0.57; 1.04; 1.51; 1.97g. We compute these power
spectra for the unequal-time and equal-time cases, with
the underlying power spectra given in Eqs. (6) and (7),
where for the equal-time case we use the ansatz
½Pðk; r; r0Þ�2 ¼ PETCðk; rÞPETCðk; r0Þ.
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In Fig. 6 we show the difference between the projected
power spectra computed in the unequal-time and equal-
time cases,

δClðz; z0Þ ¼ jCUETC
l ðz; z0Þ − CETC

l ðz; z0Þj: ð22Þ

We find that theGI term is most affected since its amplitude
is relatively large and it requires a narrow kernel. The II
term has a combination of two narrow kernels, but its
amplitude is smaller relative to the total power spectrum.
The GG term is also affected but at a typically lower
amplitude than the GI term. If narrower redshift bins were
used, then the amplitude of the difference should increase.
The change in power spectrum is certainly small, but in fact
the requirements on δClðz; z0Þ are particularly stringent
for weak lensing surveys. We can assess the impact of
these changes by computing the integrated effect over the
differences,

hAi ¼ 1

2π

1

Nbins

X
z _bins

Z
d lnll2δClðz; z0Þ; ð23Þ

complementary formulations are provided for this quantity
in [28–30], the sum is over all redshift bin pairs, andNbins is
the total number of redshift bin pairs. In general, a nonzero
hAi will change the amplitude of the power spectrum and
bias cosmological parameter inference. As discussed in

[29] the requirement on the amplitude of this quantity is
hAi ≤ 10−7 for a Euclid- or LSST-like weak lensing survey
to return unbiased results on the dark energy equation
of state parameters; this requirement is an allowance
for all systematic effects, including instrumental and
algorithmic quantities. For our fiducial set we find that
hAi ¼ 7.4 × 10−8, which would account for ≃74% of the
requirement [31].
Because the equal-time ansatz is expected to affect

projected power spectra with narrow kernels in redshift,
and because the intrinsic alignment power spectrum is such
a power spectrum, we investigate the impact of changing
the amplitude of the intrinsic alignment signal. In Fig. 7 we
change the parameter AIA, which has a fiducial value of
AIA ¼ 1, and we show how the integrated change in the
power spectrum, hAi, varies. In the left axes we show this
normalized by the required value of 10−7, and the right axes
show the unnormalized value. The current range in this
parameter is approximately −1≲ AIA ≲ 10 [32]. We find,
as expected, that the impact of the equal-time assumption
becomes more prominent as the amplitude of the intrinsic
alignment signal increases.
These results serve as an example of the type of impact

that the assumption of equal-time correlators may have in
cosmology; however, the current precision of the pertur-
bative approach to representing the matter power spectrum
over a large range of k modes, and the lack of good
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FIG. 6. The difference l2jCUETC
l ðz; z0Þ − CETC

l ðz; z0Þj between the unequal-time projected power spectra and the equal-time projected
power spectra as a function of the l mode for each redshift bin combination for the GG, GI, and II cases.
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predictions for how the unequal-time power spectrum
behaves as a function of cosmological parameters, shows
that the precise numerical results are only indicative of the
full impact, which requires further investigation.

IV. CONCLUSION

In this paper we have presented a full projected field
formalism for cosmology that includes the integration over
an unequal-time correlator of the matter overdensity power
spectrum Pðk; r1; r2Þ. This relaxes an assumption that has
been made in cosmology to date where individual or mixed
equal-time correlators of the matter overdensity have been
used, either an ansatz Pðk; r1; r2Þ≃ ½Pðk; r1ÞPðk; r2�1=2 [2]
or alternatively simply Pðk; r1Þ or Pðk; r2Þ.
We investigated the impact of the assumption of equal-

time correlators by expanding both Pðk; r1; r2Þ and Pðk; r1Þ
perturbatively. We find that the impact of this assumption is
largest at large separations in redshift jz − z0j≳ 0.3, where
the change in the amplitude of the matter power spectrum
can be asmuch as 5%–10% for k≳ 5h Mpc−1. For projected
fields Clðz; z0Þ, we find that the impact is dependent on the
width of the projection kernel. ForGaussian kernelswith full
width half maxima of σr ≲ 300h−1 Mpc, we find a ∼10%
effect for large redshift separations jz − z0j≃ 0.5. Therefore,
observed power spectra that have narrow projection
kernels and cross-correlations between widely separated

redshift bins are expected to be affected by the equal-time
approximation.
One application where there are narrow projected kernels

and widely separated redshift bins is the computation of
weak lensing two-point correlation functions and power
spectra—where, in particular, the contribution from intrin-
sic alignments (unlensed ellipticities) has local projection
kernels in comoving coordinates. We find that for a Euclid-
or LSST-like weak lensing experiment, the assumption of
equal-time correlators could introduce biases in the mea-
surements of cosmological parameters, and that this is
strongly dependent on the amplitude of the intrinsic
alignment signal. However, due to the lack of good models
for how cosmological parameters affect unequal-time
correlators, these results are indicative only and require
further investigation.
Unequal-time correlators have been investigated previ-

ously in [33–36] in the study of cosmic strings. To
determine unequal-time correlations analytically is an
involved calculation, and in particular, for the matter
overdensity field perturbation theory at a high k mode, it
would make a full analytic solution challenging. In this
paper we compute the matter power spectrum using
perturbation theory to third order and use k modes with
k ≤ 15h Mpc−1. One approach to include unequal-time
correlators in cosmological statistics will be to extend this
approach for arbitrary cosmological parameters and to high
precision; such work has begun in studies for equal-time
correlators e.g., [37,38]. As noted by [8] the eikonal phase
representation of matter overdensity perturbations results in
equal-time correlations being unaffected but unequal-time
correlations being damped—this is consistent with the
results we find here, where the equal-time case would
require a lower matter power spectrum amplitude to fit the
same data. Another approach will be to determine the
unequal-time power spectra directly from simulations of
the matter field such as [39,40].
When designing statistics in cosmology, great care must

be taken to investigate the impact of any assumption or
approximation used. We find that the equal-time approxi-
mation can potentially have a large impact on cosmological
parameter inference. Unequal-time correlators can be
computed using either perturbation to high k modes or
from simulations, both of which require attention in order
for future cosmological results to be unbiased.
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