
1

Programming and Proving with Distributed Protocols

ILYA SERGEY, University College London, UK

JAMES R. WILCOX, University of Washington, USA

ZACHARY TATLOCK, University of Washington, USA

Distributed systems play a crucial role in modern infrastructure, but are notoriously difficult to
implement correctly. This difficulty arises from two main challenges: (a) correctly implementing
core system components (e.g., two-phase commit), so all their internal invariants hold, and (b)
correctly composing standalone system components into functioning trustworthy applications (e.g.,
persistent storage built on top of a two-phase commit instance). Recent work has developed several
approaches for addressing (a) by means of mechanically verifying implementations of core distributed
components, but no methodology exists to address (b) by composing such verified components into
larger verified applications. As a result, expensive verification efforts for key system components are
not easily reusable, which hinders further verification efforts.

In this paper, we present Disel, the first framework for implementation and compositional
verification of distributed systems and their clients, all within the mechanized, foundational context
of the Coq proof assistant. In Disel, users implement distributed systems using a domain specific
language shallowly embedded in Coq and providing both high-level programming constructs as well
as low-level communication primitives. Components of composite systems are specified in Disel as
protocols, which capture system-specific logic and disentangle system definitions from implementation
details. By virtue of Disel’s dependent type system, well-typed implementations always satisfy
their protocols’ invariants and never go wrong, allowing users to verify system implementations
interactively using Disel’s Hoare-style program logic, which extends state-of-the-art techniques for
concurrency verification to the distributed setting. By virtue of the substitution principle and frame
rule provided by Disel’s logic, system components can be composed leading to modular, reusable
verified distributed systems.

We describe Disel, illustrate its use with a series of examples, outline its logic and metatheory,
and report on our experience using it as a framework for implementing, specifying, and verifying
distributed systems.

ACM Reference format:
Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming and Proving with Distributed
Protocols. Proc. ACM Program. Lang. 1, 1, Article 1 (September 2017), 29 pages.

1 INTRODUCTION

Real-world software systems, including distributed systems, are rarely built as standalone,
monolithic pieces of code. Rather, they are composed of multiple independent modules, which
are connected either by the linker or through communication channels. Such a compositional
approach enables clean separation of concerns and a modular development process: in
order to use one component within a larger system, one only needs to know what it does
without requiring details on how it works. Unfortunately, the benefits of modular software
development are not yet fully realized in the context of verified distributed systems.

Recent work has produced several impressive formal proofs of correctness for implementa-
tions of core distributed system components, ranging from consensus protocols to causally
consistent key-value stores [16, 31, 41, 63]. These artifacts, while formally verified, are not

2017. 2475-1421/2017/9-ART1 $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1:2 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

immediately reusable in the context of larger verified applications. For example, to compose
a linearizable database with a causally consistent cache [2], one would need a framework
general enough to express both specifications and reason about their interaction, possibly
in the presence of application-specific constraints. Furthermore, existing verified systems
entangle implementation details with abstract protocol definitions, preventing independent
evolution and requiring extensive refactoring when changes are made [63].

Finally, like all software, real-world distributed systems exist in an open world, and
should be usable in multiple contexts by various clients, each of which may make different
assumptions.

1.1 Towards Modular Distributed System Verification

Recent advances in the area of formal machine-assisted program verification demonstrated
that composition, obtained by means of expressive specifications and rich semantics, is the key
to producing scalable, robust and reusable software artifacts in correctness-critical domains,
such as compilers [26, 50], operating systems [14, 24] and concurrent libraries [15, 49].
Following this trend, we identify the following challenges in designing a verification tool to
support compositional proofs of distributed systems.

(1) Protocol-program modularity. One should be able to define an abstract model of a
distributed protocol (typically represented by a form of a state-transition system) without
tying it to a specific implementation. Any purported implementation should then be proven
to follow the protocol’s abstract model. This separation of concerns supports reuse of
existing techniques for reasoning about the high-level behavior of a system, while allowing
for optimized implementations, without redefining the high-level interaction protocol.

(2) Modular program verification. Once proven to implement an abstract protocol, a
program should be given a sufficiently expressive declarative specification, so that clients
of the code never need to be examine the implementation itself. Furthermore, it should be
possible to specify and verify programs made up of parts belonging to different protocols
(horizontal compositionality). This enables decomposing a distributed application into
independently specified and proved parts, making verification scale to large codebases.

(3) Modular proofs about distributed protocols. A single protocol may be useful to
multiple different client applications, each of which may exercise the protocol in different
ways. For instance, a “core” consensus protocol implementation can be employed both for
leader election as well as for a replicated data storage. In this case, the invariants of the
core protocol should be proved once and for all and then reused to establish properties
of composite protocols. These composite protocols often require elaborating the core
invariants with client-specific assumptions, but it would be unacceptable to re-verify all
existing code under new assumptions for each different use of the core protocol. Instead,
clients should be able to prove their elaborated invariants themselves by reasoning about
the core protocol after the fact. This also ensures any existing program that follows
the protocol is guaranteed to also satisfy the client’s new invariant. This decomposition
between core protocols and elaborated client invariants reduces and parallelizes the proof
engineering effort: the core system implementor verifies basic properties of the protocol
and correctness of the implementation, while the system’s client proves the validity of
their context-specific invariants.

This paper presents Disel, a mechanized framework for verification and implementation of
distributed systems that aims to address these challenges.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:3

1.2 What is Disel?

Disel is a verification framework incorporating ideas from dependent type theory, interactive
theorem proving, separation-style program logics for concurrency, resource reasoning, and
distributed protocol design.

From the perspective of a distributed protocol designer, Disel is a domain-specific
language for defining a protocol 𝒫 in terms of its state-space invariants and atomic primitives
(e.g., send and receive). These primitives implement specific transitions which synchronize
message-passing with changes to the local state of a node. Described this way, the protocols
are immediately amenable to machine-assisted verification of their safety and temporal
properties [46, 62], and Disel facilitates these proofs by providing a number of higher-order
lemmas and libraries of auxiliary facts.

From the point of view of a system implementor, Disel is a higher-order programming lan-
guage, featuring a complete toolset of programming abstractions, such as first-class functions,
algebraic datatypes, and pattern matching, as well as low-level primitives for message-passing
distributed communication. Disel’s dependent type system makes programs protocol-aware
and ensures that well-typed programs don’t go wrong ; that is, if a program 𝑐 type-checks in
the context of one or many protocols 𝒫1, . . . ,𝒫𝑛 (i.e., informally, 𝒫1, . . . ,𝒫𝑛 ⊢ 𝑐), then it
correctly exercises and combines transitions of 𝒫1, . . . ,𝒫𝑛.

Finally, for a human verifier, Disel is an expressive higher-order separation-style program
logic1 that allows programs to be assigned declarative Hoare-style specifications, which can
be subsequently verified in an interactive proof mode. Specifically, one can check that, in the
context of protocols 𝒫1, . . . ,𝒫𝑛, a program 𝑐 satisfies pre/postconditions 𝑃 and 𝑄, where 𝑃
constrains the pre-state 𝑠 of the system, and 𝑄 constrains the result res and the post-state 𝑠′.
The established pre-/postconditions can be then used for verifying larger client programs
that use 𝑐 as a subroutine. Disel takes a partial correctness interpretation of Hoare-style
specifications, thus focusing on verification of safety properties and leaving reasoning about
liveness properties for future work.

We implemented Disel on top of the Coq proof assistant [6], making use of Coq’s
dependent types and higher-order programming features. In the tradition of Hoare Type
Theory (HTT) by Nanevski et al. [38–40] and its recent versions for concurrency [32, 37],
we give the semantics to effectful primitives, such as send/receive, with respect to a specific
abstract protocol (or protocols). Thus, we address challenge (1) by ensuring that any
well-typed program is correct (i.e., respects its protocols) by construction, independently of
which and how many of the imposed protocols’ transitions are taken and of any imperative
state the program might use. This type-based verification method for distributed systems,
which was motivated by a recent vision paper by Wilcox et al. [61], is different from more
traditional techniques for establishing refinement [1, 16] between an actual implementation
(the code) and a specification (an abstract protocol) via a simulation argument [35]. In
comparison with the refinement-based techniques, the type-based verification method makes
it easy to account for horizontal composition of protocols (necessary, e.g., for reasoning
about remote procedure calls, as we will show in Section 2) and accommodate advanced
programming features, such as higher-order functions.

As a program logic, Disel draws on ideas from separation-style logics for shared-memory
concurrency [37, 55], allowing one to instrument programs with pre/postconditions and
providing a form of the frame rule [47] with respect to protocols. For example, assuming
that the state-spaces of 𝒫1 and 𝒫2 are disjoint, 𝒫1 ⊢ 𝑐1 and 𝒫2 ⊢ 𝑐2 together with the frame

1The framework name stands for Distributed Separation Logic.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:4 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

rule imply 𝒫1,𝒫2 ⊢ 𝐶[𝑐1, 𝑐2] for any well-formed program context 𝐶. This ensures that the
composite program 𝐶[𝑐1, 𝑐2] can “span” multiple protocols, thus addressing challenge (2).
The assumption of protocol state-spaces being disjoint might seem overly restrictive, but, in
fact, it reflects the existing programming practices. For instance, the local state of a node
responsible for tracking access permissions is typically different from the state used to store
persistent data.

Disel further alleviates the issue of disjoint state and also addresses challenge (3) with
two novel logical mechanisms, described in detail in Section 3. The first one supports the
possibility of elaborating protocol invariants via an inference rule, WithInv, allowing one to
strengthen the assumptions about a system’s state, resulting in the strengthened guarantees,
as long as these assumptions form an inductive invariant. Second, Disel supports “coupling”
protocols via inter-protocol behavioral dependencies, which allow one protocol restricted
logical access to state in another protocol, all while preserving the benefits of disjointness,
including the frame rule. Dependencies are specified with the novel logical mechanism of
inter-protocol send-hooks, allowing one to restrict interaction between a core protocol and
its clients by placing additional preconditions on certain message sends. For example, a send-
hook could disallow certain transitions of the client protocol unless a particular condition
holds for the local state associated with the core protocol. These additional preconditions
do not require re-verifying any core components.

To summarize, this paper makes the following contributions:

∙ Disel, a domain-specific language and the first separation-style program logic for the
implementation and compositional verification of message-passing distributed applications
for full functional correctness, supporting effectful higher-order functional programming
style, as well as custom distributed protocols and their combinations;

∙ Two conceptually novel logical mechanisms allowing reuse of Hoare-style and inductive
invariant proofs while reasoning about distributed protocols: (a) the WithInv rule enabling
elaboration of the protocol invariant in program specifications, and (b) send-hooks, providing
a way to modularly verify programs operating in a restricted product of multiple protocols.

∙ A proof-of-concept implementation of Disel as a foundational (i.e., proven sound from
first principles [3]) verification tool, built on top of Coq, as well as mechanized soundness
proofs of Disel’s logical rules with respect to a denotational semantics of message-passing
distributed programs;

∙ An extraction mechanism into OCaml and a trusted shim implementation, allowing one
to run programs written in Disel on multiple physical nodes;

∙ A series of case studies implemented and verified in Disel (including the Two-Phase
Commit protocol [60] and its client application), as well as a report on our experience of
using Disel and a discussion on the executable code.

2 OVERVIEW

In this section we illustrate the Disel methodology for specifying, implementing, and
verifying distributed systems by developing a simple distributed calculator. Disel systems
are composed of concurrently running nodes communicating asynchronously by exchanging
messages, which, as in real networks, can be reordered and dropped.

In the calculator system, each node 𝑛 is either a client (written 𝑛 ∈ 𝐶) or a server (𝑛 ∈ 𝑆),
and the system is parameterized over some expensive partial function 𝑓 with domain dom(𝑓).

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:5

Send-transitions

𝜏𝑠 Requires (𝑚, to) Ensures

sreq 𝑛 ∈ 𝐶 ∧ to ∈ 𝑆 ∧ 𝑛� rs ∧𝑚 = (Req, args) ∧ args ∈ dom(𝑓) 𝑛� (to, args) ⊎ rs

sresp 𝑛 ∈ 𝑆 ∧ 𝑓(args) = 𝑣 ∧ 𝑛� (to, args) ⊎ rs ∧𝑚 = (Resp, 𝑣, args) 𝑛� rs

Receive-transitions

𝜏𝑟 Requires (𝑚, from) Ensures

rreq 𝑛 ∈ 𝑆 && 𝑛� rs && 𝑚 = (Req, args) 𝑛� (from, args) ⊎ rs

rresp 𝑛 ∈ 𝐶 && 𝑛� (from, args) ⊎ rs && 𝑚 = (Resp, ans, args) 𝑛� rs

Fig. 2. Send- and receive-transitions of the distributed calculator protocol with respect to a node 𝑛.

C1

C2

S

(Req, args1)

(R
eq

, a
rg

s 2)

(Req, args3)

(Re
sp,

 f (
args1),

args1)

(Resp, f (args2), args2)

(R
es
p,

 f (
arg

s3),
 ar

gs3)

Fig. 1. A communication scenario between a server
and two client nodes in a distributed calculator.

Given arguments args ∈ dom(𝑓), a client
can send a request containing args to a
server, which will reply with 𝑓(args). Fig. 1
depicts an example execution for the cal-
culator system with one server 𝑆 and two
clients, 𝐶1 and 𝐶2. Note that requests and
responses may not be received in the or-
der they are sent due to network reordering,
and the server may service requests in any
order (e.g., due to implementation details
such as differing priorities among requests).
However, the system should satisfy weak
causality constraints, e.g., a client 𝐶 should only receive a response 𝑓(args) if 𝐶 had previ-
ously made a request for args. In the remainder of this section we show how Disel enables
developers to specify the abstract calculator protocol, implement several versions of server
and client nodes that follow the protocol, and prove key invariants for reasoning about the
system.

2.1 Defining a Calculator Protocol

A protocol in Disel provides a high-level specification of the interface between distributed
system components. As with traditional program specifications, Disel protocols serve to
separate concerns: implementations can refine details not specified by the protocol (e.g.,
the order in which to respond to client requests), invariants of the protocol can be proven
separately (e.g., showing that calculator responses contain correct answers), and interactions
between components within a larger system can be reasoned about in terms of their protocols
rather than their implementations. Following the tradition established by Lamport [27],
Disel protocols are defined as state-transition systems.

Fig. 2 depicts the state-transition system for the calculator example with two send-
transitions and two receive-transition. Each transition is named in the first column: 𝑠-
transitions are for sending and 𝑟-ones for receiving. Their pre- and postconditions (in the
form of requires/ensures pairs) are given as assertions in the second and third columns
respectively. These assertions are phrased in terms of the message being sent/received,
recipient/sender (to/from), and the protocol-specific state of a node 𝑛. For the calculator,
the state for node 𝑛 is a multiset of outstanding requests rs, denoted as 𝑛� rs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:6 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Protocol transitions synchronize the exchange of messages with changes in a node’s state.
Preconditions in send-transitions specify requirements that must be satisfied by the local
state of node 𝑛 for it to send message 𝑚 to recipient to and postconditions specify how 𝑛’s
state must be updated afterward. For example, the sreq transition can be taken by a client
node 𝑛 ∈ 𝐶 to send a request message (Req, args) to server to where args ∈ dom(𝑓) and,
after sending, 𝑛 has added (to, args) to its state. Preconditions in receive-transitions specify
requirements that must be satisfied by the local state of node 𝑛 for it to receive message 𝑚
from sender from and postconditions specify how 𝑛’s state must be updated. For example,
the rreq transition can be taken by a server node 𝑛 to receive a request message (Req, args)
from node from where, after receiving, 𝑛 has added (from, args) to its state.

Notice that preconditions in send-transition can be arbitrary predicates, while the pre-
condition of receive-transitions must be decidable (which we emphasize by using boolean
conjunction && instead of propositional ∧). This is because a program’s decision to send a
message is active and corresponds to calling the low-level send primitive (described later in
this section); the system implementer must prove such preconditions to use the transition. In
contrast, receiving messages is passive and corresponds to using the low-level recv primitive
(also described later in this section) that will react to any valid message. A message 𝑚 sent
to node 𝑛 should trigger the corresponding receive transition only if 𝑛’s state along with the
message satisfies the transition’s precondition. To choose such a transition unambiguously, we
require that each message’s tag (e.g., Req and Resp) uniquely identifies a receive-transition
that should be run. Combined with the decidability of receive-transition preconditions, this
allows Disel systems to automatically decide whether a transition can be executed.

As defined, the calculator protocol prohibits several unwelcome behaviors. For instance,
a server cannot send a response without a client first requesting it, since (a) servers only
send messages via the sresp transition, (b) sresp requires (to, args) to be in the multiset
of outstanding requests at the server, and (c) (to, args) can only be added to the set of
outstanding requests once it has been received from a client. Also note that the precondition of
sreq requires that when a client sends a request to a server to compute 𝑓(args), args ∈ dom(𝑓).
Similarly, the precondition of sresp requires that when a server responds to a client request
for args , it may only send the correct result 𝑓(args). In this case, the initial arguments args
are included into the response in order make it possible for the client to distinguish between
responses to multiple outstanding requests.

The protocol also leaves several details up to the implementation. For example, the sresp
transition allows a server to respond to any outstanding request, not necessarily the least
recently received. This flexibility allows for diverse implementation strategies and enables the
implementation ℐ of a component to evolve without requiring updates to other components
which only assume that ℐ satisfies its protocol.

This state-space and transitions define the calculator protocol 𝒞. Protocols are basic
specification units in Disel, and, as we will soon see, a single program can “span” multiple
protocols. Thus, we will annotate each protocol instance with a unique label ℓ𝑖 (e.g., 𝒞ℓ1 , 𝒞ℓ2).

2.2 From Protocols to Programs

The transitions in Fig. 2 define functions mapping a state, message, and node id to a
new state. We can use these functions as basic elements in building implementations of
distributed system components, but first we need to “tie” them to realistic low-level message
sending/receiving primitives. We can then combine these basic elements, via high-level
programming constructs, into executable programs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:7

In Disel a programmer can define a new programming primitive based on a send- or
receive transition using a library of transition wrappers, that decorate send/receive primitives
with transitions of protocols at hand. The generic send[𝜏𝑠, ℓ] wrapper from this library takes
a send-transition 𝜏𝑠 of a protocol identified by a label ℓ and yields a program that sends
a message. For instance, from the description in Fig. 2 and Disel’s logic (discussed in
Section 3), we can assign the following Hoare type (specification) to a “wrapped” transition
sresp run by server 𝑛 in the context of the protocol 𝒞ℓ:

𝒞ℓ
𝑛

⊢ send[sresp, ℓ](𝑚, to) :

{︂
𝑛 ∈ 𝑆 ∧ 𝑛� ((to, args) ⊎ rs)
∧ 𝑚 = (Resp, 𝑓(args), args)

}︂ {︀
𝑛� rs ∧ res = 𝑚

}︀
(1)

The assertions in the pre/postconditions of the type (1) quantify implicitly over the entire
global distributed state 𝑠 (including previously sent messages), although the calculator
protocol only constrains 𝑛’s local contents in 𝑠, which are referred using the “node 𝑛’s
local state points-to” assertion of the form 𝑛� −. In particular, the specification ensures
that the outstanding request (to, args) is removed from the local state of a node 𝑛 upon
sending a message. As customary in Hoare logic, all unbound variables (e.g., rs, args) are
universally-quantified and their scope spans both the pre- and post-condition. The return
value res, occurring freely in the postcondition of a wrapped send-transition, is the message
sent. In most of the cases, we will omit the type of res for the sake of brevity.

Disel’s type system ensures Hoare-style pre/postconditions in types are stable, i.e.,
invariant under possible concurrent transitions of nodes other than 𝑛. Stability often requires
manual proving, but is indeed the case in the triple (1), as its pres/posts constrain only local
state of the node 𝑛, which cannot be changed by other nodes. In general, Hoare triples in
Disel can refer to state of other nodes as well, as we will demonstrate in Section 4.

Using a wrapper recv for tying a receive-transition to a non-blocking receive command is
slightly more subtle. In general, we cannot predict which messages from which protocols a
node 𝑛 may receive at any particular point during its execution. To address this, receive
wrapper recv[𝑇, 𝐿] specifies a set 𝑇 of message tags and a set 𝐿 of protocol labels; and only
accept messages whose tag is in 𝑇 for a protocol whose label is in 𝐿.2 The resulting primitive
provides non-blocking receive: if there are no messages matching the criteria, it returns None
and acts as an idle transition. Otherwise, it returns Some (from,𝑚) for a matching incoming
message 𝑚 from sender from, chosen non-deterministically from those available. For example,
we can assign the following Hoare type to a wrapper, associated with the tag Req of 𝒞ℓ:

𝒞ℓ
𝑛
⊢ recv[{Req} , {ℓ}] :

{︀
𝑛 ∈ 𝑆 ∧ 𝑛� rs

}︀
⎧
⎪⎪⎨
⎪⎪⎩

if res = Some (from, (Req, args))
then 𝑛� ((from, args) ⊎ rs) ∧

⟨from, 𝑛, ∙, (Req, args)⟩ ∈ MS ℓ

else 𝑛� rs

⎫
⎪⎪⎬
⎪⎪⎭

(2)

The postcondition of the type (2) demonstrates an important feature of Disel’s Hoare-style
specs: in the case of a received message, it existentially binds its components (i.e., from,
args) in then-branch, and also identifies the message ⟨from, 𝑛, ∙, (Req, args)⟩ in the message
soup MS ℓ (which models both the current state and history of the network) of the post-state
𝑠′ wrt. the protocol 𝒞ℓ. Messages in Disel’s model (described in detail in Section 3.1) are
never “thrown away”; instead they are added to the soup, where they remain active (∘)
until received, at which points they become consumed (∙).3

2Our implementation also allows “filtering” messages to be received with respect to their content.
3This design choice with respect to message representation is common in state-of-the-art frameworks for

distributed systems verification, e.g., IronFleet [16] and Ivy [44], as it simplifies reasoning about past events.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:8 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

We can now employ the program (2) to write a blocking receive for request messages via
Disel’s built-in general recursion combinator letrec (explained in Section 3), assigning this
procedure the following specification:

𝒞ℓ
𝑛
⊢ letrec receive req (: unit) ,

𝑟 ← recv[{Req} , {ℓ}];
if 𝑟 = Some (from,𝑚)
then return (from,𝑚)

else receive req () : ∀𝑢 : unit.
{︀
𝑛 ∈ 𝑆 ∧ 𝑛� rs

}︀ {︂
𝑛� ((res.1, res.2) ⊎ rs) ∧
⟨res.1, 𝑛, ∙, (Req, res.2)⟩ ∈ MS ℓ

}︂
(3)

The Hoare type of receive req describes it as a function, which takes an argument of type
unit and is safe to run in a state, satisfied by its precondition. The pre/postconditions of
receive req are derived from the type (2) by application of a typing (inference) rule for
fixpoint combinator, with an assistance of a human prover and according to the inference
rules of Disel, described in Section 3.2. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-transition. That is, when invoked, it
still follows 𝒞ℓ’s transitions: otherwise we simply could not have assigned a type to it at all!
In other words, a body of receive req is merely a combination of more primitive sub-programs
(namely, the “wrapped” non-blocking receive (2)) that are proven to be protocol-compliant.

2.3 Elaborating State-Space Invariants of a Protocol

1 letrec simple server (: unit) ,
2 (from, args)← receive req ();

3 let 𝑣 = 𝑓(args) in

4 send[sresp, ℓ]((Resp, 𝑣, args), from);
5 simple server ()
6 in simple server ()

Let us now use receive req to implement our first
useful component of the system: a simple server,
which runs an infinite loop, responding to one
request each iteration (on the right). In trying to
assign a type to this program in the context of
𝒞ℓ for a node 𝑛 ∈ 𝑆, we encounter a problem at
line 3. Since 𝑓 is partially-defined, Disel will emit
a verification condition (VC), requiring us to prove that 𝑓 is defined at args. Unfortunately,
the postcondition in the spec (3) of receive req does not allow us to prove the triple: we
can only conclude that a message from the soup is consumed, but not that its contents are
well-formed, i.e., that args ∈ dom(𝑓). The issue is caused by the lack of constraints, imposed
by the protocol 𝒞ℓ on the system state 𝑠, specifically, on the messages in its soup, which we
refer to as 𝑠#MS ℓ. The necessary requirement for this example, however, could be derived
from the following property of a state 𝑠:

Inv1(𝑠) , ∀m ∈ 𝑠#MS ℓ, m = ⟨from, to,−, (Req, args)⟩ =⇒ args ∈ dom(𝑓) (4)

The good news is that the property Inv1 is an inductive invariant with respect to the
transitions of 𝒞ℓ: if it holds at some initial state 𝑠0, then it holds for any state 𝑠 reachable
from 𝑠0 via 𝒞ℓ’s transitions. Better yet, since every well-typed program in Disel is composed
of protocol transitions, it will automatically preserve the inductive invariant and can be
given the same pre/postconditions, as long as the pre-state satisfies the invariant.

To account for this possibility of invariant elaboration, Disel provides a protocol combi-
nator WithInv that takes a protocol 𝒫 and a state invariant 𝐼, proven to be inductive wrt.
𝒫 , and returns a new protocol 𝒫 ′, whose state-space definition is strengthened with 𝐼. That
is, the pre/postcondition of every transition can be strengthened with 𝐼 “for free” once 𝐼 is

shown to be an inductive invariant. Therefore, taking 𝒞′ℓ ,WithInv(𝒞ℓ, Inv1), we can reuse
all of simple server’s subprograms in the new context 𝒞′ℓ. The postcondition on line 3, in
conjunction with Inv1 holding over any intermediate states ensures that 𝑓 is defined at args ,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:9

letrec receive batch (𝑘 : nat) ,
if 𝑘 = 𝑘′ + 1

then fargs ← receive req ();

rest ← receive batch 𝑘′;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) ,
if rs = (from, args) :: rs′

then let 𝑣 = 𝑓(args) in

send[sresp, ℓ]((Resp, 𝑣, args), from);

send batch rs′

else return ()

letrec batch server (bsize : 𝑛𝑎𝑡) ,
reqs ← receive batch bsize;

send batch reqs;

batch server bsize

letrec memo server (mmap : map) ,
(from, args)← receive req ();

let ans = lookup mmap args in

if ans ̸= ⊥
then

send[sresp, ℓ]((Resp, ans, args), from);

memo server mmap

else

let ans = 𝑓(args) in
send[sresp, ℓ](𝑚, (Resp, ans, args));
let mmap′ = update mmap args ans in

memo server mmap′

(a) (b)

Fig. 3. Batching (a) and memoizing (b) calculator servers defined on top of the protocol 𝒞′ℓ.

allowing us to complete the verification of our looping server implementation, assigning it
the following type (with the standard False postcondition due to non-termination):

𝒞′ℓ
𝑛
⊢ simple server () :

{︀
𝑛 ∈ 𝑆 ∧ 𝑛� rs

}︀
{False} (5)

Having a server loop assigned a specification (5) ensures that it faithfully follows the
protocol’s transitions and does not terminate.

2.4 More Implementations for Cheap

With the elaborated protocol 𝒞′ℓ, we can now develop and verify a variety of system compo-
nents, reusing the previously developed libraries and enjoying the compositionality of specs,
afforded by Hoare types quantifying over a distributed state and sent/received messages. It
is still up to the programmer to verify those implementations in a Hoare style, but writing
them does not require changing the protocol, only composing the verified subroutines.

Alternative servers. Fig. 3 presents two alternative looping server implementations. The
first one processes requests in batches of a predefined size bsize. This batching may cause
batch server to loop for an unbounded period, until bsize requests have been received, but this
is perfectly safe. Once this is done, the batch is passed to the second subroutine, send batch,
which delivers the results. Finally, the server loop restarts. Another, more efficient server
implementation memo server uses memoization, implemented by means of store-passing style,
in order to avoid repeating computations. It first checks whether the answer for a requested
argument list is available in the memoization table mmap, and, if so, sends it back to the
client. Otherwise, it computes the answer and stores it in the local state, which is then
passed to the next recursive call. Both implementations, when invoked with a suitable initial
argument (batch size and an empty map, correspondingly), type-check against the same
Hoare type as the simple server (5) and are verified directly from the specifications of their
components in the context of 𝒞′ℓ.

Implementing a calculator client. Let us now build and verify a simple client-side procedure
that requests a computation and obtains the result.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:10 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

1 letrec compute (args, serv) ,
2 send[sreq, ℓ]((Req, args), serv);
3 𝑣 ← receive resp ();

4 return 𝑣

It can be implemented as shown on the right. The
program compute sends a request to a server serv
and then runs a blocking procedure receive resp for a
message with the Resp tag, implemented similarly to
receive req, and having, when invoked as a function,
the following specification, stating that res is the received response:

𝒞′ℓ
𝑛
⊢ receive resp () :

{︀
𝑛 ∈ 𝐶 ∧ 𝑛� {(serv , args)}

}︀
{︀
⟨serv , 𝑛, ∙, (Resp, res, args)⟩ ∈ MS ℓ ∧ 𝑛� ∅

}︀ (6)

Unfortunately, this type is not helpful to prove the desired spec of compute, stating that
its result is equal to 𝑓(args): this dependency is not captured in (6)’s postcondition. In
order to deliver a stronger postcondition of receive resp, we need to elaborate the protocol’s
state-space assumption even further, proving the following invariant Inv2 inductive:

Inv2(𝑠) , ∀m ∈ 𝑠#MS ℓ, m = ⟨𝑛1, 𝑛2,−, (Resp, ans, args)⟩ =⇒ 𝑓(args) = ans (7)

What is left is to verify the implementation of receive resp in the context of
𝒞′′ℓ , WithInv(𝒞′ℓ, Inv2). The property Inv2 ensures that any answer carried by a Resp-
message is correct wrt. the corresponding arguments. Since the client has only one outstanding
request at the moment it calls receive resp, it will only accept a message with an answer to
that request. Thus, we can prove the following spec for the RPC compute:

𝒞′′ℓ
𝑛
⊢ compute (args, serv) :

{︀
𝑛 ∈ 𝐶 ∧ 𝑛� ∅ ∧ serv ∈ 𝑆 ∧ args ∈ dom(𝑓)

}︀
{︀
res = 𝑓(args) ∧ 𝑛� ∅

}︀ (8)

Server as a client. So far, we have only considered programs that operate in the context
of a single protocol. However, it is common for realistic applications to participate in several
systems. Disel accounts for such a possibility by providing an injection/protocol framing
mechanism, inspired by the FCSL program logic [37], and allowing one to type-check a
program in the context of several protocols with disjoint state-spaces. The disjointness of
those does not mean the disjointness of the node sets: one node can be a part of several
protocols, in which case its local state is divided among them.

letrec deleg server (𝑛′ : Node) ,
(from, args)← receive reqℓ1 ();

ans ← computeℓ2 (args, 𝑛
′);

send[sresp, ℓ1]((Resp, ans, args), from);

deleg server 𝑛′

As an example, let us implement yet another
calculator server, this time using an ℓ1-labelled
protocol run by a node 𝑛, which, instead of cal-
culating directly, delegates to a server 𝑛′ in an-
other protocol (labelled with ℓ2, which we use
to annotate the corresponding call to compute to
emphasize the protocol it “belongs to”), in which 𝑛 is a client. The code of deleg server is
almost identical to the code of simple server and it has the following type in the context of
two independent protocols, 𝒞′′ℓ1 and 𝒞′′ℓ2 :

𝒞′′ℓ1 , 𝒞′′ℓ2
𝑛
⊢ deleg server (𝑛′) :

{︀
(𝑛 ∈ 𝑆ℓ1 ∧ 𝑛 ℓ1� rs) * (𝑛 ∈ 𝐶ℓ2 ∧ 𝑛′ ∈ 𝑆ℓ2 ∧ 𝑛 ℓ2� ∅)

}︀
{False} (9)

In the precondition, the assertions about the nodes’ roles and local state are elaborated for
specific constituent protocols, labeled with ℓ1 and ℓ2, correspondingly. Furthermore, we use
the separating conjunction * in order to emphasize the disjointness of the protocol-specific
local states, used to handle outstanding requests within two different protocols. As a server,
𝑛 can have an arbitrary number of “outstanding responses” rs in its local state (hence
𝑛 ℓ1� rs), but should start with an empty set of its own outstanding requests, thus 𝑛 ℓ2� ∅.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:11

memo_server

batch_server

simple_server

batching server, processes requests in batches of a prede-
fined size bsize . Since the system’s liveness is not of our
concern here, it can potentially loop fo a long time, until the
expected batch of requests is delivered by the receive batch.
Once this is done, the batch is passed to the second sub-
routine, send batch, which delivers the results. After this,
the server loop restarts. Another, slightly more efficient im-
plementation memo server uses memoization, implemented
by means of store-passing style, in order to avoid repeating
computations. It first checks whether the answer for a re-
quested argument list is available in the memoization table
mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv
and then runs a blocking receive procedure receive resp
for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :�
�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s0. hserv , n, •, (Resp, r, args)i 2 s0.MS` ^ s0.n 7! ;}
(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:

I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i
=) f(args) = ans

(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00` , WithInv(C0`, I2). The
property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding
arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :�
�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s0. r = f(args) ^ s0.n 7! ;}
(10)

Server as a client. So far, we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [8, 11], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00`1 and C00`2 :

C00
`1
⇤ C00

`2

n

` delegating server (n0) :n
�s. n 2 S`1 ^ n 2 C`2 ^ n0 2 S`2 ^ s.n

`17! rs ^ s.n
`27! ;

o

{�r s0. False}

In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.

2.5 Putting It All Together
DISEL programs can be extracted into OCaml code and run
on a trusted distributed shim. In order to do so, one needs
to (a) assign each participant node (represented by a natu-
ral number id) a program to run (some nodes might have no
programs assigned), (b) provide an initial distributed config-
uration that instantiates the local state for each participant in
each protocol and satisfies all imposed state-space invariants
(e.g., (5) and (9)). The semantics of Hoare types in DISEL
ensures that well-typed programs are not affected by execu-
tion of other programs running in parallel, and are always
safe to run when their precondition is satisfied.

As an illustration of one possible finalized protocol/pro-
gram composition, Figure 4 depicts the three calculator-
based programs, described earlier, running concurrently by
three different nodes, n1, n2, and n3, such that n1 and n2

communicate according to the protocol C00`1 , and n2 and n3

follow the protocol C00`2 . The initial local states for all the

Programming and Proving with Distributed Protocols 6 2016/11/12

batching server, processes requests in batches of a prede-
fined size bsize . Since the system’s liveness is not of our
concern here, it can potentially loop fo a long time, until the
expected batch of requests is delivered by the receive batch.
Once this is done, the batch is passed to the second sub-
routine, send batch, which delivers the results. After this,
the server loop restarts. Another, slightly more efficient im-
plementation memo server uses memoization, implemented
by means of store-passing style, in order to avoid repeating
computations. It first checks whether the answer for a re-
quested argument list is available in the memoization table
mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv
and then runs a blocking receive procedure receive resp
for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :�
�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s0. hserv , n, •, (Resp, r, args)i 2 s0.MS` ^ s0.n 7! ;}
(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:

I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i
=) f(args) = ans

(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00` , WithInv(C0`, I2). The
property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding
arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :�
�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s0. r = f(args) ^ s0.n 7! ;}
(10)

Server as a client. So far, we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [8, 11], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00`1 and C00`2 :

C00
`1
⇤ C00

`2

n

` delegating server (n0) :n
�s. n 2 S`1 ^ n 2 C`2 ^ n0 2 S`2 ^ s.n

`17! rs ^ s.n
`27! ;

o

{�r s0. False}

In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.

2.5 Putting It All Together
DISEL programs can be extracted into OCaml code and run
on a trusted distributed shim. In order to do so, one needs
to (a) assign each participant node (represented by a natu-
ral number id) a program to run (some nodes might have no
programs assigned), (b) provide an initial distributed config-
uration that instantiates the local state for each participant in
each protocol and satisfies all imposed state-space invariants
(e.g., (5) and (9)). The semantics of Hoare types in DISEL
ensures that well-typed programs are not affected by execu-
tion of other programs running in parallel, and are always
safe to run when their precondition is satisfied.

As an illustration of one possible finalized protocol/pro-
gram composition, Figure 4 depicts the three calculator-
based programs, described earlier, running concurrently by
three different nodes, n1, n2, and n3, such that n1 and n2

communicate according to the protocol C00`1 , and n2 and n3

follow the protocol C00`2 . The initial local states for all the

Programming and Proving with Distributed Protocols 6 2016/11/12

The postcondition of the type (2) demonstrates an important
feature of DISEL’s Hoare-style specs: in the case of a re-
ceived messages, it also identifies the message hfrom, n, •, mi
in the message soup MS` of the state s0 wrt. the protocol C`.
Messages in DISEL’s logic model (described in detail in
Section 3) are never “thrown away”: instead they are added
to the “soup”, where they remain active (�) until received, at
which points they become consumed (•).6

We can now employ the program (2) to write a blocking
receive for request messages via DISEL’s native general re-
cursion combinator, assigning it the following spec:

C`

n

` letrec receive req (: unit) ,
r actr[{Req} , {`}];
if r = Some (from, m)
then return (from, m)

else receive req () :
�
�s. n 2 S ^ s.n 7! rs

⇢
�r s0. s0.n 7! (r.1, r.2) [rs ^

hr.1, n, •, (Req, r.2)i 2 s0.MS`

�
(3)

The type of receive req is derived from the type (2) by ap-
plication of a typing (inference) rule for fixpoint combina-
tor. Internally, receive req corresponds to an execution of
possibly several idle transitions, followed by one receive-
transition, that is it still follows C`’s transitions: if it were
otherwise we could not simply have assigned a type for it!
To put it differently, receive req is merely a combination
of more primitive sub-programs (namely, the “wrapped” re-
ceive (2)) that are proven to be protocol-obeying.

2.3 Elaborating State-Space Invariants of a Protocol
Let us now use receive req to implement our first use-
ful component of the calculator system: a simple one-shot
server, which runs an infinite loop, responding to requests:

1 letrec one shot server (: unit) =
2 (from, args) receive req ();
3 let ans = f(args) in
4 acts[sresp, `]((Resp, ans, args), from);
5 one shot server ()
6 in one shot server ()

(4)

Trying to assign a type to this program in the context of
C` for a node n 2 S, we can spot a problem with validat-
ing an execution of the line 3. Since f is partially-defined,
DISEL will emit a verification condition (VC), requiring us
to prove that f is defined at args . Unfortunately, the cur-
rent assertions, derived from the precondition of receive req
would not allow us to prove so: we can only conclude that
a message from the soup is consumed, but not that its con-
tents are well-formed. The problem is caused by the lack of
constraints, imposed by the protocol C` on the global system
state s, specifically, on the messages in the soup s.MS`. The
necessary requirement for this example, however, could be
derived out of the following property of a state s:

6 This design choice wrt. message is common in state-of-the-art frameworks
for distributed system verification, e.g., IronFleet [3] and Ivy [10], as it
enables easier reasoning about past events by means of having a “free”
history variable in the state, i.e., the soup in the case of DISEL.

Batching server implementation

letrec receive batch (k : nat) =
if n = n0 + 1
then fargs receive req ();

rest receive batch n0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) =
if rs = (from, args) :: rs0

then let v = f(args) in
acts[sresp, `]((Resp, v, args), from);
send batch rs0

else return ()

letrec batching server (bsize : nat) =
reqs receive batch bsize;
send batch(reqs);
batching server bsize

Memoizing server implementation
letrec memo server (mmap : map) =

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ?
then acts[sresp, `]((Resp, ans, args), from);

memo server mmap
else let ans = f(args) in

acts[sresp, `](m, (Resp, ans, args));
let mmap0 = update(mmap, args, ans) in
memo server mmap0

Figure 3. Batching and memoizing servers on top of C0`.

I1(s) , 8m 2 s.MS`, m = hfrom, to,�, (Req, args)i
=) f is defined at args

(5)

The good news is that the property I1 is an inductive invari-
ant with respect to the transitions of C`: if it holds at some
initial state s0, then it holds for any state s reachable from
s0 via C`’s transitions. Better yet, since every well-typed pro-
gram in DISEL is composed out of a protocol transitions, it
will automatically preserve the inductive invariant and can
be given the same pre/postconditions under assumptions that
the pre-state satisfies the invariant property.

To account of this possibility of application-specific in-
variant strengthening, DISEL provides a protocol combina-
tor WithInv that take a protocol P and a state invariant I ,
proven to be inductive wrt. P and returns a new protocol P 0,
whose state-space definition is strengthened with I .

Therefore, taking C0` , WithInv(C`, I1), we can reuse all
of the specifications for one shot server’s subprograms de-
rived so far, in a new context of C0`. The postcondition on
the line 3, in conjunction with I1 holding over any interme-
diate states ensures that f is defined at args , allowing us to
complete the verification of our non-terminating server im-
plementation, assigning it the following type:

C0
`

n

` one shot server () :
�
�s. n 2 S ^ s.n 7! rs

{�r s0. False}
(6)

2.4 More Implementations for Cheap
With the strengthened protocol C0`, we can now develop and
verify a variety of system components, reusing the previ-
ously developed program components and enjoying the com-
positionality of specifications, afforded by Hoare types.
Alternative server implementations. Figure 3 presents two
alternative looping server implementations. The frist one,

Programming and Proving with Distributed Protocols 5 2016/11/12

recv[{Req}, {ℓ}]

deleg_server
compute

recv[{Resp}, {ℓ}]

p
r

o
to

c
o

l
 e

l
a

b
o

r
a

t
io

n

receive_req

receive_resp

send[sreq, ℓ]send[sresp, ℓ]

Fig. 4. Components of the calculator system.

n1

n2

n3

Batching server implementation

letrec receive batch (k : nat) =
if n = n0 + 1
then fargs receive req ();

rest receive batch n0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) =
if rs = (from, args) :: rs0

then let v = f(args) in
acts[sresp, `]((Resp, v, args), from);
send batch rs0

else return ()

letrec batching server (bsize : nat) =
reqs receive batch bsize;
send batch(reqs);
batching server bsize

Memoizing server implementation
letrec memo server (mmap : map) =

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ?
then acts[sresp, `]((Resp, ans, args), from);

memo server mmap
else let ans = f(args) in

acts[sresp, `](m, (Resp, ans, args));
let mmap0 = update(mmap, args, ans) in
memo server mmap0

Figure 3. Batching and memoizing servers on top of C0`.

mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv
and then runs a blocking receive procedure receive resp
for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :�
�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s0. hserv , n, •, (Resp, r, args)i 2 s0.MS` ^ s0.n 7! ;}
(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:
I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i

=) f(args) = ans
(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00` , WithInv(C0`, I2). The
property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding

arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :�
�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s0. r = f(args) ^ s0.n 7! ;}
(10)

Server as a client. So far we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [7, 10], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00`1 and C00`2 :

C00
`1
⇤ C00

`2

n

` delegating server (n0) :n
�s. n 2 S`1 ^ n 2 C`2 ^ n0 2 S`2 ^ s.n

`17! rs ^ s.n
`27! ;

o

{�r s0. False}
In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.

2.5 Putting It All Together
DISEL does not draw a distinction between real and auxiliary
state, hence this state can be

(Show runnable clients and the common state)
(Mention that all the implementations are in our Coq files)

Summary of the DISEL methodology. (Ilya: A diamond dia-
gram and variations (as suggested by Zach).)

3. A State Model for Distributed Programs
Here we describe the model allowing the modular specifica-
tion of disjoint distributed protocols.

Programming and Proving with Distributed Protocols 6 2016/11/11

Batching server implementation

letrec receive batch (k : nat) =
if n = n0 + 1
then fargs receive req ();

rest receive batch n0;
return fargs :: rest

else return []

letrec send batch (rs : [(Node, [nat])]) =
if rs = (from, args) :: rs0

then let v = f(args) in
acts[sresp, `]((Resp, v, args), from);
send batch rs0

else return ()

letrec batching server (bsize : nat) =
reqs receive batch bsize;
send batch(reqs);
batching server bsize

Memoizing server implementation
letrec memo server (mmap : map) =

(from, args) receive req ();
let ans = lookup mmap in
if ans 6= ?
then acts[sresp, `]((Resp, ans, args), from);

memo server mmap
else let ans = f(args) in

acts[sresp, `](m, (Resp, ans, args));
let mmap0 = update(mmap, args, ans) in
memo server mmap0

Figure 3. Batching and memoizing servers on top of C0`.

mmap, and, if so, sends it back to the client. Otherwise, it
computes the answer and stores it in the local state, which is
then passed to the next recursive call.

Both implementation type-check against the same Hoare
type as the simple server (6) and are verified directly from
the specifications of their components in the context of C0`.
Implementing a calculator client. Let us now build and ver-
ify a simple client-side procedure that requests a computa-
tion and obtains the result. It can be implemented as follows:

1 letrec compute (args, serv) =
2 acts[sreq , `]((Req, args), serv);
3 v receive resp ();
4 return v

(7)

The program compute sends a request to a server node serv
and then runs a blocking receive procedure receive resp
for a message with Resp tag, implemented similarly to
receive req, and having the following type:

C0
`

n

` receive resp () :�
�s. n 2 C ^ s.n 7! {(serv , args)}

{�r s0. hserv , n, •, (Resp, r, args)i 2 s0.MS` ^ s0.n 7! ;}
(8)

Unfortunately, this type is not helpful to prove the desired
spec of compute, stating that it’s result is equal to f(args):
this dependency is not captured in (8)’s postcondition. In
order to deliver a stronger postcondition of receive resp,
we need to strengthen the protocol’s state-space assumption
even further, proving the following invariant I2 inductive:
I2(s) , 8m 2 s.MS`, m = hn1, n2,�, (Resp, ans, args)i

=) f(args) = ans
(9)

What remains to be done is to verify just the implementation
of receive resp in the context of C00` , WithInv(C0`, I2). The
property of I2 ensures that any answer, carried by a Resp-
message is a correct one with respect to the corresponding

arguments. Given that the client has only one outstanding
request by the moment of calling, receive resp, it will for
sure only accept a message with an answer to it. Therefore,
we can now assign the following spec to the client program:

C00
`

n

` compute (args, serv) :�
�s. n 2 C ^ s.n 7! ; ^ serv 2 S ^ f is def. at args

{�r s0. r = f(args) ^ s0.n 7! ;}
(10)

Server as a client. So far we have only considered programs
that operate in the context of a single protocol. However,
it is common for realistic applications to participate in sev-
eral communicating systems, therefore “spanning” several
protocols. DISEL accounts for such a possibility by provid-
ing the injection mechanism, inspired by the FCSL program
logic [7, 10], and allowing one to type-check a program in
the context of several protocols with disjoint state-spaces.
The disjointness of those does not mean the disjointness of
the node sets: one node can be a part of several protocols,
hosting pieces of local state, specific for each of them.

As an example, let us implement yet another calculator
server on top of a protocol, run by a node n, which, instead
of calculating a value of f delegates it to a server n0 in
another protocol, in which n is registered as a client. The
DISEL implementation of such a server is below:

letrec delegating server (n0 : Node) =
(from, args) inject (receive req ());
ans inject (compute(args, n0));
inject (acts[sresp, `]((Resp, ans, args), from));
delegating server n0

(11)

The code of delegating server is almost identical to the
code (4). The inject statements are no-ops at execution time,
and serve as hints for the framework to emit a VC, requiring
the user to prove that the protocol (or a set of protocols),
in which it argument is specified is within the current type-
checking context. For instance, delegating server has the
following type in the context of two protocols, C00`1 and C00`2 :

C00
`1
⇤ C00

`2

n

` delegating server (n0) :n
�s. n 2 S`1 ^ n 2 C`2 ^ n0 2 S`2 ^ s.n

`17! rs ^ s.n
`27! ;

o

{�r s0. False}
In the precondition, the assertions about the nodes’ roles and
local state are elaborated for specific constituent protocols,
labelled with `1 and `2, correspondingly.

2.5 Putting It All Together
DISEL does not draw a distinction between real and auxiliary
state, hence this state can be

(Show runnable clients and the common state)
(Mention that all the implementations are in our Coq files)

Summary of the DISEL methodology. (Ilya: A diamond dia-
gram and variations (as suggested by Zach).)

3. A State Model for Distributed Programs
Here we describe the model allowing the modular specifica-
tion of disjoint distributed protocols.

Programming and Proving with Distributed Protocols 6 2016/11/11

n1 ↦ []

n2 ↦ []

n2 ↦ []
 

n3 ↦ []

initial state nodes running programs

Req

Req

compute (args, n2)

memo_server ({ })

Re
sp

Re
sp

deleg_server (n3)

p
r

o
to

c
o

l
s

Fig. 5. Initial state and execution with three nodes.

Summary of the Disel methodology. Our entire development of the calculator-aware
applications (e.g., servers and clients) is outlined in Fig. 4. This is a general layout of
structuring the development of applications in Disel. In the figure, the top-down direction
corresponds to elaborating the protocol invariants (so the specs of programs verified there can
be directly reused further down), and the arrows denote dependencies between components.

2.5 Putting It All Together

Disel programs can be extracted into OCaml code, linked with a trusted shim, and run. In
order to do so, one needs to assign each participant node a program to run (some nodes
might have no programs assigned) and provide an initial distributed configuration that
instantiates the local state for each participant in each protocol and satisfies all imposed
state-space invariants (e.g., (4) and (7)). The semantics of Hoare types in Disel, defined in
Section 3.3, specifies what does it mean for a program to be type-safe (i.e., correct) in a
distributed setting: postconditions (even those constraining the global state) of well-typed
programs are not affected by execution of programs running concurrently on other nodes,
and such programs are always safe to run when their precondition is stable and satisfied.

As an illustration of one possible finalized protocol/program composition, Fig. 5 depicts
the three calculator-based programs, described earlier, running concurrently by three different
nodes, 𝑛1, 𝑛2, and 𝑛3, such that 𝑛1 and 𝑛2 communicate according to the protocol 𝒞′′ℓ1 , and
𝑛2 and 𝑛3 follow the protocol 𝒞′′ℓ2 . Solid arrows between nodes denote message exchange,
with the time going from left to right. The initial local states for all the nodes/protocols are
instantiated with empty lists of requests. Importantly, the code run by the nodes 𝑛1 and
𝑛3 has been verified separately, in simpler, smaller contexts, and only the implementation
of 𝑛2’s program deleg server has been done in the composite context of two protocols. Our
accompanying Coq development provides the complete implementation of the described
programs in Disel DSL, their extracted executable counterparts in OCaml, and mechanized
proofs of all of the mentioned invariants and specifications.

3 DISTRIBUTED SEPARATION LOGIC

We next describe the formal model of the state and protocols, giving meaning to Disel’s
Hoare-style specifications in the context of multiple protocols with disjoint state-spaces and
possible imposed inter-protocol dependencies.

3.1 State and Worlds

Distributed state and its components. The left part of Fig. 6 defines the components of
the state, subject to manipulation by concurrently executing programs run by different
nodes. Each global system state 𝑠 is a finite partial mapping from protocol labels ℓ ∈ Lab to

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:12 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

State-space components World components

Node, Loc,Mid , N
Lab,Tag , N

𝑙 ∈ LocState , Loc
fin
⇀ Val

DistLocState , Node
fin
⇀ LocState

MS ∈ MessageSoup , Mid
fin
⇀ Msg

m ∈ Msg , Node× Node× {∘, ∙} ×MBody

𝑚 ∈ MBody , Tag × N*

𝑑 ∈ Statelet , MessageSoup× DistLocState

𝑠 ∈ State , Lab
fin
⇀ Statelet

coh ∈ Coh , Statelet→ Prop

𝜏𝑠 ∈ 𝑇𝑠 , Tag × Pre𝑠 × Step𝑠
𝜏𝑟 ∈ 𝑇𝑟 , Tag × Pre𝑟 × Step𝑟

Pre𝑠 , Node× Node×MBody × Statelet→ Prop

Step𝑠 , Node×MBody × LocState ⇀ LocState

Pre𝑟 , Msg × LocState→ bool

Step𝑟 , Msg × LocState→ LocState

𝒫 ∈ Protocol , Coh× 𝑇*
𝑠 × 𝑇*

𝑟

ℎ ∈ hook , LocState×LocState×MBody×Node→Prop

𝐻 ∈ Hooks , HkId× Lab× Lab× Tag
fin
⇀ hook

𝐶 ∈ Context , Lab
fin
⇀ Protocol

𝑊 ∈ World , Context× Hooks

Fig. 6. Disel’s distributed state and world components.

statelets. Each statelet represents a protocol-specific component, consisting of a “message
soup” MS and a per-node local state (DistLocState). The former represents a finite partial
map from unique message identifiers to messages,4 each of which carries its sender and
recipient node ids, the payload 𝑚, which includes a tag, and a boolean indicating whether
the message is already received (∙) or not yet (∘). The per-node local state maps each
node id into protocol-specific piece of local state, represented as a mapping from locations
(isomorphic to natural numbers) to specific values. For instance, in the calculator system
example from Section 2, all local states had the same type and each carried just one value,
updated in the course of execution,—a multiset of outstanding requests—so we omitted the
only location from assertions in the program specs.

Protocols, hooks and worlds. The right part of Fig. 6 shows the components of Disel
protocols and worlds. A protocol 𝒫 consists of a state-space coherence predicate coh, which
defines the shape of the corresponding statelet (i.e., components of the per-node local state
and message soup properties), and two finite sets of send- and receive transitions: 𝑇𝑠 and
𝑇𝑟, correspondingly. Each send-transition is defined by a tag of a message it can send, a
precondition, and a step function. The precondition constrains the sender, the addressee, the
message to be sent, and the local state of the sender. The step function, which is partially
defined, describes the changes in the local state of the sender, assuming that the state
satisfies the precondition. Each receive-transition comes with a tag, which uniquely identifies
it in a specific protocol. Its precondition is decidable in order to allow the runtime to check
it for applicability. Its step function is totally defined. We will use the notations 𝜏.tag ,
𝜏.pre and 𝜏.step to refer correspondingly to the tag, precondition and step-components of a
transition 𝜏 , which might be either send- or receive-one.

A world 𝑊 is represented by a pair ⟨𝐶,𝐻⟩, with its first component 𝐶 being a collection
of protocols that are assigned unique labels. For instance, deleg server from Section 2 was
specified in the context of a world with two protocols with disjoint state-spaces, 𝒞′′ℓ1 and
𝒞′′ℓ2 . The second component of a world 𝐻 contains client-imposed send-hooks. Each hook
ℎ(𝑙𝑠, 𝑙𝑐,𝑚, to) is a predicate, relating a local state of a node 𝑙𝑠, which belongs to a core (or
server) protocol, a local state 𝑙𝑐 of the same node from a client protocol, a content of a
message 𝑚 to be sent and a potential recipient to. A hook-map Hooks associates each hook

4The uniqueness constraint is introduced to make the encoding easier in Coq, but our specs and proofs do
not rely on it, and the implementation prevents using message ids as values in programs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:13

𝑠 � 𝑛 ℓ� 𝑙 iff ∃𝑑, 𝑠(ℓ) = (−, 𝑑) ∧ 𝑑(𝑛) = 𝑙

𝑠 � 𝑃 (MS ℓ) iff ∃MS , 𝑠(ℓ) = (MS ,−) ∧ 𝑃 (MS)

𝑠 � 𝑃1 * 𝑃2 iff ∃𝑠1 𝑠2, 𝑠 = 𝑠1 ⊎ 𝑠2 ∧ 𝑠1 � 𝑃1 ∧ 𝑠2 � 𝑃2

𝑠 � this 𝑠′ iff 𝑠 = 𝑠′

Fig. 7. Semantics of Disel state assertions.

ℎ with a unique id 𝑧 ∈ HkId, a core protocol label ℓ𝑠, a client protocol label ℓ𝑐 and a tag 𝑡 of
a send-transition it applies to. Each send-hook prevents a send-transition 𝜏𝑠 in a particular
client protocol from being taken by a node 𝑛, unless the hook’s predicate holds wrt. 𝑛’s
local state in both server and client protocols; in other words hooks allow strengthening 𝜏𝑠’s
precondition. Hooks are discussed in more detail below. All examples we have seen so far in
Section 2 were defined with 𝐻 = ∅ (i.e., without any imposed inter-protocol restrictions),
but in Section 4 we will show how the mechanism of send-hooks enables modular verification
of programs operating in a restricted product of protocols, allowing one to build verified
distributed client applications on top of verified core systems.

A world 𝑊 = ⟨𝐶,𝐻⟩ is well-formed iff all protocol labels (for servers and clients)
in the domain of 𝐻 are also in the domain of 𝐶. A state 𝑠 is coherent wrt. a world
𝑊 = ⟨𝐶,𝐻⟩ (𝑊
 𝑠) iff (a) both 𝐶 and 𝑠 are defined on the same set of unique labels,
and (b) ∀ℓ ∈ dom(𝐶), 𝐶(ℓ).coh(𝑠(ℓ)), i.e., each statelet in 𝑠 is coherent with respect to the
corresponding protocol in 𝐶. When defining a protocol, it is a programmer’s responsibility
to show that all its transitions preserve the global protocol-specific state coherence, a fact
that can be then used freely in the proofs about programs.

3.2 Language, Specifications and Selected Inference Rules

The programming language of Disel, embedded shallowly into Coq, features pure, strictly
normalizing, expressions (i.e., those of Gallina), such as let-expressions, tuples, variables
and literals, ranged over by 𝑒 (with 𝑣 being a fully reduced value), and commands 𝑐, whose
effect is distributed interaction, reading from local state and divergence, due to general
recursion. The meta-variable 𝐹 ranges over possibly recursive procedures. Non-interpreted
effectful procedures are ranged over by a functional symbol 𝑓 . Non-Hoare types are ranged
over by a meta-variable 𝒯 . The syntax of Disel commands is given below:

𝑐 ::= send[𝜏𝑠, ℓ](𝑒𝑚, 𝑒to) | recv[𝑇, 𝐿] | readℓ(𝑣) | 𝑥← 𝑐1; 𝑐2 | return 𝑒 | if 𝑒 then 𝑐1 else 𝑐2 | 𝐹 (𝑒)

𝐹 ::= 𝑓 | letrec 𝑓(𝑥 : 𝒯) , 𝑐

Commands include send, receive and read actions, decorated with the corresponding protocol
labels and transition tags. A decorated receive takes a set of tags 𝑇 and a set of protocol labels
𝐿 to identify the messages to react to. The readℓ(𝑣) command is used to examine the contents
of a location 𝑣 of a local state with respect to the protocol labelled ℓ, at the corresponding
node executing the command. The commands also include the standard monadic return 𝑒
that returns the value of 𝑒, a sequential composition 𝑥← 𝑐1; 𝑐2, implemented as a monadic
bind (𝑥 may be omitted if not used in 𝑐2), a conditional statement, and an application 𝐹 (𝑒).

Program specifications. Fig. 7 provides the semantics of the assertions with respect to a
distributed system state that we have used in the examples in Section 2, referring to particular
component of the state constrained by pre- and postconditions of the corresponding Hoare
specs. Specifically, a local state assertion 𝑛 ℓ� 𝑙 allows one to refer to a specific component 𝑙
of a local state of a node 𝑛 (which might be different from the one running the code),

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:14 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

with respect to a protocol labelled ℓ. The message soup selector MS ℓ allows one to make
statement about message soup of a specific protocol. Finally, the separating conjunction
(*), allows one to decompose assertions in the presence of a composite state 𝑠, which can
be represented as a disjoint union of sub-states 𝑠1 ⊎ 𝑠2. The separating conjunction allows
one to combine separately proved specifications wrt. multiple involved protocols, as we did
when assigning the type (9) to deleg server. As is customary in Separation Logic [47], the *
operator distributes over plain conjunction for assertions that do not constrain state. this 𝑠′

allows one to assert that the immediate state is equal to a certain fixed state 𝑠′.
A command 𝑐 run by a node 𝑛 in a world 𝑊 satisfies a spec 𝑊

𝑛
⊢ 𝑐 : {𝑃}{𝑄} if it is safe

to execute 𝑐 from a global system state 𝑠 satisfying 𝑃 , concurrently with programs on other
nodes, 𝑐 respects the protocols and hooks from 𝑊 , and returns a result value res, leaving
the system in a state 𝑠′, such that 𝑠′ � 𝑄 holds. Here and below, we assume that res occurs
freely in 𝑄. All other unbound variables in 𝑄 and 𝑃 are considered to be logical variables,
whose scope spans both pre- and postcondition of the specification, with logical variables
in 𝑄 (except for res) being a subset of those in 𝑃 . In order to describe an effect of an
uninterpreted and potentially recursive procedure 𝑓(𝑥 : 𝒯), we employ the following notation

for parameterized Hoare specs: 𝑊
𝑛
⊢ 𝑓(𝑥) : ∀𝑥 : 𝒯 .{𝑃}{𝑄}, where 𝑥 may occur freely in

𝑃 and 𝑄. The Hoare-style logic of Disel will ensure that all intermediate program-level
assertions, describing the global state from a perspective of a node 𝑛, which runs the code
being verified, are stable [20, 57], i.e., closed under observable changes performed by all
other nodes, involved into execution of the protocol, and, thus, captured by its definition.

Logic judgements and inference rules. The top part of Fig. 8 shows selected inference
rules of Disel. In order to account for typed free program variables and functional symbols
𝑓 , Disel’s judgements are stated in the presence of a typing context Γ, defined as follows:

Γ ::= ∅ | Γ, 𝑥 : 𝒯 | Γ, 𝑓 : ⟨𝑊,∀𝑥 : 𝒯 .{𝑃}{𝑄}⟩

Typing entries for procedures 𝑓 include the world 𝑊 in which their specification was derived.
The top two rules, Bind and Letrec, demonstrate the use of typing contexts.

The next two rules, SendWrap and ReceiveWrap, are crucial for program verification
in Disel, as they allow one to assign Hoare specifications to atomic decorated send- and
receive-commands, instrumented with the suitable protocol annotations. Both rules require
user-assigned pre/postconditions to be stable with respect to interference imposed by the
protocols in the world 𝑊 . The net effect of sending or receiving a message atomically is
captured by the two auxiliary assertion tuples Sent and Received, defined at the bottom of
Fig. 8, which relate the states 𝑠 and 𝑠′ (captured via free logical variables) immediately
before and after sending and receiving a message correspondingly.

Specifically, Sent ensures that the precondition of the corresponding send-transition 𝜏𝑠,
holds over the pre-state 𝑠, as well as all of the hook statements imposed by 𝐻, which is
ensured by the auxiliary predicate HooksOk defined below in the same figure. The immediate
post-state 𝑠′ is the same as 𝑠, except for the local state of node 𝑠(ℓ)(𝑛) of the node 𝑛 wrt.
the protocol ℓ, which is updated with the effect of the state transition 𝜏𝑠.step (we use the
notation 𝑠(ℓ)(𝑛) to refer directly to the local state of 𝑛 of in the second component of 𝑠(ℓ)).
Finally, the new message is added to the ℓ-related message soup MS ℓ of 𝑠′. In contrast with
sending, receiving messages does not impose any non-trivial preconditions, but in case of a
successfully received message (i.e., res is not None), it allows one to learn a number of facts
about the pre-state, as captured by the assertions of Received. For instance, the tag 𝑡 of a
received message corresponds to the tag of the corresponding triggered receive-transition 𝜏𝑟

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:15

Bind
Γ;𝑊

𝑛
⊢ 𝑐1 : {𝑃}{𝑄 ∧ res : 𝒯 }

Γ, 𝑥 : 𝒯 ;𝑊
𝑛
⊢ [𝑥/res]𝑐2 : {𝑄}{𝑅} 𝑥 /∈ FV(𝑅)

Γ;𝑊
𝑛
⊢ 𝑥← 𝑐1; 𝑐2 : {𝑃}{𝑅}

Letrec
Γ, 𝑥 : 𝒯 , 𝑓 : ⟨𝑊,∀𝑥 : 𝒯 . {𝑃}{𝑄}⟩;𝑊

𝑛
⊢ 𝑐 : {𝑃}{𝑄}

Γ;𝑊
𝑛
⊢ letrec 𝑓(𝑥 : 𝒯) , 𝑐 : ∀𝑥.𝒯 . {𝑃}{𝑄}

SendWrap
𝑃,𝑄 are 𝑊 -stable 𝑊 = ⟨𝐶,𝐻⟩ 𝜏𝑠 ∈ 𝐶(ℓ).𝑇𝑠

Sent(𝜏𝑠, ℓ, 𝑛,𝑚, to, 𝐻) ⊑ (𝑃,𝑄)

Γ;𝑊
𝑛
⊢ send[𝜏s , ℓ](𝑚, to) : {𝑃}{𝑄}

ReceiveWrap
𝑃,𝑄 are 𝑊 -stable 𝑊 = ⟨𝐶,𝐻⟩

Received(𝑇, 𝐿,𝐶) ⊑ (𝑃,𝑄)

Γ;𝑊
𝑛
⊢ recv[𝑇, 𝐿](𝑚, to) : {𝑃}{𝑄}

Read
𝑃,𝑄 are 𝑊 -stable 𝑊 = ⟨𝐶,𝐻⟩(︂

this 𝑠 ∧ coh 𝑠 ∧
𝑣 ∈ dom(𝑠(ℓ)(𝑛))

,
this 𝑠 ∧ coh 𝑠 ∧
res = 𝑠(ℓ)(𝑛)(𝑣)

)︂
⊑ (𝑃,𝑄)

Γ;𝑊
𝑛
⊢ readℓ(𝑣) : {𝑃}{𝑄}

Frame
Γ;𝑊

𝑛
⊢ 𝑐 : {𝑃}{𝑄}

NotHooked(𝑊,𝐻) 𝑅 is 𝐶-stable

Γ;𝑊 ⊎ ⟨𝐶,𝐻⟩
𝑛
⊢ 𝑐 : {𝑃 *𝑅}{𝑄 *𝑅}

WithInv
Γ; ⟨ℓ ↦→ 𝒫ℓ ⊎𝑊,𝐻⟩

𝑛
⊢ 𝑐 : {𝑃}{𝑄} 𝐼 is inductive wrt. 𝒫ℓ ℐ , ∀𝑠, this 𝑠⇒ 𝐼(𝑠)

Γ; ⟨ℓ ↦→WithInv(𝒫ℓ, 𝐼) ⊎𝑊,𝐻⟩
𝑛
⊢ 𝑐 : {𝑃 ∧ ℐ}{𝑄 ∧ ℐ}

Auxiliary definitions

Sent(𝜏𝑠, ℓ, 𝑛,𝑚, to, 𝐻) ,

⎛⎝ this 𝑠 ∧ coh 𝑠 ∧
𝜏𝑠.pre(𝑛, to,𝑚, 𝑠(ℓ)) ∧
HooksOk(𝐻, 𝜏𝑠, ℓ, 𝑛,𝑚, to)

,

this 𝑠′ ∧ coh 𝑠′ ∧ res = 𝑚 ∧
𝑠′ = (𝑠[ℓ, 𝑛] ↦→ 𝜏𝑠.step(to,𝑚, 𝑠(ℓ)(𝑛))) ∧
𝑠′#MSℓ = 𝑠#MSℓ ⊎ ⟨𝑛, to, ∘, (𝜏𝑠.tag,𝑚)⟩

⎞⎠

Received(𝑇, 𝐿,𝐶) ,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
this 𝑠 ∧
coh 𝑠

,

this 𝑠′ ∧ coh 𝑠′ ∧ if res = Some (from,𝑚)
then ∃ℓ ∈ 𝐿, 𝑡 ∈ 𝑇,MS ′, 𝜏𝑟 ∈ 𝐶(ℓ).𝑇𝑟, 𝑡 = 𝜏𝑟.tag ∧

𝑠#MSℓ = MS ′ ⊎ ⟨from, 𝑛, ∘, (𝑡,𝑚)⟩ ∧
𝑠′#MSℓ = MS ′ ⊎ ⟨from, 𝑛, ∙, (𝑡,𝑚)⟩ ∧
𝜏𝑟.pre(m, 𝑠(ℓ)(𝑛)) ∧
𝑠′ = (𝑠[ℓ, 𝑛] ↦→ 𝜏𝑟.step(𝑚, 𝑠(ℓ)(𝑛)))

else 𝑠 = 𝑠′

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
HooksOk(𝐻, 𝜏𝑠, ℓ𝑐, 𝑠, 𝑛,𝑚, to) , ∀ℓ𝑠 ℎ 𝑧,𝐻(𝑧, ℓ𝑠, ℓ𝑐, 𝜏𝑠.tag) = ℎ =⇒ ℎ(𝑠(ℓ𝑠)(𝑛), 𝑠(ℓ𝑐)(𝑛),𝑚, to)

NotHooked(𝑊,𝐻) , ∃𝐶, 𝑊 = ⟨𝐶,−⟩ ∧ ∀(𝑧, ℓ𝑠, ℓ𝑐, 𝑡) ∈ dom(𝐻), ℓ𝑐 /∈ dom(𝐶).

Fig. 8. Selected logic inference rules of Disel and auxiliary predicates.

of the ℓ-labelled protocol, so the transition has changed the local state of 𝑛 accordingly, and
also “consumed” the received message in the message soup MS ℓ. In conjunction with the
protocol invariants, relating local state and message soup properties, this allows one to infer
global assertions about the state of the network, as we have shown in Section 2.3.

The premises of these rules rely on the following definition of Hoare ordering ⊑, allowing
one to strengthen the precondition 𝑃2 ⇒ 𝑃1 and weaken the postcondition 𝑄1 ⇒ 𝑄2, while
accounting for the local scope of free logical variables in the assertions [25].

Definition 3.1 (Hoare ordering). For the given pairs preconditions 𝑃1, 𝑃2 and postcondi-
tions𝑄1, 𝑄2, possibly containing free logical variables, we say (𝑃1, 𝑄1) ⊑ (𝑃2, 𝑄2) iff ∀𝑠 𝑠′, (𝑠 �
∃𝑥2.𝑃2 ⇒ 𝑠 � ∃𝑥1.𝑃1) ∧ ((∀𝑥1 res. 𝑠 � 𝑃1 ⇒ 𝑠′ � 𝑄1)⇒ (∀𝑥2 res. 𝑠 � 𝑃2 ⇒ 𝑠′ � 𝑄2), where 𝑥𝑖 are
the free logical variables of both 𝑃𝑖 and 𝑄𝑖 correspondingly.

The rule Read is similar to the rules for sending and receiving messages, but it does not
modify the local state in any way, observable by other nodes, which is what is ensured by
the “atomic specification” in its premise.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:16 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

The rule Frame is the key to horizontal compositionality with respect to involved
protocols. It allows one to add a “framed in” world part ⟨𝐶,𝐻⟩ (with the corresponding
assertion 𝑅, quantifying over components of 𝐶-relevant state) to a specification, assuming
that all involved assertions are stable. This rule is inherently asymmetric due to the “hooking”
component 𝐻. Specifically, it allows any additions ⟨𝐶,𝐻⟩ as long as hooks in 𝐻 cannot
invalidate preconditions of send-transitions of 𝑊 ’s protocols. This check, captured by the
NotHooked auxiliary predicate defined at the bottom of Fig. 8, can be done syntactically on
the domains of 𝑊 and 𝐻, just by checking the “intersection” of their “footprints”, very much
in the spirit of ordinary Separation Logic. Furthermore, if 𝐻 = ∅, the rule Frame becomes
symmetric and can be used to combine any two worlds that do not have mutual inter-protocol
restrictions, which is what we did in Section 2.4 when implementing a delegating server.
Typically, the world 𝑊 contains a number of core protocols (e.g., for locking or replication),
whereas the addition ⟨𝐶,𝐻⟩ comes with client-specific protocols and restrictions imposed
by the state wrt. 𝑊 , so client applications have to be verified in a joint “large-footprint”
world 𝑊 ⊎ ⟨𝐶,𝐻⟩. In Section 4, we will demonstrate how to make such efforts reusable by
exploiting Coq’s higher-order definitions and abstract predicates.

Finally, the rule WithInv allows one to elaborate the context assumptions wrt. a specific
protocol 𝒫ℓ and also the corresponding state assertions for any invariant 𝐼, which is 𝒫ℓ-
inductive, i.e., it, as an assertion, over the global network state, is preserved while any node
invokes any allowed send- or receive-transitions of 𝒫ℓ.

5 Internally, the protocol combinator
WithInv(𝒫ℓ) replaces the coherence predicate coh of the protocol 𝒫ℓ with a new one, elaborated
with the inductive 𝐼. The remaining rules, such as the rule of conjunction, function application,
specification weakening etc, are standard and thus omitted.

3.3 Program Semantics and Logic Soundness

The semantics of programs and the soundness result in Disel are closely tied to the notion
of protocol-aware network semantics. This is a non-deterministic small-step operational
semantics, and its two transition rules are shown in Fig. 9 (ignore the gray boxes for now).
All free variables in the rules other than 𝑠, 𝑛 and 𝑊 are existentially quantified. That is,
the SendStep-rule will fire for a node 𝑛 in a world 𝑊 = ⟨𝐶,𝐻⟩ if there is a protocol 𝒫ℓ

in 𝐶 and there is a send-transition 𝜏𝑠 in 𝒫ℓ, such that the corresponding local state of the
sender 𝑛 and the message 𝑚 satisfy its precondition and also all 𝑊 ’s hooks constraining 𝜏𝑠
are satisfied. The resulting state will thus have its 𝑛-entry wrt. 𝒫ℓ updated correspondingly,
and a new message added to the soup MS with a fresh logical message id (omitted here
for brevity). The rule ReceiveStep is similar in that it looks for an active message m in
the soup MS of a arbitrarily chosen protocol 𝒫ℓ, such that 𝑛 is its addressee, and its tag
corresponds to a specific receive-transition 𝜏𝑟 of 𝒫ℓ. It then checks the precondition of 𝜏𝑟 at
𝑛’s local state, and executes it, updating 𝑠’s local state and soup correspondingly.

One can notice the similarity between the network semantic rules SendStep and Re-
ceiveStep and the inference rules SendWrap and ReceiveWrap from Fig. 8. This
should not come as a surprise: indeed, the two mentioned inference rules provide a way
to symbolically account for corresponding local executions of send- receive-transtions by a
specific node, consistend with the network semantics.

We build the semantics of programs in Disel with respect to a specific node 𝑛 and a
world 𝑊 . To do so, we provide the semantics of wrappers for transitions via the following

5The formal definition of inductive invariants is with respect to the protocol-aware network semantics,
defined in Section 3.3, and is available in the accompanying Coq development.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:17

SendStep
𝑊 = ⟨𝐶,𝐻⟩

𝑊
 𝑠 ℓ ∈ dom(𝐶) 𝒫ℓ = 𝐶(ℓ) (MS , 𝑑) = 𝑠(ℓ)
{︁
𝑛, to

}︁
⊆ dom(𝑑) 𝜏𝑠 ∈ 𝒫ℓ.𝑇𝑠

𝜏𝑠.pre(𝑛, to, 𝑚 , 𝑑) HooksOk(𝐻, 𝜏𝑠, ℓ, 𝑠, 𝑛,𝑚, to) MS ′ = MS ⊎ ⟨𝑛, to, ∘, (𝜏𝑠.tag,𝑚)⟩
𝑠 𝑛 𝑊 𝑠[ℓ ↦→ (MS ′, 𝑑[𝑛 ↦→ 𝜏𝑠.step(to,𝑚, 𝑑(𝑛))])]

ReceiveStep
𝑊 = ⟨𝐶,𝐻⟩ 𝑊
 𝑠 ℓ ∈ dom(𝐶) 𝒫ℓ = 𝐶(ℓ) (MS , 𝑑) = 𝑠(ℓ) 𝜏𝑟 ∈ 𝒫ℓ.𝑇𝑟

MS = MS ′ ⊎m m = ⟨from, 𝑛, ∘, (𝜏𝑟.tag,𝑚)⟩ {from, 𝑛} ⊆ dom(𝑑) 𝜏𝑟.pre(m, 𝑑(𝑛))
MS ′′ = MS ′ ⊎ ⟨from, 𝑛, ∙, (𝜏𝑟.tag,𝑚)⟩

𝑠 𝑛 𝑊 𝑠[ℓ ↦→ (MS ′′, 𝑑[𝑛 ↦→ 𝜏𝑟.step(m, 𝑑(𝑛))])]

Fig. 9. Transition rules of the network semantics.

semi-formal definitions (the formal ones are in our Coq code), accompanied by the natural
adequacy result (Lemma 3.4).

Definition 3.2 (Send-wrapper). The operational semantics of a send-wrapper call 𝑤 =
send[𝜏s , ℓ](𝑚, to) is defined by fixing the grayed elements in the rule Send to be the wrapper’s
arguments 𝜏𝑠, 𝑚, ℓ, and to. The wrapper precondition 𝑤.pre is 𝜏𝑠.pre and its result is 𝑚.

Definition 3.3 (Receive-wrapper). The semantics of a receive-wrapper call recv[𝑇, 𝐿] is
defined by fixing the grayed elements in the rule Recv such that ℓ ∈ 𝐿 and 𝜏𝑟.tag ∈ 𝑇
are chosen non-deterministically. The precondition 𝑤.pre is True and the result is the pair
Some (from,𝑚) from m, if side conditions of Recv are satisfied and there is a message in
the soup matching some tag 𝑡 ∈ 𝑇 and a label ℓ ∈ 𝐿, or None otherwise.

We use the notation 𝑠 𝑤,𝑛 𝑊 𝑠′ to indicate the effect of a wrapper 𝑤, executed by a node 𝑛
in a global system state 𝑠, such that 𝑠
𝑊 , resulting in a new state 𝑠′.

Lemma 3.4 (Wrappers obey the network semantics). Let 𝑤 be a send- or receive-
wrapper call at a node 𝑛 in a world 𝑊 , instantiated with valid arguments. Then for any
global state 𝑠, such that 𝑊
 𝑠, the resulting state 𝑠′ of a wrapper execution 𝑠 𝑤,𝑛 𝑊 𝑠′ is
computable from 𝑠 and 𝑤, and 𝑠

𝑛 𝑊 𝑠′ holds.

A program execution in Disel can be thought of as a sequence of wrapper calls. Indeed,
in a distributed system, every such execution at a specific node takes place concurrently
with executions on other nodes, which will typically result in multiple possible outcomes
for the global state 𝑠. To account for all such behaviors experienced by a program 𝑒
running locally, we adopt the trace-based approach for semantics of sequentially-consistent
concurrent programs [4]. We define a denotational semantics of a Disel command 𝑐 as a
(possibly infinite) set of finite partial execution traces J𝑐K = {t𝜅 | t = [𝑤1, . . . , 𝑤𝑛]}, where
each element 𝑤𝑖 of a trace t is a transition wrapper call or an idle step (corresponding to
reading local state) as it occurs during a single, potentially incomplete, sequential execution
of 𝑐, and 𝜅 ∈ {⊥, done 𝑣}, where ⊥ indicates an incomplete execution of 𝑐, and done 𝑣
stands for a complete execution returning a result value 𝑣. Thus, a trace t is generated by
a program running at a node, so each of its element corresponds to a single, possible idle,
transition, changing the global system state. Since all composite commands in Disel preserve
monotonicity in the complete lattice of sets of traces, the semantics of a recursive procedure
is defined as the least fixed point of the corresponding functional by the Knaster-Tarski

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:18 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

theorem. That is, Disel programs are not directly executable within Coq, but are rather
extracted into the corresponding OCaml definitions, as we will outline in Section 5.

To give semantics for the Hoare types and formulate a type soundness result, we need
several auxiliary definitions, relating program traces and system states. Those are directly
inspired by modern concurrency logics [32, 37], and we refer the reader to our Coq code for
fully formal definitions. We first define interference-reachable states from a system state 𝑠
with respect to a node 𝑛:

Definition 3.5. A state 𝑠′ is interference-reachable from 𝑠 wrt. a node 𝑛 (denoted by

𝑠 ¬𝑛* 𝑊 𝑠′) iff 𝑠 = 𝑠′ or there exist 𝑠′′, 𝑛′ ̸= 𝑛, such that 𝑠
𝑛′
 𝑊 𝑠′′ and 𝑠′′ ¬𝑛* 𝑊 𝑠′.

We next define 𝑄-satisfying safe traces wrt. a node 𝑛, state 𝑠, and an assertion 𝑄, as traces
executing from 𝑠 to the end under interference, so the final state and the result satisfy 𝑄:

Definition 3.6. A trace t𝜅 is post-safe for 𝑛, 𝑠 and 𝑄 iff either

∙ t = [], 𝜅 = done 𝑣 and ∀𝑠′, 𝑠 ¬𝑛* 𝑊 𝑠′ =⇒ 𝑠′ � [𝑣/res]𝑄, or

∙ t = 𝑤 :: t′, and for any 𝑠′, such that 𝑠 ¬𝑛* 𝑊 𝑠′, the state 𝑠′ satisfies 𝑤.pre, and for any 𝑠′′,
such that 𝑠′ 𝑤,𝑛 𝑊 𝑠′′, t′𝜅 is post-safe for 𝑛, 𝑠′′ and 𝑄.

Finally, we define well-typed programs via our denotational semantics and post-safe traces.

Definition 3.7 (Hoare Type Semantics). 𝑊
𝑛
⊢ 𝑐 : {𝑃}{𝑄} iff for any 𝑠, such that 𝑠 � 𝑃 ,

and for any trace t𝜅 ∈ J𝑐K, such that 𝜅 = done 𝑣, the trace t𝜅 is post-safe for 𝑛, 𝑠 and 𝑄.

Definition 3.7 implicitly incorporates fault-avoidance (safety) into the semantics of a
type: if a program can be assigned a type, it will safely run from a state satisfying its
precondition till the end or diverge, with each wrapper in its trace being able to execute,
and the final state satisfying the postcondition. Our implementation comes with a number
of lemmas, allowing one to reduce a derivation of a Hoare type for a composite program 𝑐 to
those of its components, corresponding precisely to inference rules (cf. Fig. 8) in program
logics. The proofs of those lemmas with respect to the denotational semantics J·K of specific
programming constructs deliver the soundness result of Disel as a logic:

Theorem 3.8 (Soundness of Disel logic). If the type ∅;𝑊
𝑛
⊢ 𝑐 : {𝑃}{𝑄} can be

derived in Disel, the program 𝑐 satisfies the spec 𝑊
𝑛
⊢ 𝑐 : {𝑃}{𝑄} according to Definition 3.7.

Definition 3.7 of a type incorporates interference, hence the stability obligations in the
premises of the rules for the basic commands, such as SendWrap, ReceiveWrap. While
the logic does not enforce the stability of a precondition imposed by the client at each
proof rule (as those can be strengthened arbitrarily), it is impossible to prove an unstable
postcondition (as those can be only weakened). Since having an non-stable precondition 𝑃
wrt. a node 𝑛 means an inconsistent specification (i.e., 𝑠 � 𝑃 ∧ 𝑠 ¬𝑛* 𝑊 𝑠′ ∧ 𝑠′ � 𝑃 ⇒ False),
it will not be possible to invoke a subroutine with a non-stable precondition within any
large consistently specified program context. In order to avoid unsoundness with respect the
“topmost” calls, which are extracted and executed on a shim as the end programs in a trusted
(i.e., unverified) environment, we require the user to establish stability of their preconditions,
which should hold over the initial state, used to initialize the network. For instance, this
is the case for the Hoare specifications of the calculator servers from Section 2.4, whose
preconditions mention only the node-local state and are, thus, stable.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:19

cn

pt1

pt2

(P
re
pa
re

, r
, x

)

(Yes, r)

(Prepare, r, x)

(Y
es

, r
)

(C
om

m
it,
r)

(A
ckC

om
m
it, r)

(A
ck
Co
m
m
it,
r)(Commit, r)

Phase One Phase Two

Fig. 10. One round of the Two-Phase Commit.

PInit

PGotReq x

PRespNo x

PCommited x PAborted x

rPrep

sNosYes

rCommit rAbort

PRespYes x
rAbort

sAckAbortsA
ckC
om
mi
t

(b)(a)

CCommit x

CWaitPrepResp x

CAbort x

CSendPrep x

CWaitCommitAck x

CInit

CAbortCommitAck x

rAckAbort
sAbort

rYes/rNo

rAckAbort

sAbort

sPrepsPrep

rYes/rNo

sCommitsCommit

rAckCommit

rA
ck
C
om

m
it

rA
ck
Co
mm
it rAckAbort

Fig. 11. States of a coordinator (a) and a participant (b).

4 CASE STUDY: TWO-PHASE COMMIT AND ITS CLIENT APPLICATION

We now present a case study: an implementation and verification in Disel of the basic
distributed Two-Phase Commit algorithm (TPC) [60, Chapter 19]. TPC is widely used in
distributed systems to implement a centralized consensus protocol, whose goal is to achieve
agreement among several nodes about whether a transaction should be committed or aborted
(e.g., as part of a distributed database). Since the system may execute in an asynchronous
environment where message delivery is unreliable and machines may experience transient
crashes, achieving agreement requires care.

The goal of conducting this exercise for us was twofold: (a) to show that the protocol
properties established for systems in the distributed systems community (e.g., consensus)
are useful for Hoare-style reasoning about program composition and (b) to demonstrate that
Disel’s protocols with disjoint state-space and hooks are sufficient for conducting modular
proofs about core algorithms (e.g., TPC) and their client applications. To give a better taste of
Disel-style programming and verification, in this section we abandon mathematical notation
and show fragments of our development taken, with cosmetic adjustments, from our code.

4.1 The Protocol: Intuition and Formalization

The Two-Phase Commit protocol designates a single node as the coordinator, which is
in charge of managing the commit process; other nodes participating in the protocol are
participants. The protocol proceeds in a series of rounds, each of which makes a single decision.
Each round consists of two phases; an example round execution is shown in Fig. 10. In phase
one, the coordinator begins processing a new transaction by sending Prepare messages to all
participants. Each participant responds with its local decision Yes or No. In the figure, both
participants vote Yes, so the coordinator enters phase two by sending Commit messages to
all participants, informing them of its decision to commit. If some participant had voted No,
the coordinator would instead send Abort messages. In either case, participants acknowledge
the decision by sending AckCommit or AckAbort to the coordinator. When the coordinator
receives all acknowledgments, it knows that all nodes have completed the transaction.

The component of the coherence predicate constraining the local state l of each node n

depending on its role, coordinator or a participant, is defined as follows:

Definition localCoh (n: nid) := [Pred l |

if n == cn then ∃(r: round) (s: CState) (log: Log), l = st ↦→ (r, s) ⊎ lg ↦→ log

else if n ∈ pts

then ∃(r: round) (s: PState) (log: Log), l = st ↦→ (r, s) ⊎ lg ↦→ log else True].

According to the predicate localCoh, the local state of the coordinator (cn is a parameter
bound at the level of the protocol description) consists of two globally defined locations, st

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:20 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Definition c_send_step (r: round) (cs: CState)

(log: Log) (to: node) := match cs with

(* Sending prepare-messages *)

| CSentPrep x tos ⇒ if (* sent all messages *)

(* switch for receiving responses *)

then (r, CWaitPrepResp x [::], l)

(* keep sending requests *)

else (r, CSentPrep x (to :: tos), l)

(* ...more cases depending on cs and to... *)

end.

Definition c_recv_step (r : round) (cs : CState)

(log : Log) (tag : nat) (mbody : seq nat) :=

match cs with

(* Waiting for prepare-responses *)

| CWaitPrepResp x ⇒ if (* received all votes *)

then (r, if (* all votes yes *)

then CCommit x

else CAbort x, log)

else (r, CWaitPrepResp, log)

(* ...more cases depending on cs, tag, mbody... *)

end.

Fig. 12. Send and receive transitions of a coordinator in a Disel definition of the TPC protocol.

and lg, which together store a round number r, a coordinator status s, and a log. The state
of a participant (n ∈ pts) is similar, except that its status is a participant status. Finally,
any node which is not the coordinator or a participant (e.g., a node participating only in
other protocols) may have an arbitrary local state with respect to TPC.

The coordinator’s status can be in any of the seven states shown in shown in Fig. 11(a).
Between rounds, the coordinator waits in the CInit state. From the initial state, the coordi-
nators enters the CSentPrep phase and remains in it until all prepare-requests are sent, after
which it switches into the receiving state CWaitPrepResp 𝑥 for the data 𝑥. Upon receiving all
response message to the prepare-requests, the coordinator changes either to the commit-state
or to the abort-state, notifying all of the participants about the decision and collecting
the acknowledgements, eventually returning to the CInit state with an updated log. The
participants follow a similar pattern to the coordinators’s, except that a participant sends
messages to or receives messages only from the coordinator before changing its state.

Fig. 12 shows how to encode a few of the coordinator’s transitions. Recall that Disel
transitions are computable functions that describe how to update the local state of the
node when executing the transition. The figure shows the snippets of Disel code related to
sending a prepare-request messages and receiving a corresponding response message from
participants. In the latter case, depending on the responses, once all of them are collected,
the coordinator switches to either CCommit or CAbort state.

4.2 Program Specification and Implementation

With the protocol in hand, we can now proceed to build programs that implement the coordi-
nator and participant and assign them useful Hoare-style specifications. An implementation
of a single round of the coordinator and its Hoare type are shown in Fig. 13. The function
coordinator_round takes as an argument the transaction data to be processed in this round.
The type {r log} DHT [cn, TPC] (...) represents a Hoare spec, whose logical variables are
r and log. The spec is parametrized by the dedicated coordinator node id cn and a world
with a single protocol instance TPC, with no hooks. The pre/postconditions (in parentheses)
are encoded as Coq functions fun s ⇒... and fun res s’ ⇒..., correspondingly, so the
immediate pre/post-states s/s’ are made explicit, similarly to using the connective this s.

The precondition, which makes use of the local state getter loc cn s = ..., equivalent
to the connective cn TPC� . . . from Fig. 7, requires that the coordinator is in the CInit state,
with an arbitrary round number and log. The postcondition ensures that the local state has
returned to CInit, the round number has been incremented, and the return value accurately
reflects the decision made on the data, which is also reflected in the updated log. The
code proceeds along the lines required by the protocol: it reads the round number from the

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:21

Definition coordinator_round (d : data) :

{r log}, DHT [cn, TPC]

(fun s ⇒ loc cn s = st ↦→ (r, CInit) ⊎ lg ↦→ log,

fun res s’ ⇒
loc cn s’ = st↦→(r+1, CInit) ⊎ lg↦→(log++[(res, d)]))

:= Do (r ← read_round;

send_prep_loop r d;;

res ← receive_prep_loop r;

b ← read_resp_result;

(if b then send_commits r d;;

receive_commit_loop r

else send_aborts r d;;

receive_abort_loop r);;

return b).

Fig. 13. Spec and code of a coordinator round.

Definition run_coordinator (data_seq : seq data) :

DHT [cn, _]

(fun s ⇒ s = loc cn s = st ↦→ (0, CInit) ⊎ lg ↦→ [::]

fun _ s’ ⇒ ∃ (choices : seq bool),

let r := size data_seq in

let lg := zip choices data_seq in

loc cn s’ = st ↦→ (r, CInit) ⊎ lg ↦→ log ∧
∀ pt, pt ∈ pts →

loc pt s’ = st ↦→ (r, PInit) ⊎ lg ↦→ log)

:= Do (with_inv TPCInv (coordinator data_seq)).

Fig. 14. Coordinator spec elaborated with TPCInv.

local state, sends requests, collects the responses and then, depending on the locally stored
result b, sends commit/abort messages, collecting the acknowledgements from participants.

4.3 Protocol Consistency and Inductive Invariant

The spec given to coordinator_round in Fig. 13 only constrains the local state loc of the
coordinator, but in fact the protocol maintains stronger global invariants. For example, we
might like to conclude that between rounds, all logs are in agreement. This strong global
agreement property is not implied by the coherence predicate given above, so we must
prove an inductive invariant that implies it. Finding such inductive invariants is the art
of verification, and the process typically requires several iterations before converging on
a property that is inductive and implies the desired spec. Tools such as Ivy [44] make
the process of finding an inductive invariant much more pleasant by providing automatic
assistance in debugging and correcting invariants, and it would be interesting to connect
Disel to Ivy, which we leave to the future work.

In this case, an invariant that closely follows the intuitive execution of the protocol (its
formulation can be found in our Coq files) suffices to prove the global log agreement property.
For example, when the coordinator is in the CSendCommit state, the invariant ensures that
all participants are either waiting to hear about the decision, have received the decision but
not acknowledged it, or have acknowledged the decision and returned to the initial state.
The invariant also implies a simple statement of global log agreement, shown below:

Lemma cn_log_agreement d r log pt : coh d → TPCInv d →
loc cn d = st ↦→ (r, CInit) ⊎ lg ↦→ log →
∀ pt, pt ∈ pts → loc pt d = st ↦→ (r, PInit) ⊎ lg ↦→ log.

In other words, a coordinator cn in the CInit state and a round r can conclude that all
participants pt ∈ pts have also reached the current round r and have logs equal to its own.

Putting the inductive invariant to work. We can freely use the elaborated invariant in
proofs of programs. Fig. 14 shows a coordinator program that executes a series of rounds
based on a given list data_seq of data elements. Its postcondition asserts that all participants
have finished the round and have logs agreeing with the one of the coordinator. The proof
of this specification is by a straightforward application of the WithInv rule, making use
of the elaborated invariant TPCInv as well as the lemma cn_log_agreement. Importantly,
the postcondition is stable, because each round of the Two-Phase Commit begins with a
coordinator’s move, hence no participant can change its state from the “initial” one while
the coordinator’s status is CInit.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:22 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

Program Definition run_and_query (ds : seq data) pt :

{reqs resp}, DHT [cn, (TPC ⊎ Query, QHook)]

(fun s ⇒ loc s = st ↦→ (0, CInit) ⊎ lg ↦→ [::] ∧
pt ∈ pts ∧ query_init s],

fun (res : nat * Log) s’ ⇒ ∃ (chs : seq bool),

let d := (size ds, zip chs ds) in

loc s’ = st ↦→ (d.1, CInit) ⊎ lg ↦→ d.2 ∧
query_init s’ ∧ res = d)

:= Do (run_coordinator ds;;

rid ← generate_fresh_request_id pt;

send_request rid pt;;

res ← receive_responce rid pt;

return res).

Fig. 15. Querying after the TPC coordinator.

Parameter core_state : Data → LocState → Prop.

Parameter local_indicator : Data → LocState → Prop.

Definition QHook := (1, lab_c, lab_q, resp) ↦→
fun lc lq m to ⇒
∀ rid data, m = rid :: serialize data →

core_state data lc.

Hypothesis core_state_inj :

∀ l d d’, core_state d l →
core_state d’ l → d = d’.

Hypothesis core_state_step : ∀ data s s’ n1 n2,

n1 != n2 → local_indicator data (loc lab_c n1 s)

→ network_step (lab_c ↦→ pc, ∅) n2 s s’

→ core_state data (loc lab_c n2 s’).

Fig. 16. Hook definition and abstract predicates.

4.4 Composing Two-Phase Commit with a Querying Application using Hooks

Even though core consensus protocols, such as TPC, are not designed to exist in isolation,
but rather to be used in a context of larger applications (e.g., for crash recovery), for-
mal reasoning about client-specific properties (i.e., properties of applications relying on
certain characteristics of a “core” distributed protocol) is only barely covered in classical
textbooks [60] and, with a rare exception [31], almost never a focus of major verification
efforts [16, 46, 63], which, therefore cannot be reused in any larger verified context.

We now demonstrate how to employ Disel’s logical mechanisms for restricted composition
of protocols in order to prove, in a modular fashion, properties of client code from a core
protocol’s invariants. To do so, we verify a composite application, which uses TPC for building
a replicated log of data elements, and a side-channel protocol for sending independent queries
about the state of TPC participants (e.g., for the purpose of implementing recovery after
a coordinator’s failure). Fig. 15 shows a program that first calls the coordinator program
run_coordinator, and then uses the side protocol to query the local state of a participant pt,
which the program then returns as its final result res. Ignoring the query_init part in the
pre/postcondition for now, notice that the postcondition asserts that res is equal to the pair
d (round, log) stored in the local state of the coordinator (which did not crash this time)!

Establishing such validity of the query wrt. TPC-related state is, however, not trivial at
all, given how the querying protocol is defined. The protocol Query is very similar to the
calculator from Section 2: any node 𝑛1 in it can send a request to any other node 𝑛2, to which
𝑛2 may respond with any arbitrary message (the details of the formal protocol definition can
be found in our Coq code). This protocol definition is intentionally made very weak: while it
allows one to prove some interesting inductive invariants (e.g., no request is answered twice),
it leaves all other interaction aspects for the final client to specify. In particular, it does not
enforce any specific shape of data being sent in a response to a request.

Thus, without imposing the additional restriction that the protocol Query can only transmit
the local state of a node wrt. TPC, we will not be able to prove the spec in Fig. 15. The
necessary restriction is provided by a send-hook entry QHook that is used when composing
the protocols TPC and Query in the spec of run_and_query, and is defined in Fig. 16.

In order to make the client verification effort reusable in the context of any consensus
protocol, not just TPC, we formulate the hook statement in terms of an abstract type Data

and an abstract predicate core_state, which we will later instantiate specifically for TPC,
both afforded by Coq’s higher-order programming capabilities. The hook enforces that any

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:23

message m containing a request id rid and serialized data adequately encodes the current
local state (storing data) of the sender node, at the moment of sending m, with respect to
the protocol with label lab_c. The abstract predicate core_state d lc, capturing precisely
this “adequacy of the encoding”, is supplied with the injectivity hypothesis core_state_inj

(to be proved by each consensus implementation), which ensures that the abstract data
representation is unambiguous.

We also declare an abstract predicate local_indicator and the corresponding hypothesis
core_state_step, which essentially corresponds to irrevocability of consensus and should be
proved for each consensus implementation (in particular, for TPC), ensuring that if a local
state of a node n1 is of certain shape data, the local state of n2, captured by core_state data

will be remaining the same under interference (network_step) wrt. the core lab_c-labelled
protocol pc—precisely what is ensured by the lemma cn_log_agreement of TPC.

Finally, we can use the abstract predicates from Fig. 16 to provide specifications for
querying procedures from Fig. 15, stating query_init in terms of assertions involving
local_indicator and query_state, in the context parameterized over a “core” consensus
protocol pc and restricted with QHook. To verify the program in Fig. 15 against the desired
spec we only need to instantiate the predicates as follows and prove the corresponding
hypotheses for TPC, which follow from the invariant TPCInv and Lemma cn_log_agreement:

(* For TPC, abstract Data type is instantiated with a round number (nat) and Log. *)

Definition Data := nat * Log.

Definition local_indicator (d : Data) l := l = st ↦→ (d.1, CInit) ⊎ log ↦→ d.2.

Definition core_state (d : Data) l := l = st ↦→ (d.1, PInit) ⊎ log ↦→ d.2.

The rest of the proof is via the Frame rule with 𝑊 = ⟨TPC, ∅⟩, 𝐶 = Query and 𝐻 =
QHook. Since QHook does not restrict the transitions of TPC, NotHooked holds. Thanks to the
parametrization of querying programs with abstract predicates and hypotheses from Fig. 16,
we can compose them with any other instance of a consensus protocol, e.g., Paxos [29] or
Raft [43], thus, reusing the proofs of their core invariants.

5 IMPLEMENTATION AND EXPERIENCE

Disel combines two traits that rarely occur in a single tool for reasoning about programs.
First, thanks to the representation of Hoare types by means of Coq’s dependent types, the
soundness result of Disel scales not just to a toy core calculus, but to the entirety of Gallina,
the programming language of Coq, enhanced with general recursion and message-passing
primitives. Second, Disel programs are immediately executable by means of extracting them
into OCaml, which provides the features that Gallina lacks: general fixpoints, mutable state,
and networking constructs, enabled by our trusted shim implementation.

Extraction and execution. Disel’s logic reasons about programs in terms of their denota-
tional semantics as traces, but each primitive also has a straightforward operational meaning.
For example, executing a wrapped send transition should actually send the corresponding
network message. Thus it is relatively straightforward to extract Disel programs by provid-
ing OCaml implementations of the primitive operations in a trusted shim. Our shim consists
of about 250 lines of OCaml, including primitives for sending and receiving messages and
general recursion. The local state of each node is implemented as a map from protocol labels
to heaps, where a heap is implemented as a map from locations to values. Since Disel does
not draw a distinction between real and auxiliary state so far, both are manifested at run
time. In the future, we plan to allow users mark state as auxiliary to improve performance.
Due to artifacts of the extraction process, a Disel program that appears tail-recursive at

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:24 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

the Coq source level does not extract to a tail-recursive OCaml program. This causes long
running loops (such as those typically used to implement blocking receive) to quickly blow
the OCaml stack. To circumvent this issue, we added a while-loop combinator to Disel,
which is encoded using the general fixpoint combinator, but is extracted to an efficient
OCaml procedure that uses constant stack space. Our implementations of the calculator
and TPC use this while-loop combinator to implement blocking receive.

In this work, our goal was not to extract high-performance code for Disel programs,
but rather show that, with a careful choice of low-level primitives with precise operational
meaning, such extraction is feasible and requires a very small trusted codebase.

Component Defs/Specs Impl Proofs Build

Calculator (§2)
protocol (§2.1)

239 - 243 4.8INV1 (§2.3)
INV2 (§2.4)
simple server (§2.3)

192 43 153 8.6batch server (§2.4)
memo server (§2.4)
compute (§2.4) 120 24 99 4.8
deleg server (§2.4) 75 7 49 2.4

Two-Phase Commit (§4.1–§4.3)
protocol (§4.1) 465 - 231 3.9
coordinator (§4.2) 236 35 440 18
participant (§4.2) 163 24 198 10
TPCInv (§4.3) 997 - 2113 25

Query/TPC (§4.4)
protocol 169 - 115 2.1
querying procedures 326 18 707 19
run and query 76 5 89 2.6

Table 1. Statistics for implemented systems: sizes of pro-
tocol definitions/specs, programs, proofs of protocol ax-
ioms/invariants/specs (LOC), and build times (sec).

Formal development and proof sizes.
The size of our formalization of the
metatheory, inference rules and sound-
ness proofs is about 4500 LOC. Our de-
velopment builds on well-established Ss-
reflect/MathComp libraries [13, 36, 48]
as well as on the implementation of
partial finite maps and heap theory by
Nanevski et al. [40]. Table 1 summa-
rizes the proof effort for the calculator,
TPC/Query systems. The Defs/Specs col-
umn measures all specification compo-
nents, including, e.g., auxiliary predi-
cates, whereas Impl reports the sizes of
actual Disel programs. Due to the high
degree of code reuse, it is difficult to
provide separate metrics in some cases;
for those parts we only report the joint
numbers. Although Disel is not yet
a production-quality verification tool,
safety proofs of interesting systems can
be obtained in it in a reasonably short period of time and with moderate verification effort
(e.g., the full development of the core TPC system took nine person-days of work). Given
that the current version of Disel employs no advanced proof automation, beyond what is
offered by Coq/Ssreflect, for discharging program-level verification conditions [5] or inductive
invariant proofs [44], we consider these results encouraging.

6 RELATED WORK

Program logics for concurrency. Disel builds on many ideas from modern program logics
for compositional concurrency reasoning. The notion of protocols (often called regions) in
shared-memory concurrency logics [8, 37, 45, 52, 55, 56] provides a “localized” version of
more traditional Rely/Guarantee obligations [20], which, in their original formulation, are
not modular [11, 12, 57]. The two closest to Disel logics employing protocols to reason
about interference are FCSL [37] and GPS [55]. Besides those being logics for shared-memory,
rather than message-passing concurrency, protocols in FCSL and GPS are tailored for the
notion of ownership transfer [42], as a way to express exclusivity of access to shared resources.
Due to the lack of immediate synchronization between nodes in a message-passing setting,
we consider the notion of ownership to be of less use for most of the systems of interest.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:25

That said, even though Disel does not feature explicit ownership transfer, it can be easily
encoded on a per-protocol basis, by defining a suitable local state and transitions.

Composition of modular proofs about protocols is a problem that has not received much
attention in modern concurrency logics. In FCSL, which tackles a similar challenge, in order
to constrain inter-protocol interaction, a user must set up her protocols with a very specific
foresight of how they are going to be composed with other protocols, defining intrinsic
“ownership communication channels” for all involved components, thus, effectively prohibiting
unforeseen interaction scenarios. This is not the case in Disel: as we have shown in Section 4,
“core” and “client” protocols (e.g., TPC and Query) can be developed and verified independently
and then composed in joint applications via extrinsic client-specified send-hooks.

The recent logical framework Iris [21, 22] suggests to express protocols as a specific
case of resources, represented, in general, by partial commutative monoids, viewing state
reachability as a specific instance of framing [47]. This generality does not buy much for
verifying distributed applications, as the resulting proof obligations are the same as when
proving inductive invariants. Having an explicit notion of protocols in the logic, though,
allowed us to provide the novel protocol-tailored rules WithInv and Frame (cf. Fig. 8),
which enabled modular invariant proofs and distributed systems composition.

A related logic by Villard et al. [59] only considers protocols associated with specific
message-passing channels, rather than entire distributed systems. In Villard et al.’s logic,
messages do not carry any payload: they are simply tags, indicating ownership transfer of a
certain heap portion in the same shared memory space. It is not immediately obvious how to
use Villard et al.’s specifications for locally asserting global properties of stateful distributed
systems (e.g., the agreement of TPC in Fig. 14) without considering all involved processes. In
addition to that, Villard et al.’s logic does not provide a mechanism for establishing inductive
contract invariants. A recent framework Actor Services by Summers and Müller [51] provides
abstractions similar to our protocol transitions, but only allows to state local actor invariants,
and lacks a formal metatheory and soundness proof.

To the best of our knowledge, none of the existing concurrency logics features both
foundational soundness proof (i.e., the proof that the entire logic, not just its toy subset, is
sound as a verification tool), and a mechanism to extract and run verified applications.

Types for distributed systems. Session Types [18] are traditionally used to ensure that
distributed parties follow a predefined communication protocol wrt. a specific channel. While
the multiparty [19] and multirole [7] Session Types enable a form of system composition
and role-play, and dependent session types allow one to quantify over messages [54], session
types do not allow quantification over the global system state and reasoning out of inductive
invariants. We believe that Disel’s combination of Hoare types and protocols provides the
necessary level of expressivity to capture rich safety properties of distributed applications. A
similar approach has been previously explored in F⋆ by Swamy et al. [53], although that
work did not consider reasoning about inductive invariants separately from implementations,
neither did it address composition of systems with inter-protocol dependencies.

Verification of large systems. Recent work has verified implementations of core pieces of
distributed systems infrastructure, both by using specialized models and DSLs.

IronFleet [16] supports proving liveness in addition to safety, all embedded in Dafny [30].
IronFleet focuses on layered verification of standalone monolithic systems. In those systems,
each layer is a state-transition system (STS) specifying the system’s behavior at a certain
abstraction level, with the top-most layer expressing how a collection of nodes together
implement a high-level (e.g., shared-memory) specification, and the actual implementation,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

1:26 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

run by the nodes, at the bottom. Adjacent layers are connected by establishing refinement
between their STSs via reduction [33], which often involves proving inductive invariants,
similar to what we have proven in Disel. In our understanding, such specifications do not
allow for horizontal composition, i.e., reasoning about interaction with separately verified
systems in a client code. Such an interaction has been, however, explored wrt. shared-
memory concurrency by Gu et al. [15], who built a series of abstraction layers in a verified
concurrent OS kernel. That work has shown that establishing a refinement between a spec
STSs and a family of interacting lower-level STSs is possible, although the proofs are
usually quite complex, as they involve reasoning about semantics of a restricted product
of STSs. In contrast with those systems, Disel’s logic does not provide machinery to
establish STS refinement, but rather explicitly identifies valid linearization points [17] in
the implementations, as they correspond precisely to taken protocol transitions. Abstract
specifications and the corresponding system properties, usable by client code, such as
consensus, are encoded in Disel via parametrized Hoare types and abstract predicates, as
shown in Section 4.4.

Verdi [62, 63] provides a form of vertical compositionality by means of verified system
transformers, which allow systems to be decomposed into layers of functionality (e.g.,
sequence numbers or state machine replication). The Chapar framework [31] is tailored to
causally consistent key-value stores, and also provides verified model checking for client
programs using the verified KV stores. Ivy is a tool to assist users in iteratively discovering
inductive invariants by finding counterexamples to induction [44]. PSync [9] is a DSL
allowing one to prove inductive invariants of consensus algorithms in networks with potential
faults, operating in a synchronous round-based model [10]. This assumption enables efficient
proof automation, but prohibits low-level optimizations, such as, e.g., batching. Mace [23]
and DistAlgo [34] adopt an asynchronous protocol model, similar to ours. Mace provides a
suite of tools for generating and model checking distributed systems, while DistAlgo allows
extraction of efficient implementation from a high-level protocol description. EventML is
another DSL for verifying monolithic distributed systems, based on compiling to the Logic of
Events in Nuprl [46]. None of these frameworks tackles the challenges of modular reasoning
about horizontally composed system implementations (2) and elaborated protocols (3),
stated in the introduction of this paper.

Arguably, our Two-Phase Commit implementation is a relatively small case study when
compared to the systems verified in IronFleet, Verdi, and EventML. Nevertheless, we are
sure that, given enough time and manpower, we can conduct safety proofs of Raft [43] and
MultiPaxos [58] in Disel, as their implementations and invariants are based on the same
semantic primitives and reasoning principles that were employed for TPC. We believe, though,
that compositionality, afforded by Disel’s logical mechanisms, is a key to make the results
of future verification efforts reusable for building even larger verified distributed ecosystems.

7 CONCLUSION

Almost two decades ago, Lamport propounded the thesis Composition: a way to make
proofs harder [28], favoring mathematical models over program logics for real system veri-
fication: “in 1997, the unfortunate reality is that engineers rarely specify and reason formally
about the systems they build. [...] It seems unlikely that reasoning about the composition
of open-system specifications will be a practical concern within the next 15 years”. He was
right: it took two decades of active research in rigorous program verification, combining the
strengths of mathematical models (protocols) and program logics, to make compositional
verification of open-world distributed systems today’s reality.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

Programming and Proving with Distributed Protocols 1:27

REFERENCES
[1] Mart́ın Abadi and Leslie Lamport. The existence of refinement mappings. In LICS, pages 165–175.

IEEE Computer Society, 1988.

[2] Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal memory:
Definitions, implementation, and programming. Distributed Computing, 9(1):37–49, 1995.

[3] Andrew W. Appel. Foundational proof-carrying code. In LICS, pages 247–256. IEEE Computer Society,
2001.

[4] Stephen Brookes. A semantics for concurrent separation logic. Th. Comp. Sci., 375(1-3), 2007.

[5] Adam Chlipala. Mostly-automated verification of low-level programs in computational separation logic.
In PLDI, pages 234–245. ACM, 2011.

[6] Coq Development Team. The Coq Proof Assistant Reference Manual - Version 8.6, 2017. Available at

http://coq.inria.fr/.

[7] Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages 435–446.
ACM, 2011.

[8] Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis.
Concurrent Abstract Predicates. In ECOOP, volume 6183 of LNCS, pages 504–528. Springer, 2010.

[9] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. PSync: a partially synchronous language
for fault-tolerant distributed algorithms. In POPL, pages 400–415. ACM, 2016.

[10] Tzilla Elrad and Nissim Francez. Decomposition of distributed programs into communication-closed

layers. Sci. Comput. Program., 2(3):155–173, 1982.

[11] Xinyu Feng. Local rely-guarantee reasoning. In POPL, pages 315–327. ACM, 2009.
[12] Xinyu Feng, Rodrigo Ferreira, and Zhong Shao. On the relationship between concurrent separation

logic and assume-guarantee reasoning. In ESOP, volume 4421 of LNCS, pages 173–188. Springer, 2007.
[13] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflection Extension for the Coq

system. Technical Report 6455, Microsoft Research – Inria Joint Centre, 2009.

[14] Ronghui Gu, Jérémie Koenig, Tahina Ramananandro, Zhong Shao, Xiongnan Wu, Shu-Chun Weng,
Haozhong Zhang, and Yu Guo. Deep specifications and certified abstraction layers. In POPL, pages
595–608. ACM, 2015.

[15] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg, and
David Costanzo. CertiKOS: An Extensible Architecture for Building Certified Concurrent OS Kernels.

In OSDI, pages 653–669. USENIX Association, 2016.

[16] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts,
Srinath T. V. Setty, and Brian Zill. IronFleet: proving practical distributed systems correct. In SOSP,

pages 1–17. ACM, 2015.

[17] Maurice Herlihy and Jeannette M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

[18] Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and type discipline

for structured communication-based programming. In ESOP, volume 1381 of LNCS, pages 122–138.
Springer, 1998.

[19] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In POPL,
pages 273–284. ACM, 2008.

[20] Cliff B. Jones. Tentative steps toward a development method for interfering programs. ACM Trans.

Program. Lang. Syst., 5(4):596–619, 1983.
[21] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. Higher-order ghost state. In ICFP,

pages 256–269. ACM, 2016.

[22] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek
Dreyer. Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In POPL, pages

637–650. ACM, 2015.

[23] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin M. Vahdat. Mace:
Language support for building distributed systems. In PLDI, pages 179–188. ACM, 2007.

[24] Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika

Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Harvey Tuch, and Simon
Winwood. sel4: formal verification of an operating-system kernel. Commun. ACM, 53(6):107–115, 2010.

[25] Thomas Kleymann. Hoare logic and auxiliary variables. Formal Asp. Comput., 11(5):541–566, 1999.
[26] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: a verified implemen-

tation of ML. In POPL, pages 179–192. ACM, 2014.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

http://coq.inria.fr/

1:28 Ilya Sergey, James R. Wilcox, and Zachary Tatlock

[27] Leslie Lamport. The implementation of reliable distributed multiprocess systems. Computer Networks,
2:95–114, 1978.

[28] Leslie Lamport. Composition: A way to make proofs harder. In Compositionality: The Significant

Difference, International Symposium, (COMPOS’97), volume 1536 of LNCS, pages 402–423. Springer,
1998.

[29] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998.

[30] K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In LPAR, volume
6355 of LNCS, pages 348–370. Springer, 2010.

[31] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: certified causally consistent distributed

key-value stores. In POPL, pages 357–370. ACM, 2016.
[32] Ruy Ley-Wild and Aleksandar Nanevski. Subjective auxiliary state for coarse-grained concurrency. In

POPL, pages 561–574. ACM, 2013.

[33] Richard J. Lipton. Reduction: A method of proving properties of parallel programs. Commun. ACM,
18(12):717–721, 1975.

[34] Yanhong A. Liu, Scott D. Stoller, Bo Lin, and Michael Gorbovitski. From clarity to efficiency for
distributed algorithms. In OOPSLA, pages 395–410, New York, NY, USA, 2012. ACM.

[35] Nancy A. Lynch and Frits W. Vaandrager. Forward and backward simulations: I. untimed systems. Inf.

Comput., 121(2):214–233, 1995.

[36] Assia Mahboubi and Enrico Tassi. Mathematical Components. Available at https://math-comp.github.
io/mcb, 2017.

[37] Aleksandar Nanevski, Ruy Ley-Wild, Ilya Sergey, and Germán Andrés Delbianco. Communicating
state transition systems for fine-grained concurrent resources. In ESOP, volume 8410 of LNCS, pages
290–310. Springer, 2014.

[38] Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism and separation in Hoare Type
Theory. In ICFP, pages 62–73. ACM, 2006.

[39] Aleksandar Nanevski, Greg Morrisett, Avi Shinnar, Paul Govereau, and Lars Birkedal. Ynot: Dependent

types for imperative programs. In ICFP, pages 229–240. ACM Press, 2008.
[40] Aleksandar Nanevski, Viktor Vafeiadis, and Josh Berdine. Structuring the verification of heap-

manipulating programs. In POPL, pages 261–274. ACM, 2010.

[41] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff.
How Amazon web services uses formal methods. Commun. ACM, 58(4):66–73, 2015.

[42] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Th. Comp. Sci., 375(1-3):271–307,

2007.
[43] Diego Ongaro and John K. Ousterhout. In search of an understandable consensus algorithm. In 2014

USENIX Annual Technical Conference, pages 305–319, 2014.
[44] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. Ivy: safety

verification by interactive generalization. In PLDI, pages 614–630. ACM, 2016.

[45] Azalea Raad, Jules Villard, and Philippa Gardner. CoLoSL: Concurrent Local Subjective Logic. In
ESOP, volume 9032 of LNCS. Springer, 2015.

[46] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. Formal specification,

verification, and implementation of fault-tolerant systems using EventML. In Proceedings of the 15th
International Workshop on Automated Verification of Critical Systems (AVOCS). EASST, 2015.

[47] John C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In LICS, pages

55–74. IEEE Computer Society, 2002.
[48] Ilya Sergey. Programs and Proofs: Mechanizing Mathematics with Dependent Types. Lecture notes

with exercises. Available at http://ilyasergey.net/pnp, 2014.

[49] Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of fine-grained
concurrent programs. In PLDI, pages 77–87. ACM, 2015.

[50] Gordon Stewart, Lennart Beringer, Santiago Cuellar, and Andrew W. Appel. Compositional CompCert.
In POPL, pages 275–287. ACM, 2015.

[51] Alexander J. Summers and Peter Müller. Actor Services - Modular verification of message passing

programs. In ESOP, volume 9632 of LNCS, pages 699–726. Springer, 2016.
[52] Kasper Svendsen and Lars Birkedal. Impredicative Concurrent Abstract Predicates. In ESOP, volume

8410 of LNCS, pages 149–168. Springer, 2014.

[53] Nikhil Swamy, Juan Chen, Cédric Fournet, Pierre-Yves Strub, Karthikeyan Bhargavan, and Jean Yang.
Secure distributed programming with value-dependent types. In ICFP, pages 266–278. ACM, 2011.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

https://math-comp.github.io/mcb
https://math-comp.github.io/mcb
http://ilyasergey.net/pnp

Programming and Proving with Distributed Protocols 1:29

[54] Bernardo Toninho, Lúıs Caires, and Frank Pfenning. Dependent session types via intuitionistic linear
type theory. In PPDP, pages 161–172. ACM, 2011.

[55] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: navigating weak memory with ghosts, protocols,

and separation. In OOPSLA, pages 691–707. ACM, 2014.

[56] Aaron Joseph Turon, Jacob Thamsborg, Amal Ahmed, Lars Birkedal, and Derek Dreyer. Logical
relations for fine-grained concurrency. In POPL, pages 343–356. ACM, 2013.

[57] Viktor Vafeiadis and Matthew J. Parkinson. A Marriage of Rely/Guarantee and Separation Logic. In
CONCUR, volume 4703 of LNCS, pages 256–271. Springer, 2007.

[58] Robbert van Renesse and Deniz Altinbuken. Paxos made moderately complex. ACM Comput. Surv.,

47(3):42:1–42:36, 2015.

[59] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving Copyless Message Passing. In APLAS,

volume 5904 of LNCS, pages 194–209. Springer, 2009.
[60] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms, and

the Practice of Concurrency Control and Recovery. Morgan Kaufmann, 2002.

[61] James R. Wilcox, Ilya Sergey, and Zachary Tatlock. Programming Language Abstractions for Modularly
Verified Distributed Systems. In The 2nd Summit oN Advances in Programming Languages (SNAPL
2017), volume 71 of LIPIcs, pages 19:1–19:12. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2017.
[62] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and

Thomas E. Anderson. Verdi: a framework for implementing and formally verifying distributed systems.

In PLDI, pages 357–368. ACM, 2015.
[63] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas E.

Anderson. Planning for change in a formal verification of the Raft Consensus Protocol. In CPP, pages
154–165. ACM, 2016.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: September 2017.

	Abstract
	1 Introduction
	1.1 Towards Modular Distributed System Verification
	1.2 What is Disel?

	2 Overview
	2.1 Defining a Calculator Protocol
	2.2 From Protocols to Programs
	2.3 Elaborating State-Space Invariants of a Protocol
	2.4 More Implementations for Cheap
	2.5 Putting It All Together

	3 Distributed Separation Logic
	3.1 State and Worlds
	3.2 Language, Specifications and Selected Inference Rules
	3.3 Program Semantics and Logic Soundness

	4 Case Study: Two-Phase Commit and Its Client Application
	4.1 The Protocol: Intuition and Formalization
	4.2 Program Specification and Implementation
	4.3 Protocol Consistency and Inductive Invariant
	4.4 Composing Two-Phase Commit with a Querying Application using Hooks

	5 Implementation and Experience
	6 Related Work
	7 Conclusion
	References

