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Abstract We provide a numerical study of the macroscopic model of Barré et al.
(Multiscale Model Simul, 2017, to appear) derived from an agent-based model for a
system of particles interacting through a dynamical network of links. Assuming that
the network remodeling process is very fast, the macroscopic model takes the form
of a single aggregation–diffusion equation for the density of particles. The theoretical
study of the macroscopic model gives precise criteria for the phase transitions of
the steady states, and in the one-dimensional case, we show numerically that the
stationary solutions of the microscopic model undergo the same phase transitions and
bifurcation types as themacroscopicmodel. In the two-dimensional case, we show that
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the numerical simulations of the macroscopic model are in excellent agreement with
the predicted theoretical values. This study provides a partial validation of the formal
derivation of the macroscopic model from a microscopic formulation and shows that
the former is a consistent approximation of an underlying particle dynamics, making
it a powerful tool for the modeling of dynamical networks at a large scale.

Keywords Dynamical networks · Cross-links · Microscopic model · Kinetic
equation · Diffusion approximation · Mean-field limit · Aggregation–diffusion
equation · Phase transitions · Fourier analysis · Bifurcations

Mathematics Subject Classification 82C21 · 82C22 · 82C31 · 65T50 · 65L07 ·
74G15

1 Introduction

Complex networks are of significant interest in many fields of life and social sciences.
These systems are composed of a large number of agents interacting through local
interactions, and self-organizing to reach large-scale functional structures. Examples
of systems involving highly dynamical networks include neural networks, biological
fiber networks such as connective tissues, vascular or neural networks, ant trails, poly-
mers, economic interactions. (Boissard et al. 2013; Mogilner and Edelstein-Keshet
2007; DiDonna and Levine 2006; Broedersz et al. 2010). These networks often offer
great plasticity by their ability to break and reformconnections, giving to the system the
ability to change shape and adapt to different situations (Boissard et al. 2013;Chaudury
et al. 2007). For example, the biochemical reactions in a cell involve proteins—DNA,
RNA, gene promotors linking/unlinking to create/break large structures–complex of
molecules (Kupiec 1997). Because of their paramount importance in biological func-
tions or social organizations, understanding the properties of such complex systems
is of great interest. However, they are challenging to model due to the large amount of
components and interactions (chemical, biological, social, etc). Due to their simplic-
ity and flexibility, individual-based models are a natural framework to study complex
systems. They describe the behavior of each agent and its interaction with the sur-
rounding agents over time, offering a description of the system at the microscopic
scale (see, e.g., Barré et al. 2017; Boissard et al. 2013; Degond et al. 2016). However,
these models are computationally expensive and are not suited for the study of large
systems. To study the systems at a macroscopic scale, mean-field or continuous mod-
els are often preferred. These last models describe the evolution in time of averaged
quantities such as agent density and mean orientation. As a drawback, these last mod-
els lose the information at the individual level. In order to overcome this weakness
of the continuous models, a possible route is to derive a macroscopic model from an
agent-based formulation and to compare the obtained systems, as was done in, e.g.,
Barré et al. (2017), Boissard et al. (2013), Degond et al. (2016) for particle interactions
mediated by dynamical networks.

A first step in this direction has been made in Barré et al. (2017), following the ear-
lier work (Degond et al. 2016). In this work, the derivation of a macroscopic model for
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particles interacting through a dynamical network of links is performed. The micro-
scopicmodel describes the evolution in time of point particles which interact with their
close neighbors via local cross-linksmodeled by springs that are randomly created and
destructed. In themean-field limit, assuming large number of particles and links aswell
as propagationof chaos, the correspondingkinetic systemconsists of twoequations: for
the individual particle distribution function and for the link densities. The link density
distribution provides a statistical description of the network connectivity which turns
out to be quite flexible and easily generalizable to other types of complex networks.

In the large-scale limit and in the regime where link creation/destruction frequency
is very large, itwas shown inBarré et al. (2017), followingDegond et al. (2016), that the
link density distribution becomes a local function of the particle distribution density.
The latter evolves on the slow time scale through an aggregation–diffusion equation.
Such equations are encountered inmanyphysical systems featuring collective behavior
of animals, chemotaxis models, etc. (Topaz et al. 2006; Blanchet et al. 2006; Carrillo
et al. 2010; Golestanian 2012; Kolokolnikov et al. 2013) and references therein. The
difference between this macroscopic model and the aggregation–diffusion equations
studied in the literature Carrillo et al. (2003), Topaz et al. (2006), Bertozzi et al.
(2009) lies in the fact that the interaction potential has compact support. As a result,
this model has a rich behavior such as metastability in the case of the whole space
(Burger et al. 2014; Evers and Kolokolnikov 2016) and exhibits phase transitions in
the periodic setting as functions of the diffusion coefficient, the interaction range of
the potential, and the links equilibrium length (Barré et al. 2017). By performing the
weakly nonlinear stability analysis of the spatially homogeneous steady states, it is
possible to characterize the type of bifurcations appearing at the instability onset (Barré
et al. 2017). We refer to Barbaro and Degond (2014), Chayes and Panferov (2010),
Degond et al. (2015), Barbaro et al. (2016) for related collective dynamics problems
showing phase transitions.

If numerous macroscopic models for dynamical networks have been proposed in
the literature, most of them are based on phenomenological considerations and very
few have been linked to an agent-based dynamics. On the contrary, the macroscopic
model proposed in Barré et al. (2017) and its precursor (Degond et al. 2016) have
been derived via a formal mean-field limit from an underlying particle dynamics (see
also Degond et al. 2014). However, because the derivation performed in Barré et al.
(2017) is still formal, its numerical validation as the limit of the microscopic model as
well as the persistence of the phase transitions at the micro- and macroscopic level as
predicted by the weakly nonlinear analysis in Barré et al. (2017) needs to be assessed.
This is the goal of the present work.

More precisely, we show that the macroscopic model indeed provides a consis-
tent approximation of the underlying agent-based model for dynamical networks, by
confronting numerical simulations of both the micro- and macromodels. Moreover,
we numerically check that the microscopic system undergoes in one-dimensional
a phase transition depicted by the values obtained for the limiting macroscopic
aggregation–diffusion equation. Furthermore, we numerically validate the weakly
nonlinear analysis in Barré et al. (2017) for the type of bifurcation in the two-
dimensional setting, where simulations for the microscopic model are prohibitively
expensive.
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In summary, the main contributions of this work are as follows: (i) It provides
a numerical validation of the macroscopic model in 1D as its derivation from the
microscopic one in Barré et al. (2017) was only formal. It justifies its further use in
2D where the microscopic model is too computationally intensive. (ii) It also provides
the experimental validation of the formal bifurcation analysis for the macroscopic
model performed in Barré et al. (2017). In particular, it confirms that the two types of
bifurcations revealed in Barré et al. (2017)—subcritical and supercritical—do actually
occur. (iii) Finally, it shows that this bifurcation structure is indeed relevant for the
microscopic model, for which no theoretical analysis exists to date.

The paper is organized as follows. In Sect. 2, we present the microscopic model
and sketch the derivation of the kinetic and macroscopic models from the agent-based
formulation. In Sect. 3, we focus on the one-dimensional case: We first summarize the
theoretical results on the stability of homogeneous steady states of the macroscopic
model from Barré et al. (2017) and show that both the macroscopic and microscopic
simulations are in good agreement with the theoretical predictions made by nonlinear
analysis of the macroscopic model. We then compare the profiles of the steady states
between the microscopic and macroscopic simulations and show that the two formula-
tions are in very good agreement, also in terms of phase transitions. Finally, in Sect. 4
we provide a numerical study of the two-dimensional case for the macroscopic model.
The two-dimensional numerical simulations on the macroscopic model are able to
numerically capture the subcritical and supercritical transitions as predicted theoreti-
cally. Because of the computational cost of the microscopic model, the macroscopic
model is not only very competitive and efficient in order to detect phase transitions, but
also it is almost the only feasible choice showing the main advantage of the limiting
kinetic procedure.

2 Derivation of the Macroscopic Model

2.1 Microscopic Model

The two-dimensional microscopic model features N particles located at points Xi ∈
�, i ∈ [1, N ] linking/unlinking—dynamically in time—to their neighbors which are
located in a ball of radius R from their center. The link creation and suppression are
supposed to follow Poisson processes in time, of frequencies νN

f and νN
d , respectively

(see Fig. 1).
Each link is supposed to act as a spring by generating a pairwise potential

Ṽ (Xi , X j ) = U (|Xi − X j |) = κ

2
(|Xi − X j | − �)2, (1)

where κ is the intensity of the spring force and � the equilibrium length of the spring.
We define the total energy of the system W related to the maintenance of the links:

W =
K∑

k=1

Ṽ (Xi(k), X j (k)), (2)
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Fig. 1 Particles interacting
through a network of links seen
as springs of equilibrium length
l. The detection zone for linking
to close neighbors is a disk of
radius R. Link
suppression/creation is supposed
to be random in time

where i(k)and j (k) denote the indexes of particles connected by the link k. Particle
motion between two linking/unlinking events is then supposed to occur in the steepest
descent direction to this energy, in the so-called overdamped regime:

dXi = −μ∇Xi Wdt + √
2DdBi , (3)

for i ∈ [1, N ] and where Bi is a two-dimensional Brownian motion Bi = (B1
i , B

2
i )

with diffusion coefficient D > 0 and μ > 0 is the mobility coefficient.

2.2 Kinetic Model

To perform the mean-field limit, following Barré et al. (2017) and Degond et al.
(2016), we define the one-particle distribution of the N particles, f N (x, t), and the
link distribution of the K links, gK (x1, x2, t). Postulating the existence of the following
limits:

f (x, t) = lim
N→∞ f N , g(x1, x2, t) = lim

K→∞gK ,

ν f = lim
N→∞νN

f (N − 1), νd = lim
N→∞νN

d , ξ = lim
K ,N→∞

K

N
,

the kinetic system reads:

∂t f (x, t) = D�x f (x, t) + 2μξ∇x · F(x, t) (4)

∂t g(x1, x2, t) = D(�x1g + �x2g)

+ 2μξ

[
∇x1 ·

(
g(x1, x2)

f (x1)
F(x1, t)

)
+ ∇x2 ·

(
g(x1, x2)

f (x2)
F(x2, t)

)]

+ ν f

2ξ
f (x1, t) f (x2, t)χ|x1−x2|≤R − νdg(x1, x2, t), (5)

where we have postulated that the distribution of pairs of particles reduces to
f (x1, t) f (x2, t), and
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F(x, t) =
∫

g(x, y, t)∇x1 Ṽ (x, y)dxdy.

We refer the reader to Barré et al. (2017) for details on the mean-field limit.
In the equation for the limit distribution of particles (4), the first term on the right-

hand side is a linear diffusion term which is an effect of the random motion of the
particles on the microscopic level. The second term is the attractive–repulsive part due
to a spring-like force between the particles that are linked. Its counterpart appears in
the equation for the limit distribution of links (5). This equation has also a diffusion
part and the production term (the last two terms on the right-hand side) which is due
linking processes taking place between the particles that are not yet connected, and
unlinking processes breaking the existing links.

2.3 Scaling and Macroscopic Model

In this paper, the space and time scales are chosen such that μ = 1 and the variables
are scaled such that:

x̃ = ε1/2x, t̃ = εt, f ε(x̃, t̃) = ε−1 f (x, t), gε(x̃1, x̃2, t̃) = ε−2g(x1, x2, t).

The spring force κ is supposed to be small, i.e κ̃ = ε−1κ , the noise D is supposed to be
of order 1, and the typical spring length � and particle detection distance R are supposed
to scale as the space variable, i.e., �̃ = ε1/2�, R̃ = ε1/2R. Finally, the main scaling
assumption is to consider that the processes of linking and unlinking are very fast, i.e.,
ν̃ f = ε2ν f , ν̃d = ε2νd . In the example of cell dynamics, mentioned in Introduction,
see Kupiec (1997), the frequency of linking/unlinking depends on the size of the
molecule, and it is a very fast process (order of seconds) while the macroevolution of
the cell such as growth of the cell is much slower (order of minutes). For the sake of

simplicity, we will consider in this paper that
ν̃ f
ν̃d

= 1, and κ̃ = 2.
For such a scaling, it is shown in Barré et al. (2017) that in the limit ε → 0, if we

suppose ( f ε, gε) →ε→0 ( f, g), then:

∂t f = D�x f + ∇x · (
f (∇x V ∗ f )

)
(6a)

g(x, y, t) = ν f

2ξνd
f (x, t) f (y, t)χ|x−y|≤R, (6b)

for some compactly supported potential V such that:

∇x V = U ′(|x |)χ|x |≤R
x

|x |

In this paper, we take κ = 2 in (1); hence, V has the form:
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V (x) =
{

(|x | − �)2 − (R − �)2, for |x | < R,

0 for |x | ≥ R.
(7)

It is worthy to mention that in the context of cell dynamics several authors have
already advocated for non-local terms of the form in (6) to model cell adhesion, see,
for instance, Domschke et al. (2014), Painter et al. (2015), and the references therein.
Therefore, we can reinterpret this fast linking/unlinking as a way of modeling cell
adhesion at the microscopic level.

In the following, we aim to study theoretically and numerically both the macro-
scopic model given by Eq. (6) and the corresponding microscopic formulation given
by Eq. (3) and rescaled with the scaling introduced in this section. We first focus on
the one-dimensional case and we show that the numerical solutions behave as theoret-
ically predicted, and that we obtain—numerically—a very good agreement between
the micro- and macroformulations.

3 Analysis of the Macroscopic Model in the One-Dimensional Case

3.1 Theoretical Results

In this section, we apply the results of Barré et al. (2017) to the one-dimensional peri-
odic domain [−L , L], to study the stability of stationary solutions of the macroscopic
model given by Eqs. (6a) and (7) with R < L .

3.1.1 Identification of the Stability Region

We first linearize equation (6a) around the constant steady state ρ∗ = 1
2L , so that the

total mass is equal to 1, we denote the perturbation by ρ, so we have f = ρ∗ +ρ, that
satisfies

∂tρ = D�xρ + ρ∗�(V ∗ ρ), (8)

where V is given by (7). We will further decompose f into its Fourier modes

ρ(x) =
∑

k∈Z
ρ̂kek, where ek = exp

[
iπ

kx

L

]

and the Fourier transform is given by

ρ̂k = 1

2L

∫ L

−L
ρ(x)e−k dx .

Applying the Fourier transform to (8), a straightforward computation gives

∂t ρ̂k = −
(

πk

L

)2 (
D + V̂k

)
ρ̂k, (9)
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where the Fourier modes of the potential V are given by

V̂k = 2R3

L

(
− sin(zk )

z3k
+ (1 − α)

cos(zk )
z2k

+ α

z2k

)
. (10)

Here, we denoted

α = �

R
, zk = πR|k|

L
.

Therefore, the stability of the constant steady state will be ensured if the coefficient
in front of ρ̂k on the r.h.s. of (9) has a non-positive real part for k = 1. Indeed, as
observed in Barré et al. (2017), this condition implies that all the other modes are
then also stable. This condition is related to the H-stable/catastrophic behavior of
interaction potentials that characterizes the existence of global minimizers of the total
potential energy as recently shown in Cañizo et al. (2015), Simione et al. (2015).

3.1.2 Characterization of the Bifurcation Type

As shown in Barré et al. (2017), it is possible to distinguish two types of bifurcation
as functions of the model parameters. Indeed, if we define:

λ = λ±1 = −π2

L2

(
D + V̂1

)
, (11a)

λk = −π2k2

L2

(
D + V̂k

)
, (11b)

we have the following proposition (see Barré et al. 2017):

Proposition 1 Assume that λ > 0 and λk < 0, ∀k �= ±1. Then,

• if 2V̂2 − V̂−1 > 0, the steady state exhibits a supercritical bifurcation;
• if 2V̂2 − V̂−1 < 0, the steady state exhibits a subcritical bifurcation.

Note that the above criterion only involves the potential, but does not involve the
parameter D, and it only restricts the values of α or �.

3.2 Numerical Results

3.2.1 Choice of Numerical Parameters

In the linearized equation (8), there are four parameters that may vary: D, �, R, and
L . In this part of the paper, we focus on the case where the potential is of comparable
range R to the size of the domain L , and fix the value of the following parameters:

L = 3 and R = 0.75;
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Fig. 2 Bifurcation diagram in the one-dimensional case. The critical value for �, �c = 0.4948, above which
the constant steady state is stable for all values of D is indicated in red. The change of bifurcation type
is located at (�∗, D∗) = (0.4530, 0.0074) and indicated in orange. For the numerical study, we choose
two values of �: (i) � = �1 = 0.4725, for which a supercritical bifurcation occurs at D < D1 = 0.0040
(indicated in green), and (ii) � = �2 = 0.3, for which a subcritical bifurcation occurs at D < D2 = 0.0347
(indicated in blue) (Color figure online)

therefore, z1 = π
4 . Using (9) and the discussion from the end of Sect. 3.1.1, we can

identify the region where the constant steady state is unstable. Computing V̂1 < 0 and
V̂1 < −D, respectively, leads to the following restriction for two remaining parameters
of the system � and D:

�

0.75
< αc := (4 − π)(

√
2 + 1)

π
and (0.75)2 >

Dπ2(2 + √
2)

8
(
αc − �

0.75

) ,

which allows to approximate the instability region for this particular case as D <

D(�) = 0.1781(0.4948 − �). We also introduce a notation �c = Rαc, which in this
case gives �c = 0.4948. The parameter �c denotes the value of � above which the
constant steady state is always stable independently of the value of the parameter D.

Using (10) and Proposition 1, we check that the bifurcation changes its character

for � = �∗, where �∗ = 0.75 (π−4)
√
2+2

π(
√
2−1)

≈ 0.4530. Recall that our criterion did

not involve the parameter D; therefore, the bifurcation is supercritical if only � ∈
(�∗, �c) ≈ (0.4530, 0.4948), and subcritical if � ∈ (0, l∗) ≈ (0, 0.4530). The value of
parameter D corresponding to the instability threshold for l = l∗ ≈ 0.4530 is denoted
by D∗, and it is equal to 0.0074. All of these parameters are presented in Fig. 2.
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Remark 1 Choosing R comparable to L allows us to observe two types of bifurcation:
continuous and discontinuous one. It was observed in Barré et al. (2017) that taking
R � L would cause that for most values of � the bifurcation would be subcritical
(discontinuous). This effect is captured in Fig. 8, for the two-dimensional case.

3.2.2 Macroscopic Model

We now make use of the numerical scheme developed in Carrillo et al. (2015) to
analyze the macroscopic equation (6a) with the potential (7) in the unstable regime.
The choice of the numerical scheme is due to its free energy decreasing property for
equations enjoying a gradient flow structure such as (6a). Keeping this property of
gradient flows is of paramount importance in order to compute the right stationary
states in the long time asymptotics. In fact, under a suitable CFL condition the scheme
is positivity preserving and well balanced, i.e., stationary states are preserved exactly
by the scheme.

To check the correctness of the criterion from Proposition 1, we consider two cases
corresponding to two different types of bifurcation, as depicted in Fig. 2:

• �1 = 0.4725 for different values of the noise D, where we expect a supercritical
(continuous) transition for D < D1 = 0.0040;

• �2 = 0.3 for different values of the noise D, where we expect a subcritical (dis-
continuous) transition for D < D2 = 0.0347.

In order to trace the influence of the diffusion on the type of bifurcation, for fixed
�1, �2, we will be looking for the values of diffusion coefficients D1,λ, D2,λ such that

D1,λ ↑ D1 = 0.0040, D2,λ ↑ D2 = 0.0347.

Recall that according to Barré et al. (2017), the parameter λ defined in (11a) measures
the distance from the instability threshold. We will use this information to determine
the values of parameters D1,λ = D1,λ(λ) and D2,λ = D2,λ(λ) computed from (11a).
We consider 14 different values for subcritical and supercritical case, as specified in
Table 1.

Moreover, in Barré et al. (2017) the authors proved that the perturbation ρ(t) of the
constant steady state satisfies the following equation

ρ(t, x) = A(t)e1 + A∗(t)e−1 + A2(t)h2e2 + (A∗)2(t)h−2e−2 + O((A, A∗)3), (12)

where

Ȧ = λA + 8
π4

L2

V̂1
2λ − λ2

(
2V̂2 − V̂1

)
|A|2A + O((A, A∗)4), (13)

and

h2 = −4π2

L

V̂1
(2λ − λ2)

, h−2 = −4π2

L

V̂−1

(2λ − λ2)
.
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Table 1 Table of parameters
D1,λ (supercritical) and D2,λ
(subcritical) for the numerical
simulations in the macroscopic
case with highlighted values
corresponding to the phase
transition

λ D1,λ D2,λ

1 0.0010 0.0030 0.0338

2 0.0009 0.0031 0.0339

3 0.0008 0.0032 0.0340

4 0.0007 0.0033 0.0340

5 0.0006 0.0034 0.0341

6 0.0005 0.0035 0.0342

7 0.0004 0.0036 0.0343

8 0.0003 0.0037 0.0344

9 0.0002 0.0038 0.0345

10 0.0001 0.0039 0.0346

11 0 0.0040 0.0347

12 −0.0001 0.0041 0.0348

13 −0.0002 0.0042 0.0349

14 −0.0003 0.0043 0.0350

Equation (13) means that for the supercritical bifurcation we can observe a saturation.
This means that before stabilizing A(t) first grows exponentially until the r.h.s. of (13)
is equal to zero, i.e., for

|A| =
√

λL

2
√
2π2

√
2λ − λ2

−V̂1(2V̂2 − V̂1)
. (14)

Using this information to estimate the r.h.s. of (12), we obtain that

|ρ(t, x)| ≈ 2|A| + λL

π2(2V̂2 − V̂1)
=

√
λL√
2π2

√
2λ − λ2

−V̂1(2V̂2 − V̂1)
+ λL

π2(2V̂2 − V̂1)
.

(15)

This condition gives us the upper estimate for the amplitude of perturbation ρ when
the steady state is achieved, that is, after the saturation. The derivation of Proposition
1 in Barré et al. (2017) assumes sufficiently small perturbation of the steady state.
Therefore, the initial data for our numerical simulations should be least smaller than
the value of |A| corresponding to the saturation level. It turns out that |A| computed
in (14) is always less than

√
λ, so the size of initial perturbation of the steady state

should be also taken in this regime. If we choose the initial data for the numerical
simulations of the supercritical case in this regime, we should see a continuous decay
of the saturated amplitude of perturbation to 0, as λ decreases. We will perturb the
initial data for the subcritical case similarly, showing that even though the smallness
restriction is respected, the saturated amplitude of perturbation is a discontinuous
function of λ.

123



246 J Nonlinear Sci (2018) 28:235–268

In what follows, we perturb the constant initial condition by the first Fourier mode:

f0(x) = 1

2L
+ δ(λ) cos

( xπ
L

)
,

with δ(λ) ≤ √
λ. In the numerical simulations, we consider the case δ = 0.01. In order

to distinguish between the homogeneous steady states (corresponding to the stable
regime) and the aggregated steady states (corresponding to the unstable regimes), we
compute the following quantifier Q on the density profiles of the numerical solutions:

Q =
√
c21 + s21 , (16)

where

c1 = 1

L

∫ L

−L
f (Tmax, x) cos

( xπ
L

)
dx, s1 = 1

L

∫ L

−L
f (Tmax, x) sin

( xπ
L

)
dx,

where Tmax corresponds to the formation of the steady state. Note that (i) if the steady
state is homogeneous in space then Q = 0 and (ii) if f is a symmetric function with
respect to x , then Q = c1.

To estimate Tmax, we use the following criterion. From the theory (Carrillo et al.
2003), we know that steady states are positive everywhere and the quantity ξ =
D log � + V ∗ � is equal to some constant C . We then compute the distance of ξ from
its mean value:

ξ∗(t) = max
x∈[−L ,L]

∣∣∣∣ξ(t, x) − 1

2L

∫ L

−L
ξ(t, x) dx

∣∣∣∣ .

The steady state is achieved if ξ∗ is sufficiently close to 0, and in our numerical
scheme we continue the computations until t = Tmax for which ξ∗(Tmax) < 10−7.
The computed values are presented in Tables 5 and 6 in “Appendix 2”. In Fig. 3, we
show the values of the order parameter Q as a function of the noise intensity D for
both types of bifurcation.

As shown in Fig. 3, the quantifier Q indeed undergoes a discontinuous transition
around D = 0.0347 for � = 0.3 (subcritical case, Fig. 3a) and a continuous transition
around D = 0.004 for � = 0.4725 (supercritical case, Fig. 3b). These results show that
the numerical solutions are in very good agreement with the theoretical predictions.

In order to check the accuracy of our prediction of the value of Tmax, we show in
Fig. 4 the graph of ξ∗(t) for several values of D in the supercritical and the subcritical
cases (see Table 1). As shown in Fig. 4, we observe a very sharp change of ξ∗
for the subcritical bifurcation and much smoother one for the supercritical case. The
amplitude change of ξ∗ is also a good indication of the type of bifurcation. As for the
order parameter, we see that for the subcritical bifurcation it is on similar level (Fig.
4a) for all values of D, while for the supercritical bifurcation it decays to 0 (Fig. 4b).
We will use this observation to analyze the results of the two-dimensional simulations
later on.
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Q Q

D D

(a) (b)Subcritical Supercritical

x 10-13

Fig. 3 Order parameter Q as a function of the diffusion parameter D for the macroscopic model for a
� = 0.3 (subcritical case) and b � = 0.4725 (supercritical case)

log10 t log10 t

Subcritical Supercritical(a) (b)

Fig. 4 Values of ξ∗ as a function of log10 t computed on the steady states of the macroscopic model for a
� = 0.3 (subcritical case) and b � = 0.4725 (supercritical case)

Finally, we can also check how the theoretical prediction of the size of perturbation
from (15) is confirmed by our numerical results. For this purpose, we compute the
maximum of the perturbation once the steady state is achieved:

|ρ|num = ‖ f (Tmax, x) − ρ∗‖L∞((−L ,L))

for all the points of supercritical bifurcation. The results are presented in Fig. 5 and in
Table 2.

We now aim at performing the same stability analysis on the microscopic model
from Sect. 2.1—the starting point of the derivation of the macroscopic model.

3.2.3 Microscopic Model

Here, we aim at performing simulations of the microscopic model from Section 2.1,
rescaled with the scaling from Section 2.3. After rescaling and if we consider an
explicit Euler scheme in time (see “Appendix 1”), we can show that Eq. (3) between
time steps tn and tn + �tn reads (in non-dimensionalized variables):
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Fig. 5 Comparison of
theoretical |ρ|th with the
numerical |ρ|num

Table 2 Theoretical (|ρ|th) vs
numerical (|ρ|num) values for
the size of perturbation

λ |ρ|num |A| |ρ|th
0.0010 0.3384 0.1094 0.3428

0.0009 0.3203 0.1058 0.3233

0.0008 0.3008 0.1017 0.3025

0.0007 0.2797 0.0968 0.2805

0.0006 0.2567 0.0912 0.2569

0.0005 0.2312 0.0847 0.2314

0.0004 0.2028 0.0770 0.2036

0.0003 0.1701 0.0678 0.1727

0.0002 0.1311 0.0562 0.1371

0.0001 0.0790 0.0403 0.0930

0 0.0005 0 0

Xn+1
i = Xn

i − ∇Xi W (Xn)�tn + √
2D�tnN (0, 1), (17)

whereW is defined by (2) andN (0, 1) is the normal distribution withmean 0 and stan-
dard deviation 1. Between two time steps, new links are created between close enough
pairs of particles that are not already linkedwith probabilityP f = 1−eν f �tn/((N−1)ε2)

and the existing links disappear with probability Pd = 1 − e−νd�tn/((N−1)ε2).
Therefore, the rescaled version of the microscopic model features a very fast link
creation/destruction rate, as the linking and unlinking frequencies are supposed to be
of order 1/ε2, for small ε. Note also that to capture the right time scale, the time step�t
must be decreased with ε, which makes the microscopic model computationally costly
for small values of ε. For computation time reasons, we also consider the limiting case
ε = 0 of the microscopic model; we can show that it reads:

Xn+1
i = Xn

i − ∇Xi W0(X
n)�tn + √

2D�tnN (0, 1), (18)

where

W0(X) =
∑

i, j | |Xi−X j |≤R

V (Xi , X j ).
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Table 3 Table of parameters (non-dimensionalized values)

Parameter Value Interpretation

L 3 Domain half size

δ 0.1 Maximal step

Tf 20 Final simulation time

ξinit 0.1 Initial fraction K
N

νd 1 Unlinking frequency

ν f 1 Linking frequency

R 0.75 Detection radius for creation of links

� Adapted Spring equilibrium length

κ 2 Spring force between linked fibers

D Adapted Noise intensity

ε Adapted Scaling parameter

Note that in this regime, no fiber link remains and particles interact with all of their
close neighbors. The limit N → ∞ of this limiting microscopic model should exactly
correspond to themacroscopicmodel (6) (see, for instance, Bolley et al. 2011; Fournier
et al. 2015; Carrillo et al. 2014; Godinho and Quiñinao 2015 for studies of mean-field
limits including, as in the present case, singular forces). If not otherwise stated, the
values of the parameters in the microscopic simulations are given in Table 3.

As for the macroscopic model, the order of the particle system at equilibrium is
measured by the quantifier Q defined by Eq. (16), where the integrals are computed
using the trapezoidal rule. To compute the density of agents f (x) in the microscopic
simulations, we divide the computational domain [−L , L] into Nx boxes of centers
xi and sizes dx = L

Nx
, and for i = 1 . . . Nx , we estimate

fi = Ni

2NL
,

where fi = f (xi ) and Ni are, respectively, the density and the number of agents
whose centers belong to the interval [−L + (i − 1)dx,−L + i dx]. Following the
analysis of the macroscopic model, we explore the same two cases: �1 = 0.4725,
D1 = 0.0040, and �2 = 0.3, D2 = 0.0347 to check whether they correspond to the
super and subcritical bifurcations, respectively.

In Fig. 6, we show the values of Q plotted as functions of the noise intensity D
computed from the simulations of the scaled microscopic model (17) at equilibrium,
for two different values of �: � = 0.3 (a), � = 0.4725 (b), and different values of ε:
ε = 1

6 (blue curves), ε = 1
8 (orange curves), ε = 1

12 (black curves), and the limiting
case “ε = 0” [Eq. (18), green curves]. For each �, we superimpose the values of Q
obtained with the simulations of the macroscopic model (red curves). As expected, we
observe subcritical transitions for � = 0.3 and a supercritical transition for � = 0.4725.
As ε decreases, the values of the noise intensity D for which the transitions occur get
closer to the theoretical values predicted by the analysis of the macroscopic model.

123



250 J Nonlinear Sci (2018) 28:235–268

Subcritical Supercritical

D D

Q Q

(a) (b)

Fig. 6 Values of Q plotted as functions of the noise intensity D computed from the numerical solutions
at equilibrium of the macroscopic model (red curves), and of the microscopic model for ε = 1/16 (blue
curves), ε = 1/8 (orange curves), ε = 1/12 (black curves), and limiting case “ε = 0” [Eq. (18), green
curves]. a For � = 0.3 (subcritical bifurcation) and b for � = 0.4725 (supercritical bifurcation). For small
ε and these two values of �, we recover the bifurcation types predicted by the analysis of the macroscopic
model. As ε decreases, the critical values of D for which the transitions occur get closer to the ones of the
macroscopic model, and in the limiting case “ε = 0” in the microscopic model, we obtain a very good
agreement between the microscopic and macroscopic models (Color figure online)

These results show that the scaled microscopic model has the same properties as the
macroscopic one, and that the values of the parameters (�, D) which correspond to a
bifurcation in the steady states tend, as ε → 0, to the ones predicted by the analysis of
themacroscopicmodel. Indeed for the limiting case “ε = 0” of themicroscopicmodel,
we obtain a very good agreement between themicro- andmacroformulations, showing
that the microscopic model behaves as predicted by the analysis of the macroscopic
model.

It is noteworthy that the small differences observed in the values of the transitional D
(subcritical case, Fig. 6a) can be due to the fact thatwe use a finite number of N = 1000
particles for the microscopic simulations, whereas the macroscopic model is in the
limit N → ∞. However, these differences are very small when we consider the limit
case ε = 0 for the microscopic model. Indeed, determining visually the transitional
D in the microscopic simulations with neglecting the slight increase appearing after
(see Fig. 6b), the relative error between the microscopic and macroscopic transitional
D, |Dmic−Dmac|

Dmac
is 7% for � = 0.3, and 5% for � = 0.4725. In order to give a more

quantitative analysis on the influence of the number of particles, we show in Fig. 7 the
values of Q plotted as functions of the noise intensity D, for the macroscopic model
(dashed red curves), and for the microscopic model with “ε = 0” [Eq. (18)] and
different number of particles N : N = 500 (green curves), N = 1000 (blue curves),
and N = 2000 (red curves). Figure 7a shows the case � = 0.3 (subcritical bifurcation)
and (b) the case � = 0.4725 (supercritical bifurcation). As depicted in Fig. 7, as the
number of particle increases, the value of the critical noise intensities Dc get closer to
the ones predicted by the macroscopic model for both the subcritical and supercritical
transitions.Moreover, the values of Q corresponding to space homogeneous equilibria
(for D > Dc in both cases) get closer to zero as N increases, and its variations after
the transitional D observed for N = 500 or N = 1000 get negligible for N = 2000.
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Q Q

D D

(a) (b)Subcritical Supercritical

Fig. 7 Values of Q plotted as functions of the noise intensity D computed from the numerical solutions
at equilibrium of the macroscopic model (dashed red curves), and of the microscopic model for “ε = 0”
[Eq. (18)], and different values of N : N = 500 (green curves), N = 1000 (blue curves), and N = 2000 (red
curves). a For � = 0.3 (subcritical bifurcation), b for � = 0.4725 (supercritical bifurcation). For ε = 0, we
recover the bifurcation types predicted by the analysis of the macroscopic model. Moreover, as the number
of particles N increases, the critical values of D for which the transitions occur get closer to the ones of
the macroscopic model, and for N = 2000 in the microscopic model, we obtain a very good agreement
between the microscopic and macroscopic models (Color figure online)

Altogether, these results show that the microscopic model is a good approximation of
the macroscopic dynamics when considering a large number of particles and a small
value of ε. It is noteworthy that the simulations of the microscopic model become
very time-consumingwhen considering N = 2000 particles, andwe refer the reader to
“Computational Aspects of theMicro-and-MacroscopicModels” section of Appendix
1 for a detailed analysis of the computational time.

We now aim at comparing the profiles of the solutions between the microscopic
and macroscopic models, to numerically validate the derivation of the macroscopic
model from the microscopic dynamics.

3.2.4 Comparison of the Density Profiles in the Microscopic and Macroscopic
Models

Here, we aim at comparing the profiles of the particle densities of the microscopic
model with the ones of the macroscopic model as functions of time. As shown in the
previous section, for ε small enough, we recover the bifurcation and bifurcation types
observed from the macroscopic model with the microscopic formulation, with very
good quantitative agreement when considering the limiting microscopic model (18)
with “ε = 0.” The simulations of the microscopic model are very time-consuming
for small values of ε, because we are obliged to consider very small time steps (see
“Computational Aspects of theMicro-and-MacroscopicModels” section of Appendix
1). Here, due to computational time constraints, we therefore compare the results of
the macroscopic model (6) with ε = 0 for which the time step can be taken much
larger and independent of ε.

In order to have the same initial condition for both themicroscopic andmacroscopic
models, we initially choose the particle positions for both models such that:
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f0(x) = 1

2L
+ δ(λ) cos

xπ

L
.

We send the reader to “Appendix 1” for the numerical method used to set the initial
conditions of the microscopic model. Because of the stochastic nature of the model,
the microscopic model does not preserve the symmetry of the solution, contrary to the
macroscopic model (where noise results in a deterministic diffusion term). To enable
the comparison between the macroscopic and microscopic models, we therefore re-
center the periodic domain of themicroscopicmodel such that the center ofmass of the
particles is located at x = 0 (center of the domain). To this aim, given the set of particles
X j , j = 1 . . . N , we reposition all the particles at points X̃ j , j = 1 . . . N such that:

X̃ j =
{
X j − Xm if |X j − Xm | ≤ L

X j − Xm − 2L
X j−Xm

|X j−Xm | if |X j − Xm | > L ,

where Xm is the center of mass computed on a periodic domain:

Xm = L

π
arg

(
1

2

N∑

j=1

e
iπX j
L

)
.

Finally, in order to decrease the noise in the data of the microscopic simulations due
to the random processes, the density of particles is computed on a set of several sim-
ulations of the microscopic model.

In Fig. 8, we show the density distributions of the macroscopic model (continuous
lines) and of the microscopic one with “ε = 0” (circle markers) at different times, for
� = 0.4725 and � = 0.3, respectively. For each value of �, we consider two values for
the noise intensity D: For � = 0.4725, we study the cases D = 0.003 and D = 0.0003,
and for � = 0.3, we choose D = 0.0338 and D = 0.0034. Note that all these values
are in the unstable regime.

As shown in Fig. 8, we obtain a very good agreement between the solutions of the
macroscopic model and of the microscopic one with “ε = 0.” Close to the transitional
D (Fig. 8a, b), the particle density converges in time toward a Gaussian-like distri-
bution for both the microscopic and macroscopic models. Note that the microscopic
simulations seem to converge in time toward the steady state faster than the macro-
scopic model (compare the orange curves on the top panels). This change in speed can
be due to the fact that the microscopic model features finite number of particles while
the macroscopic model is obtained in the limit of infinite number of particles. There-
fore, in the macroscopic setting, each particle interacts with many more particles than
in the microscopic model, which could result in a delay in the aggregation process.

When far from the transitional D in the unstable regime (Fig. 8c, d), one can observe
the production of several bumps in the steady state of the particle density. The produc-
tion of several particle clusters in these regimes shows that the noise triggers particle
aggregation. For small noise intensity, local particle aggregates are formed which fail
to detect neighboring aggregates. As a result, one can observe several clusters in the
steady state, for small enough noise intensities. These bumps are observed for both
the microscopic and macroscopic models, showing again a good agreement between
the two dynamics.
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Fig. 8 Comparison of the density distributions between the macroscopic model and the microscopic one
with “ε = 0,” for different times and two values of �: � = 0.4725 (a, c), and � = 0.3 (b, d).Continuous lines
solution of the macroscopic model, with circles solution of the microscopic model with ε = 0, averaged
over six simulations. For each value of �, we consider two different noise intensities D: For � = 0.4725,
we use D = 0.003 (a) and D = 0.0003 (c), and for � = 0.3, we use D = 0.0338 (b) and D = 0.0034 (d)

In the next section, we present a numerical study of the macroscopic model in the
two-dimensional case. As mentioned previously, the microscopic model is in very
good agreement with the macroscopic dynamics for small values of ε as in the one-
dimensional case. Its simulations are, however, very time-consuming, due to the need
of very small time steps (see “Computational Aspects of the Micro-and-Macroscopic
Models” section of Appendix 1). As a result, the microscopic model is not suited for
the study of very large systems such as the ones considered in the two-dimensional
case. We therefore provide a numerical two-dimensional study using the macroscopic
model only.

4 Analysis of the Macroscopic Model in the Two-Dimensional Case

4.1 Theoretical Results

In this section, we first recall some theoretical results from Barré et al. (2017) for
the two-dimensional periodic domain. We will focus on the square periodic domain

123



254 J Nonlinear Sci (2018) 28:235–268

[−L , L] × [−L , L], since the rectangular case can be, in agreement with the analysis
in Barré et al. (2017), reduced to the one-dimensional case studied above.

The starting point for the phase transition analysis is the linearized equation

∂tρ = D�xρ + ρ∗�(V ∗ ρ),

in which the spatially homogeneous distribution ρ∗ is now equal to 1
(2L)2

. Applying
the Fourier transform to this equation, we obtain

∂t ρ̂k1,k2 = −π2 k
2
1 + k22
L2

(
D + V̂k1,k2

)
ρ̂k1,k2 := λk1,k2 ρ̂k1,k2

and we denote λ±1,0 = λ0,±1 = λ. The Fourier transform of the potential V is given
by

V̂k1,k2=
π

L2

(
πR3l

2z2k1,k2

[
J1(zk1,k2)H0(zk1,k2)−J0(zk1,k2)H1(zk1,k2)

]− R4

z2k1,k2
J2(zk1,k2)

)
,

(19)

where we denoted

zk1,k2 = πR

L

√
k21 + k22,

and Ji are Bessel function of order i

Ji (x) =
∞∑

m=0

(−1)m

m!�(m + 1 + i)

( x
2

)2m+i
,

and Hi are the Struve functions defined by

Hi (x) =
∞∑

m=0

(−1)m

�(m + 3/2)�(m + i + 3/2)

( x
2

)2m+i+1
.

Again, fixing the ratio R
L ≤ 1, the relation between D, l, and R for the phase transition

can be read from the condition λ = 0, which yields

D + V̂1,0 = 0, (20)

which due to (19) gives

Dπ + R2
(

π

2

l

R

(
J1(z1,0)H0(z1,0) − J0(z1,0)H1(z1,0)

) − J2(z1,0)

)
= 0.

The relevant criterion for the type of bifurcation in the two-dimensional case then
reads:

Proposition 2 Assume D is varied such that it crosses the bifurcation point (20), and
such that λk1,k2 remains negative for all k1, k2 such that |k1| + |k2| > 1, let
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c = V̂1,0(2V̂2,0 − V̂−1,0)

D + V̂2,0
, d = −

∣∣∣∣∣4
V̂1,0V̂1,1

D + V̂1,1

∣∣∣∣∣ ,

then,

• if c < d, the constant steady state exhibits a supercritical bifurcation, and
• if c > d, the constant steady state exhibits a subcritical bifurcation.

Note that in the two-dimensional case, the bifurcation criterion involves also parameter
D. On the other hand, the instability threshold D is given as a function of α and can
be calculated using (20).

4.2 Numerical Results

We first compute the approximate instability regime for the following three cases:

1. For R/L = 1, z1,0 = π , the constant steady state is unstable for

�

R
< αc := 0.6620 and D < 0.2334R2

(
αc − �

R

)
.

2. For R/L = 1/2, z1,0 = π
2 , the constant steady state is unstable for

�

R
< αc := 0.7333 and D < 0.1084R2

(
αc − �

R

)
.

3. For R/L = 1/4, z1,0 = π
4 , the constant steady state is unstable for

�

R
< αc := 0.7462 and D < 0.0312R2

(
αc − �

R

)
.

Therefore, for L = 3, the criterion fromProposition 2 gives the following outcomes:

1. For R/L = 1, the steady state exhibits a supercritical bifurcation for α ∈
(0.1016, 0.5818) and a subcritical bifurcation for α ∈ (0, 0.1016) ∪ (0.5818, 0.
6620).

2. For R/L = 1/2, the steady state exhibits only a subcritical bifurcation.
3. For R/L = 1/4, the steady state exhibits only a subcritical bifurcation.

This computation confirms the theoretical prediction from Barré et al. (2017) that
the smaller R

L is, the more likely it is that the bifurcation is of the subcritical type. The
different types of bifurcation happen only for R

L close to 1; otherwise, the bifurcation
is always subcritical. To understand this behavior, we compute

V ∗ = V̂1,0(2V̂2,0 − V̂−1,0)

∣∣∣D + V̂1,1
∣∣∣ + 4

(
D + V̂2,0

) ∣∣∣V̂1,0V̂1,1
∣∣∣ .

From Proposition 2, it follows that if V ∗ > 0 the bifurcation is subcritical; otherwise,
it is supercritical. We depict the function V ∗(α), where α = �

R for different values
of R

L ∈ [0.9, 1] in Fig. 9a. We see that decreasing the ratio R
L causes that more and
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(a) (b)

V
*

Fig. 9 a Values of V ∗ as a function of α for different ratios R/L . b Zoom on the values of V ∗ around
α = 0.3 for different ratios R/L , with marker points for V ∗ at α = 0.3 (used in the numerical simulations).

more of the graph of V ∗(α) lies above 0. This means that for most of the values of
α ∈ [0, αc] the bifurcation is subcritical.

We will study all of the five cases from Fig. 9b corresponding to different values of
R
L , but the same value of α = �

R = 0.3. The theoretical prediction is that the first two
cases R

L = 1 and R
L = 0.975 correspond to a supercritical (continuous) bifurcation

while the cases 3–5 correspond to the subcritical (discontinuous) bifurcation.
We perturb the constant initial data as in the one-dimensional case; namely, we take

f0(x, y) = 1

4L2 + δ cos
( xπ

L

)
,

with δ = 0.01, and similarly to the one-dimensional case we compute the value of the
order parameter Q

Q = 1

2L2

∫ L

−L

∫ L

−L
f (Tmax, x, y) cos

( xπ
L

)
dx dy,

where we used the empirical observation that the steady state is always symmetric
with respect to (x, y) = (0, 0). For the stopping time criterion, we take the same as
in one-dimensional case, namely ξ�(Tmax) < 10−7.

In Fig. 10, we show the values of the order parameter Q as function of the noise
intensity D for both types of bifurcation for cases 1 and 5, based on Tables 7 and 11
from “Appendix 2”. As shown in Fig. 10, we indeed obtain a supercritical (contin-
uous) transition in the values of Q as function of the noise D in case 1 (Fig. 10b),
while the transition is discontinuous (subcritical) in case 5 (Fig. 10a). These results
therefore show that the numerical results are in good agreement with the theoretical
predictions and provide a validation of the numerical approximation and simulations
of the macroscopic model.

The difference between the bifurcation types is also reflected in the amplitude of
the steady state. For both types of bifurcation, i.e., for cases 1 and cases 5 we plot the
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Q Q

D D

(a) (b)Case 5: subcritical Case 1: supercritical

Fig. 10 Quantifier Q as a function of the diffusion coefficient D computed on the steady states of the
macroscopic two-dimensional model. These bifurcation diagrams have been generated from the data in
Tables 7 and 11 from “Numerical Results for the Two-Dimensional Case” section of Appendix 2. a Case
5: subcritical and b case 1: supercritical

(a) (b)

Fig. 11 Final density profile in the subcritical case 5 for D5 = 0.6238 (a) and in the supercritical case
1 for D1 = 0.7596 (b). The values of parameters D1 and D5 in both cases correspond to λ = 0.001 in
Table 4

final steady states in Fig. 11. The density profile for the supercritical bifurcation (Fig.
11b) is much lower and rounded than the one for the subcritical bifurcation (Fig. 11a).

Moreover, as in the one-dimensional case,we can check that the different bifurcation
diagrams correspond to different shapes of ξ∗. In Figs. 12 and 13,we present the graphs
of ξ∗(t) for all five cases depicted in Fig. 9b. For each of the cases, we present the
graph of ξ∗(t) for five different values of diffusion parameter D as specified in Table 4.

As shown in Fig. 12, the graph of ξ∗(t) undergoes smooth changes for the different
values of the noise D, highlighting a bifurcation of supercritical type. Figure 13 shows
that ξ∗(t) undergoes sharp changes for the different values of the noise D, highlight-
ing the subcritical type of bifurcation, as predicted by the theoretical analysis of the
macroscopic model in the two-dimensional case. Close to the transition zone (case
3, R

L = 0.95, as shown in Fig. 13a), the changes in ξ∗ are smoother than for smaller
values of R

L (Fig. 13b, c), but the transition is still subcritical as can be confirmed by
the values of order parameter Q given in Table 9.
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log10 t log10 t

(a) (b)

Fig. 12 Values of ξ∗(log10 t) for the supercritical bifurcation for a case 1 and b case 2

- -
(a) (b)

(c)

Fig. 13 Values of ξ∗(log10 t) for the subcritical bifurcation for a case 3, b case 4, and c case 5
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Table 4 Table of parameters
D1,λ and D2,λ (supercritical),
D3,λ, D4,λ, and D5,λ
(subcritical) for the numerical
simulations in two-dimensional
case

λ D1,λ D2,λ D3,λ D4,λ D5,λ

1 0.005 0.7560 0.7254 0.6923 0.6570 0.6201

2 0.004 0.7569 0.7264 0.6932 0.6579 0.6210

3 0.003 0.7578 0.7273 0.6941 0.6588 0.6219

4 0.002 0.7587 0.7282 0.6950 0.6597 0.6229

5 0.001 0.7596 0.7291 0.6959 0.6607 0.6238

5 Conclusion

In this paper, we have provided a numerical study of amacroscopicmodel derived from
an agent-based formulation for particles interacting through a dynamical network of
links. In the one-dimensional case, we were first able to recover numerically the sub-
critical and supercritical transitions undergone by the steady states of the macroscopic
model, in the regime predicted by the theoretical nonlinear analysis of the continu-
ous model. Moreover, the numerical simulations of the rescaled microscopic model
revealed the same bifurcations and bifurcation types as obtained with the macroscopic
model, with very good precision as ε goes to zero in the microscopic setting. Finally,
when considering the limiting case “ε = 0” in the microscopic model, we obtained a
very good agreement between the profiles of the solutions of the micro- and macro-
models. It is noteworthy that both models also feature the same dynamics in time, with
a slight delay in the macroscopic simulations compared to the microscopic dynamics.
This delay may be due to the fact that the microscopic simulations are performed
with a finite number of particles while the macroscopic model is in the limit of infi-
nite number of individuals. However, as for very small values of ε the simulations of
the microscopic dynamics are very time-consuming, we were not able to extend the
numerical study to a higher number of particles.

For the sake of completeness, we finally presented numerical simulations of the
model in the two-dimensional case. For computational reasons, we were not able to
perform two-dimensional simulations of themicroscopicmodel, andwe chose to focus
on the macroscopic model. In the two-dimensional case, we were once again able to
numerically recover supercritical and subcritical transitions in the steady states, as
function of the noise intensity D, in the same regime as predicted by the theoretical
analysis of the macroscopic model. These results validate the theoretical analysis, the
numerical method, and the simulations developed for the macroscopic model.

By providing a numerical comparison between the micro- and macrodynamics,
this study shows that the macroscopic model considered in this paper is indeed a
relevant tool to model particles interacting through a dynamical network of links. As
a main advantage compared to the microscopic formulation, the macroscopic model
enables to explore large systemswith lowcomputational cost (such as two-dimensional
studies) and is therefore believed to be a powerful tool to study network systems
on the large scale. Direct perspectives of these works include the derivation of the
macroscopic model in a regime of non-instantaneous linking–unlinking of particles.
The hope is to understand deeper how the local forces generated by the links are
expressed at the macroscopic level. The model could be improved by taking into
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account other phenomena such as external forces and particle creation/destruction.
Finally, rigorously proving the derivation of the macroscopic model from the particle
dynamics will be the subject of the future research.
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A Appendix 1: On the Micromodel

A.1 The Model

The scaling of Sect. 2.2 obliges us to increase the length of the domainwhen decreasing
ε. For convenience, we rather work with fixing the domain �. We therefore use the
following scaling:

x̃ = x, f ε = f, gε = g, κ̃ = ε−1κ, D̃ = εD, R̃ = R, l̃ = l,

t̃ = εt, ν̃ f = ε2ν f , ν̃d = ε2νd .

One can check that this scaling after letting ε → 0 leads to the same macroscopic sys-
tem (6). The microscopic model then reads (dropping the tildes for clarity purposes):

Xn+1
i = Xn

i − ∇Xi W (Xn)�tn + √
2D�tnN (0, 1).

Between two time steps, new links are created between close enough pairs of particles

that are not already linkedwith probabilityP f = 1−e−νN
f �tn and new links disappear

with probability Pd = 1 − e−νN
d �tn , where we denoted νN

f = ν̃ f /((N − 1)ε2),

νN
d = ν̃d/(N−1)ε2). Here, the time step�tn is chosen such that the particle motion is
bounded by the numerical parameter δ > 0 and such that νN

f �tn < 0.1, νN
d �tn < 0.1

(to capture the right time scale). To this purpose, we set:

�tn = min

(
δ

Nlp f Rκ
,

0.1

max(νN
f , νN

d )

)
,

where Nplf is the maximal number of links per fiber. Note that as the links are dynami-
cal, Nplf might change during the course of the simulation,making the time step depen-
dent on the current step. For the particle simulations,we suppose that the number of par-
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ticles is large enough so that we can set νN
f = ν f

N−1 and νN
d = νd . Finally, as explained

in the main text, we initially choose the particle positions for both models such that:

f0(x) = 1

2L
+ δ(λ) cos

xπ

L
.

For the microscopic model, the initial positions of the particles are set such that given
a random position X ∈ [−L , L] and a random number η2 ∈ [−1, 1], we let the proba-
bility of creating a new particle at position X + η2�x − �x

2 be �x
2L + δ(λ)�x cos πX

L .

A.2 Computational Aspects of the Micro-and-Macroscopic Models

The numerical scheme of the microscopic model is implemented in FORTRAN90.
Parallelization is only used when running several simulations for the comparison with
the macroscopic model (see Fig. 8) or for the analysis of phase transitions (see Sect.
3.2.3). In Fig. 14, we show the computation time (CPU)—in days—of the microscopic
model as function of the scaling parameter ε and for different values of the noise D.
In Fig. 14a, we consider the case � = 0.3 (subcritical transition), and Fig. 14b shows
the CPU time for � = 0.4725 (supercritical transition). Values of the CPU time for
ε = 0 [Eq. (18)] are plotted as dashed lines. For each �, we consider three values
of D: in the unstable regime (blue curves), close to the bifurcation (orange curves),
and in the stable regime (yellow curves). As ε decreases, the CPU time increases for
both values of �, and we deduce from Fig. 14a that the CPU time is in O( 1

ε3
). As

the time step is directly linked to the linking parameters ν f , νd of order O( 1
ε2

), it is

expected that the CPU time is at least in O( 1
ε2

). Moreover, the CPU time is larger

Fig. 14 Simulation time of the microscopic model (in days), as function of the scaling parameter ε and for
different values of the noise D. a For the subcritical bifurcation � = 0.3 and three values of D: D = 0.03
(unstable regime, blue curve), D = 0.034 (close to the bifurcation, orange curve), and D = 0.04 (stable
regime, yellow curve) and b for the supercritical bifurcation � = 0.4725 and three values of D: D = 0.001
(unstable regime, blue curve), D = 0.003 (close to the bifurcation, orange curve), and D = 0.005 (stable
regime, yellow curve). Values of the CPU time for “ε = 0” [Eq. (18)] for the corresponding values of D
are plotted as dashed lines (Color figure online)
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in the unstable regime than in the stable one (see discussion bellow), and finally, the
CFL-type condition of the microscopic model (see previous paragraph) links the time
step to the maximal number of links per fiber, also directly linked to the clustering of
the particles. Altogether, these effects lead to a CPU time of order O( 1

ε3
), dependent

on the scaling parameter ε as well as on the value of the statistical quantifier Q which
measures the “clustering” of the particles (compare Fig. 14 with Fig. 6). Note that in
the limit case “ε = 0” (dashed lines in Fig. 14), the CPU time is much smaller than
for ε �= 0. Indeed, in this limit case there is no more linking dynamics as particles
interact with all of their close neighbors. Therefore, in this case, the computational
time does not depend on the linking and unlinking frequencies anymore, but still on
the quantifier Q. Note that these results correspond to a fixed number of particles
N = 1000, but that the CPU time also depends on this parameter.

In order to highlight the dependency of the CPU time on the clustering of particles
and on the number of particles, we show in Fig. 15 the evolution of the CPU time—in
hours—during the simulations, when considering themicroscopicmodel with “ε = 0”
and different values of D and N . Contrary to Fig. 14 which shows the total CPU time
of a simulation, Fig. 15 shows the computational time between two time steps, as a
function of the simulation time. For the subcritical bifurcation (left figures, � = 0.3),
we consider different values of D: D = 0.02 (unstable mode, blue curves), D = 0.033
and D = 0.035 (close to the transitional D, orange and yellow curves, respectively),
and D = 0.038 (stable mode, green curves). For the supercritical bifurcation (right
figures), we use D = 0.002 and D = 0.003 (unstable modes, blue and orange curves,
respectively), D = 0.0035 and D = 0.0038 (close to the transitional D, yellow and
green curves, respectively), and D = 0.045 (stable mode, red curves). Figure 15a
shows the case N = 500 particles, and (b) and (c) correspond to N = 1000 and
N = 2000, respectively. As shown in Fig. 15, the CPU time strongly depends on the
amount of aggregation of the particles in the simulation. At the beginning of the sim-
ulation, particles are distributed almost homogeneously in space, leading to a small
CPU time. As particles start aggregating, one observes an increase in CPU time, by
a factor ranging from 3 to 6 as the number of particles increases from 500 to 2000
(Fig. 15a–c). These figures clearly show the simulation time at which particles start
aggregating, which depends on the value of D as well as on the number of particles and
on the regime we consider: Indeed, particles aggregate faster in the subcritical regime
than in the supercritical one. The fact that formation of clusters in the unstable regime
leads to a larger CPU time than in the stable one is directly linked to the presence
of particle aggregates, as each particle interacts with more neighbors in the clustered

Fig. 15 Computational time between two time steps, as function of the simulation time, for the �
microscopic model with “ε = 0” and different values of N : a N = 500, b N = 1000, and c N = 2000. For
the subcritical bifurcation (left figures, � = 0.3), we consider different values of D: D = 0.02 (unstable
mode, blue curves), D = 0.033 and D = 0.035 (close to the transitional D, orange and yellow curves,
respectively), and D = 0.038 (stable mode, green curves). For the supercritical bifurcation (right figures),
we use D = 0.002 and D = 0.003, (unstable modes, blue and orange curves, respectively), D = 0.0035
and D = 0.0038 (close to the transitional D, yellow and green curves, respectively), and D = 0.045 (stable
mode, red curves). The CPU time strongly depends on the amount of aggregation of the particles in the
simulation, as well as on the total number of particles (Color figure online)
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case than in the homogeneous one. Altogether, these numerical results show that the
microscopic model becomes very time-consuming when considering small values of
ε and in the unstable regime or even when considering large number of particles. Our
simulations reached 40 days for ε = 1

12 and D = 0.03 in the subcritical case (� = 0.3),
whereas the CPU times for the macroscopic model ranged from few minutes to few
hours. These results highlight the need for a continuous formalism when studying
systems with large number of particles.

Let us finally mention that the numerical scheme for the macroscopic model is
amenable to parallelization since the numerical cost bottleneck is due to the convolu-
tion terms and this is not difficult to parallelize as it is scalable using load balancing
between processors. The communication costs to compute convolutions are highly
reduced due to the compact support of the potential. The other only communication
costs will come at the time of evaluating the new values of the density that needs fluxes
from neighboring cells. However, since we only use two numerical values of the flux,
the communication costs will be rather small. These aspects from the parallel program-
ming perspective have been treated in equations with similar issues such as kinetic
equations, see, for instance, [28]. The strategy there can be applied directly to our situ-
ation leads to speedups for two-dimensional computations of the macroscopic model.

B Appendix 2: Tables

B.1 Numerical Results for the One-Dimensional Case

It this section, we provide the data for the one-dimensional simulations of the super-
critical bifurcation (Table 5) and of the subcritical bifurcation (Table 6) for the
macroscopic model.

Table 5 Supercritical
bifurcation in the
one-dimensional case

l1 = 0.4725 D1,λ λ Tmax Q

Super-1 0.0030 0.0010 1.52e+4 0.2247

Super-2 0.0031 0.0009 1.65e+4 0.2163

Super-3 0.0032 0.0008 1.82e+4 0.2070

Super-4 0.0033 0.0007 2.04e+4 0.1963

Super-5 0.0034 0.0006 2.38e+4 0.1842

Super-6 0.0035 0.0005 2.74e+4 0.1702

Super-7 0.0036 0.0004 3.34e+4 0.1537

Super-8 0.0037 0.0003 4.35e+4 0.1336

Super-9 0.0038 0.0002 6.38e+4 0.1078

Super-10 0.0039 0.0001 1.30e+5 0.0696

Super-11 0.0040 0 1.63e+4 5.0e−4

Super-12 0.0041 −0.0001 5.99e+4 1.3e−4

Super-13 0.0042 −0.0002 3.86e+4 7.2e−5

Super-14 0.0043 −0.0003 2.90e+4 5.0e−5
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Table 6 Subcritical bifurcation
in the one-dimensional case

l2 = 0.3 D2,λ λ Tmax Q

Sub-1 0.0338 0.0010 0.54e+3 0.2926

Sub-2 0.0339 0.0009 0.57e+4 0.2921

Sub-3 0.0340 0.0008 0.61e+4 0.2915

Sub-4 0.0340 0.0007 0.61e+4 0.2915

Sub-5 0.0341 0.0006 0.67e+4 0.2909

Sub-6 0.0342 0.0005 0.74e+4 0.2903

Sub-7 0.0343 0.0004 0.83e+4 0.2897

Sub-8 0.0344 0.0003 0.98e+4 0.2891

Sub-9 0.0345 0.0002 1.26e+4 0.2884

Sub-10 0.0346 0.0001 2.03e+4 0.2878

Sub-11 0.0347 0 1.01e+5 2.2e−4

Sub-12 0.0348 −0.0001 4.98e+4 9.5e−5

Sub-13 0.0349 −0.0002 3.43e+4 6.1e−5

Sub-14 0.0350 −0.0003 2.66e+4 4.5e−5

B.2 Numerical Results for the Two-Dimensional Case

It this section, we provide the data for the two-dimensional simulations of the super-
critical bifurcation (Tables 7, 8) and of the subcritical bifurcation (Tables 9, 10, 11)
for the macroscopic model.

Table 7 Supercritical
bifurcation in the
two-dimensional case: α = 0.3,
R/L = 1

Case 1 Dλ λ Tmax Q

Super-1 0.7514 0.010 791.1 0.0111

Super-2 0.7523 0.009 871.5 0.0106

Super-3 0.7533 0.008 984.9 0.0099

Super-4 0.7542 0.007 1.1183e+3 0.0093

Super-5 0.7551 0.006 1.2971e+3 0.0086

Super-6 0.7560 0.005 1.5498e+3 0.0079

Super-7 0.7569 0.004 1.9324e+3 0.0070

Super-8 0.7578 0.003 2.5875e+3 0.0060

Super-9 0.7587 0.002 3.9821e+3 0.0048

Super-10 0.7596 0.001 9.2876e+3 0.0030

Super-11 0.7605 0.000 7.7450e+3 8.3456e-6

Super-12 0.7615 −0.001 2.6994e+3 2.0849e-6

Super-13 0.7624 −0.002 1.7778e+3 1.2446e-6

Super-14 0.7633 −0.003 1.3437e+3 8.8705e-7
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Table 8 Supercritical
bifurcation in the
two-dimensional case: α = 0.3,
R/L = 0.975

Case 2 Dλ λ Tmax Q

Super-1 0.7254 0.005 1.3932e+3 0.0102

Super-2 0.7264 0.004 1.8138e+3 0.0091

Super-3 0.7273 0.003 2.5098e+3 0.0078

Super-4 0.7282 0.002 4.1365e+3 0.0062

Super-5 0.7291 0.001 9.0104e+3 0.0042

Table 9 Subcritical bifurcation
in the two-dimensional case:
α = 0.3 R/L = 0.950

Case 3 Dλ λ Tmax Q

Sub-1 0.6923 0.005 1.1447e+3 0.0142

Sub-2 0.6932 0.004 1.4385+3 0.0133

Sub-3 0.6941 0.003 1.9591e+3 0.0123

Sub-4 0.6950 0.002 3.1522e+3 0.0109

Sub-5 0.6959 0.001 6.4408e+3 0.0093

Table 10 Subcritical
bifurcation in the
two-dimensional case: α = 0.3
R/L = 0.925

Case 4 Dλ λ Tmax Q

Sub-1 0.6570 0.005 858.4 0.0190

Sub-2 0.6579 0.004 1.0410e+3 0.0185

Sub-3 0.6588 0.003 1.3428e+3 0.0179

Sub-4 0.6597 0.002 1.9528e+3 0.0173

Sub-5 0.6607 0.001 4.6192e+3 0.0165

Table 11 Subcritical
bifurcation in the
two-dimensional case: α = 0.3
R/L = 0.900

Case 5 Dλ λ Tmax Q

Sub-1 0.6156 0.010 405.3 0.0244

Sub-2 0.6165 0.009 437.8 0.0241

Sub-3 0.6174 0.008 478.4 0.0239

Sub-4 0.6183 0.007 530.3 0.0236

Sub-5 0.6192 0.006 598.7 0.0233

Sub-6 0.6201 0.005 693.1 0.0230

Sub-7 0.6210 0.004 832.6 0.0226

Sub-8 0.6219 0.003 1.0628e+3 0.0223

Sub-9 0.6229 0.002 1.6089e+3 0.0219

Sub-10 0.6238 0.001 3.4882e+3 0.0215

Sub-11 0.6247 0.000 8.0028e+3 8.4646e−6

Sub-12 0.6256 −0.001 2.9256e+3 2.2626e−6

Sub-13 0.6265 −0.002 1.8733e+3 1.3058e−6

Sub-14 0.6274 −0.003 1.3983e+3 9.1773e−7
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Data Availability

No new data were collected in the course of this research.

References

Barbaro, A.B.T., Degond, P.: Phase transition and diffusion among socially interacting self-propelled agents.
Discrete Contin. Dyn. Syst. Ser. B 19, 1249–1278 (2014)

Barbaro, A.B.T., Cañizo, J.A., Carrillo, J.A., Degond, P.: Phase transitions in a kinetic flocking model of
Cucker-Smale type. Multiscale Model. Simul. 14(3), 1063–1088 (2016)

Barré, J., Degond, P., Zatorska, E.: Kinetic theory of particle interactions mediated by dynamical networks.
Multiscale Model. Simul. (2017) (to appear)

Bertozzi, A.L., Carrillo, J.A., Laurent, T.: Blow-up in multidimensional aggregation equations with mildly
singular interaction kernels. Nonlinearity 22(3), 683–710 (2009)

Blanchet, A., Dolbeaut, J., Perthame, B.: Two-dimensional Keller-Segel model: optimal critical mass and
qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 1–32 (2006)

Boissard, E., Degond, P., Motsch, S.: Trail formation based on directed pheromone deposition. J. Math.
Biol. 66, 1267–1301 (2013)

Bolley, F., Cañizo, J.A., Carrillo, J.A.: Stochastic mean-field limit: non-Lipschitz forces & swarming. Math.
Mod. Methods. Appl. Sci. 21, 2179–2210 (2011)

Broedersz, C.P., Depken, M., Yao, N.Y., Pollak, M.R., Weitz, D.A., MacKintosh, F.C.: Cross-link governed
dynamics of biopolymer networks. Phys. Rev. Lett. 105, 238101 (2010)

Burger, M., Fetecau, R., Huang, Y.: Stationary states and asymptotic behavior of aggregation models with
nonlinear local repulsion. SIAM J. Appl. Dyn. Syst. 13(1), 397–424 (2014)

Cañizo, J.A., Carrillo, J.A., Patacchini, F.S.: Existence of compactly supported global minimisers for the
interaction energy. Arch. Ration. Mech. Anal. 217(3), 1197–1217 (2015)

Carrillo, J.A.,McCann, R.J., Villani, C.: Kinetic equilibration rates for granularmedia and related equations:
entropy dissipation and mass transportation estimates. Rev. Mat. Iberoam. 19(3), 971–1018 (2003)

Carrillo, J.A., Fornasier, M., Toscani, G., Vecil, F.: Particle, kinetic, and hydrodynamicmodels of swarming.
In: Naldi, G., Pareschi, L., Toscani, G. (eds.) Mathematical Modeling of Collective Behavior in Socio-
Economic and Life Sciences. Modeling and Simulation in Science, Engineering and Technology, pp.
297–336. Birkhäuser Basel (2010)

Carrillo, J.A., Choi,Y.-P.,Hauray,M.: The derivation of swarmingmodels: ,mean-field limit andWasserstein
distances. Collective Dynamics from Bacteria to Crowds: An Excursion Through Modeling, Analysis
and Simulation, CISM International Centre for Mechanical Sciences, vol. 533. Springer, Berlin, pp.
1–45 (2014)

Carrillo, J.A., Chertock, A., Huang, Y.: A finite-volume method for nonlinear nonlocal equations with a
gradient flow structure. Commun. Comput. Phys. 17(1), 233–258 (2015)

Chaudury, O., Parekh, S.H., Fletcher, D.A.: Reversible stress softening of actin networks. Nature 445,
295–298 (2007)

Chayes, L., Panferov, V.: The McKean-Vlasov equation in finite volume. J. Stat. Phys. 138(1–3), 351–380
(2010)

Degond, P., Herty, M., Liu, J.-G.: Flow on sweeping networks. Multiscale Model. Simul. 12, 538–565
(2014)

Degond, P., Frouvelle, A., Liu, J.-G.: Phase transitions, hysteresis, and hyperbolicity for self-organized
alignment dynamics. Arch. Ration. Mech. Anal. 216(1), 63–115 (2015)

Degond, P., Delebecque, F., Peurichard, D.: Continuummodel for linked fibers with alignment interactions.
Math. Mod. Methods. Appl. Sci. 26, 269–318 (2016)

DiDonna, B.A., Levine, A.J.: Filamin cross-linked semiflexible networks: fragility under strain. Phys. Rev.
Lett. 97(6), 068104 (2006)

Domschke, P., Trucu, D., Gerisch, A., Chaplain, M.A.J.: Mathematical modelling of cancer invasion: impli-
cations of cell adhesion variability for tumour infiltrative growth patterns. J. Theor. Biol. 361, 41–60
(2014)

Evers, J.H.M., Kolokolnikov, T.: Metastable states for an aggregation model with noise. SIAM J. Appl.
Dyn. Syst. 15(4), 2213–2226 (2016)

123



268 J Nonlinear Sci (2018) 28:235–268

Fournier, N., Hauray, M., Mischler, S.: Propagation of chaos for the 2D viscous vortex model, preprint
(2012). arXiv:1212.1437

Godinho, D., Quiñinao, C.: Propagation of chaos for a subcritical Keller-Segelmodel. Ann. Inst. H. Poincaré
Probab. Stat. 51(3), 965–992 (2015)

Golestanian, R.: Collective behavior of thermally active colloids. Phys. Rev. Lett. 108, 038303 (2012)
Kolokolnikov, T., Carrillo, J.A., Bertozzi, A., Fetecau, R., Lewis, M.: Emergent behaviour in multi-particle

systems with non-local interactions. Phys. D 260, 1004 (2013)
Kupiec, J.J.: A Darwinian theory for the origin of cellular differentiation. Mol. Gen. Genet. 255, 201–208

(1997)
Mantas, J.M.,Carrillo, J.A.,Majorana,A.: Parallelization ofWENO-Boltzmann schemes for kinetic descrip-

tions of 2D semiconductor devices. In: Anile, A.M., Ali, G., Mascali, G. (eds.) Scientific Computing
in Electrical Engineering, Mathematics in Industry, The European Consortium for Mathematics in
Industry, vol. 9, pp. 357–362. Springer, Berlin (2006)

Mogilner, A., Edelstein-Keshet, L.: A non-local model for a swarm. J. Math. Biol. 38(6), 534–570 (2007)
Painter, K.J., Bloomfield, J.M., Sherratt, J.A., Gerisch, A.: A nonlocal model for contact attraction and

repulsion in heterogeneous cell populations. Bull. Math. Biol. 77(6), 1132–1165 (2015)
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