
Estimation of Success in Collaborative Learning
based on Multimodal Learning Analytics Features

Abstract—Multimodal learning analytics offer researchers
new tools and techniques to capture different types of data from
complex learning activities in dynamic learning environments.
This paper investigates high-fidelity synchronised multimodal
recordings of small groups of learners interacting from diverse
sensors that include computer vision, user generated content,
and data from the learning objects (like physical computing
components or laboratory equipment). We processed and ex-
tracted different aspects of the students’ interactions to answer
the following question: which features of student group work
are good predictors of team success in open-ended tasks with
physical computing? The answer to the question provides ways
to automatically identify the students at risk of not having success
during the learning activities and provides means for different
types of interventions to support and scaffold the student learning.
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ing; practice-based learning

I. INTRODUCTION

Over the last several years the field of learning analytics
has grown rapidly in conjunction with Massive Open Online
Courses (MOOCs) and other technology systems (mobile
applications, student response systems) that have become part
of the everyday educational landscape. These systems provide
diverse types of data about learners’ interactions in digital
environments and allow new insights into education. Such
systems highlight the importance of data in education that
is of interest to diverse actors for utilising learning analytics
for educational management and policy [5]. However, from
a research perspective, the aim of learning analytics is to
understand and optimise learning [17] and still a large part
of learning takes place in face-to-face teaching activities. In
this paper, we focus on the potential of learning analytics
on providing insights about practice-based learning, in which
small groups of learners create unique solutions to open-ended
problems in face-to-face learning environments.

Project-based learning activities are considered to have the
potential to help educators achieve high tier institutional and
policy goals such as developing 21st century skills in STEM
subjects at scale. These activities, which often combine physi-
cal computing technologies with design principles in the con-
text of computer science education, are increasingly popular
in both secondary and postsecondary learning institutions [8].
To better accommodate learning in small groups, researchers
use low-cost sensors, inexpensive computational power, and
data from diverse sensors that include computer vision, audio,
biometric, and data from the learning objects (like physical

computing components or laboratory equipment) to collect
data. The multimodal data from these sensors provides new
opportunities for investigating learning activities in the real-
world between small groups of learners working on tasks with
physical objects [4], [8].

The aim of this paper is to investigate how Multimodal
Learning Analytics (MMLA) can be used to support project-
based learning from a specially designed worktable environ-
ment where small groups of students (three students) use new
physical computing components to solve open-ended tasks.
The ability to collect multimodal data from bodily movements,
face tracking, affective sensors, log files from the hardware
and software, user and research generated data provide oppor-
tunities to obtain useful features for understanding. Through
the use of multimodal learning analytics platform that is part
of the worktable, we collected diverse streams of data from
learning activities. We processed and extracted multimodal
interactions to answer the following question: which features
of student group work are good predictors of team success in
open-ended tasks with physical computing? Potential answers
to this question would enable us to generate analytics to
predict the success of groups based on multimodal features
automatically. Such predictions are useful for both improving
the awareness of students and practice of teachers to adjust
their interventions.

II. BACKGROUND

Project-based learning activities that support learners’
participation in open-ended tasks are one of the central
teaching approaches in STEM education. These activities
emphasise the engagement of learners in projects that are
personally meaningful, support engagement in authentic
enquiry activities and are collaborative [11]. However, the
existing evidence about the impact of these approaches
on learning is rare and one potential for this lack of
evidence might be that the hands-on and open-ended nature
of project-based learning creates challenges for tracking
the learning processes. Moreover, often the value of such
approaches is hard to measure with existing standardised
measurement methods [4]. More recently, Multimodal learning
analytics (MMLA) provide opportunities to help address these
challenges and observe the evidence on expected learning
outcomes of these complex pedagogies.This evidence and
insights generated can be used to support students’ learning
processes in these approaches and improve the practitioners’
practice.



Current research has focused on MMLA as a means to bet-
ter understand the complexity of learning through the advances
of high-frequency multimodal data capture, signal processing,
and machine learning techniques [13]. There is an emerging
body of work with MMLA to capture small group work on
project-based learning that has grown out of the work of Blik-
stein and Worsley [3], [12]. Blikstein [2] explored multimodal
techniques for capturing code snapshots to investigate students
learning computer programming and video and gesture track-
ing for engineering tasks. This work offers an opportunity
to capture different insights about learning in tasks in which
students have the opportunity to generate unique artefacts like
computer programs, robots, and collaborate in small groups
to solve open-ended tasks. Worsley [18] presented different
approaches for data integration and fusion and how these
can have a significant impact on the relation of research and
learning theories. These approaches provided the means for
other researchers to begin to explore MMLA with small groups
of students across different subjects. Grover and colleagues [7]
have explored how to develop test computational models of
social in CPS learning environments. Their approach has been
to classify the quality of collaboration from body movement
and gestures of pair programmers working together. Prieto and
colleagues [15] and Martinez-Maldonado and colleagues [10]
have focused their research efforts on how MMLA can support
teaching actions and orchestration in the classroom. Drawing
from the literature we can observe that MMLA has a role
to play to support education in project-based learning through
providing new means for gathering insights for complex open-
ended tasks [4].

III. SYSTEM AND CONTEXT

The work discussed in this paper is based on a European
project ”Practice-based Experiential Learning Analytics Re-
search And Support” (XXXX)1. One of the aims of the project
is to develop learning analytics tools for hands-on, open-
ended STEM learning activities using physical computing. The
learning contexts investigated are STEM education in high
school; engineering and interaction design at universities. The
current system includes customised furniture with an integrated
Learning Analytics System (LAS) including tracking hands,
faces and other objects, meanwhile the Arduino platform
with a visual web-based Integrated Development Environment
(IDE) captures interaction information of physical computing.
The learners and observers use mobile devices to capture
multimedia data (text, images, and video) to self-document
the learning activities. Overall, the XXXX project has de-
veloped an intelligent system for collecting activity data for
diverse learning analytics (with data-mining, reasoning, and
visualisations) and active user-generated material and digital
content (mobile tools) from practice-based activities (physical
computing platform)[16].

LAS collects multimodal data from different sensors and
inputs from the learners and researchers. The learning envi-
ronment is designed to foster collaboration and includes an
integrated screen and standing round table to allow learners
to share and work together. The LAS collects data from both
ambient (sensors) and live sources (human interaction). The
ambient collection of data includes a computer vision system

1http://blinded

Fig. 1. University engineering students working with XXXX.

that uses both an RGB with depth, video with audio and
video that collects data about how people interact around
the workstation furniture. The specific implementation relies
on client-server architecture where a cloud infrastructure col-
lects the data processed by the local client, called collector.
The communication is based on WebSockets and supports
disconnection and offline modality taking into account the
connectivity challenges of learning environments. Analytics
and machine learning are performed in the cloud. See XXXX
system in action in Figure 1.

IV. MATERIALS AND METHODS

The automatic approach discussed in this paper is per-
formed over a dataset acquired with students with the PELARS
platform. In this section the data acquisition process is dis-
cussed, with the analysis performed based on machine learning
classification.

A. Datasets

The data analysed in this paper is from 3 sessions for each
of the 6 groups made of 3 students studying engineering at a
European University (average age 20 years old with 17 men
and 1 woman), for a total of 18 sessions. Each student group
used the system over 3 days completing one open-ended tasks
in each session. The students were introduced to the system
and then their first task was to prototype an interactive toy. The
second task was the prototyping of a colour sorter machine,
and the third task targeted an autonomous automobile. Each
of the tasks introduced more complex concept to be solved
with respect to the previous ones. Students have been asked
to perform an initial phase of planning, followed by execution
and finally a documentation phase. No specific instructions
about the timing of these phases have were given to students.
During the session, the observer has split the session into
these three phases based on personal judgment of the progress



via the mobile tool.

To grade the sessions, a scoring scheme was developed
that combined different approaches for collaborative problem
solving (CPS) in small groups. We started with the seminal
work done with engineering students [1] that was initially
adopted by [18] for multimodal learning analytics. From these
initial frameworks, we began to develop a framework for CPS
[6] that we could apply for the XXXX context. We used a
version of our CPS framework with the mobile system with an
agreed set of codes for on-fly observations to initially grading
of the students’ projects. From the initial score of the students’
work, the team of researchers reviewed the students work
collected in the LAS which included snapshots of the students’
plan, video of solutions, and learners text input. The 18 session
were graded with these criteria, where 50% of the grade was
the expert’s opinion, 25% was how the students planned and
delivered the artefact, and the remaining 25% was the students’
own self-assessment. The resulting scores were categorised in
three classes: bad, ok, and good equivalent to a Likert scale
of 3 values.

Acquired Data For each sessions recorded, the LAS
system collected data from the students comprising activity
performed, user generated content (text and multimedia) and
actions on the Arduino visual IDE. In particular, the following
data was acquired.

Face Tracking By means of a frontal camera and the
Viola-Jones algorithm the face of students was tracked, and
then, thanks to camera calibration and assumptions about sizes,
it was possible to estimate the distance of students from the
camera. This means that the position of the face is computed
in 3D coordinate with respect to a position on the table. Two
metrics have been identified: the first is the count of Faces
Looking at the Screen FLS, the second is the distance between
the faces providing an indicator of Distance between Learners
DBL. We hypothesise that the measure DBL can be seen as
a proxy of collaboration, since when DBL is small it is more
like that the collaboration would occur among students.

Hand Tracking A top down camera monitored the motion
of the hands of the students that were wearing fiducial markers
that disambiguate each primary hand. Again, thanks to the
calibration of the camera and the size of the markers the 3D
position of the hands was obtained. The resulting metrics were
the Distance between Hands DBH and the Hand Motion Speed
HMS.

Arduino IDE The interface between the Visual Arduino
IDE and the data collection system provided information about
the types of physical and software blocks used in the project
and their connections. In particular we counted the number
of Active Blocks IDEC, the Variety of Hardware IDEVHW
and Software Blocks used IDEVSW and the number of
interconnections between blocks as a Measure of Complexity
IDEX in students’ programming during their practice-based
activities.

Audio Level By means of the microphone included in one
of the cameras and Fast Fourier Transformation (FFT) we
computed the sound level during the sessions. The resulting
feature was a value sampled at 2Hz called Audio Level AUD.

B. Preprocessing

From all these MMLA data points the data was collected at
variable data rates (around 2Hz), yet it was not synchronised.
For this reason, we needed a processing stage that aggregates
indicators from the different variables in windows of same
durations. The aggregation performed was based on counting
for most of the variables, except for the distance/proximity
functions for which we employed averaging. Taking into
account the different lengths of the sessions, we employed zero
padding for sessions that were too short. In our investigation,
the tested window sizes were 10,20 and 30 minutes and there
was also the case of one single window for the whole session.

C. Methods

The approach proposed in this paper is based on a
supervised classification task that matches the observers’
scores. The purpose of this approach is to identify the data
features that can support different score classifications (bad,
ok, good). Among the different families of classifiers, we
opted for the parametric ones namely Naive Bayesian (NB),
Logistic Regression (LR) and Support Vector Machines with
linear (SVML) and Gaussian kernel (SVMR). We avoided
the non-parametric ones (Nearest neighbours) or decision
threes with the purpose of reducing the overfitting effect.
In particular the Naive Bayesian is a simple classifier that
employs a strong assumption about the feature, a condition
that holds for most of the variables employed except for the
ones related to the Arduino IDE. We decided not to use the
ensemble of classifiers [9], as we would like to study the
model behind these classifications as much as performing the
classification itself.

We used cross-validation (k=4) for understanding the effect
of different parameters such as window size and the inclusion
of different phases. Due to the small sample size (18), we
avoided the leave-one-out scheme. The data acquired from the
XXXX LAS was exported and then processed in Python using
the sklearn [14] toolkit that provides state-of-the-art machine
learning techniques integrated with a common interface. The
test of the classifiers was performed by varying the window
size, the score (binary or original 3-level), the inclusion of the
different phases (planning, building, and reflecting) and, most
importantly, the effect of features described above (FLS, DBL,
DBH, HMS, IDEC, IDEVHW, IDEVSW, IDEX, AUD)

V. RESULTS

The 18 session lasted between 33 and 75 minutes (median
63 min±13) for a total activity time of 17 hours and 10
minutes. The teams scored with different patterns along the
three sessions and Figure 2 shows the outcomes.

The phases annotated by the observer were quite variable:
planning (11min±10min), work (41min±16min) and reflection
(4min±7min).

Below the results are being presented.

A. Scoring

The three-level scoring (bad,ok,good) posed difficulties to
the classification activity and we needed to move to a binary
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Fig. 2. Scores of Teams across sessions

TABLE I. EFFECT OF PHASES IN THE INCLUSION OF THE CLASSIFIER.
P=PLAN, W=WORK, R=REFLECT

PWR PW W WR
NB 0.8 0.8 0.6 0.75
SVML 0.6 0.75 0.75 0.8
SVMR 0.75 0.75 0.75 0.75
LR 0.6 0.75 0.5 0.6

version in which we aggregated ok graded groups with good
graded groups. For example, NB and SVM scores 0.8/0.75
with a window of 30min and binary classification, however
this value decreases to 0.5 for a three-way classification. This
is clearly not ideal, however in order to achieve better results
we took this binary approach. We see this as the first step
towards further more detailed classifications. For the rest of
the paper, we’ll focus on this binary classification between
bad graded groups vs ”good and ok” graded groups.

B. Effect of Phase

Across the different conditions, the selection of the phases
used to train a strong affect of the capacity to recognise the
classifiers. For example, with a 30min window and binary
classification, the exclusion of reflection (PWR) phase in
student activities, provided stronger results across the different
classifiers, while the exclusion of both planning and reflection
reduced the classification power. See Table I for the details.

In order to provide the most reliable results and use the
strongest classification power, for the rest of the paper, we
focus our results on planning and working stages of the student
activities and excluding the reflecting stages.

C. Type of Classifiers

As can be seen in table 1, across the different tests the
classifier, those behaved the most consistently were NB and
the SVM with linear kernel.

D. Effect of Features

Having established the window size (30 mins), grade
classifications (bad vs. ok and good ones), learning activity
stages (planning and building), and the statistical methods we
will use (NB and SVML), we now present the results of our
analysis on the effect of the learning analytics features. We
start from the full set of features with a given selection of the
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Fig. 3. Example of face distance in four sessions (top two are good and ok
sessions, bottom two are bad ones)

other parameters mentioned above and we proceed removing
features, as a form of model selection.

Regarding the effects of the multimodal learning analytics
features on predicting students’ group performances, below
results are found:

• IDEC (Arduino IDE) removal does not effect the
results of the classifiers,

• removal of all face and hand duration has very little
effect on the classifiers,

• distance measures DHB and DBL alone are capable
of predicting the results with a high accuracy (0.75)
across classifiers,

• the audio level feature AUD alone is currently a
strong feature for classification (1.0 with Naive
Bayes) with time windows 5min,10min and 30min and
binary scoring.

Interestingly the logistic regression is capable of an optimal
result (1.0) when considering IDEX, IDEVHW, IDEVSW, and
DBL, which are the main IDE features, except component
counts and the distance between learners (DBL).

VI. DISCUSSION

In this paper, we processed and extracted multimodal
learning analytics features to identify which features of student
group work are good predictors of team success in open-ended
tasks with physical computing. As an independent variable
we used human judgement of the quality of students’ group
work. We initially focused on identifying the different phases
of work in relation to accuracy in predicting the group success.
We found that the planning and building stages of students
learning activities are better predictors of their success than
the reflection stage. Then, we investigated the certain features
of the MMLA, in order to determine which features can predict
the group success with higher accuracy. Our results show
that the Distance between Hands DBH hands and Distance
between Learners DBL are key features to predict students’
performances in practice-based learning activities. In our case,
they highly correlate with the performance of the students in
practice-based learning. These results are aligned with existing
MMLA research findings that show the potential of hand
motion and speed, and the location of the learners to predict
student success at various learning outcomes. [2], [12], [7].
Figure 3 shows the distance along time in four sessions.
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Fig. 4. Audio level across session (top one is a good session and bottom
one is a bad session)

The other features of MMLA such as Hand Motion Speed
HMS, Faces Looking at the Screen FLS, Distance between
Learners DBL did not perform very well to predict students’
group performances across the classifiers. While the Arduino
IDE the Number of Active Blocks IDEC, the Variety of
Hardware IDEVHW and Software Blocks used IDEVSW and
the number of interconnections between blocks as a Measure
of Complexity IDEX were able to predict students’ group
performances, they were only marginal across the classifiers.
Furthermore, the audio signal level AUD appears to be a
promising feature to predict performance, however more inves-
tigation is needed for using this feature in combination with
others. Figure 4 shows an example of four sessions, top one
is good graded and lower one is a bad graded session:

One of the main limitations of our approach is on the
scoring of the sessions that is limited to a binary classification
with respect to a richer 3-level human scoring. In our future
research, we plan to extend observer scale so that it comprises
more levels of judgment or multiple criteria for student inter-
action actions to create the training sets.

VII. CONCLUSION

In this paper, we started from the hypothesis that specific
features in multimodal learning analytics can provide useful
information about the success of different groups in practice-
based learning. From the high-frequency multimodal data
collected, we compared different machine learning classifiers
in their accuracy to predict human grading of the sessions.
Then, using these classifiers, we identified the most effective
features of MMLA to predict the students’ group performances
in practice-based learning activities. In the next stage of work,
we plan to use these optimal features to train a General Linear
Model Regression model that can provide statistical evidence
about the estimation process for the grading of students’ group
performances automatically.
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