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Abstract 

This thesis investigates the use of machine learning in improving predictions of the top K1 

product purchases at a particular a retailer. The data used for this research is a freely-available 

(for research) sample of the retailer’s transactional data spanning a period of 102 weeks and 

consisting of several million observations. The thesis consists of  four key experiments: 

 

1. Univariate Analysis of the Dataset: The first experiment, which is the univariate 

analysis of the dataset, sets the background to the following chapters. It provides 

explanatory insight into the customers’ shopping behaviour and identifies the drivers 

that connect customers and products. Using various behavioural, descriptive and 

aggregated features, the training dataset for a group of customers is created to map their 

future purchasing actions for one specific week. The test dataset is then constructed to 

predict the purchasing actions for the forthcoming week. This constitutes a univariate 

analysis and the chapter is an introduction to the features included in the subsequent 

algorithmic processes. 

 

2. Meta-modelling to predict top K products: The second experiment investigates the 

improvement in predicting the top K products in terms of precision at K (or 

precision@K) and Area Under Curve (AUC) through meta-modelling. It compares 

combining a range of common machine learning algorithms of a supervised nature 

within a meta-modelling framework (where each generated model will be an input to a 

secondary model) with any single model involved, field benchmark or simple model 

combination method.  

 

3. Hybrid method to predict repeated, promotion-driven product purchases in an 

irregular testing environment: The third experiment demonstrates a hybrid 

methodology of cross validation, modelling and optimization for improving the 

accuracy of predicting the products the customers of a retailer will buy after having 

                                                           
1 Top K or Top-K Recommendations is an industry term that recommenders use to describe the K most likely 

products a customer will buy [Yang et al. 2012] in the future. K is commonly an integer smaller than 20. 
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bought them at least once with a promotional coupon.  This methodology is applied in 

the context of a train and test environment with limited overlap - the test data includes 

different coupons, different customers and different time periods. Additionally this 

chapter uses a real life application and a stress-test of the findings in the feature 

engineering space from experiment 1. It also borrows ideas from ensemble (or meta) 

modelling as detailed in experiment 2. 

 

 

4. The StackNet model: The fourth experiment proposes a framework in the form of a 

scalable version of [Wolpert 1992] stacked generalization being extended through cross 

validation methods to many levels resembling in structure a fully connected 

feedforward neural network where the hidden nodes represent complex functions in the 

form of machine learning models of any nature. The implementation of the model is 

made available in the Java programming language. 

 

The research contribution of this thesis is to improve the recommendation science used in the 

grocery and Fast Moving Consumer Goods (FMCG) markets. It seeks to identify methods of 

increasing the accuracy of predicting what customers are going to buy in the future by 

leveraging up-to-date innovations in machine learning as well as improving current processes 

in the areas of feature engineering, data pre-processing and ensemble modelling. For the 

general scientific community this thesis can be exploited to better understand the type of data 

available in the grocery market and to gain insights into how to structure similar machine 

learning and analytical projects. The extensive, computational and algorithmic framework that 

accompanies this thesis is also available for general use as a prototype to solve similar data 

challenges. 
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1. Introduction 

 

This chapter presents an overview of the current thesis. It introduces the thesis topic and 

outlines my motivations for conducting the research. It then sets out the specific objectives of 

the research and introduces the experimental methodology. 

 

1.1 Motivation 

 

Background: Driven by large organisations keen to use data to develop a deep understanding 

of what products their customers like to buy, recommendation science has received increased 

attention over the last decade. The extensive number of publications [Sarwar Badrul et al. 2001] 

in collaborative filtering as well as the emergence of big-prize data challenges such as the 

Netflix competition offering $1m to the winning entry [netflix prize 2009], indicate just how 

valuable businesses regard their capability to predict customer tastes and behaviours with 

increasing levels of accuracy.  

 

Univariate Analysis of the Dataset: Whist machine learning algorithms have gone a long way 

in identifying deep relationships within and extracting great predictive power from structured 

and unstructured data [Arel et al. 2010], exploring the underlying data through univariate 

analysis has commonly provided useful sources for better feature engineering and 

improvements in the prediction process [Domingos 2012].   Therefore, to better improve 

recommendations it seems a credible step to analyse and comprehend what drives the shopping 

process with the aim of identifying rudimentary links that connect customers to specific items. 

Such knowledge can later be utilised in algorithmic frameworks and modelling experiments. It 

can also serve as a preliminary step to understanding the underlying data utilised by this thesis. 

 

Meta-modelling to predict top K products: Recommendation science in a generic form has 

had great success in providing a means to efficiently link customers to items [Herlocker et al. 

2004]. The various works of [Yehuda Koren 2009] on factorization machines and collaborative 
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filtering stand as great innovations in the field. Another inspiring example is the work of 

[Salakhutdinov et al. 2007] in implementing Boltzmann’s neutral networks to more accurately 

predict the products customers will buy. 

Significant advances have been made from the era when limited data could be used for data 

analysis [Gandomi et al. 2015]. Increased storage capabilities have allowed companies to store 

extra details about transactions, as well as contextual data such as weather, time of day and 

sales channel. [Karatzoglou 2010] has successfully integrated such contextual information 

while performing collaborative filtering experiments. More recent work, specifically in the use 

of learning-to-rank algorithms by [Weston et al. 2013] show the potential of experimenting 

with new approaches in the field.   

The relationship of customer to product in the form of feature interaction has been widely 

investigated, with approaches using collaborative filtering  being amongst the most notable 

examples [Koren et al. 2009]. However, the (online) grocery  environment is special when it 

comes to efficient recommendations in the sense that customers tend to choose their favourite 

or usual items (instead of actively looking for new challenges). Indeed, past purchase frequency 

is the overwhelming element in defining what will be bought. Therefore knowing how many 

times customer A bought product B in a fixed period of time can yield a very good prediction 

as to whether the customer will buy the item again within a certain time-frame  (such as next 

week) [Boyet et al. 2005]. Additionally, there is only a certain number of recommendations a 

retailer can make and since the frequency with which a customer purchases an item is such an 

important predicto, most of these recommendations are determined by simply knowing this 

feature. Simple and efficient it may be, there is opportunity to significantly improve the 

recommendation list. This can be achieved via making use of the extensive frameworks of 

different machine learning families as well as leveraging the best practices in machine learning. 

Additionally there is room for investigating the impact of any extra features (aside from 

frequency of purchase) that have influence in determining the customers’ next purchases. 

Many of the aforementioned techniques such as recommendation science or collaborative 

filtering utilize machine learning.  As a separate field, machine learning is also receiving 

increased attention due to the increases in potential that advances in computational speed brings 

[Mjolsness 2001]. Many techniques and approaches have been developed and are available as 

open-source solutions. Many of these are referred to in [Witten et al. 2005] and [Michalski 

1998]. They list a large number of supervised and unsupervised machine learning techniques 
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including, decision trees, random forests, gradient boosted trees, Naïve Bayes classifier, neural 

networks, logistic regression, k nearest neighbours, support vector machines and derivatives of 

these methods. According to [Mohri et al. 2012] supervised algorithms are trained on labelled 

data, which means the ground truth is known for a given case. These techniques are discussed 

in detail in chapter 2.   

Machine learning has evolved to include many such tools, models or general processes for 

creating predictive algorithms. Some machine learning approaches combine multiple 

algorithms to improve predictions. These approaches are known as ensemble methods and have 

been applied in many industry and research fields [Tan et al. 2003], [Dietterich 2000] often 

producing better results than single algorithm approaches.  It is therefore speculated that a 

possible way to improve predictions in respect to what the customer will buy in the future is to 

utilize ensemble methods and find the right mixture of different machine learning models that 

by nature tend to capture different forms of interactions, be it linear or non-linear. An ensemble 

methodology would promote intuitiveness and possibly yield solid results in predicting what 

the customer will buy in the future, since instead of focusing on one approach (that has certain 

advantages and disadvantages), the focus could be shifted to leveraging the advantages of all 

methods included. 

 

Hybrid method to predict repeated, promotion-driven product purchases in an irregular 

testing environment: A popular application of recommendation science in the grocery (or 

FMCG) field is the allocation of promotional coupons as it is considered a very efficient way 

to increase customer loyalty. Consumers in the United States of America saved $3.8 billion in 

2002 by shopping with coupons [Michelle Rubrecht 2014] which means that improvements in 

allocation efficiency (in terms of identifying the best coupon to customer matches) could have 

a huge impact in loyalty generation and in turn the retailer’s bottom line.  

In recommender systems, predictive models often need to be built on small subsets of 

customers and products with incomplete, sparse or limited data. [Hu et al. 2006] addressed this 

problem by proposing a hybrid user and item-based collaborative system. Additionally, 

predictive algorithms, irrespective of the limitations on which they have been built, need to be 

able to extrapolate and generalize in unforeseen environments. [Lika et al. 2014] addresses the 

cold start problem in recommender systems needing to make predictions for new customers 

and products. [Garcin et al. 2014] highlights the difference between offline and online accuracy 
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evaluations, demonstrating that the best recommendation strategy may be different for the 

instore and online environments.   

Ultimately, the main objective of this experiment is to improve coupon allocation (as a means 

to boosting customer loyalty) within the context of an irregular testing environment. The 

irregularity of this environment is that predictive algorithms have to be built with limited data 

or with subsets of customers and products meaning that recommendations are tested on 

different customers and different promotional products to those which are used to train the 

algorithm.  

 

The StackNet model: It has been almost 25 years since [Wolpert 1992] introduced stacked 

generalization (or stacking) as a way to combine the predictions of multiple machine learning 

models using another (Meta) model. Until today there has not been a prominent software 

implementation of this algorithm although the advent in computing power allows the running 

of multiple machine models in parallel. At the same time deep learning has (re)surfaced 

[Schmidhuber 2015] as a strong predictive algorithm and through its multiple hidden layers 

and neuron synapses, it can exploit deep relationships inherent within the data. Combining the 

two methodologies of stacking and deep learning could therefore potentially yield uplift in the 

performance of machine learning tasks. Such an approach would require several algorithms to 

be available, however it could hardly be stated that there is a package or library that has 

everything (even the common ones). For the average data scientist it requires an extensive 

skillset of multiple programming tools, software and other resources to be able to leverage the 

benefits of different techniques. Therefore availability of the algorithms is still a fundamental 

factor in building better prediction modes and stimulating science.  

 The focus in recommendation and data science in general has not only been in making smarter 

(as in more accurate and/or inspiring) recommendations. There is an ever increasing appetite 

to make recommendation generation faster, more memory efficient and more automated. In 

order to leverage today’s big data, scalability in both recommendation and machine learning 

science is vital [Zhao et al. 2002]. Even the most comprehensive packages (such as R) that 

have a great variety of different techniques, are still lacking when it comes to scalability (for 

some algorithms) thus making the use of big data (with hundreds of millions of records) 

problematic. There is an irreversible move towards bigger and bigger data ([Mims 2010] and 

[Sutter 2005]) and CPU’s are not getting fast enough at a fast enough rate to keep up with 
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scaling requirements. The only way to keep up with increasingly fast-paced environments is to 

make applications scalable by dividing each task into different threads. 

The main motivation for using the StackNet model is to create a methodology that uses stacked 

generalization and applies it within a neural network architecture where the inputs of any nodes 

could be any machine learning model (and not just perceptions as is commonly the case).  By 

using this approach, one would expect to yield better generalization results in various domains, 

including the recommendation space.  

In conclusion my motivations for the current thesis can be summarised (per chapter) as: 

 Univariate Analysis of the Dataset: To understand the factors or features (other than 

frequency of purchase) that drive customers to buy certain products. 

 Meta-modelling to predict top K products: To improve recommender systems, 

especially for the top K items (that the customer has probably bought many times), by 

using cutting edge machine learning, leveraging a variety of different algorithms and 

approaches within a meta modelling framework and to prove that such a methodology 

can overcome any single model approach involved or simple ensemble method. 

 Hybrid method to predict repeated, promotion-driven product purchases in an 

irregular testing environment: To predict, using a hybrid method within the context 

of an irregular testing environment of different customers and different offers, whether 

customers will buy a product again after receiving a coupon for it. 

 The StackNet model: To demonstrate that the stacked generalization method applied 

within a neural network framework can achieve higher levels of accuracy and to 

introduce new scalable applications in the scientific community as a means to further 

extend academia’s capabilities in predictive modelling classification tasks (including 

the ones related to recommendation science). 
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1.2 Objectives of this Research 

 

The overall goal of this thesis is to apply ensemble machine learning approaches to improve 

recommendations.  The data used for this research is a freely-available sample of the retailer’s 

transactional data (also enriched with many descriptive fields) and consisting of several million 

observations.  Each experiment contributes to the overall goal in unique ways which are further 

analysed below: 

Univariate analysis of the dataset: The main objective from this experiment is to better 

understand the drivers that define next purchases for customers and improve predictions for 

the top K (commonly 10) items they will buy in the following week. The research will use 

engineered features that have to do with customers’ past purchasing history as well as general 

descriptive fields and will associate them with the propensity to buy a product in the following 

week. In this way a simple but insightful indication will be derived for each feature in the 

dataset. To facilitate capturing more information from the input data, an optimized binning 

technique will be deployed.  

Meta-modelling to predict top K products: This chapter investigates the uplift from using a 

stacked generalization approach to predicting what the customers of a retailer will buy in the 

following week. This uplift is measured against any single algorithm model used in the stacking 

model, all field benchmarks and other simple ensemble approaches such as model averaging. 

The underlying premise is that more accurate recommendations will yield value to the 

customers since the recommended items are more likely to be relevant to them. A more relevant 

customer experience will in turn produce loyalty to the retailer and product brand.  

Hybrid method to predict repeated, promotion-driven product purchases in an irregular 

testing environment: The third experiment borrows elements from the previous two 

experiments in regards to feature engineering and model ensembling within a retail 

environment. It aims to improve recommendations in such environments by predicting with a 

hybrid modelling methodology which products the customers will buy again after having 

redeemed a coupon for them at least once. Furthermore it aims to tackle the problem of an 

irregular testing environment of different customers and offers by proposing a novel cross-

validation methodology to measure and improve the accuracy of the predictive algorithms, the 

usefulness of derived features, the tuning of the algorithms’ hyper parameters and the overall 

modelling process in general.  
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The StackNet model: The objective of the final experiment, namely the StackNet model is to 

provide an algorithmic implementation of Wolpert’s stacked generalization within a 

feedforward neural network architecture to efficiently combine multiple machine learning 

models with the scope of improving accuracy in classification (and recommendation) 

problems. Apart from the methodology, along with the technical considerations, another aim 

of the thesis is to provide the algorithmic software infrastructure (in the Java programming 

language) to run all the algorithms in the form of a new library that could be accessed by 

anyone. The software will support multiple algorithms used for research, along with data pre-

processing steps, feature engineering capabilities, data transformations and cross-validations 

methods. Therefore as an additional objective this tool aims to offer more options in multi-

algorithmic approaches for large-scale problems.  

The multiple objectives of this research can be summarised as follows: 

 Univariate Analysis of the Dataset: Understand the retailer’s available data set, 

especially in respect to its predictive power in determining what the customers are going 

to buy in the future. 

 Meta-modelling to predict top K products: Leverage the benefits arising from 

multiple machine learning techniques and ensemble methodologies such as stacking to 

make more accurate recommendations as measured via multiple metrics against 

numerous single models, field benchmarks such as product popularity or simple 

ensemble methods like model averaging. 

 Hybrid method to predict repeated, promotion-driven product purchases in an 

irregular testing environment: Improve accuracy in predicting which products the 

customers will buy after having redeemed an offer for them, using a hybrid modelling 

methodology, assuming an irregular testing environment of different products and 

customers.  

 The StackNet model: Provide an implementation of stacked generalization [Wolpert 

1992] within a neural network framework as a means to combine multiple diverse 

models to improve the accuracy in classification tasks. 
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1.3 Research Methodology 

 

The following sections explain the research methodology utilised in each of the chapters in the 

current thesis. 

 

1.3.1 Univariate Analysis of the Dataset 

 

To achieve its objectives, this thesis will use the freely available (for research) data of a big 

retailer in the grocery space. In summary this dataset contains a stream of customers’ 

transactions for the period of 102 weeks.  Multiple fields are known for each transaction such 

as the time of purchase, item price, quantity of products purchased, discounts applied, and 

whether the product was on promotion or not. The dataset also contains hierarchical 

information about the products as well as other descriptive information about the customers 

such as age group and/or household type.  

The actual experiment will use a portion of this data (54 weeks), covering the period of week 

47 to week 101. One year of transactional data was deemed enough to create the modelling 

datasets. The overall expectation is to learn how the aforementioned features contained within 

the dataset define future purchases. That is, if all these variables are known for a period of 52 

weeks (from 47 to 99), to determine if it is possible to predict what the customers are going to 

buy in the weeks after week 99, in other words week 100 and week 101 respectively. 

This chapter will initially use basic descriptive analysis in the form of basic statistics and 

explanatory graphs to examine the distribution of certain customer characteristics, product 

features and other variables. The supervised metric of AUC (Area Under the roc Curve) will 

then be utilized to gauge the strength of the binary target variable (as in “will buy” or “will not 

buy”) with each one of the possible predictors. The volume of the data available will allow a 

thorough, statistically significant and comprehensive investigation that could easily be 

generalized across other similar grocery retail environments. It is therefore a rare and valuable 

research opportunity.  

Finally, this experiment treats some of the variables as nonlinear and will use an optimized 

binning method (based on the AUC metric as mentioned above) to capture these non-linearities 
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and replace them with the log of the odds of the target variable in such a way that the 

relationship with the target variable can be linearized and its predictive power better captured. 

Furthermore the uplift in AUC is estimated for all variables considered both in absolute and 

proportional terms, before and after the optimized binning method is applied. The end result of 

this chapter will be the ranking (based on AUC) of how predictive the individual feature, or its 

respective family is, in determining whether the customers are going to buy a specific product 

the following week. 

 

1.3.2 Meta-modelling to predict top K products  

 

The same data sources will be used for this experiment.  The question to be answered is whether 

predictions for the top K products the customers are going to buy the following week can be 

improved by using a meta-modelling approach versus all single-models involved, simple 

ensemble methodologies or field benchmarks. The main hypothesis is that by combing multiple 

machine learning methods that are different in nature (and therefore possess different 

advantages),  a significantly better solution will be achieved than if a single-method approach 

were used.  

The combination of models will be made via a secondary model that will use the previous 

methods as inputs.  Undertaking such a method aims to leverage the advantages of all the 

different applied methodologies to reach a more generalizable solution to this classification 

problem. The supervised techniques to be applied will include linear regression, logistic 

regression, decision trees, random forests, gradient boosting machines, multilayer perception 

(neural networks), kernel-based models and factorization machines. Some of these methods 

include a stage of feature selection and may further include some data transformation processes 

such as scaling and outlier removal.  

The training set formed includes the creation of a number of aggregated features based on the 

transactional data for the period of week 47 to week 99 and the target to predict is a binary 

indicator that shows whether the item under consideration is bought the following week (100) 

by a given customer. The test set uses the period of weeks 48 to 100 and the target week of 

101. The training/validation split will be 80-20. The same split of data is being used to both 

tune the models’ hyper parameters and then to make predictions. The criterion to optimize is 

precision K [5 10 20] and Area Under the ROC Curve (AUC). Apart from the aforementioned 
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algorithms, a series of different benchmarks such as product popularity and customer’s 

frequency of purchase per item, are also derived to facilitate comparisons among the different 

models’ results. 

After all models are fitted and all predictions are made and saved for both the validation data 

and the (future) test data, a random forest model will be used to combine all the predictions of 

the validation data as inputs to maximize AUC and precision K for the test data. The final 

tuning of this meta model is attained using a 5-fold cross validation. The performance of this 

model is compared against all single models involved, the created benchmark and simple 

combinations of the single models such as normal average and rank-transformed average. 

 

1.3.3 Hybrid method to predict repeated, promotion-driven product 

purchases in an irregular testing environment 

 

Given a set of customers of a retailer along with a subset of their past transactions where each 

customer has received and redeemed a coupon, a predictive modelling methodology is applied 

to improve predictions of whether the customers will buy the redeemed product again in the 

future. The dataset is divided into 2 parts. 160,000 are used for training the model and the 

remainder are used for testing. The datasets have minimal overlap between them as they include 

mostly different offers and different customers (and refer to different time periods). The 

objective is to maximize the AUC (Area Under the roc Curve) of whether a customer will 

repurchase a product previously bought via a coupon recommendation. 

This experiment investigates different cross validation methodologies to tackle the small 

overlap between the training and test data in order to maximize AUC, ensuring that a model 

will be able to generalize well in unobserved data. It further demonstrates the internal cross 

validation results of each methodology on a subset of features generated from the transactional 

history of customers along with the actual results they yield in the test data. The first validation 

methodology includes a random stratification of the training data based on offer so that each 

offer is equally (proportion-wise) represented in any train and validation splits. The other 

methodology ensures that splits are based on the number of  offers where N-1 (out of N) offers 

is used to build models and maximize the AUC in the nth offer. The last methodology adds 
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another step to the previous methodology via merging all predictions from all N offers together 

before estimating a global AUC out of all offers’ predictions. 

Furthermore it creates different recommendation methodologies, one content-based and 

another based on collaborative filtering to generate a hybrid methodology. The first (content-

based) approach assumes that the prediction of whether the customer will buy the item or not 

is dependent on the direct relationship he or she has with the item (i.e if it or items from the 

same brand were bought in the past). The model of choice Ridge Regression [Tikhonov 1977] 

trains on the actual number of times the customer bought the item after the offer date. 

The second (collaborative filtering) approach assumes that the propensity of an item to be 

purchased by a customer is strongly related to the likelihood that the customer belongs to the 

group of customers that like the item and would have bought it even if they had never received 

an offer for it. In this approach the target variable is created from the transactional data by 

taking the natural logarithm of how many times the item was bought 90 days prior to the offer 

date. Separate models are then trained on each different. The model of choice was gradient 

boosting trees [Breiman 1997] and many features were generated from the transactional history 

as well as by using deep learning and Restrictive Boltzmann Machines (RBMs) [Smolensky 

1986] from the raw data. 

Given both models have been trained on different target variables, the predictions are 

transformed to ranks before combining them. The final hybrid model uses an average of the 

two approaches (after applying the rank transformation).  

 

1.3.4 The StackNet Model 

 

The StackNet Model attempts to leverage the benefits of various machine learning algorithms 

and approaches in order to maximize performance against various accuracy metrics. The 

underlying architecture of the models and how they are connected with each other is very 

similar to what is found in a feedforward neural network. Each trained model is a node in a 

modelling architecture of various layers starting from models trained directly from the input 

data (which constitutes the input layer). Each new layer then uses as inputs the predictions (or 

outputs) of the previous layer until the final output is reached (which may be zero or one in a 

binary problem). 
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[Wolpert 1992] proposed the stacked generalization methodology as a means to combine the 

predictions from many different neural network models by using a holdout set. This new set of 

features forms a new dataset that is trained with another neural network in order to improve the 

performance in the test data. The ability of a model to generalize in unseen data may be 

sensitive to the number of available observations, hence a modelling architecture of multiple 

levels would have to be constantly splitting the training data in order to generate unbiased 

samples. A critical suggestion is to be able to re-use the initial training dataset multiple times 

without compromising the integrity in the way information of the target variable is being 

carried to multiple levels. This research demonstrates a k-fold cross-validation paradigm to 

reconstruct the initial training data with predictions of a given algorithm. 

Traditional neural networks have various ways of reaching convergence (such as back 

propagation). However, in the StackNet architecture, each model is validated on holdout data 

which is later used for further modelling (as features), which means that traditional modelling 

through various epocs (or iterations) would not make much difference in the final outcome 

versus optimizing the hyper parameters of the selected model-features. To accelerate 

convergence this research proposes two different types of connections among the different 

layers, one that assumes a direct forward connection from the models of  one layer to the next 

and another that requires each layer to include as inputs all models from previous layers. 

Finally aside from the theoretical underpinnings of this methodology, the effectiveness of the 

algorithm can be better comprehended with an actual implementation. Therefore multiple 

algorithms will be re-implemented in the Java programming language, leveraging multi-

threaded technologies to create a machine learning library for the implementation of the 

StackNet model.     

 

1.4 Research Contribution 

 

This section will be divided into four parts to align with the experiments as defined in the 

abstract. This research contributes to existing literature in a number of new ways. 

Univariate Analysis of the Dataset: The Complete Journey dataset [dunnhumby 2014] 

contains datasets of customer transactions from the grocery (or FMCG) field of a large enough 

breadth and volume for descriptive analysis to be considered robust and statistically significant. 
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This allows for better understanding of and thorough mapping of the average retail customer 

and enables credible insight into the factors that link customers to future purchases to be 

derived. The non-linearity of certain features in respect to future purchases is addressed using 

an optimized binning methodology. This will also facilitate future modelling of these features.   

Meta-modelling to predict top K products: This  chapter focuses on improving prediction 

offuture purchases using a meta-modelling approach taking advantage of a portion of the main 

algorithmic families that have been developed (or resurfaced) over the last decade in machine 

learning. Its novelty is derived from demonstrating that such an approach can outperform any 

single model involved in the mix, any simple model combination method or field benchmark 

in the grocery recommendation space. This is highlighted against the metrics of AUC and 

precision at K (or precision@K).   

Hybrid method to predict repeated, promotion-driven product purchases in an irregular 

testing environment: The distribution of coupons is a common challenge for recommenders 

to optimize in the grocery field as customer satisfaction and loyalty are influenced by it. Often 

such recommender systems need to be built with limited or a subset of data and be able to 

extrapolate well to unseen environments of different customers and offered products. This 

research proposes an N-offer cross validation methodology to improve predictions in such 

environments by maximizing AUC of the products the customers will buy again in the future. 

Furthermore, using the same validation methodology it proposes a novel combination of a 

feature-driven, content-based approach and a collaborative filtering approach to improve 

results on top of these single methods involved.  

The StackNet model: Ultimately this chapter re-implements Wolpert’s stacked generalization 

and combines it with a feedforward neural network architecture in order to provide a scalable 

framework to combine multiple algorithms in order to achieve higher accuracy in classification 

tasks (including but not limited to the recommendation science). The methodology is also made 

available to the general scientific community in the form of a machine learning library 

implemented in the Java programming language, aiming to address the issues arising from the 

unavailability of certain algorithms for large scale problems. This is the first software 

application fully dedicated to meta modelling. 
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1.5 Structure of the thesis 

 

Structure of this thesis  

 Chapter 2 Literature Review: describes the literature pertinent to this research and 

reviews background information on a number of key concepts in the areas that this 

research spans. 

 Chapter 3 Univariate Analysis of the Dataset: Chapter 3 scrutinizes the retailer’s 

available dataset and provides explanatory insight in regards to the features that are 

going to be used later for the prediction algorithms. It addresses the non-linearity of 

certain features derived from customers’ transactional history and proposes a binning 

methodology to aid capturing it.  

 Chapter 4 Meta-modelling to predict top K products: Chapter 4 part investigates 

the improvement in prediction for forecasting the customers’ top K products in their 

next visit to the retailer’s store via combining an arsenal of different supervised  

machine learning algorithms.  Furthermore it examines the improvement in prediction 

of the top K products for these customers using a meta-modelling approach versus all 

single models involved, simple ensemble models and field-related benchmarks. 

 Chapter 5 Hybrid method to predict repeated, promotion-driven product 

purchases in an irregular testing environment: This chapter utilizes the findings 

from the previous two chapters regarding feature engineering and model combination 

to improve predictions regarding which products the customers of a retailer will buy 

again in the future after having received an offer for them. This prediction is further 

enhanced by a cross validation methodology tested to yield better AUC results in an 

irregular future environment where the scoring population includes different customers 

and largely different offers than those used to create the models. It then proposes a 

hybrid model of a content-based approach along with a collaborative filtering approach 

to further improve results on top of any of these two single methods involved.    

 Chapter 6 The StackNet model: Chapter 6 describes the StackNet model which 

constitutes a scalable implementation of Wolpert’s stacked generalization within a 

feedforward neural network architecture with the aim of improving predictions in 
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classification (as well as recommendation) tasks. Subsequently many considerations 

regarding efficient fitting of this algorithm are explained and various modes and 

modelling characteristics are analyzed. The overall usability of the model is presented 

through its Java implementation which accompanies this research work. Different 

instances of StackNet models with multiple levels and architectures are then tested to 

rank the likelihood of a given song being created before or after 2002 using a set of 90 

numerical attributes out of 515,345 songs that come from a subset of the Million Song 

Dataset [Bertin-Mahieux et al. 2011].  

 Chapter 7 Conclusion: Chapter 7 provides an overall conclusion of this research with 

a summary of the key findings and their implications. The thesis ends with a number of 

recommendations per chapter in the form of future work that could be done in this area 

to further improve results. 
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2. Background 

 

This chapter provides the literature review that underpins the topics analysed and evolved in 

this thesis. The chapter starts with a historical overview of the evolution of recommender 

systems and the machine learning applications within this field. It then goes on to offer a 

comparative overview of the different machine learning methods as well as an explanation of 

the common statistical measures utilized in the field. 

2.1 Univariate Analysis of the Dataset  

 

2.1.1 Brief Overview of recent recommender systems 

 

The main aim of the thesis is to improve recommendations for customers in a retail 

environment - specifically grocery retail. Recommendation science in this context can be 

defined as the principles, techniques and applications that facilitate the process of suggesting 

an item (product) to a customer [Ricci 2001]. Recommendation science has received increased 

attention in recent years [Sarwar Badrul et al. 2001] and has been widely used by internet 

companies of all sizes (notably Facebook, Amazon and Google).  

Since the onset of online retailing, the ability to recommend relevant products to customers has 

been a hugely important marketing tool for driving sales [Weng et al. 2004]. In today’s era of 

Big Data [Chen et al. 2012], where there is an increased capacity to store and process large 

quantities of data, making recommendations has become a data-driven process [Linden et a. 

2003]. The advances in algorithmic data processing and in machine learning have allowed 

frameworks to be developed [Gandomi et al. 2015] which improve predictions and 

consequently recommendations.  

Corporations have invested heavily in unlocking the power of their data to successfully connect 

customers and products.  [netflix 2009] paid $1,000,000 for the algorithm that could best 

predict the rating a customer would attribute to a given film. [Expedia 2013] did the same for 

optimizing hotel rankings to maximize customer click-through and purchase rates. 

[StumbleUpon 2013] tried to understand the elements that make a website relevant at a given 
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time.  Indeed, data challenges have been used by many different companies to optimize 

recommendations for a diverse range of products/services including retail, music, art and 

geography and have taken many different forms such as image-based recommendations. There 

are now many organizations (such as dunnhumby) whose business offering is to provide such 

recommendation services. There are also numerous open source applications including [LibFM 

2012],  [LibFFM 2015], [GraphChi 2012] and  [RankLib 2013] which are specifically 

dedicated to this field.  

The data driven version of recommendation science has three main expressions. Content-based 

recommendation science can be defined as the process of selecting products because they 

adhere to a specific set of characteristics. For example a company that recommends art to 

customers would use such a method to classify a piece of art as modern so as to be able to 

recommend it to a customer who has previously purchased modern art. However, although this 

method is easy and quick to implement, its exploration of the relationships which connect 

customers and products is very superficial. Collaborative recommendations are the next step 

up - they look for deeper connections. Applied to the earlier art world example, a collaborative 

recommendation process would seek to understand similarities between customers as it 

assumes that customers who share similar characteristics are likely to have similar preferences. 

However, depending on the size of the database, it can be a very time-consuming process to 

calculate similarities across all customers in order to make the best recommendations. In 

practice hybrid recommendations which combine the benefits of the content-based and 

collaborative approaches are often used and can be effective [Adomavicius et al. 2005]. 

In the current thesis, recommendation science will be perceived as a more abstract machine 

learning field. Admittedly the relationship between customer and product is vividly complex 

and many successful unsupervised algorithms (such as Singular Value Decomposition [Golub 

1970]) are commonly used to find and map these underlying complexities and generate features 

that explain them. [Pedregosa 2011] defined unsupervised learning methods as those in which 

the training data consists of a set of input vectors without any corresponding target values. The 

goal in such problems is to discover groups of similar vectors within the data. This particular 

approach is referred to as clustering. Another example is to determine the distribution of data 

within the input space, known as density estimation, or to project the data from a high-

dimensional space down to two or three dimensions for the purpose of visualization.  
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2.1.2 Feature Types 

 

There are four key elements that define purchase behavior. The first element is the number of 

times a customer has previously purchased the product. This is a critical feature in the majority 

of commercial recommendation engines. A customer’s purchase history and their loyalty to a 

specific brand or product can greatly influence their propensity to buy an item. [Meyer-

Waarden 2008] demonstrated that loyal customers (who visit more often) respond more 

positively (than non-loyal) to product recommendations given a certain number of factors. 

Similarly, based on data from various businesses, [Marcus in 1998] created a Customer Value 

Matrix which provides an approach to defining customer value using information such as 

frequency of purchase and purchase cycle.  

The second key element is useful in introducing customers to new products. It is based on the 

idea that people sharing similar characteristics will like similar products. As [Ahn 2008] 

describes, the cold-start problem can be addressed by using features generated from customer-

to-customer and product-to-product associations through approaches such as collaborative 

filtering. Customer segmentation itself has gained ground with the use of unsupervised machine 

learning techniques such as Principal Components [Pearson 1901] analysis, Singular Value 

Decomposition [Golub 1970] and other forms of information decomposition techniques as well 

as clustering techniques such as in K-means [MacQueen 1967] and Hierarchical [Ward 1963]. 

The resulting customer segments can then be leveraged later on in a modelling and prediction 

processes. The idea of using this kind of latent space to generate features has led to the  

development of customer-to-item generation methods using matrix factorization techniques 

[Koren et al. 2009]. These techniques have also been developed further to be utilized in 

supervised form, for regression or classification problems. A landmark in this kind of 

combination of supervised learning, using unsupervised features is LibFM [Rendle 2012].  

More recent advancements in this space include the inclusion of deep learning and neural 

networks to create a similar latent space feature library that can be used to summarize 

customers and products based on input data. Restrictive Boltzaman Machines [Smolensky 

1986] have also been used in dimensionality reduction and have also been applied in 

collaborative filtering with success [Salakhutdinov et al. 2007].  

The third element is based on product attributes.  Linden et al. [2001] highlights the efficacy 

of item-based elements such as item quality or item popularity in contributing to the accuracy 
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of product recommendation models. Product attributes such as price, recent sales, discounts as 

well as attributes relating to product categorization hierchy (food Pizza Pappa John’s) can 

be useful additions in predicting a product’s likelihood of being purchased. 

The fourth element that drives purchase behavior is contextual information. [Setten et al. 2004] 

describe this as “any information that can be used to characterize the situation of an entity”. 

Their demonstration of context-aware recommendations constitutes state-of-the-art 

recommendation science today.  [Adomavicius et al. 2005] also emphasize the importance of 

contextual information such as time, temperature and location in models from many different 

disciplines including e-commerce personalization, information retrieval, ubiquitous and mobile 

computing, data mining, marketing, and management.  

 

In summary, the key drivers of purchase behavior can be categorized into four key groups: 

 Features that describe the customer 

 Features that describe the item 

 Features that describe the relationship of customer and item  

 Contextual Features 

All the aforementioned features will be examined in accordance with the propensity of the 

customer to buy an item in following week. 

 

2.1.3 Binning of features 

 

[Dougherty et al. 1995] defines the binning of features as the discretization of continuous 

variables, that is to say the method through which continuous variables are transformed into 

discrete counterparts. Such methods may be based on unsupervised of supervised algorithms. 

Supervised binning methods take into account the information contained in a target variable 

to define the most optimal bins against various metrics. Examples include methods used in 

decision tree algorithms such as CHAID [Kass 1980], CART [Breiman 1984], ID3 [Quinlan 

1986], C4.5 [Quinlan 1993] and J48 [Bouckaert 2010]. While decision trees can find the 

optimal cut-offs iteratively both in a univariate and multivariate context as part of their learning 

procedure, there are also methods dedicated solely to transforming variables optimally via 

binning (i.e. to be used for further modelling). Many of these methods fall into MDLP (Minimal 
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Description Length Principle) whereby a variable is split into a certain number of bins (hybrid 

method) or all distinct values are considered (standard method). Then all these bins are 

gradually being merged based on the impact they yield against a supervised metric such as 

Entropy (defined at 2.2.2). This merging of bins is repeated until an optimum number of bins 

is formed against some criteria that have to do with complexity and optimization [Xi 2006].  

Unsupervised methods bin the variables based on underlying distributions. [Han et al. 2006] 

enumerate various unsupervised methods including histogram-based approachs where they 

detail two commonly applied variations: binning based on equal width and binning based on 

equal population (also referred to as equal frequency). The first method consists of binning a 

variable based on equal intervals (e.g. every 10 points) while the latter ensures that each bin 

contains an equal number of samples. Clustering is another frequently used method described 

by [Han et al. 2006] whereby bins (or clusters) are created based on the closeness of data points. 

Binning based on observation and intuition also fall into the category of unsupervised binning 

methods.  

The binning of continuous variables has been largely used in credit scoring applications where 

variables need to be expressed as categories in order to create credit scorecards [Lucas 2001], 

[Hsieh et al. 2010], [Siami et al. 2013], [Zeng 2014]. However there have also been examples 

where binning of continuous variables has been employed in the collaborative filtering and 

recommendation space.  [Hao et al.2016] use discretization techniques to transform input 

features for collaborative filtering models predicting the occurrence of certain pathological 

states such as sudden cardiac death and recurrent myocardial infraction. [Poirier et. al 2010] 

apply an optimal discretization method of numerical features to improve the predictive 

algorithm for recommending movies via exploiting blogs of textual data from the web. 

 

 

2.2 Meta-modelling to predict top K products 

 

The following sections give an overview of the common ensemble methods in predictive 

modelling, some of the typical metrics commonly selected to optimize these methods and a 

selected but representative sample of the supervised algorithms that are often used in machine 

learning.  
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2.2.1 Overview of ensemble methods 

 

The idea of combining different machine learning or statistical methods (also known as 

ensembling) to reach a better solution is not new in data science. [Breiman 1996] demonstrated 

that bagging i.e. model averaging, commonly performs better than any single model. [Granger 

1969] used a forecasting average mechanism to improve forecasts and achieve lower root mean 

squared errors in a model predicting how many customers would use an airline service.  There 

are various methodologies for combining models. The most common methodologies are listed 

below: 

 

2.2.1.1 Simple averaging 

 

Simple averaging is the simplest form of ensembling . It assumes each model has an equal 

weight in the final model.  In scientific notation it could be represented by equation 2.1: 

                          𝑌̂ = 𝐺(𝑋) =
1

𝐿
∑ 𝐺𝑙(𝑋)

𝐿

𝑙=1
=
1

𝐿
∑ 𝑦̂𝑙
𝐿
𝑙=1                                       (2.1) 

 

,where X ∈ℜ  is a tabular dataset, G(X) is the function that maps X to a target variable Y ∈R, L is 

the number of estimators in the ensemble, and 𝑦̂𝑙 is the prediction of each estimator and 𝑌̂ the 

final prediction of the ensemble [Ashtawy et al. 2015] . 

 

2.2.1.2 Bagging 

 

This method is very similar to simple averaging.  The difference is that each model is built on 

a bootstrapped set that consists of samples extracted via replacement from the main dataset.  

According to [Kuncheva et al. 2003], if the single models can yield diversity, that is to say 

bring in new information, it can benefit the overall ensemble model. Bootstrapping allows the 

models to become slightly different (as they are trained with different subsets of the data) 
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thereby increasing the diversity of information they bring to the whole.  In scientific notation 

it may take the form of equation 2.2: 

 

                        𝑌̂ = 𝐺(𝑋𝑃) =
1

𝐿
∑ 𝐺𝑙(𝑋

𝑝𝑙)
𝐿

𝑙=1
=
1

𝐿
∑ 𝑦̂𝑙
𝐿
𝑙=1 ,                                             (2.2) 

 

where XP ∈ ℜP is a tabular dataset with sample size P, G(XP) is the function that maps X to a 

target variable 𝐘 ∈ R. XPl is a tabular dataset with the sample size of P, but generated using 

bootstrapping via randomly selecting samples from the original XP. L is the number of 

estimators in the ensemble, and 𝒚̂𝒍  the prediction of each estimator and 𝒀̂ the final prediction 

of the ensemble [Ashtawy et al. 2015].  

In the context of this thesis, the term bagging will include other forms of randomized averaging, 

specifically Pasting for when random subsets of the dataset are drawn as random subsets of the 

samples [Breiman 1999], Random Subspaces [Ho 1998] for when random subsets of the dataset 

are drawn as random subsets of the features and Random Patches [Louppe et al. 2012] when 

base estimators are built on subsets of both samples and features.  

 

2.2.1.3 Boosting 

 

In boosting each model is added sequentially to the ensemble in order to improve overall 

performance. [Kearns 1988] was the first to propose a sequential approach and it can be very 

effective in combining weak learners into a powerful ensemble. A notable advantage of this 

method is that the weight of each model is adjusted and focused on the errors of the previous 

model(s), therefore making it easier to focus on the less explored or more difficult areas of the 

data space. On the other hand these methods tend to lead too overfitting. In employing boosting 

techniques, it is therefore important to penalize predictions via a shrinkage parameter or 

learning rate (or eta) to prevent overfitting from occuring. 

There are various methods for boosting models, the most well-known of which are Adaboost, 

Logitboost and Gradient Boosting (or MART). Since the latter is most commonly used, it will 

also be considered by the current thesis.  

The boosting may take the equation: 
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                                   𝑌̂ = 𝐺(𝑋) = ∑ γ𝑙𝐺𝑙(𝑋)
𝐿

𝑙=1
= ∑ γ𝑙𝑦̂𝑙

𝐿
𝑙=1                                        (2.3) 

 

 X ∈ ℜ is the tabular dataset, G(X) is the function (which commonly takes the form of a decision 

tree) that maps X to a target variable Y ∈ R, L is the number of estimators in the ensemble, 𝑦̂𝑙 

is the prediction of each estimator in the ensemble and 𝑌̂ is the final prediction of the ensemble. 

γ𝑙  is the shrinkage applied to each estimator. It is common that the shrinkage is constant 

irrespective of the estimator [Ashtawy et al. 2015].  

The gradient boosting model uses the negative gradient of a differentiable loss function to 

update each model. This update can take the form of equation 2.4: 

 

                                        𝐺𝑙(𝑋)  =  𝐺𝑙−1(𝑋)  + γ𝑙𝑦̂𝑙                                                     (2.4) 

 

In other words each estimator can be summarized as the weighted (by learning rate) sum of 

predictions of the preceding l-1 estimators plus the prediction 𝑦̂𝑙 of the estimator lth that is 

trained on the residuals of the 𝐺𝑙−1(𝑋) estimator with the target variable Y. In this thesis, 

Gradient Boosting will be used with decision trees as base learners.  

 

2.2.1.4 Meta-model weight computation with cross-validation 

 

Another way to combine models is by creating another model (commonly referred to as a meta-

model) that takes as inputs the outputs of other models. For example, [Jin et al. 2009] used a 

generalized linear model for binary outcomes to combine different predictors for estimating 

the probability of a subject having a certain disease. The improvement in performance of the 

predictions of these models was measured using the Area Under the ROC Curve (AUC).   

[Smyth and Wolpert 1999] demonstrated the sensitivity of a stacking approach to over-fitting 

given the involved models’ complexity.   A stacking model (as almost any other machine 

learning model) naturally over performs in the data it has been created with, causing it to lose 
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some of its ability to generalize in previously unseen data. The high complexity of a stacking 

model that naturally involves multiple algorithms at its base, each one likely to have different 

considerations and modelling assumptions, massively increases the possibility of over fitting.   

For that reason when utilizing a stacking model it is vital to do so by creating unbiased 

prediction for previously unseen or validation data. More commonly this is achieved via a K-

fold cross validation where each model is trained on a subset of the initial data and predictions 

are formed for the other subset. The predictions as well as the real target values for that subset 

are saved for further modelling. As [Kohavi 1995] stated, this procedure reduces the variance 

of the final estimation although it increases the bias.  According to the same paper 

bootstrapping each fold can reduce the variance even further.   

Assuming that all different models applied to the same set have been cross-validated in exactly 

the same way and all predictions are saved for the same folds on the data, then these predictions 

can form a new set where the new target Y will be the concatenation of all validation targets 

of the k-folds validation sets and the new covariate matrix X will be consisted by J models 

where each j is a different model applied to the same cross-validation procedure. This process 

can be better explained via pseudocode. 

The Meta modelling with K-Folds Paradigm takes the following parameters:  

 SplitPercent: The percentage of the initial set to be used for validation at each k fold of 

cross-validation, for example 30% (and 70% for the training set) 

 K: The number of cross validations to run (for example 10). 

 x0: The initial set of features to use to train each different model (classifier in this case, 

but it could be a regressor for a regression problem ). 

 y: The target or label variable , that takes values of 1 or 0. 

 n: The number of training points (e.g. the rows of the dataset) 

 C: The number of different classifiers within the ensemble. 

 𝑦̂: Is 2dimensional vector of predictions with sample size equal to the rows of the kth 

validation dataset and dimensionality equal to the number of classifiers C.  

 x1: The new set of features where each column denotes the concatenated predictions of 

a chosen classifier to each of the K validation sets. Its columns will be C, as many as 

the chosen classifiers. 

 y1: Is the concatenated subsets of the target variable y of all K validation datasets.  

 G: The final Meta model to be trained with x1 as feature set and y1 the label.  
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The algorithm can be further portrayed via pseudo code by figure 2.1 as: 

1. For k=1 to k=K, the initial dataset { x, y}  with rows n  get split by SplitPercent to 

form a new train set : 

traink = {𝑥k , 𝑦k}  with sample size (1 −  SplitPercent  x n) 

and validation set 

validationk = {𝑥m , 𝑦m} with sample size (SplitPercent  x n) 

a. For c=1 to c=C, a classifier is trained on the traink set and predictions 𝑦̂mare made 

for the {𝑥m , 𝑦m} validationk set 

i. Predictions get concatenated horizontally:  𝑦̂  → [𝑦̂ ~ 𝑦̂m] 

b. 𝑦̂  is concatenated vertically:  𝑥1 → [𝑥1| 𝑦̂] 

c. 𝑦m is also concatenated vertically:  𝑦1 → [𝑦1| 𝑦m] 

2. The Meta model G is now fitted on the {𝑥1, 𝑦1} 

 

Figure 2.1 : Meta modelling paradigm with K-Fold cross validation 

 

The general process of using models’ predictions on some validation data as inputs to other 

meta-models was first introduced by [Wolpert et al. 1992] and they gave it the name of stacked 

generalization or stacking, where various neural networks with different structures were 

combined to achieve a better generalization error in a prediction task.  

In the current thesis, Stacking will be used along with bagging and with random decision trees 

to achieve a better generalization error. 

 

 

2.2.2 The Metrics  

 

A common objective in recommendation science is to improve the classification accuracy of 

future purchase predictions (e.g. what the customer will buy in their next visit to the retailer). 

There are various metrics that can be used to judge the efficacy of the different modelling 

techniques or methods that set out to achieve this objective. It is only through using a 
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combination of these metrics that we can compare the merits of the different options. The 

current thesis will focus on the most widely used and representative families of these metrics. 

 

2.2.2.1 Classification Accuracy 

 

Classification accuracy, represented by formula 2.5,  is probably the most common measure in 

classification tasks and is computed for a given cut-off probability (normally 0.5 or 50%) using 

the elements of the confusion matrix [Pearson 1904] as: 

Table 2-1 : Confusion matrix and its elements 

  It is the category It is NOT the category 

Predicted the category True Positives (TP) False Positives (FP) 

Predicted NOT the category False Negatives (FN) True Negatives (TN) 

 

Based on the elements of the confusion matrix, the classification accuracy can be denoted as: 

 

                                       Classification accuracy =  
TP+ TN

TP+TN+FP+FN
                                 (2.5) 

 

A pitfall of this metric is that it does not question the ranking of the predicted score in respect 

to the target variable and is only focused on whether the classification is correct at a given cut-

off point. 

 

2.2.2.2 Precision@k 

 

This metric is perhaps more suitable for recommendation science as it describes how predictive 

a method is at any given point in the recommendation list (where products are ranked by 

relevance score) [Powers 2011] – although optimization efforts tend to be focused on the results 

at the top of the list. The following equation displays the measure of precision for a specific k, 

where k refers to the product’s position in the ranked list. 
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                                               Precision@k =
TPk

TPk+FPk
                                                    (2.6) 

 

2.2.2.3 AUC (Area Under Curve) 

 

The ROC (Receiver Operator Characteristics) curve was first introduced by [Green & Swets 

1966].  It describes the confusion matrix of sensitivity (represented by formula 2.7) and 1-

specificity (represented by formula 2.8) for each possible cut-off of the prediction’s array. 

 

                                                             Sensitivity =
TP

TP+FN
                                                        (2.7) 

 

                                                        Specificity =
TN

TN+FP
                                                       (2.8) 

 

In recommendation science, sensitivity is the percentage of customers who buy the offered (or 

recommended) product who were predicted to buy it and specificity is the percentage of 

customers who do not buy the offered product who were predicted not to buy it. An explanatory 

graph that breaks down the AUC to its basic elements is illustrated in figure 2.2:  

 

Figure 2.2: Roc Curve and AUC (Area Under the Curve) 
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In other words it reflects how the prediction’s accuracy changes for all possible cut-offs. 

More specifically the AUC formula 2.9 can be written as: 

 

                    AUC(X, Y) = ∑ ∑
L[f(xi

+)>f(xj
−)]+ 

1

2
L[f(xi

+)=f(xj
−)]

2n+n−

n−
j=1

n+
i=1                                           (2.9) 

 

, where X is a feature with real values and Y another feature with 2 possible labels, one  deemed 

as positive and one negative (commonly -1 for the negative  and +1 for the positive or 0 for the 

negative and 1 for the positive). A sample xn extracted from X is often a value in the range (0, 

1) and expresses the probability of that nth sample to belong to the positive class of Y. The Y 

is not included in the formula 2.9, but it has been used to determine which samples (out of n+) 

belong to the positive class and which samples (out of n-) belong to the negative class. A sample 

retrieved from X which belongs to the positive class can be referred to as xi and from the 

negative class as xj. L is the function which returns 1 if the argument contained in the brackets 

is true and 0 otherwise. For a perfect AUC score all positive observations need to have a higher 

score then the negative observations ([𝐟(𝐱𝐢
+) > 𝐟(𝐱𝐣

−)]).  

 

2.2.2.4 Pearson Correlation 

 

Pearson’s correlation coefficient, often denoted as r (or R) is a form of a bivariate linear 

correlation. It was introduced by Karl Pearson in the 1880s [Mukaka 2012]. The formula to 

obtain the coefficient for two vectors X, Y, where xi,yi are single samples from X,Y, is:  

 

                                    r(X, Y) =
∑ (xi−X̅)(yi−Y̅)
n

i=1

√[∑ (xi−X̅)
2n

i=1
][∑ (yi−Y̅)

2n

i=1
]

                                               (2.10) 

where X̅ is the mean for vector X∈ℜ and Y̅ the mean of vector Y∈ℜ. 
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2.2.3 The Algorithms  

 

One of the main objectives of this thesis is to exploit state-of-the-art machine learning 

algorithms to better optimize the given metrics via ensemble methods. These algorithms can 

be either of a supervised or unsupervised nature. This chapter will focus mostly on the 

implementation details of the algorithms. Many of the algorithms have a number of hyper 

parameters associated with them and quite often finding the right values for these parameters 

is important in obtaining good estimates. The hyper parameters for each algorithm are listed in 

6.3.5, under the experiment using the StackNet model.  

 

2.2.3.1 Linear Regression 

 

Linear or Ordinary Least Squares regression (OLS) is one of the most widely used statistical 

methods and consequently machine learning algorithms that attempts to linearly combine 

various inputs by means of finding the optimum coefficients which minimize the squared error 

in respect to a dependent variable Y ∈ ℜ [Craven et al. 2011]. In simple terms it minimizes 

equation 2.11: 

 

                      E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
=
1

2
∑ (yi −W

Txi)
2N

i=1
                                     (2.11) 

 

where W is the vector of coefficients ∈ ℜ and has the same size as the number of features in 

the dataset X ∈ ℜ with sample size N plus one more feature if a constant value is included. ŷi 

is the predicted value for a given sample i derived from the multiplication of the transposed 

vector of coefficients WTwith the feature vector xi of a single sample i. Very commonly OLS 

regression is used with a modification to account for multicollinearity [Wold 1984] in the data 

that can heavily bias predictions, namely regularization (often denoted as c, C or λ). The latter 

can be seen as a form of penalty that is applied to the coefficients in order to halt their values 

from growing uncontrollably. The most prominent form of regularization is the L2 applied to 

the coefficients. The previous equation can now be written as 2.12: 
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    E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
+
1

2
λ𝑊𝑇W =

1

2
∑ (yi −W

Txi)
2 +

1

2
λ𝑊𝑇W 

N

i=1
                  (2.12) 

 

This is also called Ridge Regression [Tikhonov, 1946]. In matrix form the solution can be 

obtained via equation 2.13: 

 

                                       Ŵ=argmin 
W

E(w) = (XTX + λI)−1XTY                                                (2.13) 

 

where XTX is the covariance matrix of the given features, a scalar λ for the regularization term 

and I an identity matrix where all the values of the diagonal have the value of 1. The Ŵ indicates 

the OLS estimate of W. 

Equation 2.13 demonstrates that in order to find the optimal coefficients W, it is required to 

compute the inverse of the XTX + λI matrix, which can be can be expensive if data 

dimensionality is large. In order to avoid this operation, there are methods that use iterative 

minimization of the loss function E. One family of these methods is the gradient descent (GD) 

[Bottou 2010].   

To solve the W using this method, the vector W is initialized with some values w0. Then (and 

until convergence) the E gets optimized iteratively. W gets updated by moving along the 

direction of the negative gradient −
∂E

∂W
  as shown in equations 2.14 and 2.15: 

 

                                                     W = W− a 
∂E

∂W
                                                              (2.14) 

or in matrix notation: 

                                                     W = W−  α XT(XW −  Y)                                               (2.15) 

 

where a is the learning rate or the step by which the weights W are updated iteratively. The 

value a is typically found experimentally during a cross validation procedure.  
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Stochastic Gradient Descent (SGD) is another form of a gradient optimization method of a 

differentiable function that uses the gradient of that function to reach its minimum point. The 

term stochastic refers to the fact that the path to the minimum point can be achieved 

incrementally without requiring to parse the whole dataset at once, but instead sample by 

sample. For this specific reason SGD is commonly associated with online learning [Ma et al. 

2009] for its ability to update the current parameter values as soon as the respective labels are 

known, using the gradient of the function. In this case the update of W can occur using one 

sample point xi as illustrated in equation 2.16: 

 

                                                     W = W−  α 𝑥𝑖(𝑊
𝑇𝑥𝑖 − 𝑦𝑖)                                               (2.16) 

 

2.2.3.2 Logistic Regression 

 

Logistic Regression (LR) is a modification of the initial OLS problem where the output score 

can be expressed as a probability for a given label Y to belong to a class of 1 or -1. In other 

words the interest is in predicting the label probabilities P(Y | X, W), given a feature vector X 

and some coefficients W. The probability that the label is 1, using the Logistic Regression 

model is derived using equation 2.17:  

 

                                        P(Y =  1 | X,W) =  σ(W⊤X) =
1

1+ e−W
⊤X

                                  (2.17) 

 

where σ is the logistic (or sigmoid) function which maps all real number into (0, 1) [Li et al. 

2016]. The function to minimize is the log likelihood, denoted as logL: 

 

  LogL(W) = logP(Y | X,W) = ∑ logP(yi | xi,W)
N

i=1
=∑ −log(1 + e−yiW

Txi)
N

i=1
     (2.18) 
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Where log is the natural logarithm (or the logarithm to the base of the mathematical constant 

e), e is the Euler's number and N is the sample size of X. Adding the λ regularization term, the 

coefficients W can be derived via minimizing the LogL [Minka 2003]: 

 

         𝑊̂ = argmin 
𝑊

LogL(W) = argmin 
𝑊

∑ −log(1 + e−yiW
Txi)  +

1

2
λ𝑊𝑇W 

N

i=1
               (2.19) 

 

There is no closed-form solution to solve 2.19 but it can be solved iteratively using Gradient 

Decent on W. In that case, the gradient (∇) of W (excluding regularization) in respect to the 

LogL can be computed with 2.20: 

 

                                                 ∇WLogL(W) =∑
xiyi

1+ eyiW
Txi

N

i=1
                                            (2.20) 

 

2.2.3.3 Linear Support Vector Machine 

 

Linear SVM is a scalable and easy to implement model that linearly combines various features 

to achieve the best linear separation of two classes, normally 1 and -1. While logistic regression 

focuses on giving an estimate of probability to an event, SVM is more focused on getting the 

classification correct [Rosasco et al. 2004].  The most common loss associated with this kind 

of linear separation is the Hinge loss, denoted as HingeL. Given a feature set X ∈ ℜ and 

corresponding label Y ∈ ℜ, where each yi ∈{−1,1}, the loss function can be computed as: 

 

                         HingeL(W) = HingeL(Y, X,W) =  ∑ max{0,1 − yiW
txi}

N

i=1
                    (2.21) 
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where W is the vector of coefficients. Their optimum values (that minimize the Hinge loss) can 

be obtained via 2.22 assuming that there is a λ penalty: 

 

      𝑊̂ = argmin 
𝑊

HingeL(W) = argmin 
𝑊

∑ max{0,1 − yiW
txi}

N

i=1
 +

1

2
λ𝑊𝑇W                   (2.22) 

 

The optimal W can be found using gradient and sub gradient methods on W. The gradient (∇) 

of W (excluding regularization) in respect to the HingeL (excluding regularization) can be 

computed with 2.23 [Collobert et al. 2001]: 

 

                                ∇WHingeL(W) =∑ {
−yixi  , if  yiW

txi  < 1

0, if  yiW
txi  ≥ 1

N

i=1

                              (2.23) 

 

2.2.3.4 Multilayer perceptron and neural networks 

 

Moving away from the linear models, neural networks have been used extensively in machine 

learning applications and in various fields, including recommendation science for many years 

[Christakou et al. 2007]. Neural Networks or just NNs may take various shapes and create 

complicated structures using various functions for input or output. For the purposes of this 

thesis only the multilayer perceptron neural network type will be examined and specifically 

one of its most simple forms to ensure scalability.  A typical multilayer perceptron with 1 

hidden layer and 5 hidden neurons can be viewed in figure 2.3. 



48 
 

 

Figure 2.3: Single layer neural network2 

 

As illustrated in 2.3, given some input features X ∈ ℜ with dimensionality J (XJ), a 

transformation takes place within the hidden layer by summing up all the dot products of each 

sample xi with some Wj vectors with size equal to the dimensionality (J) of the input data. This 

is repeated for the output layer using the hidden layer as input and a new set of Wh with 

dimensionality H, equal to the number of neurons of the hidden layer. The output of this 

network can be used to optimize both the squared loss function presented in 2.11 for regression 

tasks and the LogLikelihood function 2.18 for classification tasks problems. In the context of 

the squared loss function, the latter can be expressed in 2.24 generically given some estimates 𝑌̂ 

∈ ℜ, which are the result of the output of the network and a target variable Y ∈ ℜ. 

 

                               𝐸( 𝑌̂ ) = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1
                                                     (2.24) 

 

The output of the network can be expressed as a function f which takes as input the feature set 

XJ and given a 2-dimensional vector of W with size J,H, it outputs estimates Ŷ given equation  

2.25 [Ashtawy et al. 2015] : 

 

Ŷ = f (XJ,WJ,H) = G(∑ (wh,gσ(∑ (wj,hxj)
J

J=0
))

H

h=0

)                   (2.25) 

                                                           
2 obtained (and edited) from http://docs.opencv.org/modules/ml/doc/neural_networks.html  

http://docs.opencv.org/modules/ml/doc/neural_networks.html
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Where G is a linear activation function of the output neuron as G (u) = u, σ is the activation 

function for the hidden-layer neurons which was previously defined in 2.17 in the context of 

Logistic Regression. Wh,g refers to the weights associated with the links connecting the hidden 

units to the output layer, Wj,h represents the weights of input-to-hidden layer links, and xj is the 

jth feature of X. The weight variables W0,h  serve as bias parameters.  

Other common activation functions (apart from the sigmoid σ) are the hyperbolic tangent, 

denoted as tanh displayed in 2.26 and the rectifier denoted as relu [LeCun et al.2015], displayed 

in 2.27: 

                                                    tanh(u) =
eu+ e−u

eu− e−u
                                                                 (2.26) 

 

 

                                                    relu(u) = max (0, 𝑢)                                                           (2.27) 

 

where u is the input to a neuron. The minimization problem for the squared loss function can 

be expressed with 2.28: 

 

𝑊̂ = argmin 
𝑊

𝐸(𝑊) = argmin 
𝑊

∑ (𝑦𝑖 − G(∑ (wh,gσ(∑ (wj,hxi,j)
J

J=0
))

H

h=0

))

2𝑁

𝑖=1

    (2.28) 

 

The most common way to minimize function 2.28 is by using Back Propagation (BP) [Rojas 

1996] along with Gradient Descent. The main concept of BP is that starting from the output 

and moving backwards (towards input), the emissions of the neurons’ derivatives (gradients) 

carry the details of the residual error with the target variable Y and formulate the updates for 

all weights accordingly.    

The weights in a generic network with number of layers L (including input and output) are the 

only parameters that can be modified to make the quadratic error E as low as possible. Because 

E is calculated by the extended network exclusively through composition of the node functions, 

it is a continuous and differentiable function of the weights W1, W2, . . . ,Wm in the network 
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[Rojas 1996], where m is the size of the layers L - 1. E can be minimized by using an iterative 

process of gradient descent, for which the gradient is calculated as: 

 

                                                ∇E= (
∂E

∂𝑊1
,
∂E

∂𝑊2
, … . ,

∂E

∂𝑊𝑚
)                                                      (2.29) 

 

Each Wm is updated using the increment: 

 

                                                W𝑚 = W𝑚 − 𝑎
∂E

∂𝑊𝑚
                                                               (2.30) 

 

, where a represents a learning rate, which defines the step length of each iteration in the 

negative gradient direction [Rojas 1996]. 

 

2.2.3.5 Naïve Bayes Classifier 

 

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’ 

theorem with the “naive” assumption of independence between every pair of features. Given a 

class variable Y and a dependent feature vector X with size J, Bayes’ theorem states the 

following relationship [Pedregosa et al. 2011]: 

 

                                               P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌)P(𝑥1,𝑥2,…,𝑥𝐽|Y)

P(𝑥1,𝑥2,…,𝑥𝐽)
                                   (2.31) 

 

Using the naive rule that all features j are independent given the value of the class variable 

[Zhang 2004]: 

 

                                               P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌) ∏ P(𝑥𝑗|𝑌)

𝐽
𝑗=1

P(𝑥1,𝑥2,…,𝑥𝐽)
                                   (2.32) 
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Since P(𝑥1, 𝑥2, … , 𝑥𝐽) is constant given the input, equation 2.32 can be further simplified as 

2.33: 

        P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) ≈ P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1                               (2.33) 

 

The estimate of Y, denoted as Ŷ  can be calculated using the Maximum A Posteriori (MAP) 

method (from Bayesian statistics) to estimate P(𝑌)  and P(𝑥𝑗|𝑌) [Gauvain 1994].  

 

                                            𝑌̂ = argmax 
𝑌

P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1                                             (2.34) 

 

The different naive Bayes classifiers differ mainly by the assumptions they make regarding the 

distribution of P(𝑥𝑗|𝑌). A widely used version of Naïve Bayes assumes a Gaussian distribution 

of continuous features X to belong in a class c of the label variable Y:   

 

                                            P(𝑥𝑗|𝑌) =
𝟏

√𝟐𝝅𝝈𝒀
𝟐
 exp (− 

(𝑥𝑗−𝜇𝑌)
2

2σ𝑌
2 )                                   (2.35) 

 

where parameters σ𝑌 (variance) and μ𝑌 (mean) are estimated using maximum likelihood [Hand 

et al. K 2001]. 

 

2.2.3.6 K Nearest Neighbours (KNN) 

 

KNN is another supervised machine learning algorithm (for regression and classification) that 

is also very commonly used, particularly because it is easy to implement. It has been used in 

the recommendation space but has been criticized for being slow compared to other techniques. 
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It also requires a significant amount of memory to store the main dataset from which 

neighbours are discovered [Ravi et al. 2009].   

The main principle behind KNN is that for each observation i to be classified from a feature 

set P with dimensionality J, the K closest observations are discovered based on a distance 

metric D from another dataset X (with the same dimensionality) where the label Y is known. 

The final predictions are formulated based on a predefined number of training samples (K) 

with closest distance D to the xi point, and the estimate  𝑌̂ is made based on the majority of the 

class label contained in these K closest observations.  

There are various ways to calculate the closeness of a data observation with another. One of 

the most commonly used measures is Euclidian distance. Due to its popularity Euclidian 

distance will be used as the main distance measure for this thesis. For two 2 observations x and 

p retrieved from the main feature sets X,P respectively, the Euclidian distance [Weinberger et 

al. 2005] with dimensionality J can be estimated as: 

                                    Euclidian Distance(x, p)  = √∑ (xj − pj)2
J
j=1                                   (2.36) 

 

Where xj is the value of feature j in the data point x, retrieved from feature set X and pj the 

value of feature j in the data point p, retrieved from feature set P.  

 

2.2.3.7 Decision Trees, Random Forests and Gradient Boosting Trees 

 

Decision Trees are non-parametric algorithms used for regression or classification. Through 

sequential partitioning of a given feature (where the partitioning process continues until a 

specific goal or stopping criteria are met), they attempt to achieve more discriminating results 

in regards to the target variable.  

The common training process for a Decision Tree algorithm can be described as follows:  for 

a feature set X with dimensionality J, all x1, x2,…,XJ features are selected one by one and 

frequencies of the unique classes c of the target variable Y are estimated for all possible distinct 

values Dj of the xj vector. Out of all possible distinct values D from all feature vectors in X, the 

best distinct value (Dj) for a vector Xj is determined using a metric that quantifies the amount 
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of information explained in respect to the target variable Y, if this value is used to partition X. 

Assuming the best point occurs for distinct value s in feature j, two different feature sets 

{X1,Y1},{X2,Y2} will be created out of the initial X as displayed in equation 2.37: 

 

                                                          {
𝑋𝑗 ≤ 𝐷𝑗,𝑠  → {X1, Y1}

𝑋𝑗 > 𝐷𝑗,𝑠  → {X2, Y2}
                                              (2.37) 

 

where X1, X2are subsets of X and Y1, Y2 subsets of Y. Two separate decision trees are then 

drawn based on the new sets and this process is repeated until certain criteria are met like the 

maximum depth of the tree or the total size of nodes in the tree. There are many metrics that 

can define the optimal split and many ways to split a tree into subsets, but in this thesis binary 

splits will be considered as already displayed.  

A common splitting criterion for a classification task is using Entropy to find the best partition. 

Entropy measures the amount of information contained within a certain dichotomization of the 

data in respect to the proportion of the classes of label Y [Thomas et al. 2002]. Given C the 

number of distinct classes in Y, the Entropy (Denoted as En) for all distinct classes of Y can 

be estimated with 2.38: 

                                          En(𝑌) = ∑ −P(Y = c) log2 P(Y = c)
C
c=1                                   (2.38) 

 

To better illustrate this, consider the following example of two classes. Table 2-2 presents the 

frequencies of the binary classes of Y: 

 

Table 2-2: Frequency of the distinct classes of Y 

Y 

c=0 c=1 

15 15 

 

Based on table 2-2, P(Y = 0) =
15

30
= 0.5 and P(Y = 1) = 0.5. Therefore:  

 En(𝑌) = −0.5 log2 0.5 − 0.5 log2 0.5 = 1.0 
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Considering a potential split point Dj,s = 50 , table 2-2 can be expanded to 2-3 in order to 

include the frequency matrix of the class labels of Y and the two directions (≤ and >) of Dj,s. 

Table 2-3: Frequency matrix for the class labels of Y and a 2-way directions of split point Dj,s  

 

    Y 

    c=0 c=1 Sum 

𝐃𝐣,𝐬 

<= 50 10 7 17 

> 50 5 8 13 

Sum 15 15 30 

 

Now Entropy can be computed based on the actual frequencies of the classes c and the two 

directions of the split point 𝐃𝐣,𝐬 based on formula 2.39: 

 

En (Y, Dj,s) = P(Dj,s = ′ ≤ 50′) En (𝑌Dj,s=′≤50′) + P(Dj,s = ′ > 50′) En (𝑌Dj,s=′>50′)  (2.39) 

 

Replacing all elements based on the frequency table 2-3: 

P(Dj,s = ′ ≤ 50′) =
17

30
≈0.567 , 

P(Dj,s = ′ > 50′) =
13

30
≈0.433 , 

En (𝑌Dj,s=′≤50′) = −
10

17
 log2

10

17
  −

7

17
 log2

7

17
 ≈ 0.977, 

En (𝑌Dj,s=′>50′) = −
5

13
 log2

5

13
  −

8

13
 log2

8

13
 ≈ 0.9612, 

En (Y, Dj,s) = (0.567 ×  0.977) + ( 0.433 ×  0.9612) ≈  0.9704 

 

The final step to determining the value of the split is to measure how much information was 

gained before considering the Dj,s split point and after. This information gain is often denoted 

as IGain (formula 2.40) and measures the difference between initial entropy (prior to splitting) 

and after the split: 
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                                          IGain(Y, Dj,s) =  En(Y) − En (Y, Dj,s)                                    (2.40) 

 

In the aforementioned example IGain(Y, Dj,s) = 1.0 − 0.9704 = 0.0296. 

Random Forest will be implemented through bagging (as explained in (2.2) by averaging many 

different randomized trees where the random factor will also be imputed by tuning various tree-

specific parameters such as maximum number features to be considered for a split, maximum 

number of possible cut-offs for a given feature as well as other hyper parameters such as 

minimum number of samples in a single node, maximum tree size (in levels) and number of 

trees [Breiman, 2001]. 

Gradient Boosting Trees, or MARTs (multivariate additive regression trees) will have the form 

of (2.3) where Decision Trees are the base learners.  

 

2.2.3.8 Matrix Factorization and LibFM  

 

Non-Negative Matrix Factorization (or for simplicity NNMF) in the recommendation world is 

a way to summarize a (normally sparse) matrix of item-to-customer interactions. It usually 

consists of a U vector of size f for the customers and a V vector of size f for the items where 

the prediction 𝑌̂𝑖𝑗 of a customer i (out of n) to buy product j (out of m) is the dot product of the 

two vectors as illustrated in 2.41: 

 

                                                                 𝑌̂𝑖𝑗 = 𝑈𝑖𝑉𝑗                                                                (2.41) 

 

The size f is a hyper parameter and is often referred to as the latent feature for these vectors. 

Assuming the loss to be minimized is the squared error E, the U,V can be obtained by equation 

2.42: 
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                         Û,V̂=argmin E
U,V

(U, V) = argmin
U,V

∑ ∑ (Yij − UiVj)
2m

j=1
n
i=1                                  (2.42) 

 

Whilst NNMF has been commonly used to capture pairwise interactions between customers 

and items, LibFM [Rendle 2012] combines linear models (such as linear regression) with 

factorized pairwise interactions to provide more holistic models. Assuming a squared loss 

function E, a target variable Y feature set X with dimensionality m and a matrix with latent 

features 𝑼 of size m x f, the optimization function can be summarised as equation 2.43: 

 

   Ŵ, Û=argmin E(W,U)
            Ŵ,Û

= (𝑌 − (𝑋0 + 𝑋1𝑤1…+ 𝑋𝑚𝑤𝑚 + ∑ ∑ 𝑋𝑗𝑋𝑑𝑈𝑗𝑈𝑑
𝑚
𝑑=𝑗+1

𝑚
𝑗=1 ))

2
            (2.43) 

 

The scoring function consists of 2 parts, the linear model and the dot product of all possible 

pairwise interactions within a given sample. The prediction function f from 2.43, is fully 

elaborated in equation 2.44: 

                        f(W, U) = (X0 + X1w1…+ Xmwm + ∑ ∑ XjXdUj
Ud

m
d=j+1

m
j=1 )                           (2.44) 

 

LibFM can also be solved with gradient methods where the linear and pairwise model are split 

into two different updates. The linear update is described in equation 2.45: 

 

                                                       ∇WE(W) = (f(W, U) − Y)X                                             (2.45) 

 

The latent features’ vectors update occurs when creating the 2-way interactions and takes the 

form of equation 2.46 [Rendle et al. 2011]: 

 

                                             ∇UE(U) = (f(W,U) − Y)X ∑ UlXl
m
l=1                                        (2.46) 
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2.3 Hybrid method to predict repeated, promotion-driven 

product purchases in an irregular testing environment 
 

Retailers have been using discount or promotional coupons for years as a way of driving 

customer loyalty. The introduction of loyalty card data has enabled them to make the process 

of coupon allocation more efficient. Information derived from purchase history has allowed 

retailers to allocate coupons based on individual customer preferences. Making coupons more 

relevant to customers leads to increased customer satisfaction and increased sales [Cherney et 

al. 1998].  

One way of measuring the effectiveness of a coupon, is to calculate the likelihood of the 

associated product being purchased - not just in the coupon redemption period but afterwards 

as well. In other words a coupon can be considered effective if it has the potential to create a 

purchase habit.  Habits tend to lead to increased sales which can have a long term impact on 

both the retailer and supplier. Using discrete choice modelling, [Lewis 2004] found that 

promotional coupons can increase annual sales for a substantial portion of exposed customers.  

 

Restrictive Boltzmann Machines (RBMs) are which are a family of deep learning methods 

suitable for binary problems such as this one (will a promoted product be purchased and 

purchased again). RBMs may take a specific form when used to calculate the probability of a 

user i giving a specific rating to a certain product – or in this case a flag of 1/0 for whether the 

user will buy the item or not in the future. Assuming there are m users and n products, ui=1 

will demonstrate that user i will buy a certain product. A set of different units h are used to 

connect the weights of user to the respective values (of 1 or 0) for the specific products he/she 

will buy. The hidden units h can be seen as closely related with the latent features in matrix 

factorization and its size F is a hyper parameter to be tuned. The function S that maps the 

RBM’s formulation (or in general the Energy term) for a set of k hidden units can simply be 

written as equation 2.47:  
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                            S(u) = −∑ ∑ ∑ Wij hjui
kK

k=1
F
j=1 − ∑ ∑ uibi

K
k=1 − ∑ hjbj

F
j=1

m
i=1

m
i=1            (2.47) 

 

where the weights W connect the u,h visible and hidden units respectively and b their respective 

biases. The respective gradients of an approximation of the gradient function called Contrastive 

Divergence [Hinton 2002] for a Wi,j  can be computed as in equation 2.48: 

 

                                               ∆wij = e (< uihj >data  − < uihj >T)                                 (2.48) 

 

where e is the learning rate (normally a small value such as 0.001) and the expectation <.>T 

refers to the extraction of different samples and formulation of the conditional probabilities p 

(ui=1/h) and p(1/V). 

 

 

 

 

2.4 The StackNet model 
 

The StackNet model is named after stacking and neural networks. The following section 

reviews briefly the notions of stacking and neural networks. Later it examines applications in 

current literature that have combined the two. 

2.4.1 Stacking 
 

[Wolpert 1992] introduced the concept of a meta model being trained on the outputs of various 

generalisers with the scope of minimizing the generalization error of a target variable.   This 

methodology was successfully used to improve performances in various tasks, including 

translating text to phonemes and bettering the performance of a single surface-fitter. 

According to [Wolpert 1992] stacked generalization includes 2 stages. In the first stage the data 

is split into 2 parts. A number of different generalizers (or estimators) are fitted on the first part 
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of the data and then predictions are made for the other part. This process is described in the 

paper as the creating phase. The guessing phase on the other hand gathers and concatenates all 

these predictions forming a new dataset and a new (meta) generalizer is used to treat these as a 

new data set and make predictions to some other (test) data. Wolpert also states that this 

approach could even be used with just 1 generalizer in the creating phase. In this particular 

scenario the meta learner corrects the mistakes of the single model based on the results from 

the second dataset. 

This 2-phase process is illustrated by Wolpert in his original paper (figure 2.4):  

 

 

Figure 2.4: The 2 phases of the Stacked Generalization procedure3 

 

 

2.4.2 Stacking diversity and complexity 
 

[Wolpert 1992] addresses the importance of strong generalizers as part of the ensemble in order 

to achieve better (smaller) errors in the unobserved data, highlighting that “dumb” models (or 

models that lack sophistication) could be replaced by more sophisticated ones in order to 

achieve better performance. He also demonstrates that the performance of the ensemble as well 

                                                           
3 Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259. 
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as its ability to generalize in an unobserved framework is affected by the diversity contained 

within all the generalizers. [Rogova 1994] further emphasizes that the main component 

determining the effectiveness of an ensemble is the level of error-independence within the 

contained generalizers. In other words, the generalizers need to be making different errors.  

The need for diversity within the ensemble is explored in many different studies including 

[Sharkey 1996], [Sharkey et al. 1997], [Zhou et al 2002], [Melville et al. 2003], [Melville et al. 

2005]. [Sharkey 1996], [Sharkey et al. 1997] define four different types of diversity in an 

ensemble for classification problems. The first type refers to cases where only one generalizer 

makes an error within each sample. This type can lead to very high accuracies. Another type 

of diversity that leads to high accuracy is when the majority of generalizers predict the correct 

answer. The third type refers to cases where at least one generalizer outputs the right answer 

(even this scenario can lead to good predictions).  The fourth type includes cases where  all 

generalizers make a mistake. In this scenario, getting the right predictions is particularly 

challenging.  

Another way to measure ensemble diversity is presented in the work of [Tsoumakas et al. 

2009]. Tsoumakas introduces the idea of correlation–based model pruning whereby models 

which are highly correlated with another are removed. The study demonstrates that pruning in 

this way results in a substantial reduction of the computational cost of stacking and can on 

occasion also improve predictions.  

The concept of correlations as a way of detecting diversity within an ensemble is also presented 

in the work of [Kuncheva et al. 2003]. This study investigates 10 different metrics for 

measuring diversity within an ensemble. These metrics include four averaged pairwise 

measures (the Q statistic [Yule 1900], the correlation [Sneath 1973], the disagreement [Ho 

1998], the double fault [Giacinto et al. 2001]) and six non-pairwise measures (the entropy of 

the votes [Cunningham et al. 2000], the difficulty index [Hansen et al. 1990], the variance 

[Kohavi-Wolpert 1996], the interrater agreement [Dietterich 2003], the generalized diversity 

[Partridge et al. 1997] and the coincident failure diversity [Partridge et al. 1997]). Although the 

study highlights the link between diversity and performance, it is unable to identify a definite 

link between diversity and improvements in accuracy. They further conclude that the problem 

of measuring diversity and so using it effectively for building better classifiers is still to be 

solved. 
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2.4.3 Neural Network 
 

A specific type of neural network has already been defined in the current thesis in the previous 

chapter. Conceptually such artificial networks were first created in an attempt to mimic the 

biological neural networks in the human brain. [Rosenblatt 1958] was the first to create a very 

simple version of a neural network – the perceptron.  

The usage of ANNs (Artificial Neural Networks) flourished when back propagation was 

developed and it was found that it could be used to combine multiple perceptrons in the form 

of various hidden layers between some input data and an outcome.  

The advances in computing power and specifically the usage of GPUs have allowed the 

previously slow NN machine learning models to be run at greater speeds [Schmidhuber 2015] 

taking the form of today’s deep learning.  

Furthermore the inclusion of a dropout term, advances in gradient-based methods as well as 

regularization methods as a means to prevent neural networks from both over and under fitting 

have further boosted the use of these algorithms in various fields including image, sound, and 

text classification as well as recommendation tasks [Hinton et al. 2014]. 

 

2.4.4 Applications for combining Algorithms on multiple levels  
 

[Breiman 1996] borrows the idea of [Wolpert 1992] for stacked generalization and extends it 

to regression trees as well as ridge regressions using cross validation as a means to give 

improved prediction accuracy.  

[Van der Laan et al. 2007] propose a new prediction method for creating a weighted average 

of many candidate algorithms to build a super learner. They propose a fast algorithm for 

constructing this super learner in a prediction which uses V-fold cross-validation to select 

weights to combine an initial set of candidate learners. 

[LeDell 2015] proposes a scalable learning methodology using a super learner (also known as 

stacking) to combine multiple, typically diverse, base learning algorithms into a single, 

powerful prediction function through a secondary learning process called meta learning . This 
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methodology reduces the computational burden of ensemble learning while retaining superior 

model performance.  

[Zhou et al. 2017] propose the use of multi-level random forests to improve predictions in the 

image classification space and achieve similar performance to other state of the art methods 

including convolutional neural networks.  
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3. Univariate Analysis of the Dataset 

 

This chapter presents an overview of the dataset that will be used in this thesis and maps the 

features that will be used in the analysis that facilitate predicting what the customer will buy 

next week given a visit. Given the nature of the grocery sales data, understanding the drivers 

that connect customer and products is critical for applying specific machine learning 

algorithms and to improve performance. 

 

3.1 Overview of Available Data Sources 

 

This chapter uses the freely-available data for research from dunnhumby ltd4 . Specifically, the 

set of available data is named “The Complete Journey” and holds the complete transactions of 

2,500 frequent buyers for a supermarket chain for a period of 102 weeks amounting to 

2,595,732 entries including fields such as time stamp, discount, price, store and place. The term 

used to describe the buyer is “household_key” and represents the buyer-entity of the purchases 

that are made. It is should be noted that it is likely that the members of the same family belong 

to the same household_key.   

The retailer has also provided information about the products (expressed via a product_id) such 

as the brand-manufacturer or the department (such as Dairy) where the product belongs to. 

There are 92,339 unique products along with 6,476 different manufacturers and 44 distinct 

departments. Additionally, in the supplied datasets there is a unique list of all the 

household_keys with demographic information about the household’s status such as age band, 

income band, marital status and more. Coupon and promotional data are also presented in 

separate files, but will not be exploited in this chapter (see Chapter X).  

 

3.2 Defining the experiment 

 

                                                           
4 www.dunnhumby.com/sourcefiles  

http://www.dunnhumby.com/sourcefiles
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The following sections share generic information about the population of the experiment and 

the target variable. In addition, the presence of seasonality is highlighted alongside the 

distinctive ability of Customer’s historical frequency of purchase explaining their future 

purchases.  Later sections display a hierarchy of predictive features considered for the 

experiment as well as an algorithm that finds the optimal bins for each feature in respect to the 

target variable. This is to best capture non-linear relationships and gauge their predictive power 

more efficiently.  The impact of this type of continuous feature discretization is gauged via 

estimating the difference in predictability of features (as measured by AUC) before and after 

binning has been applied both in actual and proportional terms.  

 

3.2.1 Modelling population and target Variable 
 

The main focus of this chapter is to explain some key features (based on the provided sets of 

data) that may affect the probability of a customer buying a product next week given a visit. 

The latter part emphasizes that the focus is on predicting the correct products assuming the 

customer has visited the store in a target time period. This is also boosted from the 

understanding that, generally, all 2,500 households are frequent buyers. Therefore, a model of 

whether the customer will visit or not is not critical in this case. It can be assumed that these 

are customers who do the majority of their shopper at this particular supermarket chain. 

The volume of 92,000 different products is deemed unnecessarily high since some of these 

products were very rarely bought during the year. To simplify the process, only products that 

were bought more than 30 times in the last year (weeks from 50 to 102) were considered in the 

process - resulting in only 9,788 unique products ids, which is around 10 % of the initial pool 

of items. This suggests that most of the transactions of this retailer are concentrated in a small 

group of products. For the scope of this analysis, each customer (out of 2,500) is related with 

any of the 9,788 products yielding 24,470,000 possible customer-to-product pairs to be 

explored for a particular week.  

The fundamental question to answer then becomes: if some of the purchasing history for these 

customers in respect to these products, as well as general information about the customer and 

the item, is known at a point in time, can sensible predictions be made for as to whether the 

customer will buy the product in a specific (future) point (week)? In light of this, two different 

datasets are formed in different time periods (with the same features) to serve as training and 
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test datasets. The first set uses week 100 as the target week (for which predictions are due) 

while the test week is number 101. For each different target week, 52 previous weeks are used 

to compute features that summarize the relationship of the customer and the products. The 

demographics and product detail data are assumed to be stable for the purposes of this analysis. 

The feature engineering process that utilizes the past year of transactions to create aggregated 

features for up to the target week can be visualized in graph 3.1: 

 

Figure 3.1 : Feature engineering process and definition of target variable 

 

The initial set of 24,470,000 unique customer-to-product pairs is further halved by including 

only those customers that did visit the retailer’s stores during week 53 (or 54 for the test set). 

Only 1,288 households visited in the target week 53 and 1,311 in week 54. The distinct number 

of different products bought by the selected group of customers in the target week is 27,109, 

and 21,540 for the test set. This can also be viewed as the total pairs triggered out of the total 

customer-to-item combinations, a fairly small but still viable number. For the purposes of the 

univariate analysis, the datasets are merged to aid the significance of the results. 

 

3.2.2 The notion of seasonality and time lag 
 

It is generally agreed that customer preferences may change (or discontinue as stated in 

[Tripsas 2008]) over time, so any feature engineering that attempts to map the customer 

relationship with the item or the item’s global preference in a certain point in time needs to 

account for that possible fluctuation. Furthermore, there are products that are bought either 

more or less during certain periods owing to seasonality or because of unobserved factors (such 

as general popularity decline because of a competitor’s new product). To better visualize this 

in figure 3.2, the product with id 826249 demonstrates fluctuation in its weekly sales over the 
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102-weeks timespan. Quite clearly a prediction for week 62 or 24 where product sales seem to 

be rising would be more optimistic versus weeks 1 or 2. 

 

 

Figure 3.2 : Seasonality in weekly sales in units for product 826249 

 

To address this, all features created through the current feature engineering process based on 

the transactional history will be expressed through different time periods and lags. For example, 

instead of simply creating the number of times the customer bought the item in the last 52 

weeks, last 39, last 26, last 13, the ratios of these will be created in respect to the target week 

too. Note that the weeks are NOT mutually exclusive (i.e. week 13 is included in week 52). 

The process can be illustrated with figure 3.3: 

 

Figure 3.3 : Feature engineering process for different time stamps 
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3.2.3 Dominance of the frequency of purchase and exploiting the 

product hierarchy 
 

The most obvious and strong finding regarding whether the customer will buy a product in a 

particular week or not is the number of times he/she has bought this item in the past (i.e. last 

52 weeks). This can be referred to as the frequency of purchase in the last 52 weeks. Thus out 

of the 9,800 items considered for each customer, as illustrated in figure 3.4, they have almost 

3% probability  to buy an item he/she has bought before in the last 52 weeks (which accounts 

for 55% of the total pairs that actually happen in the target week) versus 0.07% for an item 

he/she has not: 

 

Figure 3.4 : Probability to buy an item in the target week given previous purchase status 

 

In other words, by knowing whether the customer has bought the item in the past, it helps 

isolate 55% of the total customer-item pairs that occur in the target week in a much smaller 

part of the population. In contrast, the remaining 45% of the total occurring pairs that belong 

to a group of products that the customer has never bought, necessitate further information to 

aid the capture the underlying relationships between the two.  

This gap is aimed to be filled by exploiting the product hierarchy, which in this scenario will 

be the manufacturer and the department in which the item belongs to, since a customer has 

higher chance to buy a product that belongs to a category or brand he/she has purchased before. 

As can be illustrated in table 3.1, a customer is twice as likely to buy an item from a 

manufacturer he/she bought before 12 or more times than one he/she has bought fewer times 

in the previous 52 weeks. 

 

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

No Yes

C
u

st
o

m
e

r-
p

ro
d

u
ct

 P
ai

rs

Has customer A bought product B in previous 52 weeks

Total customer-to-product
pairs

Probability to buy in target
week



68 
 

 

 

Table 3.1 : Probability to buy an item from a manufacturer given previous purchases 

Times bought in previous 52 weeks Probability to buy in target week  

0 to 11 0.09% 

more than 11 0.17% 

 

 

3.2.4 Predictive grouping of the features  
 

The feature space in this chapter is divided to a finite number of distinct groups to better exploit 

its potential and comprehend its predictive power. These groups can be summarized as: 

1. Household features : These are features about the household itself and can be further 

divided to : 

1.1. Demographics: This is provided by the retailer, features like age or income band. 

1.2. Transaction-based: These are features that are created by aggregating the transactional 

data and they aim to capture loyalty (such as number of visits or average spending) 

and cardinality (potential of the customer to try many different products or/and 

tendency to buy new items.) 

2. Product features: These refer to certain attributes of the product such as popularity and 

accessibility.  

3. Manufacturer features: Same as product but for manufacturer. 

4. Department features: Same as product but for department. 

5. Household and product features: This refers to a set of features that map the historical 

relationship of a customer with the product such as times bought, average cycle and last 

bought.  

6. Household and manufacturer features: Similar as above but for manufacturer. 

7. Household and department features: Similar as above but for department. 

8. Contextual features: This includes time and day of the week. 

 

3.2.5 Optimized binning to capture non-linearity 
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To better assess the potential of numerical continuous variables to explain the target variable, 

optimized binning was used to split the feature into segments and replace each part with the 

log of the odds of the target variable for this segment in order to capture the inherent 

nonlinearities while maximizing a specific metric. As explained above and since this is 

essentially a binary classification problem, the metric to optimize was AUC. The logic of the 

algorithm is similar to the MDLP (Minimal Description Length Principle) explained in 2.1.3, 

with the main difference that the metric used to define the best bins at its iteration is AUC. The 

methodology is also expressed to work against any potential optimization metric for regression 

or classification.  

Initially a continuous variable is divided into 100 equal (in size) bins where the odds of 

purchases versus non-purchases are known for the target week. Note that the number of the 

initial bins is a hyper parameter and can be selected differently. Then in order to reduce the 

number of bins and therefore increase the number of observations per bin, the best pair of 

neighboring bins to merge are found by considering all possible combinations and comparing 

the uplift of AUC until the number of bins is trimmed down to 10 (which is also a hyper 

parameter).   

Optimized binning Algorithm is displayed using pseudo code in figure 3.5:  

 

Input: Feature X, Initial number of bins N, final number of Bins n, metric as m 

Output: Model parameters = (Xnew)  

𝑿𝒏𝒆𝒘 ←  𝑿(𝑵) 

𝑾𝒉𝒊𝒍𝒆 𝑵 > 𝒏 𝒅𝒐: 

 𝒇𝒐𝒓 𝒊 ∈ (𝟐,… . . , 𝐍) 𝒅𝒐: 

𝑿𝒏𝒆𝒘𝒕𝒆𝒎𝒑(𝐍 − 𝟏) ← 𝒎𝒆𝒓𝒈𝒆(𝑿𝒏𝒆𝒘((𝒊 − 𝟏), (𝒊))) 

𝒎𝒆𝒕𝒓𝒊𝒄𝒊 ←  𝒎(𝑿𝒏𝒆𝒘𝒕𝒆𝒎𝒑(𝐍 − 𝟏)) 

𝑿𝒏𝒆𝒘(𝐍 − 𝟏) ← 𝒎𝒆𝒓𝒈𝒆(𝑿𝒏𝒆𝒘((𝐦𝐚𝐱𝐢𝐧𝐝𝐞𝐱(𝒎𝒆𝒕𝒓𝒊𝒄𝒊) − 𝟏),𝒎𝒂𝒙𝒊𝒏𝒅𝒆𝒙 (𝒎𝒆𝒕𝒓𝒊𝒄𝒊))) 

𝑵 ←  𝑵 − 𝟏 

𝑼𝒏𝒕𝒊𝒍 𝑺𝒕𝒐𝒑𝒑𝒊𝒏𝒈 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂 𝒊𝒔 𝒎𝒆𝒕 

 

Figure 3.5 : Optimised Binning Algorithm 
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3.3 Features’ ranking and dictionary 

 

The previous data exploration phase generated over 100 features (with lags and different time 

stamps) some of which were discarded from the potential pool of variables to consider for being 

too weak or for having significant number of missing values. The final set of features sums to 

75 – all categorical, via transforming the continuous ones with the optimized binning algorithm 

to better capture the non-linearity that connects them with the target variable. 

The following table of features provides a description of the generated features (accounting for 

the appropriate time lag) along with a marker that points into which one or many of the 

previously-mentioned features’ groups the features belong to. Additionally the table is sorted 

in a descending manner using the AUC statistic that has been explained before. The 

interpretation should be that the higher this statistic, the higher the predictive power of the 

feature to efficiently point to the ‘0’ or ‘1’ class of the target variable. It should be noted that 

this is just the univariate descriptive power of these features. It may be assumed that many of 

the features share common information (or in other words there is multi-colinearity in the data) 

and that a feature’s unique descriptive power to predict the target variable may not be 

accurately found via this method. Nevertheless that can be used to understand the main 

predictive power of each feature group.  

The different feature groups as described in section 3.2.4 are denoted as C for customer, P for 

product, D for department and M for manufacturer. All the generated features used in this 

experiment are portrayed more analytically in table 3.2. The table displays the feature name, a 

brief description for what it represents, the different feature groups it belongs too as well as the 

AUC of the feature in respect to the target variable after applying the optimized binning 

algorithm in figure 3.5: 

 

Table 3.2 : Features’ dictionary with predictability statistics and features’ groups mapping 

Feature name Feature Description C P D M AUC 

frequency26 Number of baskets the customer included the product 

in last 26 weeks 
✓ ✓     0.775 
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frequency39 Number of baskets the customer included the product 

in last 39 weeks 
✓ ✓     0.775 

frequency52 Number of baskets the customer included the product 

in last 52 weeks 
✓ ✓     0.775 

frequency13 Number of baskets the customer included the product 

in last 13 weeks 
✓ ✓     0.775 

cycle_vs_lastbought Average cycle (52 weeks) minus days ago since last 

bought the product 
✓ ✓     0.775 

average_cycle52 Every how many days the customer bought the 

product in last 52 weeks 
✓ ✓     0.774 

last_day_bought Days from the target week since the customer last 

bought the product 
✓ ✓     0.774 

average_cycle39 Every how many days the customer bought the 

product in last 39 weeks 
✓ ✓     0.766 

average_cycle26 Every how many days the customer bought the 

product in last 26 weeks 
✓ ✓     0.747 

popularity13 Number of baskets the product appeared in last 13 

weeks 

  ✓     0.747 

popularity26 Number of baskets the product appeared in last 26 

weeks 

  ✓     0.742 

popularity39 Number of baskets the product appeared in last 39 

weeks 

  ✓     0.739 

popularity52 Number of baskets the product appeared in last 52 

weeks 

  ✓     0.735 

average_cycle13 Every how many days the customer bought the 

product in last 13 weeks 
✓ ✓     0.709 

frequencies_decay frequency52 divided by frequency13 ✓ ✓     0.709 

frequency13man Same as frequency13 but for "manufacturer" ✓     ✓ 0.708 

frequency26man Same as frequency26 but for "manufacturer" ✓     ✓ 0.707 

frequency39man Same as frequency39 but for "manufacturer" ✓     ✓ 0.704 

frequency52man Same as frequency52 but for "manufacturer" ✓     ✓ 0.702 

average_cycle52man Same as average_cycle52 but for "manufacturer" ✓     ✓ 0.698 

average_cycle39man Same as average_cycle39 but for "manufacturer" ✓     ✓ 0.695 

average_cycle26man Same as average_cycle26 but for "manufacturer" ✓     ✓ 0.695 

most_trialled Number of customer who bought the item 1st time 

the previous week 

  ✓     0.687 

average_cycle13man Same as average_cycle13 but for "manufacturer" ✓     ✓ 0.686 

frequenciesman_decay frequency52man divided by frequency13man ✓     ✓ 0.683 

productsbought13 Total number of products the customer bought in last 

13 weeks 
✓       0.632 

productsbought26 Total number of products the customer bought in last 

26 weeks 
✓       0.632 

productsbought39 Total number of products the customer bought in last 

39 weeks 
✓       0.630 

distinct_item Distinct number of  products the customer bought in  

last 52 weeks 
✓       0.625 

productsbought52 Total number of products the customer bought in last 

52 weeks 
✓       0.625 

distinct_MANUFACTURER same as distinct item but for "manufacturer" ✓       0.620 

distinct_DEPARTMENT same as distinct item but for "department" ✓       0.591 

manpopularity52 same as popularity52 but for "manufacturer"       ✓ 0.590 

popularity_decay popularity52 divided by popularity13   ✓     0.588 

manpopularity39 same as popularity39 but for "manufacturer"       ✓ 0.586 

manpopularity13 same as popularity13 but for "manufacturer"       ✓ 0.586 

manpopularity26 same as popularity26 but for "manufacturer"       ✓ 0.585 

frequency26dep Same as frequency26 but for "department" ✓   ✓   0.584 

frequency39dep Same as frequency39 but for "department" ✓   ✓   0.583 

frequency13dep Same as frequency13 but for "department" ✓   ✓   0.583 

frequency52dep Same as frequency52 but for "department" ✓   ✓   0.579 

visits26 Number of distinct days the customer visited in last 

26 weeks 
✓       0.577 
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visits13 Number of distinct days the customer visited in last 

13 weeks 
✓       0.577 

transactions_withdiscount Total number of transactions with discount in last 52 

weeks 
✓       0.577 

visits39 Number of distinct days the customer visited in last 

39 weeks 
✓       0.574 

deppopularity13 same as popularity13 but for "department"     ✓   0.573 

deppopularity26 same as popularity26 but for "department"     ✓   0.573 

deppopularity39 same as popularity39 but for "department"     ✓   0.573 

deppopularity_decay deppopularity52 divided by deppopularity13     ✓   0.573 

visits52 Number of distinct days the customer visited in last 

52 weeks 
✓       0.569 

transactions_withdiscountman Number of times the manufacturer was sold with 

discount in 52 weeks 

      ✓ 0.567 

transactions_withdiscountdep Number of times the department was sold with 

discount in 52 weeks 

    ✓   0.565 

manpopularity_decay manpopularity52 divided by manpopularity13       ✓ 0.563 

count_newitems Number of products the customer bought  last week 

for the 1st time 
✓       0.562 

frequenciesdep_decay frequency52dep divided by frequency13dep ✓   ✓   0.559 

average_cycle52dep Same as average_cycle52 but for "department" ✓   ✓   0.559 

HH_COMP_DESC Household status ✓       0.557 

INCOME_DESC Household income band ✓       0.557 

average_cycle39dep Same as average_cycle39 but for "department" ✓   ✓   0.556 

AGE_DESC Household Age Band ✓       0.556 

KID_CATEGORY_DESC Household's kid category description ✓       0.555 

average_cycle26dep Same as average_cycle26 but for "department" ✓   ✓   0.555 

MARITAL_STATUS_CODE Household's Marital Status ✓       0.553 

average_cycle13dep Same as average_cycle13 but for "department" ✓   ✓   0.552 

HOMEOWNER_DESC Household's homeowner status ✓       0.551 

average_spendingitem Average spent on a product in last 52 weeks   ✓     0.542 

deppopularity52 same as popularity52 but for department     ✓   0.541 

HOUSEHOLD_SIZE_DESC Household Size band ✓       0.540 

average_discount Average discount per product in basket in last 52 

weeks 
✓       0.540 

average_discountitem Number of times the product was sold with discount 

in last 52 weeks 

  ✓     0.537 

transactions_withdiscountitem Number products the customer  bought with discount 

in  last 52 weeks 
✓       0.535 

visits_decay visits52 divided by visits13 ✓       0.535 

average_spending Average spending per product in basket in last 52 

weeks 
✓       0.533 

average_quantity Average quantity per product in basket in last 52 

weeks 
✓       0.531 

TRANS_TIME Time in hours where 12 am is '00' and 11pm is '23' 

(24 distinct values) 

        0.529 

 

The strangest single feature of table 3.2 boasts an AUC of 0.775 (frequency26) which can be 

considered quite high as it comes from a single feature and shows once again the importance 

of an existing relationship between a customer and a product. 
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3.4 Univariate Analysis  

 

The findings of the previous section will be summarized in tandem with the hierarchy of the 

feature groups presented in the previous section of this chapter:  

 

3.4.1 Household and Product features 
 

This group of features is by far the most important one in this analysis as it dominates the top 

of the features board. It is sensible that the more times a customer has bought a product the 

higher the chance to buy it at any given week (see figure 3.6): 

 

Figure 3.6 : Frequency of purchase of last 52 weeks vs. target 

 

For items bought over 13 times, the probability to buy becomes immensely (and non-linearly) 

higher than the rest of the bands and can reach 35 %.   

Additionally for a customer, knowing the average number of days between purchases of a 

product and subtracting that number by the number of days since he/she last bought it, can 

facilitate understanding when he or she is going to buy the item again in the future. For example 

if a customer buys a product every 12 days and it was last bought 5 days ago, he/she is expected 

to buy the item 7 days from now. Negative values for this feature represent customers who 

stopped buying the product after some point and positive values customers who may have just 
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bought the item and it is not the time yet to buy it again. This feature is represented in figure 

3.7: 

 

Figure 3.7 : Average Cycle minus last time bought vs target 

  

Another interesting point arises by visualizing the ratio of purchases in the previous 52 and 13 

weeks. Assuming that the customer buys the product evenly across the year then a ratio of 4 

would be expected, since the first 13 weeks are included in 52.  Figure 3.8 clearly shows that 

when the times the customer bought the item in last 52 weeks is more than 4 times bigger than 

the times bought in last 13 weeks, then the probability to buy the product increases. 

 

Figure 3.8 : Frequency's decay vs target 
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3.4.2 Household and manufacturer or department 
 

The importance of this group lies in when a direct relationship between a customer and product 

is not known and therefore these higher levels of the product hierarchy are used to infer it. As 

can be speculated the relationship is not as strong as with the products themselves, however 

the discrimination is clear (i.e. higher values denote higher probability to buy the item) as 

illustrated in the customer’s department frequency of purchase of the last 52 weeks in figure 

3.9: 

 

 

Figure 3.9 : Frequency' of purchase of department in last 52 weeks vs target 

 

3.4.3 Product Features 
 

The product related features rank second in the list of the most predictive features and are quite 

important because a household-to-product link is not always assumed.  The mapping of 

different periods and lags allows the capturing of additional seasonality elements in the 

products. Product popularity over the last 52 weeks is defined as the number of different 

baskets, in which the product was included. There is a strong positive relationship between the 

times included and the probability to buy in the target week as illustrated in figure 3.10:  
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Figure 3.10 : Product popularity of last 52 weeks versus target 

 

In order to better capture the propensity of customers to buy new products (that they have never 

bought before) and to map seasonality, a trialed feature was introduced, which can be defined 

as the number of different customer that bought the items in the previous-to-the-target week 

that have never bought it before in previous 51 weeks. In other words it expresses the tendency 

of the product to be bought for the first time in the very recent week. The greater the number 

of people who bought the product for the first time in the previous week, the higher the chance 

for a given customer to buy that item in the target week as illustrated in figure 3.11: 

 

Figure 3.11 : Trialled products’ popularity versus target 
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Compared to product popularity, the top band in this feature can yield higher probabilities, max 

2% versus 0.7%. 

Another interesting finding is the relationship between popularity of last 52 weeks divided by 

the popularity of last 13 weeks as displayed in figure 3.12. Unlike frequency of purchase, 

products that are slightly under-indexed (in this scenario, bought more frequently as of late) 

seem to have higher probability to be bought in the target week. 

 

Figure 3.12 : Popularity decay versus target 
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can be viewed in figure 3.13, the age groups between 25 and 54 possess higher probability to 

buy any product in the target week:  

 

Figure 3.13 : Age band versus target 

 

Additionally there seems to be a positive relationship between income and propensity to buy 

where higher income is associated with higher chance to buy a product in the target week as 

illustrated in 3.14:  

 

Figure 3.14 : Income band versus target 
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Figure 3.15 : Kids band versus target 

 

Another household-type group of features is centered on measuring how loyal a customer is by 

how frequently he/she visits the retailer’s stores. The assumed relationship (i.e. the more a 

customer visits the higher the chance to buy any item) is verified as illustrated in figure 3.16 

where more visits for a customer equate to higher probability to buy any product: 

 

Figure 3.16 : Total visits in last 52 weeks vs target 

 

Furthermore, customers’ cardinality-based features (such as number of different products the 

customer has bought in 2.17) possess predictive power too: 

 

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

'1' '2' '3+' 'None/Unknown' Not Given'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Kids Band

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0 to 17' '18 to
26'

'27 to
35'

'36 to
44'

'45 to
54'

'55 to
65'

'66 to
79'

'80 to
98'

'99 to
128'

'129 to
302'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Total visits in last 52 weeks



80 
 

 

Figure 3.17: Number of distinct products vs target 

 

Another useful household-type feature is the count of products the customers has bought for 

the first time in the previous (from the target) week. This feature expresses the tendency of the 

customer to buy items he/she has never bought before and is illustrated in figure 3.18. It 

displays a positive relationship with the target variable: 

 

Figure 3.18 : New items bought and number of distinct products vs target 

 

The group of customers who are more adventurous and like to try products they have never 

bought before have higher probability to buy any item in the target week. 
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3.4.6 Contextual feature – day of the week 
 

An interesting pattern is present in the day of the week in figure 3.19. There is less tendency to 

buy an item in the middle of the week, compared to the other days. 

 

Figure 3.19 : Day pf the week vs target 

 

 

3.5 Impact of binning 

 

Under certain assumptions it is feasible to quantify the impact of binning for the numerical 

features in respect to AUC. For completeness the quantification will include some of the 

demographic features which were given as binned categorical variables even though they were 

not subject to the optimized binning algorithm. The proposed method suggests measuring the 

difference in AUC before any binning was applied and after, both in simple and proportional 

terms. Gain can be defined as AUC after binning minus AUC before binning. Proportional gain 

can be defined as gain divided by AUC before binning. 

HH_COMP_DESC, KID_CATEGORY_DESC, MARITAL_STATUS_CODE and 

HOMEOWNER_DESC were excluded from this comparison because they could not be 

expressed in a numerical form. The rest of the categorical variables have been converted to 

numerical using the average of the band they represent. For example in AGE_DESC category 

‘35-44’ was replaced with 39.5. 
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Before applying binning, all missing values for a given feature were assigned a value that is 

lower than the minimum of all the non-missing values for that feature. This decision is derived 

logically as in most cases missing values in this context are generated due to absence of past 

purchases and are associated with a lower chance to buy any item. If missing values were 

replaced with the mean, this would have favored the binning method since for many of the non-

binned features it would have interrupted the increasingly monotonic relationship they may 

have with the target variable.  

After applying binning, all binned values (or categories) are replaced with the average of the 

target variable. For example the category of ‘35-44’ in AGE_DESC has an average probability 

to buy of 0.2098%, hence all ‘35-44’ categories are replaced with 0.002098. In this context all 

missing values are treated as a separate category and are replaced with the average probability 

to buy, same as with any other variable.  

The table 3-3 presents the gain of all features in terms of AUC before and after binning, sorted 

in a descending manner by proportional gain.  

 

 

Table 3-3: Comparison of AUC before and after binning sorted by proportional gain 

Included Fields AUC before binning AUC after binning AUC gain  Gain% 

popularity_decay 0.4929 0.5885 0.0955 19.38% 

manpopularity_decay 0.4927 0.5633 0.0706 14.32% 

deppopularity_decay 0.5023 0.5728 0.0705 14.04% 

visits_decay 0.4832 0.5352 0.0520 10.75% 

average_spending 0.4849 0.5330 0.0481 9.92% 

TRANS_TIME 0.4891 0.5293 0.0402 8.23% 

average_spendingitem 0.5137 0.5423 0.0286 5.57% 

average_quantity 0.5136 0.5309 0.0173 3.37% 

AGE_DESC 0.5438 0.5556 0.0118 2.17% 

average_cycle52man 0.6867 0.6979 0.0112 1.63% 

frequency52man 0.6907 0.7019 0.0112 1.62% 

average_cycle39man 0.6860 0.6955 0.0095 1.38% 

average_cycle26man 0.6854 0.6947 0.0093 1.36% 

average_cycle13man 0.6773 0.6864 0.0091 1.34% 

frequency39man 0.6945 0.7038 0.0093 1.34% 

frequency13man 0.6986 0.7077 0.0091 1.30% 

frequency52dep 0.5716 0.5785 0.0069 1.20% 

frequency26dep 0.5773 0.5840 0.0067 1.16% 

frequency26man 0.6988 0.7068 0.0080 1.14% 

frequency13dep 0.5765 0.5826 0.0061 1.06% 

frequenciesman_decay 0.6768 0.6835 0.0067 0.99% 

frequency39dep 0.5772 0.5828 0.0056 0.97% 

average_cycle26dep 0.5497 0.5550 0.0053 0.96% 

distinct_DEPARTMENT 0.5856 0.5911 0.0054 0.93% 

average_cycle52dep 0.5538 0.5589 0.0051 0.92% 

average_cycle39dep 0.5517 0.5565 0.0048 0.87% 

average_cycle13dep 0.5473 0.5517 0.0044 0.80% 

distinct_MANUFACTURER 0.6158 0.6204 0.0046 0.75% 
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INCOME_DESC 0.5541 0.5567 0.0026 0.47% 

manpopularity52 0.5872 0.5896 0.0024 0.40% 

average_discountitem 0.5344 0.5365 0.0021 0.39% 

transactions_withdiscountitem 0.5335 0.5352 0.0017 0.32% 

count_newitems 0.5600 0.5617 0.0016 0.29% 

transactions_withdiscount 0.5757 0.5768 0.0011 0.20% 

average_discount 0.5387 0.5396 0.0009 0.17% 

manpopularity26 0.5845 0.5851 0.0006 0.10% 

average_cycle13 0.7086 0.7092 0.0006 0.08% 

average_cycle26 0.7465 0.7471 0.0006 0.08% 

average_cycle39 0.7649 0.7655 0.0006 0.08% 

average_cycle52 0.7739 0.7745 0.0006 0.08% 

visits13 0.5764 0.5769 0.0004 0.07% 

last_day_bought 0.7733 0.7739 0.0006 0.07% 

deppopularity26 0.5729 0.5733 0.0004 0.07% 

deppopularity39 0.5729 0.5733 0.0004 0.07% 

visits26 0.5768 0.5771 0.0003 0.06% 

visits39 0.5738 0.5741 0.0003 0.06% 

deppopularity52 0.5404 0.5407 0.0003 0.06% 

deppopularity13 0.5730 0.5733 0.0003 0.05% 

visits52 0.5688 0.5691 0.0003 0.05% 

productsbought39 0.6297 0.6300 0.0003 0.05% 

distinct_item 0.6250 0.6253 0.0003 0.04% 

popularity39 0.7382 0.7385 0.0003 0.04% 

popularity26 0.7419 0.7422 0.0003 0.04% 

popularity13 0.7462 0.7465 0.0003 0.04% 

productsbought26 0.6317 0.6320 0.0002 0.04% 

frequenciesdep_decay 0.5591 0.5593 0.0002 0.04% 

productsbought52 0.6243 0.6245 0.0002 0.04% 

popularity52 0.7347 0.7350 0.0002 0.03% 

productsbought13 0.6318 0.6320 0.0002 0.03% 

cycle_vs_lastbought 0.7744 0.7746 0.0002 0.02% 

most_trialled 0.6871 0.6872 0.0001 0.01% 

transactions_withdiscountdep 0.5650 0.5651 0.0000 0.01% 

manpopularity39 0.5860 0.5861 0.0000 0.01% 

frequencies_decay 0.7086 0.7087 0.0000 0.01% 

transactions_withdiscountman 0.5672 0.5673 0.0000 0.01% 

manpopularity13 0.5857 0.5858 0.0000 0.01% 

HOUSEHOLD_SIZE_DESC 0.5404 0.5404 0.0000 0.00% 

frequency13 0.7750 0.7748 -0.0002 -0.03% 

frequency39 0.7753 0.7751 -0.0002 -0.03% 

frequency52 0.7752 0.7750 -0.0002 -0.03% 

frequency26 0.7754 0.7751 -0.0003 -0.04% 

HH_COMP_DESC - 0.5569 - - 

KID_CATEGORY_DESC - 0.5554 - - 

MARITAL_STATUS_CODE - 0.5531 - - 

HOMEOWNER_DESC - 0.5512 - - 

 

Certain features have over 10% gain in terms of AUC. The features that recorded the biggest 

gain % were those that had an AUC near the random value of 0.5. The variable 

popularity_decay (that demonstrated the biggest gain %) is signifying a distinct non-linear 

relationship with the target variable, also illustrated in figure 3.12. 

On the opposite spectrum, the features with highest absolute AUC such as frequencyXX have 

their AUC slightly worsened after applying binning. This is not unexpected as a customer who 

has bought an item more times, will have a higher chance to buy it again and any binning 
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applied flattens any gain that could have been derived from the increasing number of purchases. 

For example category ‘9-12’ of frequency52 has an average propensity of 18.6653% to buy an 

item. This representation cannot leverage that fact that frequency52=9 has less propensity than 

frequency52=12. 

Out of 72 features, 66 (or 91.17%) demonstrated some gain after applying binning, 1 out of 72 

(or 1.39%) had no change and 4 out of 72 (or 5.56%) had their AUC worsened. The average 

gain % of AUC across all features is 1.59% or 0.0084 (in simple terms). It can be expressed 

that binning in most cases does facilitate the uncovering of more information in respect to the 

target variable and it is further expected that certain machine learning algorithm could benefit 

from the transformed (with binning) variables.  

 

3.6 Conclusion   

 

This chapter presented findings from the freely available big dataset from dunnhumby.com 

labelled as “the complete journey” which consists of multiple smaller sets and gave an 

overview of the basic elements and attributes available for this thesis as well as explained the 

notions of household and product as they appear in the dataset.  

Many supervised machine learning methods rely solely on the features provided to produce a 

good result, while others can create the features themselves based on the transactional data 

(like matrix factorization) . The univariate analysis performed in this chapter gave a base for 

the features that will be inputs in various machine learning algorithms in later chapters of the 

thesis and also gave insight as to what may be the most predictive features and/or which areas 

need to be further explored. 

The generated features were transformed to capture non-linear relationships through an 

optimized-binning method and were expressed through multiple time stamps to account for 

recency, seasonality, cyclicality as well as change of habits through time. The binning of 

variables was measured to account for an average gain of 1.59% in terms of AUC.  91.17% of 

the total features demonstrated a gain in the range of [0.000, 0.096] AUC points.  

By segmenting the features space into multiple categories based on the customers’ attributes 

and the product hierarchy clearly exhibited that features which capture a direct customer-to-

product relationship tend to be the most predictive for explaining behavior in the target week. 
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Additionally product-based features as well as indirect relationships of the customer with the 

product (via exploiting the product’s heritage through department and brand) may fill the gap 

of an absent direct relationship. Finally contextual features like time and day of the week do 

not seem very predictive, but may still add value in particular scenarios in specific algorithms.  
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4.  Meta-modelling to predict top K products 

This chapter demonstrates the use of meta-modelling to improve the performance in predicting the top 

K products for a group of 2,500 loyal customers of a retailer in respect to metrics such Precision at K 

and AUC using the same underlying data demonstrated in chapter 3. The ensemble model aims to 

surpass in these metrics any single model involved, any simple ensemble methods and standard 

benchmarks such as product popularity and customer’s frequency of purchase. 

 

4.1 Introduction 
 

The machine learning toolkit has been expanded to many different algorithms and data 

transformations that in line with the recent advents in both hardware and software has permitted 

the ability to investigate data from many different angles. For different problems different 

algorithms may perform better given the underlying structure of the data and other conditions 

that affect the modelling process, such as the metric to optimize type of input data, volume of 

data, scarcity and dimensionality. For example linear regression can be best when relationships 

in the data are linear.  The following experiment will make use of Meta modeling (and in this 

instance stacking) to improve performance in top K products as a means to leverage different 

machine algorithms and compare results over base models and simple benchmarks.  

4.2 Data preparation 
 

4.2.1 Type of features included 
 

The data is the same as demonstrated in chapter 3 and it includes a set of 75 features as 

illustrated in table 3-2. They include item based features, product-hierarchy features (like 

department and manufacturer), customer-based features, combinations of all the previous 

elements, demographics and contextual features (such as time).  
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4.2.2 Treatment of categorical features 
 

AGE_DESC and INCOME_DESC have been replaced with the average of the groups they 

represent. For example category '150-174K' of INCOME_DESC was replaced with 162 in the 

data. The rest of the categorical variables, namely KID_CATEGORY_DESC, 

HOUSEHOLD_SIZE_DESC, HH_COMP_DESC, HOMEOWNER_DESC, MARITAL 

STATUS_CODE have been replaced with sequential ids. The process is also known as ‘label 

encoding’ [Géron 2017]. Although this technique suffers from the assumption that the 

categories follow an exact ordinal relationship [Garreta et al. 2013], it has the benefit of not 

increasing the dimensionality of the dataset. Furthermore some models within the ensemble 

(such as the tree-based ones) have the capacity to deal with this, via being non-linear in how 

they process the features.   

4.2.3 Treatment of numerical features 
 

Numerical features have been converted using maximum absolute scaling as a means to control 

outliers. Applying scaling also facilitates convergence. According to [Mika 2010] scaling the 

data is an important factor in aiding convergence of gradient methods. Some of the algorithms 

deployed for the experiment are of linear nature and use Stochastic Gradient Descent (SGD) to 

optimize their weights.  

The maximum absolute scaling method essentially rescales the data to be within the range of 

[-1, 1]. The process requires finding the maximum absolute value of each feature and then 

dividing each feature with this value [Lee et al. 2017]. This scaling method was preferred over 

others, because it does not shift the centre of the features, hence the algorithms can still leverage 

the sparsity of the data. In other words the zero values would remain as zeros after the scaling.  

 

4.2.4 Treatment of missing values 
 

There are 2 types of missing values in the dataset.  

The first type of missing data includes values generated due to computational complications 

when deriving the features. For example deriving the standard deviation of purchasing cycles 

with only one purchase is not feasible and it is regarded as a missing value. In this context 
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replacing with a mean or median value (as it is commonly preferred) could create the false 

representation that this case represents a common purchasing pattern, where in reality these are 

cases that do not have many past purchases. According to [Lutz 2010] missing values could be 

replaced with an indicative value outside the range of the values such as -9999. Additionally 

assigning missing values with indicative and distinctive values (or codes) such as 999 or -9 is 

further cited by [Ruel et al. 2015] and [Acock 2005]. Eventually such reasoning was preferred, 

because it could allow certain algorithms (of non-linear nature such as tree-based ones) to 

isolate these values and treat them accordingly. This is feasible, because they are outside the 

range of the rest of the values. To avoid having missing values represented with a very large 

value (like -9999), instead -100 was selected to alleviate convergence difficulties with linear 

methods. Another reason for assigning a negative value was based on the fact that in most 

situations this kind of missing value was associated with absence of past purchases. Naturally, 

absence of past purchases is associated with lower probability to buy the item, hence a negative 

value could facilitate linear algorithms to capture it. 

The other type of missing data refers to values explicitly given as such from the retailer’s 

dataset, for example with the demographic features.  These missing values were replaced with 

-1. This value satisfied the premise of having values outside the range of every other value and 

followed the same ordinal pattern applied to categorical features due to label encoding as 

described in section 4.2.2.  

 

4.3 Training, validation and test sets 
 

The train and test data include all customers that shopped in their respective targets weeks (53 

and 54 respectively) as in this experiment the focus is on maximizing precision given visit. All 

the features have been computed for a period of up to 52 weeks prior to the target week with 

exception of demographic data that is captured during application time.  The train data has 

12,606,944 records (9,788 x 1,288) and the test data 12,832,068 (9,788 x 1,311. The train data 

is further split into training data via selecting randomly 80% of the customers who shopped in 

the target week (53) and all their respective (9,788) products , while the remaining formed the 

validation data (20%).  
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4.4 The meta model architecture and performance 
 

The following subsections contain information about the meta model’s overall multi-layered 

architecture.  

 

4.4.1 Meta model definition 
 

The meta model will use as inputs various other models’ predictions which are fitted directly 

on the 80% of the customers’ features of the train data (labelled as training data) and made for 

the 20% of the customers’ features of the train data (or just the validation data). For simplicity 

train data is training and validation data together.   Similar predictions are being made for the 

test data with same parameters as with the train data, but this time using the train data. All these 

new inputs will be stacked together and form two new data sets for the train (which will have 

size equal to the validation) and test sets respectively.  A model will be used to fit the new train 

data and make the final predictions for the test data.  

This process can be summarized graphically in figure 4.1: 

 

Figure 4.1 : Process for generating train and test predictions in the first layer 

 

Note that this process does not use the k-fold paradigm (although it could) as explained in 

chapter 2 but a simple random split based on the unique customers that visited in the training 

week. The reason being that the 20% of train data is actually 2,519,432 rows, enough to build 
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consistent meta models on top of it. At the same time it reflects a better representation of test 

data that include as portion of different customers (with the same items considered) than a 

standard random split.  

The aforementioned process is similar to a 1 hidden layer neural network where the input layer 

is the feature set X and the hidden layer is all the models’ predictions (or activation functions) 

on the 20% of the validation data. Equation 4.2 describes the output of a single hidden unit, 

given a sample point xi (from X) and the m (out of M) models from a vector of models S𝑀 in 

equation 4.1: 

 

                                                       f1(xi, S
M, m) = Sm

M(xi)                                                        (4.1) 

 

For example in a linear regression model this 𝑆𝑚
𝑀

 model will be the coefficients of the model 

multiplied by the input features xi plus some constant value. The numbering of 1 in f (e.g f1) 

demonstrates that this function takes place between the input data and the first hidden layer. 

The M in S demonstrates that the total size of the models’ vector is M. The advantage of this 

method is that any model-function can be used as activation function in the meta-model: be the 

individual model parametric or non-parametric, regressors or classifier and may even include 

other ensemble type models such as boosted algorithms, bagged models or a simple arithmetic 

mean. 

The output layer is the prediction that comes out by combining all other f1 models’ predictions 

(or neurons) through another model L and leads in this case to probabilistic output similar in 

concept to a Softmax output layer. The function that connects the predictions with the target 

variable through another (Meta) model is summarized by equation 4.2: 

 

                        f2(xi, L, S
M) = L (f1(xi, S1

M), f1(xi, S2
M),… . , f1(xi, SM

M))                                  (4.2) 

 

Where L is the Meta model used to combine all other previous models’ predictions given their 

activations-models in S.  
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4.4.2 Meta model base layer and performance 
 

The Meta model’s performance in the based layer is explained in tandem with the model 

parameters chosen to maximize it and the metrics selected to capture it.   

 

4.4.2.1 Model parameters 
 

In this experiment the first level consists of 10 different machine learning models, regressors 

or classifiers, all trained on the input features while outputting predictions with dimensionality 

equal to one (which connotes probability to buy in classifiers and the regression continuous 

output for regressors). The specific model selection was chosen in order to cover at least one 

representative of each one of the common algorithmic families, however some, mostly KNN-

based have been excluded due to being too inefficient.  

Each model has been tuned mildly around the default hyper parameters using the 20% 

(validation set) to determine the best set of parameters. This process was not time consuming 

as the basic logic is the models don’t have to be heavily tuned, in similar way where a Random 

Forest is consisted of weaker trees to reduce variance and improve its ability to generalize to 

unseen data. Another reason towards that end is the fact that the output predictions will be used 

for the Meta model, therefore are required to be able to generalize rather than being dataset-

specific.  Table 4-1 demonstrates the models used in the experiment’s first layer and their main 

parameters: 

Table 4-1 : Single models involved in the ensemble and their hyper parameters 

Models in first layer Parameters 

Ridge regression C =0.001 

Neural net classifier C=0.00001, learn_rate=0.009,h1,h2=(30,20),connection=relu, out=Softmax 

Neural Net regression C=0.00001, learn_rate=0.009,h1,h2=(30,20),connection=relu, out=Linear 

Naïve Bayes classifier Shrinkage=0.1 

Logit (L2 regul) maxim Iterations=100, C=1.0 

Logit (L1 regul) maxim Iterations=100, C=1.0 

SVM (Linear kernel) maxim Iterations=100, C=1.0 

LibFm classifier maxim Iterations=100,C=0.0001, init_values=0.05,learn_rate=0.01,Lfeatures=4 

Gradient boosted Random Forest 

regressor 

estimators=300,max_depth=12,max_features=0.3,min_leaf=12.0,shrinkage=0.04, 

row subsample=0.95 

Gradient boosted Random Forest 

classifier 

estimators=300,max_depth=12,max_features=0.3,min_leaf=12.0,shrinkage=0.04, 

row subsample=0.95 
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Linear models have been preferred because they were faster to run and easier to converge.  

Ultimately all experiments have been run on a Linux server with 32 cores and 256 GB of RAM. 

One of the advantages of this methodology is that all the aforementioned models can be run in 

parallel and when all of them are completed, then the next layer can be initiated making full 

leverage of all resources available. All software used was designed specifically for this 

experiment using the Java programming language. The software used comes from the 

[StackNet 2017] Meta Modelling Framework and library which is explained in chapter 6.  

4.4.2.2 Metrics 
 

Table 4.2 demonstrates the performance of the aforementioned models in AUC in both 

validation and test data (for consistency) and the precisions @5, @10 and @20 for the test set 

with the same models: 

Table 4-2 : Performance of single models in UC and Precision@K 

Models in first layer AUC TRAIN AUC TEST Precision@5  Precision@10  Precision@20  

Ridge regression 0.86036 0.85466 21.59% 17.20% 13.38% 

Neural net classifier 0.86277 0.85105 27.39% 21.04% 15.57% 

Neural net regression 0.84320 0.83338 27.73% 21.49% 15.80% 

Naïve Bayes classifier 0.83668 0.81483 8.32% 8.23% 7.73% 

Logit (L2 regularization) 0.85099 0.83982 26.84% 20.61% 15.31% 

Logit (L1 regularization) 0.84274 0.82045 15.60% 11.23% 9.01% 

SVM (Linear kernel) 0.81874 0.80474 14.21% 11.23% 9.17% 

LibFm classifier 0.84593 0.83504 18.41% 14.88% 11.87% 

Gradient boosted Random 

Forest regressor 

0.86277 0.84803 26.38% 21.04% 15.16% 

Gradient boosted Random 

Forest classifier 

0.87761 0.86515 27.25% 21.74% 15.96% 

 

It is not surprising that gradient boosted trees performed the best in terms of AUC in both 

training and test as there were significant non-linear relationships as presented in chapter 3. 

The performance of linear models is also commendable. In chapter 3, frequency of purchase 

was demonstrated to be one of the most important predictors in determining next purchases. At 

the same time there were other features (like popularity decay) which were exhibiting nonlinear 

relationships with the target variable. The Neural Network with linear output can (theoretically) 

exploit these two types of features and demonstrates a precision @5 higher than tree-based 

models. It seems that the Gradient boosted Random Forest classifier regains the lead in 

precision @10 and @20 making use of the apparent nonlinear relationships present in the data 

to maximize its predictive accuracy.  

mailto:Precision@5
mailto:Precision@10
mailto:Precision@20
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The AUC is particularly high given that it may take values between 0.55 and 1. The High AUC 

occurs because the datasets include all retention and non-retention combinations of customer-

item pairs and therefore it is easy to discriminate the former from the latter. Additionally in an 

FMCG environment having previous experience in buying products greatly augments the 

chance of such pairs occurring again in the future making the overall discrimination of any 

model much stronger given it includes these kind of relational features.  

Ultimately the performance of the models in both training and test seem to vary significantly 

and this may be due to the time lag between train and test which causes some of the models to 

lose their ability to generalize as efficiently in future data (overfitting). Other models 

(particularly the L1 ones) may have been underperforming because some of the hyper 

parameters force the models to remain more in the surface instead of searching and leveraging 

deeper relationships (underfitting). Irrespective of the reasons that may lead to such gaps, 

assuming the link between training-validation and train-test is not compromised (so that an 

overfitted or underfitted model in the validation data is understood as such in the test data too), 

the Meta model can make use of such information to improve results on the test data. 

 

4.4.3 Meta model output layer performance 
 

Similar to the base layer models, performance for the output layer is explained in tandem with 

the model parameters chosen to maximize it, the benchmarks to compare against and the overall 

performance based on the pre-defined metrics.   

4.4.3.1 Model parameters 
 

The two set of predictions (one for the validation data and one for the test data) became inputs 

to a random forest classifier Meta model that had two outputs, the probability to buy an item 

next week and the probability not to buy next week. The reason this algorithm was chosen was 

because it is known to generalize well to unseen data (due to bagging), it is nonlinear and 

previous experiment showed similar algorithms to dominate performance wise.  

                                                           
5 That would entail random prediction in connection with the target variable 
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The model had its hyper parameters tuned through a simple 50-50 random validation step 

(again) based on unique customers. The final hyper parameters include 3,000 estimators, 

maximum tree depth of 6, feature subsample of 0.3, leaf size of l00, row subsample of 0.9 and 

uses the Entropy metric (or information Gain) as the main criterion to determine the split. The 

first thing to note is the bigger ensemble size than before, product of the much smaller data (4 

times smaller than before) that allows to run more bags faster  and at the same time provides 

an extra layer against over fitting. All other parameters are constrained (or more reserved) 

compared to the initial models in order to maximize performance. For example performance 

was decreasing with higher maximum depth because of the inability of the model to remain 

general hence not overfitting its training data.  Similarly low feature subsample ensures there 

is not over-reliance in specific input feature (or first layer model), while high minimum leaf 

boosts significance of the results in each node via increasing its size.  

Ultimately the final Meta model was built under similar principles of the previous models, 

having its hyper parameters tuned through an equivalent validation procedure with focus on 

avoiding overfitting, while leveraging most of the benefits arisen from the individual model-

inputs of the previous layer.  

 

4.4.3.2 Benchmarks 
 

In order to compare the performance of the meta model a number of different baselines have 

been used. The first baseline is the best model’s performance from the previous layer for the 

test data (which was Gradient Boosted Random Forest classifier for AUC, precision@10 and 

precision@20 and Neural Network Regression for Precision@5). Comparison with this 

baseline basically demonstrates whether Meta modelling actually yields better results than any 

one of the previous base models. Another baseline, arguably the most basic one, is the 

popularity of the products purchased in the last 26 weeks for the given customer population. 

Popularity as explained in Chapter 3 is defined as the number of baskets a product has been 

included in the customers baskets. This metric facilitate gauging how better the model is to 

discriminate irrespective of prior personalised knowledge. The personalised version of the 

previous metric is the frequency of purchase of the item per customer, given his/her visits in 

the last 26 weeks. Equivalently this metric measures how many times a customer has included 

an item in the basket, in the last 26 weeks (and like popularity ignores quantity). 
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Apart from these simple metrics, some ensemble metrics will be used as well. A simple (equally 

weighted) average of all input 10 models will be used to assess whether combining the results 

yields any uplift in the aforementioned metrics. However this method is still biased in a way 

because the output of some models is now always a probability since many regressors have 

been used in previous phases beforehand. To counter this effect a simple Ranking average will 

be used to combine all the models. This method is basically a simple average after transforming 

all scores to their rank value based on their order. This ensures that even models with higher 

means and variances (that may even exceed the bounds of 0 and 1) can now be blended in a 

fair manner along with the rest of the models. Also precision and AUC are both affected only 

by the ranking of the score, therefore maintaining a probabilistic output is not really necessary.  

These five metrics will be used to compare performance against the performance of the 

Random Forest Classifier Meta model in both actual and proportional manner.  

4.4.3.3 Graphical representation of the model 
 

The following graph 4.2 shows a graphical representation of the whole in order to make 

apparent the similarity of this modelling procedure with the single layer neural network.  

 

 

Figure 4.2 : Illustration of the stacking (Meta) model 
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4.4.3.4 Results 
 

Table 4.3 shows the results of all benchmarks and the meta model in actual results: 

 

Table 4-3 : Results of benchmarks, single best models and Meta model in AUC, Precision@K 

MODELS  AUC_TEST Precision@5  Precision@10  Precision@20  

Popularity 26 weeks  0.75548 12.53% 8.62% 6.20% 

Frequency 26 weeks  0.75636 27.54% 20.72% 15.01% 

Average of all 10 models  0.85374 26.90% 21.24% 15.80% 

Rank Average of all 10 models  0.85708 21.98% 17.41% 13.69% 

GBRF (AUC, P@10,P@20) or 

NNreg(P@5) 

 0.86515 27.73% 21.74% 15.96% 

Meta Random Forest Classifier  0.86759 28.17% 22.16% 16.20% 

 

Table 4-4 portrays the proportional difference/deterioration of each model in comparison to the 

Meta model: 

 

Table 4-4 : results with proportional differences to the Meta model 

MODELS AUC_TEST Precision@5  Precision@10  Precision@20  

Popularity 26 weeks -12.92% -55.50% -61.11% -61.71% 

Frequency 26 weeks -12.82% -2.22% -6.51% -7.33% 

Average of all 10 models -1.60% -4.50% -4.13% -2.47% 

Rank Average of all 10 models -1.21% -21.95% -21.43% -15.50% 

GBRF (AUC, P@10,P@20) or 

NNreg(P@5) 

-0.28% -1.57% -1.89% -1.48% 

Meta Random Forest Classifier 0.00% 0.00% 0.00% 0.00% 

 

By all metrics considered the meta model Random Forest classifier outperforms all of the 

benchmarks and simple ensemble methods. The popularity and frequency benchmarks have 

performed relatively poorly in terms of AUC in comparison to the rest of the methods and 

benchmarks, however the latter one has done commendably well in precision, due to the fact 

that it is a personalized metric. Interestingly the average of all previous models performs 

relatively well in all precision metrics but worse than ranking average in terms of AUC.  

The Gradient Boosted Random Forest from the first layer (a base model) seems to outperform 

all other simple benchmarks and simple ensemble methods (although it is also a part of it). 

Given the time lag and the significant difference in performance between train and test among 

the 10 models, a simple (or even a ranking) average is suboptimal. 

mailto:Precision@5
mailto:Precision@10
mailto:Precision@20
mailto:Precision@5
mailto:Precision@10
mailto:Precision@20
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Compared to a simple average,  the Meta model leverages the strengths and weaknesses of each 

model as well as the shared information between them and is able to outscore every other 

benchmark (including the GBRF) by at least 1.4% in all precision metrics and a small but 

potentially valuable  0.28% in AUC. Especially at precision@10 (which seems to be the metric 

the retailer most favours) the difference reaches close to 2%. The proportional difference 

against the popularity metric exceeds 55% for all precision metrics and is roughly 13% for 

AUC.   

Subsequently the Meta modelling methodology, given the time lag and the commendable 

variance among the based models (that led simple ensemble methods to fail) has managed to 

outperform any other single model or simple benchmark and it should be noted that even some 

of the input-base models were product of ensembling themselves (like the GBRF) . This 

methodology could have worked with more models (possibly improving on the results over the 

best single model even further) or even less base models for a simpler yet faster solution. It 

should also be noted that such methodology does not need to be strictly associated with this 

particular problem of improving results for the top k products, but could be refactored possible 

with different holdout methods to be utilized in other problems of typical classification of 

regression. 

 

4.4.3.5 Estimating financial impact of stacking model 
 

The potential uplift of the stacking approach in terms of revenue (for the grocery market) could 

be calculated under certain assumptions. The dataset contains 276,484 unique baskets spanned 

over 102 weeks. The average price of the selling item based on the transactional data is 

approximately 3.10$ for the same period. Every basket contains 9.39 products on average. 

Since the average number of products in a basket is near 10, it can be assumed that uplift in 

precision at 10 is the most appropriate to base any calculations regarding financial impact. 

It can be further assumed that the best single model for precision at 10 could be used as the 

baseline to measure the uplift. The uplift in precision at 10 between the stacking model and the 

best performing single model (GBM) is 0.42% (or 22.16% minus 21.74%). Assuming this 

uplift is incremental and the GBM model is already providing recommendations, on every 238 

(or 100 divided by 0.42) items sold, there is 1 extra item that would come from the stacking 

model.  
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The dataset contains 2,595,732 purchased items from 2,500 households (for the same period 

of 102 weeks). It can be roughly estimated that 10,906 extra times (or 2,595,732 divided by 

238) could be sold over the same period for the same number of households. Since the average 

price for any item was calculated to be approximately 3.10$, the additional revenue subject to 

these extra items would be 33,808.6$ (or 3.10$ multiplied by 10,906). The estimated revenue 

across a more mature market with 10 million shoppers (that demonstrate similar purchasing 

behaviour) would be approximately 13,500,000$ (if 2,500 shoppers account for 33,808.6$).  

Although this approach of estimating the financial benefit assumes that all uplift in offline 

precision of the stacking model versus the best performing single model is incremental (which 

is unlikely to be the case), yet it does not account for the long term benefits of providing better 

recommendations to customers and the effect they may have to the overall customer 

satisfaction and loyalty. It should be noted that according to [Anderson et al. 2003] loyal 

customers may be worth up to 10 times as much as the average customer (for a given seller) 

over their buying lifetimes. 

 

4.5 Conclusion 
 

A noble goal of the recommendation science in an FMCG environment is to improve the 

ranking of the recommendation given, especially to loyal customers that are predisposed to buy 

more. This objective can naturally be optimised via creating a powerful set of features that best 

describe the customer to item relationship as well as selecting suitable machine learning 

algorithms to fit on this data and leverage the linear and nonlinear relationships inherent within 

these features. To further boost results a Meta modelling methodology can be considered which 

combines various machine learning algorithms and uses their outputs predictions as inputs to 

a new higher level (meta) model. 

Similarly, with a single hidden layer neural network many different models have been fitted in 

parallel on a subset of the retailers training data for a given week and made predictions (outputs) 

for another subset as well as the test data that occur in a future week. These predictions are then 

stacked together forming new modelling datasets and are used to build a new Random Forest 

(Meta) model outputting the probability to buy or not to buy a product resembling the typical 

softmax function of neural network classifier.  
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Compared to a number of different simple benchmarks (like frequency of purchase and item 

popularity) and ensembling methodologies (like average and rank average), the Meta model 

has performed the best in all metrics considered, scoring significantly better against most of 

the baselines; outperforming all and significantly outperforming most  

This methodology could be further improved via adding more base level models (or neurons) 

at the cost of more computational time or with less models to save time at the cost of some loss 

in terms of accuracy. Particularly where the additional base models capture a new aspect of the 

problem, such methodology, with some changes in the validation framework and the input 

futures and models could be extended to different optimization problems of classification or 

regression. 
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5. Hybrid method to predict repeated, 

promotion-driven product purchases in an 

irregular testing environment 
 

This chapter details a hybrid recommendation methodology to improve the accuracy of predictions 

regarding which products the customers of a retailer will buy again in the future after having received 

and redeemed an offer for them. This methodology is applied within an irregular testing environment 

where the models needs to be built with a subset of customers and offers and validated in an 

environment of different customers and offers (as well as different time periods)..  

5.1 Introduction 

 

The focus of this chapter is to demonstrate a hybrid methodology containing a content-based 

approach and a collaborative filtering approach to improve the accuracy of predictions for 

which products the customers of a retailer will buy again in the future, assuming they have 

already received and redeemed an offer for them. The accuracy of this methodology is validated 

based on an irregular testing environment. Irregular in this context is defined by the fact that 

the recommendation models need to be trained on a subset of customers and offered products 

and applied to a different set of customers and offered products (as well as different time 

periods). In such an environment, finding a suitable cross validation methodology to train the 

models, create and select features as well as tune the models’ hyper parameters was proven to 

be critical for boosting the results in the test data. The cross validation methodology and the 

hybrid model is based on the co-winning solution with Gert Jacobusse of the “Acquire valued 

shoppers challenge” predictive modelling competition held on the kaggle.com platform.  

 

5.2 Problem to Solve 

 

There were 310,000 customers that were sent and redeemed a coupon for a product. The 

simplified statement of the problem is:  

Will the customer buy the redeemed product again in the future? 
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5.3  The data 

 

In this challenge the analyst was given 2 datasets of: 

 160,000 customers as training set and  

 150,000 customers as a test set 

The training set had two additional features not contained in the test data. The first is the 

number of times the customer bought the offered product after redeeming it once in the past 

and the second is just a binary indicator that specifies whether the customer bought the offered 

product at least once, past the first coupon’s redemption. Additional data fields included the 

value of each transaction, the department where the product was conceptually taken from, the 

quantity of the purchase as well as the product measure and size. All these fields are common 

to the typical retailer datasets. 

In addition there was a source dataset containing a subset of the customers’ transactions for the 

training and test sets commencing from sometime in the past until the day the customer 

redeemed the offered coupon. The redemption date in the test data is always in the future 

compared to the training data.  

There is no specific field dedicated to represent the product (such as a product id as it is 

commonly referred to), however in the context of this experiment a product can be defined as 

the unique combination of three basic elements of the product hierarchy that are present in the 

data, namely: 

1. The brand the product belongs to 

2. The category 

3. The company that produced it 

There were 37 different offers 23 of which mostly appear in the training set (and 24 in total) 

and the remaining 13 mostly appear in the test set (and 29 in total). This uneven distribution of 

offers between training and test data is presented in figure 5.1: 
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Figure 5.1: Uneven distribution of offers between training and test sets 

 

In summary, the training of models would have to be made on different customers and different 

offers (as well as different time periods) than the ones available in the test data which 

constitutes an irregular (and difficult) environment to create accurate predictions for.   

 

5.4  Objective to optimize 

 

The objective function to be maximized was the AUC. The ROC (Receiver Operator 

Characteristics) curve was first introduced by [Reen and Swets 1966] and it portrays the 

confusion matrix of sensitivity and 1-specificity for each possible cut-off of the prediction’s 

array. This metric was explained previously in 2.2.2.3. 

For this particular problem, sensitivity is the percentage of those that did buy the offered 

product past the offered date and the model did predict they’ll do so. Similarly specificity can 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

records in training set records in test set



103 
 

be defined (in this scenario) as the percentage of these customers that did not buy the offered 

product after they were sent the coupon and were correctly classified as such by the model. 

 

5.5 Cross Validation Strategy 

 

The cross validation strategy was driven from the fact that there were (almost entirely) different 

offers in the test data than in the training data as demonstrated in figure 5.1. Three different 

validation methodologies were considered as a means to internally gauge performance and 

optimize the modelling parameters as well as derive and select features to maximize 

performance in the test data.  

The first method was a random K-fold cross validation (as defined in 2.2.1) stratified based on 

the offers. The stratification ensures that every offer is represented equally (as a proportion) to 

the training and validation data. In other words if offer z makes up for 10% of the total samples, 

K is 5 and sample size is 160,000, then in the first fold 128,000 will be used for training (or 

160,000 x 80%) and offer z will account for 12,800 of the training cases (or 128,000 x 10%). 

At the same time the validation data for that same fold will have the remaining cases which are 

32,000 and 10% (or 3,200) of them will be attributed to offer z. This method was repeated with 

multiple K in the range of [5, 15]. 

The second cross validation methodology was formulated to always build a model with N-1 

offers and use the nth to test it. This process is repeated N times until all offers are scored and 

the average AUC per offer is retrieved. The process is also illustrated bellow. 

 

 

Figure 5.2: N-Offer Cross validation procedure  
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In other words what is optimized is the average AUC per offer (denoted as AUCper_offer for 

simplicity) for each offer in the training set, also expressed in equation 5.1: 

 

       AUCper_offer(Ŷ, Y) =
1

N
∑ AUC( Yn̂, Yn)
N
n=1                                                     (5.1) 

 

, where Ŷ is the prediction vector for all samples in the training dataset and Y the actual labels. 

 Yn̂, Yn refer to a subset of these predictions, labels, limited to the samples belonging to offern. 

These predictions ( Yn̂) were generated using all other offers’ samples as inputs to a model. 

Assuming a feature set X and offer n>1, to generate the feature set Xm used to build a model 

that predicts  Yn̂, all samples attributed to any of the N offers are concatenated vertically apart 

from those samples belonging to n as Xm = [X1| … |Xn−1|Xn+1| … |XN]. The same applies to 

generate Ym from Y. Then an estimator (or model) is used to train on the pair of {Xm, Ym} to 

produce estimates Yn̂, based on Xnas input. This reasoning for making predictions using N-1 

offers can be defined as leave-one-offer-out for future reference. 

Although this cross validation approach is sensible because it utilises into its schema the fact 

that the offers in the test data are generally unknown, however it does not essentially optimizes 

for the actual (overall) AUC. Optimizing for the overall AUC connotes that the prediction 

needs to discriminate well against any offer (or against any sample) and not just within the 

offer. This type of AUC can be denoted as AUCoverall measured after all  𝑌𝑛̂, 𝑌n from 5.1 are 

concatenated vertically.  

 

                      AUCoveral(Ŷ, Y) = AUC([Ŷ1|Ŷ2|… |ŶN], [Y1|Y2|… |YN])                                         (5.2) 

 

 Based on the known offers, the average propensity was differing significantly ranging from 

7.4% for offer9 to 50.7% for offer2. Table 5-1 demonstrates the sorted average propensity to 

buy each offer based on the training data.  
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Table 5-1: Sorted average propensity to buy per offer 

Offer Propensity to buy 

offer2 0.507 

offer24 0.434 

offer17 0.424 

offer25 0.378 

offer26 0.341 

offer22 0.321 

offer23 0.305 

offer19 0.285 

offer15 0.230 

offer5 0.214 

offer4 0.210 

offer8 0.199 

offer3 0.196 

offer6 0.194 

offer16 0.186 

offer21 0.177 

offer7 0.166 

offer20 0.166 

offer14 0.161 

offer13 0.143 

offer10 0.106 

offer12 0.106 

offer11 0.085 

offer9 0.074 

 

Optimizing only based on the current schema and given the differences in propensity levels per 

offer, could generate a model where a sample for a given offer is not comparable to all other 

samples from all other offers. To further demonstrate this problem, consider the following two 

tables (5-2 and 5-3). The first table (5-2) displays the sorted (per target and score) predictions 

and actual values for a small random sample of 10 cases for a random offer. 

 

Table 5-2: Sorted predictions and actual values for a random sample and a given offer x 

Prediction for offerx Actual for offerx 

0.91 1 

0.56 1 

0.77 1 

0.44 1 

0.33 1 
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0.46 0 

0.34 0 

0.23 0 

0.2 0 

0.05 0 

 

The AUC given this set of predictions and target information is 0.88 .The second table (5-3) 

also displays the sorted (per target and score) predictions and actual values for a small random 

sample of 10 cases for a different random offer.  

 

Table 5-3: Sorted predictions and actual values for a random sample and a given offer y 

Prediction for offery Actual for offery 

0.65 1 

0.6 1 

0.59 1 

0.57 1 

0.55 1 

0.58 0 

0.56 0 

0.53 0 

0.52 0 

0.51 0 

 

The AUC for this sample is again 0.88, however the range of values is smaller here as all scores 

are between 0.51 and 0.65. Table 5-4 shows the (vertical) concatenation of tables 5-2 and 5-3, 

denoted as [offersx | offery].  

Table 5-4: Vertical merge of tables 5-2 and 5-3  

Prediction for [offersx | offery] Actual for [offersx | offery] 

0.91 1 

0.56 1 

0.77 1 

0.44 1 

0.33 1 

0.46 0 

0.34 0 

0.23 0 

0.2 0 

0.05 0 
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0.65 1 

0.6 1 

0.59 1 

0.57 1 

0.55 1 

0.58 0 

0.56 0 

0.53 0 

0.52 0 

0.51 0 

 

In this example, the AUC after the merge of the samples is again 0.825, which connotes a 

6.25% drop over the individual AUCs. This occurs because the negative samples in table 5-3 

have on average higher score than negative samples of 5-2 and lean more towards the positive 

values of 5-2 superseding more of them.  

Coalescing all this information, namely prime knowledge of the distribution of offers in the 

test data, the diversity of known propensities per offer in the train data plus the potential loss 

in overall AUC if predictions of different offers are not intersecting optimally, led to the 

formulation of a third cross validation approach. 

The thrid cross validation strategy used the same approach with the second of leave-one-offer-

out when estimating AUC, but instead of only monitoring the average AUC per offer (or 

AUCper_offer), the predictions and labels for all offers were concatenated vertically (similarly as 

tables 5-2 and 5-3 were used to form table 5-4) and the overall AUC (or AUCoverall) was 

computed based on that concatenated frame. The final metric to maximize (denoted as 

AUCfinal) was the average of the two AUCs as presented in the following equation. 

 

     AUCfinal(AUCoverall, AUCperoffer) =
AUCoverall

2
+
AUCper_offer

2
                         (5.3) 

 

The features used to test which cross validation method performs better were derived from the 

transactional history and included past counts of purchases from the same category, brand or 

company and combinations of them. The features used connote a subset of those used in 5.6.1 

and the focus was not to achieve the highest accuracy but compare which validation method 

performs better before significant amount of time is invested in finding the best features, 
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algorithms and overall modelling parameters. The supervised model used to validate the 

approaches was Logistic regression (defined in 2.2.3), modelled to predict the probability of 

whether a customer will repeat or not. The only parameter that was changing subject to 

performance throughout the different validation schemas was the L2 regularization parameter 

(denoted as c). The results of the different cross validation methodologies are listed in the 

following table.  

Table 5-5: Results on AUC for all validation schemas  

Validation schemas AUC_CV AUC_TEST  

Stratified K-Fold (K=5) 0.683 0.579 

Stratified K-Fold (K=10) 0.699 0.578 

Stratified K-Fold (K=15) 0.712 0.576 

Leave-one-offer validation 0.655 0.588 

Leave-one-offer + concatenation 0.632 0.601 

 

The stratified K-Fold methods gave very promising internal results, however they 

underperformed in the test data compared to the other methods. The Leave-one-offer out 

method experienced a drop in the local results, but substantial improvement in the test. 

Ultimately the Leave-one-offer plus concatenation had the weakest local results but the best 

performance in the test data. Due to the substantial difference between the train and the test 

data, the more common cross validation methods were not able to generalize well, whereas the 

methods that included the Leave-one-offer approach were able to achieve better results.  Based 

on these outcomes, the latter validation schema, namely Leave-one-offer plus concatenation 

(or AUCfinal) was selected to aid the modelling process.  

 

5.6  The Strategies 

 

A fundamental difficulty in any FMCG’s predictions is the fact that they can be quite different 

in nature and therefore it becomes quite challenging to create a holistic model (that could 

potentially be applicable to any offer). On the other hand, creating a product-specific model 

cannot generalize very effectively (especially to cold-start problems where the customer has 

never bought the product before), plus it has to be built on limited data. 

mailto:Precision@5
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Based on the aforementioned challenges two main strategies were formed to better generalize 

in the test data as well as deal with the cold-start problem: 

1) Content-based: Make predictions scrutinizing the relationship of the customer with a 

product and any of its sub-elements (of brand, category and company). 

2) Collaborative filtering: Find those customers that although they do not have a direct 

relationship with the product, still look like other customers who have such relationship. 

 

5.5.1 Content based strategy 1: Exploit relationship of customer with 

product 

 

The following sections contain information regarding the reasoning for employing strategy 1, 

the features generated under it, the data pre-processing steps that were utilized to improve 

performance, the selected algorithms and the actual performance in respect to the AUC metric 

in the test data.  

5.5.1.1 Assumption 

 

The assumption of the first strategy was that a customer who has bought from the same, 

company, brand and category will have higher chance to buy the products once offered. This 

model generalizes well against any item and any product because it maps only the relationship 

of the customer with the item by means of how many times the relationship occurred in the 

past. 

 

5.5.1.2 Feature engineering 

 

The generated features map the timeline of the relationship a customer had with a product prior 

to the sending of the coupon. Consider the following figure (5.3) where a customer could have 

bought a product in certain past occasions: 
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Figure 5.3 : Timeline of customer with coupon redemption 

 

A customer could have bought a product multiple times in the past at different intervals. At 

some point in time he/she received an offer (in this case a coupon) to buy this product and 

he/she responded positively via buying the product. The algorithm is tasked to predict whether 

the product will be bought again by the same customer in the future.  This approach assumes 

that there is a pre-existing relationship of the customer buying the product or any of the 

hierarchy groups (such as brand, category or company) in the past.  Therefore the generated 

features try to gauge how strong that relationship is as measured by different time intervals 

such as last 30, 60, 90, 120, 150, 180, 360 or more days.  

For example consider feature category_30 which shows how many times a customer has bought 

from the same category (as the offered product) in the last 30 days prior to the offer. The 

assumption is that if a customer has bought from the same category multiple times in the past, 

there is higher chance that he/she will become a repeater after receiving and redeeming an 

offer. Apart from customer-to-product related features, customer-based only and product-based 

only features were generated. Customer-based only features refer to attributes that describe the 

customers’ preferences to the store such as average spending and number of visits over fixed 

periods of time. Product-based only features include general category, brand and company 

popularity for the same time intervals as well as average price and spending.  The final list of 

features for strategy one is displayed bellow in greater detail in table 5.6: 

Table 5.6: List features’ descriptions derived for strategy one 

Features Description of customers' features 

category_30 Times  bought the same category in last 30 days  

category_60 Times  bought the same category in last 30 to 60 days  

category_120 Times  bought the same category in last 90 to 120 days  

category_180 Times  bought the same category in last 120 to 180 days  

category_360 Times  bought the same category in last 180 to 360 days  

category_over360 Times  bought the same category in more than 360 days  

brand_120 Times  bought the same brand in last 90 to 120 days  

brand_180 Times  bought the same brand in last 120 to 180 days  

brand_360 Times  bought the same brand in last 180 to 360 days  

brand_over360 Times  bought the same brand in more than 360 days  

company_30 Times  bought the same company in last 30 days  
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company_60 Times  bought the same company in last 30 to 60 days  

company_90 Times  bought the same company in last 60 to  90 days  

company_120 Times  bought the same company in last 90 to 120 days  

company_180 Times  bought the same company in last 120 to 180 days  

company_360 Times  bought the same company in last 180 to 360 days  

company_over360 Times  bought the same company in more than 360 days  

category_brand_30 Times  bought the same category&brand in last 30 days  

category_brand_60 Times  bought the same category&brand in last 30 to 60 days  

category_brand_90 Times  bought the same category&brand in last 60 to 90 days  

category_company_30 Times  bought the same category&company in last 30 days  

category_company_60 Times  bought the same category&company in last 30 to 60 days  

brand_company_30 Times  bought the same brand&company in last 30 days  

brand_company_60 Times  bought the same brand&company in last 30 to 60 days  

brand_company_90 Times  bought the same brand&company in last 60 to 90 days  

brand_company_120 Times  bought the same brand&company in last 90 to 120 days  

brand_company_180 Times  bought the same brand&company in last 120 to 180 days  

brand_company_360 Times  bought the same brand&company in last 180 to 360 days  

brand_company_over360 Times  bought the same brand&company in more than 360 days  

category_brand_company_30 Times  bought the same category&brand&company in last 30 days  

category_brand_company_60 Times  bought the same category&brand&company in last 30 to 60 days  

category_brand_company_90 Times  bought the same category&brand&company in last 60 to  90 days  

category_brand_company_120 Times  bought the same category&brand&company in last 90-120 days  

category_brand_company_180 Times  bought the same category&brand&company in last 120 -180 days  

category_brand_company_360 Times  bought the same category&brand&company in last 180-360 days  

distinct_bought_company Number of dIstinct companies  has bought 

distinct_bought_category_brand Number of distinct  categories and brands' combos  has bought 

distinct_bought_category_company Number of distinct  categories and companies' combos  has bought 

distinct_bought_brand_company Number of distinct  brand and companies' combo  has bought 

transaction purchase count_30 proportion of total transactions that occurred 30 days  

transaction purchase count_60 proportion of total transactions that occurred 30 to 60 days  

transaction purchase count_90 proportion of total transactions that occurred 60 to 90 days  

transaction purchase count_120 proportion of total transactions that occurred 90 to  120 days  

transaction purchase count_180 proportion of total transactions that occurred 120 to 180 days  

amount_paid30 Average amount paid by  (per transaction) in the last 30 days 

amount_paid60 Average amount paid by  (per transaction) in the last 30 to  60 days 

amount_paid90 Average amount paid by  (per transaction) in the last 60 to  90 days 

amount_paid120 Average amount paid by  (per transaction) in the last 90 to  120 days 

amount_paid180 Average amount paid by  (per transaction) in the last 120 to  180 days 

Interaction: brand_30_transaction 

purchase  

count_120 

Interaction of the times the brand was bought in the last 30 days with  

the proportion of the total transactions in the last 120 days  

Interaction: brand_company_30 

_distinct_bought_category 

Interaction of the times the brand and company combo was bought in the  

last 30 days with the distinct number of different categories 

 

All possible pairwise interactions of features were considered and their contributions in AUC 

was gauged based on the cross validation procedure as defined in 5.5 after adding each 

interaction one-by-one in a forward manner. Only 2 interactions were found to improve 

AUCfinal and are listed at the bottom of table 5.6. 
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5.5.1.3 Pre-processing 

 

To ensure unbiased predictions given the large amount of personal transactions and the 

potential threat of outliers, extreme observations both by means of quantity (>25) and amount 

spend (>£30) where excluded from the analysis. Additionally missing values where simply 

replaced by -1 to ensure that there is no overlap with the mostly-positive values that most of 

the features boasted. The logic for the treatment of missing values is also explained in 4.2.4.    

 

5.5.1.4 Modelling 

 

The target variable was the number of times the customer bought a recommended product past 

the offered date and not the binary indicator. Because of the nature of the different offers 

training on the actual counts provided an extra layer of confidence for these offers that are 

bought multiple times. Adding the number of times the customer bought a recommended 

product as samples’ weight and treating the problem as binary did not yield better results than 

regarding it as a regression task. 

The preferred model was Ridge Regression (which is Least Squares regression with L2 

regularization) trained on the number of times the customers bought the product past the 

offered date with a high alpha of 49. This parameter was selected based on the same cross 

validation procedure explained in section 5.5.  

 

5.5.1.5 Performance 

 

The ridge model did quite well in its higher predicted scores (i.e. commonly items the customer 

has bought before) in the left part of curve as illustrated in figure 5.4 for the validation data.  
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Figure 5.4 : ROC curve of strategy 1 based on the validation schema 

 

It scored 0.610 in the test set. 

 

5.5.2 Collaborative filtering Strategy 2: Customer “looks like” one 

who had bought the item 

 

Similar with strategy 1, the following sections contain information regarding the reasoning for 

employing strategy 2, the features generated under it, the pre-processing steps that took place 

to improve performance, the selected algorithms and the actual performance in respect to the 

AUC metric.  

 

5.5.2.1 Assumption 

 

The general principle was to find what drives the customers to buy the products irrespective of 

the sending of the offer. In other words the main question was: 

 Would the customers have bought the product, had they not received the offer anyway? 



114 
 

This is achieved by observing how much a customer that there is some evidence he/she likes 

the product, looks like another one. This is (naturally) quite powerful for items the customer 

has no previous relationship direct or indirect.  

 

5.5.2.2 Feature engineering 

 

The generated features for this approach were more abstract in regards to the relationship of 

the customer with the product. They map or cluster customer behaviours and characteristics 

such as loyalty, attitude towards specific product departments and level of cardinality.   

More specifically the exact features included: 

 Counts of top 30 (most popular) departments 

 Counts of top 30 (most popular) categories 

 Mean quantity, amount purchased by the customer 

 Number of records, visits, departments, categories, companies, brands bought by each 

customer as cardinality measure. 

 Mean number of brands by category, categories by department, categories by date, dates 

by category, departments by date, dates by department 

 Percent during the weekend of quantity, amount, records, visits 

 Percent returned (aka transactions with negative value) 

Additional features were created with deep learning by training two Restricted Boltzmann 

Machines (RBMs) with Bernoulli distribution on Boolean indicators for all remaining (53 after 

top 30) departments and next 100 (after top 30) categories. Those RBMs were trained with a 

learning rate of 0.05, 20 iterations and 10 components that are input to the modelling. Only the 

test set was used for training. There was no feature selection to this strategy and the level of 

noise and collinearity of the data was handled with high shrinkage during hyper parameter 

tuning phase of the modelling process. 

 

5.5.2.3 Pre-processing 
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In order to avoid extreme observations, all the features where transformed by taking the natural 

logarithm. The most fundamental pre-processing step was how the target variable was 

formulated as it did not use the repeaters’ count or the binary indicator. Instead the target 

variable was the logarithm of the number of times the customer bought the product 90 days 

before the coupon was sent as portrayed in figure 5.5: 

 

Figure 5.5 : Target variable was formed 90 days prior to sending the coupon 

 

5.5.2.4 Modelling 

 

The models of choice that used all the aforementioned features for strategy 2 were 2 GBMs 

[Pedregosa et al. 2011] (Gradient Boosting Machines – Regression) trained on the natural 

logarithm of counts as computed 90 days prior to sending the coupon (to avoid extreme 

observations). Separate models were made for each offer. The first GBM was trained on 

customers who did receive the offer. The second on those who did not. The reason behind this 

division was that customer showed different behaviour in propensity levels to buy the product 

before and after receiving the coupon, so the models attempted to capture this information. The 

GBMs were trained with a learning rate of 0.1, 400 estimators, and maximum features per level 

equal to 2, no usage of subsampling with a least squares loss. 

 

5.5.2.5 Performance 

 

Strategy 2 did very well on new items (right part of the curve) and on higher probability 

purchased items. Also it discriminated quite equivalently across all offers. It scored 0.616 on 

the test set. The graphical representation of the ROC curve and the AUC for the validation set 

can be visualized in figure 5.6: 
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Figure 5.6 : ROC curve of strategy 2 based on the validation schema 

 

5.5.3 Blending the strategies 

 

To decide how to combine (or not) the two strategies, the distribution of the scores for certain 

offers was observed. For instance offers 1230218 and 1208329 had similar score distributions 

for strategy 1 and strategy 2 as illustrated by figure 5.7: 

 

Figure 5.7 : Distribution of strategy 1(left) and 2 (right) for two offers offer_37 and offer_24 
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As previously cited, the first model was predicting expected quantity of items’ bought and the 

second model on the logarithm of counts as measured 90 days before the sending of the coupon. 

AUC is a metric that focuses on the ranking of the score distribution and expects that 

observations with higher score should be correlated with higher probability to buy the item. 

Whether the score correctly measures that probability is irrelevant to AUC as long as higher 

scored cases have higher chance to buy the item and vice versa.  

Given the different range of possible values of the two groups, the outputs were converted to 

ranks (to account for the fact that they were trained on different targets). This method is also 

explained as rank averaging by [Henk van Veen 2015]. Based on the similarity of the 

distributions (in respect to score’s order and probability to buy), the strategies were given equal 

weight. This can be represented with equation 5.3: 

 

                                 hybrid(Ŷ𝑐𝑏, Ŷ𝑐𝑓) =
Ŷ𝑐𝑏
𝑟𝑎𝑛𝑘

2
+
Ŷ𝑐𝑓
𝑟𝑎𝑛𝑘

2
                                                               (5.4) 

 

, where the hybrid mode is defined using two predictions as inputs, the content based (denoted 

as Ŷ𝑐𝑏) and the collaborative filtering based (denoted Ŷ𝑐𝑓) .The final result is the average of the 

two predictions after transforming them into ranks to account for the fact that they have been 

generated using models trained with different target variables. To create the rank of Ŷ𝑐𝑏 (which 

is denoted as Ŷ𝑐𝑏
𝑟𝑎𝑛𝑘) , the vector Ŷ𝑐𝑏 gets sorted in an ascending manner and becomes  Ŷ𝑐𝑏

𝑠𝑜𝑟𝑡. 

Then for every i out of K, Ŷ𝑐𝑏
𝑠𝑜𝑟𝑡  = [ŷ𝑐𝑏,0

𝑠𝑜𝑟𝑡, ⋯ , ŷ𝑐𝑏,𝐾
𝑠𝑜𝑟𝑡] , Ŷ𝑐𝑏

𝑟𝑎𝑛𝑘 = [ŷ𝑐𝑏,0
𝑟𝑎𝑛𝑘 , ⋯ , ŷ𝑐𝑏,𝐾

𝑟𝑎𝑛𝑘] where: 

 

                                  ŷ𝑐𝑏,𝑖
𝑟𝑎𝑛𝑘 = {

0 𝑖 = 0
i                ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 > ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

ŷ𝑐𝑏,−1
𝑟𝑎𝑛𝑘               ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 = ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

                                        (5.5) 

 

Creating these 2 diverse strategies was critical in achieving the top score, because each method 

tried to leverage the weaknesses of the other, hence their combination yielded a significant 

boost in AUC for the test data. The final AUC on the test data is 0.626. The consolidated results 

of the 2 individuals strategies and their combination is listed below: 

Table 5.7: AUC results on individual strategies and combined for the test data. 
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Strategies AUC_TEST  

Strategy 1: Content-based 0.610 

Strategy 2: Collaborative filtering 0.616 

strategy1rank x 0.5 + strategy2rank x 0.5 0.626 

 

5.7 Conclusion 

 

This chapter described a hybrid method for improving predictions on what the customers of a 

retailer will buy again in the future given historical purchases of the retailer’s products due to 

coupons’ offers. In other words the challenge was focusing on predicting the recommendations 

that would be more suitable in creating a habit of purchasing these offered products. The 

displayed methodology was adjusted to make predictions in an irregular environment where 

the train data different significantly from the test data by means of having different customers, 

different offered products and different time periods.  

Building a reliable cross validation strategy was integral for selecting and tuning a model that 

could generalize efficiently in the test data. Three different cross validation strategies were 

considered. The first strategy was a random k-fold cross validation stratified based on the offer. 

The second method connoted a leave-one-offer-out schema, accounting for the fact that the test 

data was consisting primarily from offers not present substantially in the train data. The last 

strategy gave an equal weight to the AUC as computed from the second strategy plus the overall 

AUC after concatenating all predictions for all n-1 offers again based on the second method.  

The third method that boasted the best results on the test data (and the smaller gap between 

train and test AUC performance) was conceptualized from the fact the average propensity of 

the offers differ significantly. Predicting well inside the histogram of predictions for one offer 

did not ensure that these predictions will be comparable (propensity wise) with predictions of 

all other offers resulting in a possible AUC loss.  

The hybrid method deployed to maximize AUC in the test data had the form of two separate 

strategies, each one with its own pipeline of data pre-processing, handling of missing values, 

features’ derivations as well as models’ selection and tuning of their hyper parameters. The 

first strategy was based on content-based filtering and the second strategy on collaborative 

filtering.     

mailto:Precision@5
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The first approach assumed a direct (via purchasing a product) or indirect (via purchasing from 

the same department, brand or manufacturer) existing relationship that a customer may have 

with a product. This approach used simple ridge regression to estimate the actual number of 

times the customer is going to buy the product (again) in the future.  

 The second strategy attempted to estimate a score of a customer buying a product even when 

such relationship as explained before does not exist. This was exploited via finding the 

characteristics of customers that bought the items (included in the offers) prior to sending the 

coupon and cross-reference them with these that did receive the coupon to detect similarities. 

This approach utilized one model per different offer to estimate the tendency of a customer 

buying the corresponding items using gradient boosted machines and unsupervised models as 

part of its input data. The target variable for this approach was the natural logarithm of the 

number of times the customer bought the item 90 days before the coupon was sent.  

The ensemble of the two approaches was challenging because the first model was fit on an 

untransformed regression response variable (e.g. the quantity) and the other model with was 

the natural logarithm of the number of times the customer bought the product 90 days prior the 

sending of the coupon. To maximize AUC, these predictions were transformed to ranks and 

were equally weighted to achieve the best performance in the test data.  
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6. The StackNet Model 

 

This chapter covers the properties of the StackNet Model. The StackNet Model is a scalable Meta 

modelling methodology based on a feedforward neural network architecture implemented in the Java 

programming language where each single activation function is approximated via the usage of different 

machine learning algorithms with the overall aim to improve accuracy in any machine learning 

supervised problems.  

 

6.1 Introduction 

 

The rigorous interest in developing better and faster machine learning models in tandem with 

the rapid growth of the hardware power has made it possible to scale increasingly complex 

prediction algorithms in order to improve prediction accuracy in many different data science 

fields.  Many algorithms that were developed in the past and were abandoned due to their 

expensive computational requirements – such as deep learning – are now being re-examined 

as a means to improve predictions even further. In 1992 stacked Generalization was introduced 

as a way to combine many different neural network models of similar architecture with another 

neural network model in order to improve prediction accuracy.  

The StackNet model is a methodology primarily based on neural networks in order to combine 

many different algorithms so that every single link function between layers is replaced with a 

different machine learning algorithm. The intuition behind this is that the underlying data rarely 

follow perfectly a specific distribution and an ensemble of different models with different 

parametric-or-not assumptions can achieve better performance (at the cost of additional 

computational power). 

Note that the function that connects the input layer with one hidden unit h (out of H) from the 

first hidden layer, takes the form of a linear regression where a single sample x (out of X) with 

dimensionality J is multiplied with a set of weights WJ,H to output an estimate. The function f1 

that describes the above link is displayed in equation 6.1:  
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                                                       f1,h(x) = ∑ (J
j=1 G(xj)Wj,h)                                                 (6.1) 

 

, given a linear activation G on the input sample x from a dataset X and the Wj,h, the weights 

that link feature j with the single neuron h . The hidden layer outputs (f1), assuming there is no 

other activation taking place.  Assuming that this function can be described as a single estimator 

in the form of a linear regression, this could be re-written more generally as in equation 6.2: 

                                                f1,h(x, 𝑠) = s(G(xj)) =  s(xj)                                                   (6.2) 

, where s is linear regression function. The G function can be removed as the connection is 

assumed to be linear in respect to the input data point x. The proposed methodology can be 

extended so that s can be any other machine learning algorithm that given some input data x, 

produces (and outputs) a score. In the case that many different s algorithms are used, this 

methodology has the potential to achieve better results than the individual algorithms that 

comprise it. The initial version of the model is built in the Java programming language. 

In contrast to feedforward neural networks, rather than being trained through back propagation, 

the network is built iteratively one layer at a time using Wolpert’s stacked generalization, each 

of which uses the final target Y as its target.  StackNet’s ability to improve accuracy is 

demonstrated via creating different instances of StackNet models with multiple levels and 

architectures which are then used to rank best the likelihood of a certain song being created 

before or after 2002 using a set of 90 numerical attributes out of 515,345 songs that come from 

a subset of the Million Song Dataset [2011]. The latter is a freely-available collection of audio  

features and metadata for a million contemporary popular music tracks with focus on using this 

metadata to predict the year a song was created. 

 Two additional experiments are made, one that measures the trade-off between model 

complexity and performance and another that investigates the trade-off between models’ 

diversity within the StackNet model and performance. Both these experiments link back to the 

considerations in literature (section 2.4.2) for building ensembles that are not computational 

expensive and perform as best as possible. 

 

6.2 Software Review 
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The following sections briefly reviews other software work in the predictive analytics space 

with an ensemble functionality. It also reviews the Java programming language in the context 

of this thesis.   

6.2.1 Machine learning Packages 
 

The most popular machine learning software with the ability to combine many algorithms with 

various ensemble methods is [sklearn 2013], implemented in python with multithreaded 

capabilities , bringing together many prominent packages focused in different machine learning 

methods , including [Liblinear 2008] (for large scale linear modelling) and the award winning 

[Libsvm 2011] (for support vector machines) . The [Weka 2009] data mining Software has 

made extensive use of ensemble methods in the Java programming language. [Ranklib, 2013] 

also written in Java, provides modules to combine many learn-to-rank algorithms with various 

ensemble methods such as bagging and boosting. Many packages exist in the R programming 

language such as [Carret 2012] or [Rattle 2011] with the aim of bringing many algorithms 

under the same framework in order to facilitate modelling via ensembling. [Keras 2013], which 

is based on [Theano 2010] made it possible to combine easily and efficiently many different 

deep learning architectures.  

The [H2O 2016] predictive modelling open source software package contains a module called 

Stacked Ensemble that uses Super Learning or Stacked Regression defined as a class of 

algorithms that involves training a second-level “metalearner” to find the optimal combination 

of the base learners. [LeDell 2015] proposed a scalable learning methodology with a software 

application to combine multiple, typically diverse, base learning algorithmswith a Super 

Learner.  

Although the stacked generalization concept was introduced in 1992 by Wolpert et al. and a 

few software applications leveraged this to boost accuracy, even after the advent of deep 

learning (as of the recent era), there has not been until today any prominent software package 

that makes use of this methodology with the score of expanding it onto more than one level. 

Nevertheless the concept of deep ensembling has been very frequently used especially in the 

form of Gradient Boosting Trees and the award winner [Xgboost 2016]. 
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6.2.2 Java programming Language 
 

Java was first developed in 1995 and has now one of the most popular programming languages 

in the world, however is the first choice when it comes to data science and machine learning 

[Puget 2016]. It is also deemed more verbose than Python [Prechelt 2000] and R [Murtagh 

2005]. However Java, is still a good choice when it comes to building large distributed machine 

learning systems.  One of Java’s main advantages over many other languages is that it can be 

used without many (if any) changes with any operational system and it is also relatively quick 

compared to most object oriented languages [Brose et al. 2001] .  

Regarding the current thesis, although it is acknowledged that Java is not as fast as C or C++, 

nevertheless was deemed to be the language of choice to develop the application given its 

overall characteristics and specifically its popularity, safety and simplicity [Tiobe 2017].  

 

6.3 StackNet Model 

 

The StackNet model refers to an extension of [Wolpert’s 1992] stacked generalization to 

multiple algorithms using a neural network architecture with multiple layers where each 

neuron’s function is replaced with a different machine learning algorithm each time. The name 

of the model originates from“Stack” that directly refers to “stacked generalization” and “net” 

because of the aforementioned neural network architecture. The model developed by the author 

(as methodology) was first used (and the term was introduced) in the winning solution of “Truly 

Native”6 [2015] data modelling competition hosted by the popular platform Kaggle.com. The 

final StackNet structure which won that challenge can be viewed in figure 6.1 and included 4 

layers with various algorithms for each one. StackNet has also been used (and won) other 

predictive modelling challenges such as the Homesite Quote Conversion7 [2016] also hosted 

by the kaggle.com platform.  

 

                                                           
6 http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/  
7 http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-
clobber/  

http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-clobber/
http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-clobber/
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Figure 6.1 : StackNet model with 4 layers used to maximize AUC and win the Truly Native 

Kaggle challenge. 

 

 

6.3.1 Mathematical formulation 

 

The function that connects the input layer with the neuron h in the first hidden layer was defined 

previously (assuming a linear activation function on the input data) equation 6.3:  

 

                                                       f1,h(x, 𝑠) = s(xj)                                                                 (6.3) 

 

where s could be any (machine learning) algorithm that takes some input data x and outputs a 

score. Assuming there is a vector S with size H that contains the functions of different 

algorithms in respect to the input data, f1,h can be re-written as 6.4 for a given neuron h: 
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                                                       f1(x, 𝑆) = Sℎ(xj)                                                                 (6.4) 

 

To add another layer, the outputs of all f1(x, 𝑆, ℎ) will be used as inputs to a  f2 function that 

given a new (Meta) model l, attributed to a neuron m (in the second layer), the original vector 

of S models (with size H) of the first hidden layer and the input data x, will have the form of  

6.5: 

                                f2,m(x, l, S) = l(f1(x, S1), f1(x, S2),… . , f1(x, S𝐻))                                    (6.5)        

 

Following the same reasoning as 6.4, if there is a vector L of neurons of size M, then f2 could 

be re-written as 6.6 for a given neuron m : 

 

                                f2(x, L, S) = L𝑚(f1(x, S1), f1(x, S2), … . , f1(x, S𝐻))                                    (6.6)        

 

Instead of having different vectors of models for different layers (in this case S for layer one 

and L for layer two), there could be a 2-dimenional vector V that holds all these algorithms 

with size N,DN, where N is the number of the hidden layers and Dn the number of hidden 

neurons (or models) within the hidden layer n. Therefore, replacing L, S from 6.6 with V would 

result in 6.7: 

 

                          f2(x, V) = V2,𝑚 (f1(x, V1,1), f1(x, V1,2), … . , f1(x, V1,𝐷1))                                    (6.7)        

 

This logic could be extrapolated to any number of layers N, where the nth layers uses the outputs 

of the predictions of the leyer n-1 to as inputs in order to output a score. Assuming there is a 

neuron k in the nth layer, its output would be generated using 6.8: 

             fn(x, V) = V𝑛,𝑘 (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… . , fn−1(x, V𝑛−1,𝐷𝑛−1))              (6.8)        
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6.3.2 Modes 

 

The “stacking” element of the StackNet model could be run with 2 different modes. The first 

mode (also set as the default) is the one already mentioned in 6.8 and assumes that each layer 

uses the predictions (or output scores) of the direct previous one, which is similar to a typical 

feedforward neural network. The second mode (also called restacking) assumes that each layer 

uses previous neurons activations as well as all previous layers’ neurons. Therefore the 

previous formula can be re-written as equation 6.9 (assuming the layers N>3): 

 

fn(x, V) = V𝑛,𝑘

(

 
 

fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… , fn−1(x, V𝑛−1,𝐷𝑛−1),

fn−2(x, V𝑛−2,1), fn−2(x, V𝑛−2,2), . . . , fn−2(x, V𝑛−2,𝐷𝑛−2),
… ,

f𝑛−𝑁+1(x, V𝑛−𝑁+1,1), f𝑛−𝑁+1(x, V𝑛−𝑁+1,2),… , f𝑛−𝑁+1(x, V𝑛−𝑁+1,𝐷𝑛−𝑁+1))

 
 

       (6.9)        

 

The intuition behind this mode is driven from the fact that the higher level algorithm have 

extracted information from the input data, but rescanning the input space may yield new 

information not obvious from the first passes. This is also driven from the forward training 

methodology discussed below and assumes that convergence needs to happen within one model 

iteration. The following graph (6.2) illustrates the difference between the two modes. 

 

 

Figure 6.2 : StackNet’s link modes 
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6.3.3 Training with K-fold cross validation 

 

The typical neural networks are most commonly trained with a form of back propagation. Back 

propagation requires a differentiable loss function. In the premise that any machine learning 

algorithm could be included in a StackNet model, it is not currently easy to formalize the back 

propagation training approach since not all losses from all models are differentiable. Therefore 

stacked generalization is used to train this network instead.  

Stacked generalization requires a forward training methodology that splits the data into two 

parts – one of which is used for training and the other for predictions. The reason this split is 

necessary is to avoid over fitting. However splitting the data in just 2 parts would mean that in 

each new layer the second part needs to be further dichotomized. This has the effect of 

increasing the bias as each algorithm will have to be trained on increasingly less data.  

To overcome this drawback the algorithm utilizes a k-fold cross validation (where k is a hyper 

parameter) so that all the original training data is stored in different k batches thereby outputting 

as many predictions as there are samples in the training data. Therefore the training process is 

consists of 2 parts: 

1. Split the data k times and run k models to output predictions for each k part and then 

concatenate the k parts back together to the original order so that the output predictions 

can be used in later stages of the model. This process is illustrated below  in figure 6.3:  

 

 

Figure 6.3 : Example of K-fold scoring-output for StackNet given an algorithm in a neuron where K=5 
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2. Rerun the algorithm on the whole training data to be used later on for scoring the 

external test data. There is no reason to limit the ability of the model to learn using 

100% of the training data since the output scoring is already fairly unbiased (given that 

it is always scored as multiple holdout sets). 

It should be noted that (1) is only applied during training to create unbiased predictions for the 

second layers’ model to fit on the predictions of the previous layer during scoring time (and 

after model training is complete) only (2) is in effect. 

The k-fold may also be viewed as a form of regularization where smaller number of folds (but 

higher than 1) ensure that the validation data is big enough to demonstrate how well a single 

model could generalize. On the other hand higher k means that the models come closer to 

running with 100% of the training and may yield more unexplained information. The best 

values could be found through cross validation.  

Another possible way to implement this could be to save all the k models and use the average 

of their predicting to score the unobserved test data, but this will result in all the models not 

being trained with 100% of the training data and may therefore be suboptimal. It should be 

noted that the loss function the StackNet model optimizes is defined by the last model in the 

last layer and therefore it is algorithm-specific. For example if a logistic regression model is 

chosen in the last layer, all other models’ outputs from previous layers are used within the 

logistic regression model to optimize a log likelihood function.  

The optimal parameters O of the V𝑛,𝑘  algorithm (which may be weights, nodes, latent vectors, 

support vectors or else depending of the algorithm’s type) , denoted as OV𝑛,𝑘 can be specified 

given a loss function LL to minimize (suitable for the algorithm’s type), a normal connection 

mode and a target variable Y as: 

 

OV𝑛,𝑘
̂ = argmin 

OV𝑛,𝑘

LL(OV𝑛,𝑘 , (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2), … . , fn−1(x, V𝑛−1,𝐷𝑛−1)) , Y)  (6.10) 

, where the minimization of the loss function is subject to some parameters OV𝑛,𝑘 of V𝑛,𝑘, the 

input data of this algorithm as produced from (1) and the target variable Y. For example if the 
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squared loss function E was used (in the place of  L) as the main function to minimize, given 

a dataset X and a single sample from it as xi ,6.10 could be re-written as: 

                      OV𝑛,𝑘
̂ = argmin 

OV𝑛,𝑘
̂

𝐸(OV𝑛,𝑘
̂) = argmin 

OV𝑛,𝑘
̂

∑ (𝑦
𝑖
− V𝑛,𝑘(𝑥𝑖))

2
𝑁

𝑖=1
                           (6.11) 

It should be noted, that function LL does not need to be only subject to minimization, but 

maximization too. Also, theoretically, the function LL may not need the target variable Y at all 

and unsupervised models could be used too, for any layer that is not the Nth (last) 

 

6.3.4 The input data type (software specific) 

 

The StackNet model as implemented in Java supports three different input data formats: 

 

6.3.4.1 Java’s double 2-dimensional array 
 

This is one of the most common Java objects and can be perceived as arrays of double arrays, 

coded as double [][]. This Object was chosen to be used so that the algorithms are accessible 

to anyone without requiring a special input format, however it is not the friendliest method to 

do so from a memory point of view as it is a complex object that consists of many smaller in-

memory objects, all with different addresses making column-wise loops relatively slow. 

However it has been found to be quite efficient when there are many features in the input data 

(so that every in-row loop is more efficient). 

6.3.4.2 Fixed-size matrix or fsmatrix 

 

This is a complex object that is also interpreted as a 2-dimensional array, but similar to C arrays 

it is actually a 1-dimensional Java double array with a fixed size equal to the product of rows 

and column of the desired data matrix. This object requires much less memory to store its data 

and can be quite fast for most operations. However it still connotes a dense representation and 

therefore cannot scale in very sparse problems. The fsmatrix require a row and column 

dimension to be initialized like: 

fsmatrix sample_matrix= new fsmatrix(int rows, int columns); 
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6.3.4.3 Sparse matrix or smatrix 

 

Sparse matrix refers to a way to store the data so that all zero elements are not captured. In 

other words it represents a mapping that points only to the non-zero elements and consist of 3 

java 1-dimensional arrays – one double array to store the non-zero elements, a integer array to 

hold the dimension’s position (e.g. the column) for each of the non-zero elements and the last 

integer array connotes the start and end index for each row based on the previous 2 arrays. 

Depending on the algorithms the 2 integer arrays may switch positions (so that the first points 

to rows and the second one to columns) in order to speed up the training and scoring process. 

Additionally (and after activation) the matrix contains a hash-table for quick column or row 

value accessing, however this comes with additional memory overhead and it is optional. 

Depending on the sparsity of the input data this matrix may increase the training speed multiple 

times, requiring much less data. The smatrix can be created via providing any of the previous 

two input data objects (fsmatrix or 2-dimensional Java double array) or can be constructed 

manually via providing the three 1-dimensional Java arrays as stated previously.  

 

6.3.5 The objects 

 

While there many existing algorithms in the java programming language, in order to address 

the needs to scalability and optimal performance under the StackNet framework, most of the 

algorithms had to be written from scratch. Although the initial arsenal of available algorithms 

in the StackNet software may not be deemed very rich, nevertheless crucial effort was made to 

include representatives from most algorithmic families which fall into the following categories. 

6.3.5.1 Tree-based algorithms 

 

Tree-based algorithms are likely to be commonly used and form one of the most predictive 

class of algorithms. These algorithms include standard decision tree regressors and classifiers. 

Depending on the way multiple trees can be combined this class also includes Random Forests 

(e.g. bagging of trees) or Gradient boosted Trees for both regression and classification. It 

should be noted that for binary classification the trees also support an AUC split criterion apart 

from the common ones (e.g. information gain).Gradient Boosting has been implemented so 
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that the base estimators are Random Forests and no single decision trees, however the default 

number of trees for such forests is one which equates them to decision trees. A Gradient 

Boosting model is implemented via initializing it: 

GradientBoostingForestClassifier model = new GradientBoostingForestClassifier(); 
 

Then any number of hyper parameters may be defined as: 
 
 
model.estimators=100; 
model.threads=3; 
model.verbose=true; 
model.copy=false; 
model.trees=1; 
model.shrinkage=0.1; 
model.cut_off_subsample=1.0; 
model.feature_subselection=0.1; 
model.max_depth=8; 
model.max_features=1.0; 
model.max_tree_size=-1; 
model.min_leaf=2.0; 
model.min_split=5.0; 
model.Objective="RMSE"; 
model.row_subsample=0.9; 
model.seed=1; 

All models follow the exact same structure and the details about the tuneable hyper parameters 

can be found in the Javadoc accompanying the release of the software. 

To train the algorithm the fit() method is invoked that takes as input a data object (any of the 

three kinds) as defined above. The response variable defined in the hyper parameter section 

and not in the fit method for optimization reasons: 

smatrix X = null; 
double response []= new double [X.GetRowDimension()]; 
model.target=response;  
model.fit(X); 

Once the algorithm is fitted, predictions can be extracted in the form of probabilities or class 

results: 

double probabilities[]=model.predict_proba(X); 
double classes[]=model.predict(X); 

The tree-related parameters are presented in table 6-1 as they appear within StackNet. 
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Table 6-1: Tree specific hyper parameters in StackNet 

Parameter Explanation 

max_depth Maximum depth of the tree 

objective The objective based on which the split is determined. It may be “RMSE “for regression and 

“Entropy” for classification and ”AUC” for binary classification 

row_subsample Proportion of observations to consider  

max_features Proportion of columns (features) to consider in each level 

cut_off_subsample Proportion of best cut offs to consider. This controls how Extremely Randomized the tree will be 

feature_subselection Proportion of columns (features) to consider for the whole tree 

min_leaf Minimum weighted sum of cases to keep after splitting node 

min_split Minimum weighted sum of cases to split a node 

max_tree_size Maximum number of nodes allowed in the tree 

 

The Random forest related parameters are presented in table 6-2: 

 

Table 6-2: Random Forest specific hyper parameters in StackNet 

Parameter Explanation 

estimators Number of trees to build. In most situations after 100 it does not improve dramatically more  

 

The Gradient Boosted Forests of trees’ related parameters are presented in table 6-3: 

 

Table 6-3: Gradient Boost Random Forest of trees’ specific hyper parameters in StackNet 

Parameter Explanation 

estimators Number of Random Forests to build. In most situations after 100 it does not improve dramatically mor. 

trees Number of trees in each Forest. The default is 1 which basically connotes a tree estimator 

shrinkage Penalty applied to each estimator. Smaller values prevent overfitting. Needs to be between 0 and 1. There is 

also a negative correlation between estimators and shrinkage. 

 

 

 

6.3.5.2 Linear regression 

 

Linear regression is implemented with L2 (Ridge), or L1 (Lasso) regularizations and can be 

trained with various optimizations algorithms such as the ordinary method (with matrix 

multiplications) and stochastic gradient decent methods. 

The Linear Regression related parameters are presented in table 6-4: 
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Table 6-4: Linear Regression hyper parameters in StackNet 

Parameter Explanation 

C Regularization value, the more, the stronger the regularization. A value here basically triggers 

a Ridge regression 

Type Can be one of “Routine”, “SGD” Routine is the Ordinary Least Squares method which is solved with 

matrix multiplications 

Objective “RMSE”  

learn_rate For SGD 

UseConstant If true it uses an intercept 

maxim_Iteration Maximum number of iterations 

 

 

6.3.5.3 Logistic regression 

 

Logistic regression is also implemented with L2 (Ridge), or L1 (Lasso) regularizations and can 

be trained with a Newton-Raphson (with matrix multiplication) method, stochastic gradient 

decent method and the Liblinear’s implementation. Multinomial logistic regression is 

implemented via running 1 model for each one of the distinct classes of the target variable. 

The Logistic Regression related parameters are presented in table 6-5: 

 

Table 6-5: Logistic Regression hyper parameters in StackNet 

Parameter Explanation 

C Regularization value, the more, the stronger the regularization 

Type Can be one of “Liblinear”, SGD”. Default is Liblinear. 

learn_rate For SGD 

UseConstant If true it uses an intercept. 

maxim_Iteration Maximum number of iterations 

 

6.3.5.4 Linear support vector machines 

 

StackNet includes Liblinear’s fast implementations for both regression and classification as 

well as SGD for when a linear kernel is selected. These models are denoted as LSVC for 

classification and LSVR for regression. 

The LSV related parameters are presented in table 6-6: 
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Table 6-6: LSVC and LSVR hyper parameters in StackNet 

Parameter Explanation 

C Regularization value, the more, the stronger the regularization. 

Type  “SGD” 

learn_rate For SGD 

UseConstant If true it uses an intercept 

maxim_Iteration Maximum number of iterations 

 

6.3.5.5 LibFM  

 

The factorization machines’ representative in the StackNet software is LibFM (which is 

commonly used in the recommender systems’ area).  This is implemented with L2 

regularization and convergence is reached via using stochastic gradient decent and supports 

both regression and classification.  

The libFM related parameters are presented in table 6-7: 

 

Table 6-7: libFM hyper parameters in StackNet 

Parameter Explanation 

C Regularization value, the more, the stronger the regularization 

C2 Regularization value for the latent features 

Lfeatures Number of latent features to use. 

init_values Initialise values of the latent features with random values between [0,init_values)  

learn_rate For SGD 

maxim_Iteration Maximum number of iterations  

Type Only “SGD” 

UseConstant If true it uses an intercept 

 

6.3.5.6 Neural networks 

 

A very specific architecture of neural networks has been implemented as this software did not 

aim to become a comprehensive deep learning library but rather a tool that achieves better 

accuracy via combining different machine learning algorithms leveraging the pros and cons of 

each algorithmic family (or at least the most prominent representatives) using CPU. Therefore 

a-two-layer neural network has been implemented that supports regularization. The number of 

hidden units in each layer is a hyper parameter. Both regression and classification can be run 

so that they optimize a multi-label objective directly or via breaking down to many single-

response problems.  
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The neural networks are denoted as Softmaxnnclassifier for classification and Multinnregressor 

for regression. The main difference is that the Softmaxnnclassifier has a softmax output layer 

suitable for classification problems and Multinnregressor has a simple linear output activation. 

The parameters of these models are presented in table 6-8: 

Table 6-8: hyper parameters of Softmaxnnclassifier and Multinnregressor in StackNet 

Parameter Explanation 

C Regularization value, the more, the stronger the regularization 

h1 Number of the 1st level hidden units  

h2 Number of the 2nd level hidden units 

init_values Initialise values of hidden units with random values between [0,init_values)  

smooth Value to divide gradients and aid convergence 

connection_nonlinearity Can be one of “Relu”,”Linear”,”Sigmoid”,”Tanh”. Commonly Relu performs best.  

learn_rate For SGD  

maxim_Iteration Maximum number of iterations  

Type Only “SGD”. 

UseConstant If true it uses a bias/intercept in each node. 

 

 

6.3.5.7 Naïve Bayes 

 

The simple Naïve Bayes implementation was included to provide quick solutions at the cost of 

– in most cases – some loss in accuracy. A scaling or regularization parameter has been added 

to control the size of the product in the probability estimation.  

The only parameter associated with Naïve Bayes is presented in table 6-9: 

Table 6-9: hyper parameters of Naïve Bayes in StackNet 

Parameter Explanation 

Shrinkage Can be seen as a form of a penalty to avoid really big products’ failures. 

 

6.3.5.8 All algorithms 

 

All included algorithms follow a similar structure where, after initialization, any number of 

hyper parameters may be added. Additionally most of the algorithms support scaling to aid 

convergence, particularly useful for linear algorithms optimized via gradient based methods. 

The default scaling object is a maxscaler() which connotes that every feature is divided by its 

absolute maximum value. This ensures that all values will be within the range of [-1, 1]. The 
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scaling method is a hyper parameter of the model and gets invoked in fit() and predict() 

methods.  

Additionally, all estimators include a seed (integer) value in order to be able to replicate any 

randomized procedures included in the algorithms. They also include a threads term that 

controls parallelism within the model training and predicting. There are some other 

miscellaneous options too, like whether to copy the data or to print updates about the 

algorithms’ progress via setting a verbose parameter. 

All algorithms can accept hyper parameters within the one command using a string of space 

separated parameters as parameter_name:value.  Most algorithms support some form of 

verbosity so that they print information about their progress and can be copied. By invoking 

the PrintInformation() , the details of the given object are printed.  

 

6.4 Using StackNet for “Song year of release” classification 

 

The functionality of StackNet, and specifically, its ability to combine different machine 

learning models in order to achieve a better classification outcome can be better demonstrated 

through an experimentation with real data. In the following experiment different versions of 

StackNet with different modes, levels and structures will be used to rank best the likelihood of 

a certain song being created before or after 2002 using a set of 90 numerical attributes out of 

515,345 songs that come from a subset of the Million Song Dataset [Bertin-Mahieux et al.  

2011]. 

 

6.4.1 Training and test data 

 

The current experiment will use the YearPredictionMSD Data Set available in University of 

California (UCI’s) Machine Learning Repository [Lichman 2013] and connotes a part of the 

Million Song Dataset. The data set contains 515,345 rows, each one representing a song that is 

described using 90 numerical features as well as an indicator in the beginning ranging from 

1922 to 2011 stating the year the song was created. The nature of the features is not within the 

scope of this experiment, however it is stated in the online repository that the features are 
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extracted from the 'timbre' features from [The Echo Nest API nd] which is an online resource 

that provides metadata and audio analysis for millions of tracks and powers many music 

applications on the web and smart phones.   The first 12 features are related to timbre averages 

and the remaining 78 to timbre covariance. These are calculated based on all 'segments', each 

segment being described by a 12-dimensional timbre vector. 

The experiments uses the first 463,715 examples for training and the last 51,630 examples for 

testing purposes. This split is suggested from the online resource, because it was designed in 

such a way so that it avoids the 'producer effect' via making certain that no song from a given 

artist ends up in both the training and test data set. Furthermore the target variable (namely the 

year the song was created) is converted into a binary indicator for whether a given song was 

created before or during 2002 (0) or after 2002 (1). The cut-off year of 2002 was selected to 

proportionally balance the number of 0s and 1s in the data.  For consistency with other 

experiments the metric to optimize is again AUC and Loglikelihood.  

 

6.4.2 First layer single model 

 

The StackNet model utilizes different models as nodes to its first layer which is in direct 

connection with input data. The first layer in this experiments consists of 12 models shuffled 

from different machine learning methods, with the idea that diversity in early levels can yield 

better predictions in later levels than the single model-nodes involved in this ensemble 

framework. All models have been manually trained before entered into the StackNet model in 

order to optimize their hyper parameters, using a random 5-fold cross validation process on the 

training dataset.  

The selected models and their most important hyper parameters can be viewed below in table 

6-10: 
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Table 6-10: First Layer models in StackNet 

Models in first layer Parameters 

Logistic Regression 

(Logistic_M1) 
C=0.5 

Random Forest Classifier 

(Random_Forest_M1) 

estimators=100, max_depth=15, max_features=0.3, min_leaf=5, row 

subsample=0.95 

SVM (Linear Kernel) 

(Linear_Support_Vector_M1) 
C=3.0 

LibFm Classifier 

(LibFm_M1) 

maxim Iterations=16, C= 0.000001, init_values =0.9, learn rate =0.9, 

Lfeatures=3 

Naïve Bayes 

(Naïve_Bayes_M1) 
shrinkage=0.01 

Neural Net Classifier 

NN_2layersRelu_M1 

C= 0.000001, learning rate=0.009, maxim_iterations=20, 

h1,h2=(30,20), act=relu, out=softmax 

Gradient Boosted RandomForest Classifier 

(GBM_M1) 

estimators=100, max_depth=8, max_features=0.5,min_leaf=2.0, 

eta=0.1, row subsample=0.9 

Linear Regression 

(Linear_Regression_M1) 
C=0.00001 

Random Forest Classifier 

(RandomForest_M1) 

estimators=100, max_depth=8, max_features=0.5, min_leaf=2.0, 

row subsample=0.9 

Gradient Boosted RandomForest Regressor 

(GBM_Regressor_M1) 

estimators=100, max_depth=9, max_features=0.5,min_leaf=2.0, 

eta=0.1, row subsample=0.9 

RandomForest Regressor 

(Random_Forest_Reg_M1) 

estimators=100, max_depth=14, max_features=0.25 ,min_leaf=5, 

row subsample=1.0 

Linear Support Vector Regression 

(Linear Support_Vector_Reg_M1) 
C=3.0 

 

 

Each model is run directly on the 90 features available in the dataset with no other data pre-

processing apart from maximum scaling. The performance of each one of the models in terms 

of AUC and logloss is displayed in the following table 6-11: 

 

Table 6-11: Performance of 1st layer models in StackNet 

StackNet: First Layer Models   AUC Loglikelihood 

Logistic_M1 0.7759 0.5796 

Random_Forest_M1 0.7913 0.5578 

Linear_Support_Vector_M1 0.7753 4.3356 

LibFm_M1 0.7757 0.5797 

Naïve_Bayes_M1 0.6432 1.7416 

NN_2layersRelu_M1 0.8002 0.5457 

GBM_M1 0.8034 0.5409 

Linear_Regression_M1 0.7744 0.7313 

RandomForest _M1 0.7779 0.6148 

GBM_Regressor_M1 0.8045 0.5990 

Random_Forest_Reg_M1 0.7883 0.5634 

Linear_Support_Vector_Reg_M1 0.7753 0.6295 

 

The GBM models have performed best both in terms of AUC and logloss, with neural networks 

being close behind. The best reported AUC is 0.804 which implies a strong discriminative 
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capability of classifying songs for whether they were created before or after 2002. The best 

reported logloss is 0.541.  

6.4.3 2nd layer single models 

 

The models selected for the 2nd layer are only trained on 12 features – those being the output 

predictions of the M1 models. These models can also be viewed as single-layer StackNets since 

each one corresponds to a Meta algorithm that takes as inputs previous models’ predictions. 

This time the selected number of models is only 4, since the initial 90-dimensional feature set 

is already compressed down to 12 outputs and adding many more models is likely to recycle 

the same information leading to overfitting. The final architecture has been found through 

various trials of slightly different structures based on the 5-fold cross validation schema 

mentioned before.  

The parameters of each model in the second layer is illustrated in table 6-12: 

 

Table 6-12: Second layer models in StackNet 

Models in second layer Parameters 

Logistic Regression 

(Logistic_l2_M2) 
C=0.5 

Random Forest Classifier 

(Random_Forest_M2) 

estimators=1000, max_depth=7, max_features=0.4, min_leaf=1, row 

subsample=1.0 

Gradient Boosted RandomForest Classifier  

(GBM_M2) 

estimators=1000, max_depth=5, max_features=0.5, min leaf=1.0, 

shrinkage=0.01, row subsample=0.9 

Neural Net Classifier 

(NN_2layersRelu_M2) 

maxim Iterations=16, C= 0.000001, init_values=0.9, learn rate =0.9, 

Lfeatures=3 

 

 Note that in the second modelling phase, the optimum parameters of the models have become 

more modest. For example the tree-based models have significantly smaller depths than their 

predecessors. This occurs naturally since the underlying features-predictions from the previous 

models are more correlated with target variable as there are meant to be predictions for it. 

Therefore the new models do not need to be so exhaustive with the underlying feature set when 

optimizing the error in respect to the target variable.  Table 6-13 shows the absolute results of 

the new M2 models as well as the proportion of improvement versus best results of the M1 

models: 
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Table 6-13: Performance of 2nd Layer models in StackNet 

StackNet: Second Layer Models AUC Loglikelihood AUC% Loglikelihood% 

Logistic_l2_M2 0.8102 0.5328 0.71% 1.49% 

Random_Forest_M2 0.8088 0.5343 0.53% 1.21% 

GBM_M2 0.8100 0.5327 0.69% 1.52% 

NN_2layersRelu_M2 0.8101 0.5332 0.69% 1.41% 

 

The best AUC has now increased to the 0.81+ area which is a +0.71% proportional 

improvement from the best M1 model in terms of AUC. The proportional impact in 

loglikelihood is superior as the biggest increase is around 1.5% better than the best predecessor. 

Interestingly, different types of 2nd layer models are better for each metric which may connote 

that extra benefit could be derived via adding one more layer to the StackNet as it can be 

assumed that each underlying model is utilizing the input information slightly differently. 

6.4.4  3rd layer models 

 

In the final layer, apart from running a new meta classifier on the output of the previous 4-

dimensional layer, a second meta classifier will be used that activates the “restacking” 

StackNet mode which brings up to the same level all previous models (from all previous layers) 

. In other words the First M3 StackNet will be run on a 4-dimensional feature set and the second 

M3 Stacknet on 16-dimensional (12 + 4) feature set in order to compare the ability of the 

restacking model to re-recycle information and perform better than the simple one. The 

parameters of each model in the third and final layer is illustrated in table 6.14: 

 

Table 6-14: Third layer models in StackNet 

2 different StackNets Parameters 

Random Forest Classifier 

 (Random_Forest_M3) 
estimators=1000, max_depth=6, max_features=0.7, Restacking OFF 

Random Forest Classifier 

(Random_Forest_Restack_M3) 
estimators=1000, max_depth=6, max_features=0.7, Restacking On 

 

Table 6.15 shows the results of all models included in the 2 StackNets as well as the absolute 

and proportional (compared to the 1st layer model) performance of the new models: 
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Table 6-15: Performance of 3-Layer StackNets and their predecessors 

StackNet: First Layer Models AUC Loglikelihood AUC_dif Loglikelihood% 

Logistic_M1 0.7759 0.5796 - - 

Random_Forest_M1 0.7913 0.5578 - - 

Linear_Support_Vector_M1 0.7753 4.3356 - - 

LibFm_M1 0.7757 0.5797 - - 

Naïve_Bayes_M1 0.6432 1.7416 - - 

NN_2layersRelu_M1 0.8002 0.5457 - - 

GBM_M1 0.8034 0.5409 - 0.0000 

Linear_Regression_M1 0.7744 0.7313 - - 

RandomForest _M1 0.7779 0.6148 - - 

GBM_Regressor_M1 0.8045 0.5990 0.0000 - 

Random_Forest_Reg_M1 0.7883 0.5634 - - 

Linear_Support_Vector_Reg_M1 0.7753 0.6295 - - 

StackNet: Second Layer Models 

Logistic_l2_M2 0.8102 0.5328 0.71% 1.49% 

Random_Forest_M2 0.8088 0.5343 0.53% 1.21% 

GBM_M2 0.8100 0.5327 0.69% 1.52% 

NN_2layersRelu_M2 0.8101 0.5332 0.69% 1.41% 

StackNets of Level 3 

Random_Forest_M3(Restack:OFF) 0.8105 0.5323 0.74% 1.58% 

Random_Forest _M3 (Restack:ON) 0.8115 0.5309 0.87% 1.84% 

 

Both StackNet models yielded a small uplift in both AUC and log likelihood compared to their 

direct predecessors. The structure of the first StackNet model (without Restacking) assumes 

direct relationships from one layer to another. It has performed marginally better than the best 

M2 model. Figure 6.4 displays the modelling architecture which assumes that there is a 90-

dimenional input dataset where all M1 models were trained on: 

 

Figure 6.4 : 3-layer StackNet with Restacking OFF 

 

The activation of the Restacking option has improved the results in both metrics even further. 

One may find it difficult to comprehend how it is possible that some models which have been 
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trained with other models, to still benefit from the presence of the latter in the modelling 

process. One need to note that the StackNet methodology assumes a normal forward pass of 

the data where each algorithm is fitted directly to predict the target variable. In other words 

there is not a concept of epochs as it is common in neural network models, since the algorithm 

is trained using cross validation and making predictions based on the prediction errors of this 

process for each model. In other words a specific model cannot be re-fitted to improve on the 

errors it might have produced and it is left to the next-level to account for the errors. However 

information missed in the early stages of the process may not be fully retrievable later on. 

Restacking allows higher level models to re-use information contained in early models. It is 

further possible that having more information about the data (as superior high-levelled Meta 

models might do) can allow the algorithms to seize the initial data from different angles and 

explore information not visible the first time.  

Figure 6.5 demonstrates how the outlook of the models differs from figure 6.4 when restacking 

mode is used: 

 

Figure 6.5 : 3-layer StackNet with Restacking ON 

 

 

The actual Java code to execute the 3-Layer StackNet starts with initializing a 

StackNetClassifier Object: 

 StackNetClassifier StackNet = new StackNetClassifier (); // Initialise a StackNet  
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Which is then followed by a 2 dimensional String array with the list of models in each layer 

along with their hyper parameters in the form of as in "estimator [space delimited hyper 

parameters]": 

 
String models_per_level[][]=new String[][];// holds the parameters for each model 
     
//First Level 
{"LogisticRegression C:0.5 maxim_Iteration:100 verbose:true",  
"RandomForestClassifier bootsrap:false estimators:100 threads:25 
cut_off_subsample:1.0 feature_subselection:1.0 max_depth:15 max_features:0.3 
max_tree_size:-1 min_leaf:2.0 min_split:5.0 row_subsample:0.95",  
"LSVC C:3 maxim_Iteration:50", 
"LibFmClassifier maxim_Iteration:16 C:0.000001 lfeatures:3 init_values:0.9 
learn_rate:0.9 smooth:0.1",  
"NaiveBayesClassifier Shrinkage:0.01",  
"softmaxnnclassifier maxim_Iteration:20 C:0.000001 tolerance:0.01 learn_rate:0.009 
smooth:0.02 h1:30 h2:20 connection_nonlinearity:Relu init_values:0.02",  
"GradientBoostingForestClassifier estimators:100 threads:25 verbose:false trees:1 
rounding:2 shrinkage:0.1 feature_subselection:0.5 max_depth:8 max_features:1.0 
min_leaf:2.0 min_split:5.0 row_subsample:0.9",  
"LinearRegression C:0.00001",  
"GradientBoostingForestClassifier estimators:100 threads:3 verbose:true trees:1 
rounding:2 weight_thresold:0.4 feature_subselection:0.5 max_depth:8 
max_features:1.0 min_leaf:2.0 min_split:5.0 row_subsample:0.9",  
"GradientBoostingForestRegressor estimators:100 threads:3 trees:1 rounding:2 
shrinkage:0.1 feature_subselection:0.5 max_depth:9 max_features:1.0 min_leaf:2.0 
min_split:5.0 row_subsample:0.9",  
"RandomForestRegressor estimators:100 internal_threads:1 threads:25 verbose:true 
cut_off_subsample:1.0 feature_subselection:1.0 max_depth:14 max_features:0.25 
max_tree_size:-1 min_leaf:2.0 min_split:5.0 Objective:RMSE row_subsample:1.0",  
"LSVR C:3 maxim_Iteration:50" , 
//Second Level     
"RandomForestClassifier estimators:1000  threads:25 verbose=false 
cut_off_subsample:0.1 feature_subselection:1.0 max_depth:7 max_features:0.4  
max_tree_size:-1 min_leaf:1.0  min_split:2.0  
row_subsample:1.0", 
"GradientBoostingForestClassifier estimators:1000 threads:25 verbose:false trees:1 
rounding:4 shrinkage:0.01 feature_subselection:0.5 max_depth:5 max_features:1.0 
min_leaf:1.0 min_split:2.0 row_subsample:0.9",  
"softmaxnnclassifier maxim_Iteration:20 C:0.000001 tolerance:0.01 learn_rate:0.009 
smooth:0.02 h1:30 h2:20 connection_nonlinearity:Relu init_values:0.02",  
"LogisticRegression C:0.5 maxim_Iteration:100 verbose:false" , 
//Third Level      
"RandomForestClassifier estimators:1000  threads:25 verbose=false 
cut_off_subsample:0.1 feature_subselection:1.0 max_depth:6 max_features:0.7  
max_tree_size:-1 min_leaf:1.0  min_split:2.0 row_subsample:1.0"}  
; 
 
StackNet.parameters=models_per_level; // adding the models' specifications 
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The remaining parameters to be specified include the cross validation training schema, the 

Restacking mode option, setting a random state as well as some other miscellaneous options:  

 
 
StackNet.threads=4; // models to be run in parallel 
StackNet.folds=5; // size of K-Fold 
StackNet.stackdata=true; // use Restacking 
StackNet.print=true; // this helps to avoid rerunning should the model fail 
StackNet.output_name="restack";// prefix for each layer's output. 
StackNet.verbose=true; // it outputs  
StackNet.seed=1; // random state 
 

Ultimately given a data object X and a 1 dimensional vector y, the model can be trained 

using: 

 
StackNet.target=y; // the target variable   
StackNet.fit(X); // fitting the model on the training data 

 

6.4.5 Summary of the experiment  

 

Using a StackNet model on the YearPredictionMSD Data Set to predict if a given song was 

created before or after 2002, has resulted in improved performance over AUC and log 

likelihood compared to the single models involved in the process.  

Building the various layers sequentially, it is clear that every new layer improves the 

performance of their inputs (or their predecessor). The models need to become shallower or 

simpler (parameter-wise) as StackNet becomes deeper to account for the already-compressed 

information contained in the Meta-models.  

Activating the Restacking mode and in the absence of the ability to recycle information through 

multiple epochs (as it is normally the case with neural network frameworks), has allowed to 

increase performance over a single feedforward direct approach. Computational time of the 

models is primarily a factor of the available cores since every model can be run in parallel.  
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6.5 Investigating diversity-performance trade-off   

 

In chapter 2.4.3 it was highlighted that a crucial component for improving the performance of 

an ensemble is the diversity of the models contained. The following experiment investigates a 

case of two ensembles built for a binary classification task, the first including models of linear 

nature and the second models from various algorithmic families.  

 

6.5.1 The data 

 

The data used in this experiment can be found in kaggle.com8. The train dataset contains 33K 

rows of anonymized historical information (summarized by 9 features) of the employees of a 

company regarding their role within that company and the resources to which they have access. 

The test data contain 59K rows and have similar structure. The dataset also contains a binary 

target variable which connotes whether the employee should have access privileges or not. The 

aim of such a classification model is to minimize the human involvement required to grant or 

revoke employee access via predicting whether an employee should have special accesses or 

not. The objective to optimize is AUC against models that either predict the probability for the 

target to be 1 or just a score (for regression models). All the features are of categorical nature 

and are expressed as integer codes. The features contain high cardinality. The number of unique 

values for each feature is demonstrated in table 6-16. 

 

Table 6-16: Features and number of distinct values 

features unique values 

feature1 7,518 

feature2 4,243 

feature3 128 

feature4 177 

feature5 449 

feature6 343 

feature7 2,358 

feature8 67 

feature9 343 

                                                           
8 https://www.kaggle.com/c/amazon-employee-access-challenge/data  

https://www.kaggle.com/c/amazon-employee-access-challenge/data
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In order to increase the feature space and allow the algorithms to produce different results, a 

sample of n-way pairwise interactions of features were created where n=5. In other words all 

possible combinations of 2, 3, 4 and 5 features were considered. The generated features based 

on this process were assigned a new unique code. The resulted interactions were found using 

random K-fold cross validation testing against AUC while using a logistic regression model. 

The final table of features with interactions is presented below: 

 

Table 6-17: Generated n-way interactions and type of interaction 

Feature interactions n-way 

Feature1_Feature2 2 

Feature1_Feature4 2 

Feature2_Feature3 2 

Feature2_Feature4 2 

Feature2_Feature5 2 

Feature2_Feature6 2 

Feature2_Feature7 2 

Feature2_Feature8 2 

Feature3_Feature6 2 

Feature3_Feature7 2 

Feature4_Feature7 2 

Feature6_Feature7 2 

Feature1_Feature2_Feature3 3 

Feature1_Feature2_Feature4 3 

Feature1_Feature3_Feature4 3 

Feature1_Feature3_Feature5 3 

Feature1_Feature4_Feature5 3 

Feature1_Feature5_Feature6 3 

Feature1_Feature5_Feature8 3 

Feature1_Feature6_Feature8 3 

Feature2_Feature3_Feature4 3 

Feature2_Feature3_Feature6 3 

Feature2_Feature3_Feature7 3 

Feature2_Feature4_Feature6 3 

Feature2_Feature4_Feature7 3 

Feature2_Feature5_Feature6 3 

Feature2_Feature5_Feature7 3 

Feature2_Feature5_Feature8 3 

Feature2_Feature6_Feature7 3 

Feature2_Feature7_Feature8 3 

Feature3_Feature4_Feature8 3 
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Feature4_Feature6_Feature7 3 

Feature5_Feature6_Feature7 3 

Feature1_Feature2_Feature3_Feature4 4 

Feature1_Feature2_Feature3_Feature5 4 

Feature1_Feature2_Feature3_Feature8 4 

Feature1_Feature2_Feature4_Feature5 4 

Feature1_Feature3_Feature4_Feature5 4 

Feature1_Feature3_Feature5_Feature6 4 

Feature1_Feature4_Feature7_Feature8 4 

Feature2_Feature3_Feature4_Feature7 4 

Feature2_Feature3_Feature5_Feature6 4 

Feature2_Feature3_Feature5_Feature7 4 

Feature2_Feature3_Feature7_Feature8 4 

Feature2_Feature4_Feature7_Feature8 4 

Feature1_Feature3_Feature4_Feature5_Feature7 5 

Feature1_Feature3_Feature4_Feature5_Feature8 5 

Feature2_Feature3_Feature4_Feature7_Feature8 5 

 

Given the categorical nature of features, they have been transformed using dummy coding. 

This means that each distinct value of a feature becomes its own binary variable indicating 

whether that value is present in a sample row (denoted as 1) or not (denoted as 0). The 

representation of this data within the algorithm is sparse as explained in 6.3.4.3 to allow for 

memory-efficient computations.  

6.5.2 The diversity metric 

 

In 2.42 pairwise correlation among models’ predictions was highlighted as a possible means 

of measuring the overall diversity of an ensemble. Assuming all level 1 models ae positively 

correlated with each other, the overall diversity of the ensemble can be measured via taking the 

average of all entries of the level 1 predictions’ corresponding Pearson correlation matrix as R.  

Given the definition of Pearson correlation (r) in 2.2.2.4, an input size of N level 1 models,  the 

overall diversity for that first level based on correlation can be expressed as: 

                                     diversity(R) =
1

N×N
∑ ∑ r(n, k)N

k=1
N
n=1                                              (6.12) 

Where R is the correlation matrix of all level 1 predictions and rn,k the pairwise Pearson 

correlation of the prediction of model n and the prediction of model k. Higher values would 

connote a lower diversity, because the correlation (or similarity) between models is higher. 
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6.5.3 The ensembles’ structure 

 

Two different ensembles were considered with nine input (level 1) models and one Meta model. 

In both ensembles the Meta model is a Random Forest Classifier, however the input level 1 

models differ between the 2 ensembles. 

The first ensemble consists of 9 Logistic regression models trained with different C (L2), 

regularization parameters, and optimization methods. These parameters were randomized 

within some intervals. The interval for C was [0.001, 100]. Once the C value was set, the rest 

of the parameters were tuned to get better performance as measured from inside StackNet’s K-

Fold cross validation mechanism for K=5. Table 6-18 presents the models’ name and their 

hyper parameters: 

Table 6-18: Models and hyper parameters for the first ensemble 

Level 1 models of linear ensemble parameters 

Logistic Regression_1 C=1.5 maxim_Iteration=100  

Logistic Regression 2 C=0.002 maxim_Iteration=60  

Logistic Regression 3 C=0.01 maxim_Iteration=200  

Logistic Regression 4 C=5.5 maxim_Iteration=100  

Logistic Regression 5 C=0.8 maxim_Iteration=100  

Logistic Regression 6 C=10.0 maxim_Iteration=100  

Logistic Regression 7 C=6.0 maxim_Iteration=100  

Logistic Regression 8 C=15.0 maxim_Iteration=100  

Logistic Regression 9 C=3.5 maxim_Iteration=100  

 

The second ensemble includes models from other algorithmic families outside the linear 

spectrum. The parameters of these models were tuned manually to maximize AUC based on 

StackNet’s internal cross validation schema. Table 6-19 presents the models’ name and hyper 

parameters of this mixed ensemble: 
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Table 6-19: Models and hyper parameters for the mixed ensemble 

Level 1 models of mixed ensemble parameters 

LogisticRegression_1 C=1. maxim_Iteration=100 

LogisticRegression_2 C=0.001 maxim_Iteration=60 

LSVC_3 C=0.01 maxim_Iteration=100 

LinearRegression_4 C=20. maxim_Iteration=10  

LibFmClassifier_5 maxim_Iteration=50 C=0.000001 C2=10. Lfeatures=2 

softmaxnnclassifier_6 maxim_Iteration=30 C=0.00001 h1=30 h2=30 

connection_nonlinearity=Relu 

GradientBoostingClassifier_7 shrinkage=0.16 estimators=300 max_depth=7 max_features=0.6 

LogisticRegression_8 C=0.5 maxim_Iteration=20 

LSVC_9 C=0.5 maxim_Iteration=100 

 

The mixed ensemble consists of three logistic regression models, two linear support vector 

machines (denoted as LSVC), 1 linear regression model, one libFM classifier, a gradient 

boosted tree model and a neural network model with Softmax output layer and 2 hidden layers 

connected using a rectifier activation. 

 

6.5.4 The ensembles’ first layer performance 

 

Tables 6-20 and 6-21 illustrate the performance each one of the models in terms of AUC for 

both the internal K-fold cross validation and the actual results in the test data: 

 

Table 6-20: Linear models’ performance in AUC for cv and test 

model cv AUC test 

Logistic Regression_1 0.894 0.911 

Logistic Regression_2 0.886 0.899 

Logistic Regression_3 0.883 0.893 

Logistic Regression_4 0.893 0.913 

Logistic Regression_5 0.893 0.909 

Logistic Regression_6 0.890 0.911 

Logistic Regression_7 0.893 0.912 

Logistic Regression_8 0.887 0.908 

Logistic Regression_9 0.894 0.913 



150 
 

average 0.890 0.908 

 

 

Table 6-21: mixed models’ performance in AUC for cv and test 

model cv AUC test 

LogisticRegression_1 0.893 0.910 

LogisticRegression_2 0.886 0.899 

LSVC_3 0.891 0.906 

LinearRegression_4 0.875 0.890 

LibFmClassifier_5 0.890 0.909 

softmaxnnclassifier_6 0.881 0.900 

GradientBoostingClassifier_7 0.851 0.865 

LogisticRegression_8 0.880 0.893 

LSVC_9 0.873 0.882 

average 0.880 0.895 

 

Apart from the individual results, the average of all models’ AUC is displayed for both the 

internal cross validation and test results. The linear ensemble consists on average of stronger 

models with better performance in the internal validation and test data. The best model in the 

linear ensemble (LogisticRegression_9) boasts an AUC of 0.913 in the test data, while the best 

model in the mixed ensemble (LogisticRegression_1) scores only 0.911 in the test data. 

Additionally the overall average AUC of all models for the linear ensemble in the test data (of 

0.908) is higher than the equivalent one for the mixed ensemble (of 0.895). 

 

6.5.5 The ensembles’ diversity 

 

In order to estimate diversity as defined in 6.5.2, the Pearson correlation matrix of all 

predictions of all models needs to be computed. Table 6.22 illustrates the correlation matrix of 

all linear models’ predictions for the test data. The model’s numbering follows the same order 

as in table 6-20 (i.e. model1 is Logistic Regression_1 and model9 is Logistic Regression_9): 
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Table 6-22: linear models’ correlation matrix 

  model1 model2 model3 model4 model5 model6 model7 model8 model9 

model1 1.000 0.959 0.936 0.986 0.998 0.967 0.984 0.947 0.995 

model2 0.959 1.000 0.985 0.952 0.954 0.934 0.951 0.915 0.959 

model3 0.936 0.985 1.000 0.912 0.937 0.886 0.909 0.861 0.925 

model4 0.986 0.952 0.912 1.000 0.974 0.995 1.000 0.985 0.998 

model5 0.998 0.954 0.937 0.974 1.000 0.950 0.971 0.928 0.986 

model6 0.967 0.934 0.886 0.995 0.950 1.000 0.996 0.997 0.987 

model7 0.984 0.951 0.909 1.000 0.971 0.996 1.000 0.987 0.997 

model8 0.947 0.915 0.861 0.985 0.928 0.997 0.987 1.000 0.973 

model9 0.995 0.959 0.925 0.998 0.986 0.987 0.997 0.973 1.000 

 

Using the formula of 6.5.2, the estimated diversity is 0.9648. 

Table 6-23 illustrates the equivalent table for the mixed ensemble, where model1 is Logistic 

Regression 1 and model9 is LSVC9: 

 

Table 6-23: mixed models’ correlation matrix 

  model1 model2 model3 model4 model5 model6 model7 model8 model9 

model1 1.000 0.957 0.863 0.892 0.991 0.938 0.824 0.919 0.779 

model2 0.957 1.000 0.888 0.923 0.951 0.950 0.784 0.871 0.771 

model3 0.863 0.888 1.000 0.926 0.845 0.852 0.775 0.837 0.881 

model4 0.892 0.923 0.926 1.000 0.881 0.874 0.763 0.846 0.819 

model5 0.991 0.951 0.845 0.881 1.000 0.935 0.803 0.902 0.763 

model6 0.938 0.950 0.852 0.874 0.935 1.000 0.773 0.849 0.743 

model7 0.824 0.784 0.775 0.763 0.803 0.773 1.000 0.881 0.753 

model8 0.919 0.871 0.837 0.846 0.902 0.849 0.881 1.000 0.836 

model9 0.779 0.771 0.881 0.819 0.763 0.743 0.753 0.836 1.000 

 

The estimated diversity based on 6-23 correlation matric is 0.8726. As it is expected, the mixed 

ensemble has higher diversity as on average, the pairwise correlations between models’ 

predictions for the test data are lower than these in the linear model. The consolidated results 

in table 6-24: 

Table 6-24: Linear and mixed models’ level 1 diversity 

Ensemble type diversity 

Linear ensemble 0.9648 

Mixed ensemble 0.8726 
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Based on the metric defined in 6.5.2, it can be concluded that the mixed ensemble is more 

diverse than the linear one, which is not surprising given the bigger variety of the algorithms 

contained. 

 

6.5.6 The ensembles’ final performance 

 

These nine model’s predictions were input to a higher level (Meta) classifier. Both ensembles’ 

level 1 output became input to Random Forest (level 2) classifier. The parameters of this model 

included 300 trees, maximum tree depth equal to 8 and the proportion of features to consider 

at each level of the tree was set to 50%. These parameters were obtained from within 

StackNet’s cross validation procedure. The final results for the internal and test AUC results 

for both Random Forest models are presented in table 6-25: 

Table 6-25: Linear and mixed models’ level 1 diversity 

Level 2 input cv AUC test 

Random Forest on linear Ensemble 0.896 0.914 

Random Forest on mixed ensemble 0.901 0.917 

Difference (mixed – linear) +0.005 +0.003 

 

 

The Level 2 Random Forest classifier that was trained on the outputs of the mixed ensemble 

gave better results for AUC (cv + test), although the best individual model of the mixed 

ensemble was not better than the best individual model of the linear ensemble, nor the average 

AUC of the models contained in the mixed ensemble was better than the one of the models 

contained in the linear ensemble.  

 

6.5.7 Conclusion diversity-performance trade-off 

 

The findings of the current experiment suggest that diversity (as measured based on correlation) 

of inferior layers is critical for getting better results in the Meta layer. This was demonstrated 

via creating 2 different ensembles, one that contained models of linear nature and another that 

contained models from various algorithmic families.  The former ensemble had on average 
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stronger individual models than the latter ensemble and the diversity metric (computed from 

the predictions’ correlation matrix) showed lower diversity for the linear ensemble than the 

mixed ensemble. A Random Forest Meta level 2 classifier trained on the outputs of both 

ensembles demonstrates consistently (between internal CV and test results) better performance 

for the mixed model. This concludes that selecting different algorithmic families as input (level 

1) models generates higher diversity and achieves better performance than solely maximizing 

the performance of one classifier (or one family of classifiers).  

Ultimately, the diversity within the models proved to be more important in securing a better 

generalization in the test data than having on average stronger but more correlated models 

within the ensemble. While this finding may not be consistent when the models do not boast a 

certain level of accuracy in respect to the target variable, however in the context of models 

having strong predictive power (as in the example where all models had and AUC>0.85) 

diversity was deemed more important for obtaining a better result.   

 

6.6  Investigating ensemble plateauing  

 

Formulating ensemble methods comes at a computation cost that based on the level of 

sophistication may be quite considerable. Investigating the trade-off between diversity and 

performance in 6.5 exhibited an interesting finding. Under certain assumptions regarding 

strong predictors in the ensemble that boast positive correlations with one another, diversity 

was more important in obtaining a better generalization error than having strong correlated 

models. [Zhou et al. 2002] demonstrated that using a large number of models in an ensemble 

is not better (performance-wise) than a (diverse) subset of these models. Combining all the 

information, it is worth investigating to what extend (if any) adding more models to the 

ensemble does not bring performance uplift. 

 

6.6.1 The data 

 

The data for this experiment is exactly the same as in 6.5. 
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6.6.2 The setup of the experiment  

 

To investigate the (potential) point to which performance starts downgrading, a pool of 36 level 

1 models was generated. It included 27 random models and the 9 models from the mixed 

ensemble described in 6.5 which were significantly tuned based on cross validation 

performance.  The 27 models come from the following algorithmic families: 

 Linear models 

 Random forests 

 Gradient boosted trees 

 Neural networks with 2 hidden layers and Relu activation 

 Linear support vector machines 

 Factorization machines (LibFM) 

The hyper parameters of these 27 models were initially randomized and then were recalibrated 

(mildly) based on the K-fold cross-validation performance from within StackNet, where K=5. 

The final list of models, their hyper parameters and their average cross validation AUC is listed 

in table 6-26: 

Table 6-26: Pool of 36 models (9 +27) along their parameters and AUC cv performance 

Level 0 model with index Parameters cv AUC 

LogisticRegression_1 C=1. maxim_Iteration=100 0.893 

LogisticRegression_2 C=0.001 maxim_Iteration=60 0.886 

LSVC_3 C=0.01 maxim_Iteration=100 0.891 

LinearRegression_4 C=20. maxim_Iteration=10  0.875 

LibFmClassifier_5 maxim_Iteration=50 C=0.000001 C2=10. Lfeatures=2 0.890 

softmaxnnclassifier_6 maxim_Iteration=30 C=0.00001 h1=30 h2=30 

connection_nonlinearity=Relu 

0.881 

GradientBoostingClassifier_7 shrinkage=0.16 estimators=300 max_depth=7 max_features=0.6 0.851 

LogisticRegression_8 C=0.5 maxim_Iteration=20 0.880 

LSVC_9 C=0.5 maxim_Iteration=100  0.873 

LogisticRegression_9 C=5. maxim_Iteration=100  0.893 

LogisticRegression_10 C=0.01 maxim_Iteration=120  0.883 

LSVC_11 C=0.1 maxim_Iteration=200  0.884 

LinearRegression_12 C=30. maxim_Iteration=20  0.877 

LibFmClassifier_13 maxim_Iteration=40 C=0.00001 C2=15. Lfeatures=1  0.889 

softmaxnnclassifier_14 maxim_Iteration=35 C=0.0005 h1=20 h2=20 

connection_nonlinearity=Relu 

0.882 

GradientBoostingClassifier_15 shrinkage=0.15 stimators=400 max_depth=7 max_features=0.6 0.851 
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LogisticRegression_16 C=0.2 maxim_Iteration=20  0.877 

LSVC_17 C=0.1 maxim_Iteration=100  0.846 

LogisticRegression_18 C=10.0 maxim_Iteration=200  0.890 

LogisticRegression_19 C=0.005 maxim_Iteration=90  0.884 

LSVC_20 C=0.035 maxim_Iteration=200  0.889 

LinearRegression_21 C=40. C=0.025 maxim_Iteration=30  0.878 

LibFmClassifier_22 maxim_Iteration=50 C=0.000001 C2=20. Lfeatures=3 0.890 

softmaxnnclassifier_23 maxim_Iteration=35 C=0.00005 h1=15 h2=10 

connection_nonlinearity=Relu 

0.881 

GradientBoostingClassifier_24 shrinkage=0.15 estimators=500 max_depth=7 max_features=0.6 0.852 

LogisticRegression_25 C=0.04 maxim_Iteration=20  0.869 

LSVC_26 C=0.05 maxim_Iteration=100  0.809 

LogisticRegression_27 C=30. maxim_Iteration=200  0.876 

LogisticRegression_28 C=0.0005 maxim_Iteration=150  0.884 

LSVC_29 C=0.01 maxim_Iteration=250  0.891 

LinearRegression_30 C=50. maxim_Iteration=30 0.879 

LibFmClassifier_31 maxim_Iteration=50 C=0.000001 C2=20 Lfeatures=3  0.890 

softmaxnnclassifier_32 maxim_Iteration=35 C=0.00055 h1=25 h2=10 

connection_nonlinearity=Relu 

0.882 

GradientBoostingClassifier_33 shrinkage=0.25 estimators=100 max_depth=6 max_features=0.6 0.836 

LogisticRegression_34 C=0.004 maxim_Iteration=20  0.855 

LSVC_35 C=0.005 maxim_Iteration=200  0.720 

 

In order to estimate the plateauing, the following simulation steps are formulated: 

1. Defined the number of simulations S=50. 

2. In each simulation the order of the (N=36) level 1 models (which can be defined as S1 

to S36) is randomly changed (i.e. shuffled).  

3. Assuming a target variable Y, one-by-one the 36 models’ predictions are used as inputs 

to a level 2 Meta classifier (denoted as F2). This Meta classifier is a Random forest with 

300 trees, maximum tree depth equal to 8 and the proportion of features to consider at 

each level of the tree was set to 50%. This is the same Meta Classifier used in 6.6. In 

other words there are 36 rounds in each simulation and equal number of level 2 models 

are built in each round. The first round builds an F2  model using only the first randomly 

shuffled level 1 (Sn1) model. The second round builds the F2 model with two inputs 

stacked together (Sn1 ~ Sn2) until the dimensionality for the input of the F2 model reaches 

36 (Sn1, Sn2, …, Sn36) when all level 1 models have been stacked at round 36. 

4. The cross validated AUC is computed at the end of each round. 

5. The average cross validated AUC is reported for each round/order after all 50 

simulations are completed.   
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Consider the following pseudocode assuming a number of base level (f1) predictions are 

already made. Comments are made with italics: 

1. A_AUC= [0,0,…,0] # array with size 36 initialized with zero values 

2. I= [1,2,…,36] # array of indices 

3. S= [f1(x, S1), f1(x, S2), …,  f1(x, S36)] # base models predictions on the input data x 

AS 2d matrix with 33K rows and 36 columns. 

4. Y=[1,1,1,….,1] # Array with size around 33K where each yi ∈ {0,1}  

5. For s=1  s=50  # for 50 simulations 

a. F1data = [] # empty array to be populated with predictions from S 

b. I_sfhuffledrandom_shuffle(I) # indices I are randomly shuffled 

c. For n=1 n=36 # for all 36 base (f1) models 

i. F1n = S [I_sfhuffled [n]] # retrieve a random f1 prediction from S 

ii. F1data  [F1data ~  F1n] # stack predictions f1 to F1data 

iii. AUCsn=0 # initialize AUC for s simulation and model round n 

iv. Lm=Random Forest Classifier (params) # the F2 model, initialized 

given some parameters 

v. AUCsn=performKfold(Lm, F1data, Y, k=5) # obtain an average 

AUC out of 5 estimates given 5 Lm models trained on 80% of the 

data {F1data, Y} and making predictions to the remaining 20% of 

the data. 

vi. A_AUC [n]= A_AUC [n] + AUCsn # add AUC estimate to n round 

6. For n=1 n=36 

a. A_AUC[n]= A_AUC[n]/50 # obtain average AUC  for all rounds based on 

all simulations 

Figure 6.6: Pseudo code for generating average AUC estimates per round 

 

6.6.3 Results of the experiment  

 

Table 6-27 demonstrates the consolidated (average) results for each model round after 50 

simulations: 
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Table 6-27: Model rounds and cross-validation AUC 

Round Average cv AUC 

round1 0.87015 

round2 0.89036 

round3 0.89369 

round4 0.89499 

round5 0.89588 

round6 0.89683 

round7 0.89731 

round8 0.89749 

round9 0.89776 

round10 0.89796 

round11 0.89808 

round12 0.89846 

round13 0.89872 

round14 0.89885 

round15 0.89892 

round16 0.89891 

round17 0.89901 

round18 0.89904 

round19 0.89920 

round20 0.89920 

round21 0.89924 

round22 0.89932 

round23 0.89929 

round24 0.89930 

round25 0.89933 

round26 0.89942 

round27 0.89947 

round28 0.89951 

round29 0.89948 

round30 0.89952 

round31 0.89952 

round32 0.89955 

round33 0.89960 

round34 0.89958 

round35 0.89958 

round36 0.89958 

 

The results are also illustrated in graphical format in Figure 6.7: 
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Figure 6.7: Model round versus cross-validation AUC 

 

Both sources of information conclude that the plateauing of AUC does occur. The best average 

AUC performance is obtained when the 33rd model is inserted in the ensemble and (on average) 

models that enter past this point deteriorate the performance. It would appear that most of the 

AUC gain occurs within the first 10 rounds where AUC starts (on average) from 0.87 and ends 

at approximately 0.898. The remaining (26) rounds are only able to lift AUC up to 0.899.   

What is noteworthy is that the Meta learner performance (0.901) of the first 9 models which 

had been manually tuned and were also part of the mixed ensemble in experiment 6.5, 

demonstrated higher cross validation AUC than any of the ensembles in any round-order of 

this experiment. It should be re-highlighted that these 9 models were also part of the current 

experiment, which potentially concludes that in order to get better performance out of the 

ensemble, it is better to include a number of diverse models, but increasing the size of the 

ensemble will not necessary yield better results, instead the optimum number models as well 

as the diversity of the algorithms need to be investigated for a given task.  

Although on average the AUC of all the different rounds is not superior to the ensemble built 

on top of the mixed ensembles’ 9 features, however there have been specific simulations where 

a certain number of input models (in most cases less than 15 input models) is able to surpass 

the performance of 0.901. The results for simulations and all rounds are in the appendix 8.3, 

which further supports the argument for a diverse ensemble with as many models as required 

to get better generalization results.  
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6.6.4 Conclusion of the experiment  

 

This experiment investigated when (and if) the plateauing within the second level of a StackNet 

model occurs given a certain number of input models. It demonstrated that given a certain 

number of randomized simulations and Meta learners built on random subsets of level 1 

models, the plateauing of the performance does occur and performance uplift past the 11th 

model is incrementally minimal in comparison to the uplift occurring in the first 10 entered 

input models. Performance also starts to drop after a certain point. 

Part of the input level 1 models included those used in 6.5. Interestingly, on average, for any 

randomly constructed input size dataset for the Meta learner, the performance of the ensemble 

is not able to surpass this which was manually tuned in 6.5. However there have been a few 

rounds of ensemble sizes of less than 15 that express a superior performance.  

There is evidence to conclude that simply increasing the size of the ensemble will not give 

better generalizations results. Instead effort is required to generate diverse models and the 

optimal number of models needs to be specified based on cross validation results, potentially 

along with feature selection techniques as suggested by [Zhou et al. 2002].  

 

6.7 Future Work  

 

The StackNet model will be as powerful (in terms of accuracy) as the strength of the algorithms 

that is consisted of. Including more algorithms such as the award winning xgboost would 

greatly improve the overall performance. Additionally compatibility with some of the already 

prominent Java packages in machine learning such WEKA and RankLib would increase the 

reach of different algorithmic families and will add diversity to the StackNet’s solutions.  

The model would benefit for more data pre-processing steps (apart from scaling) to be part of 

the spectrum of the available hyper parameters. Feature selection or feature elimination 

algorithms could be invoked in a similar way inside the fit() and predict() methods . Other 

additions could generate unsupervised features from the raw data (such as PCA and SVD) 

becoming themselves hyper parameters of the model. Other parameters’ additions could 

include subsampling methods, providing variables’ importance and different regularizations 

methods for deciding the weight for each model.  
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For the meantime the StackNet model supports only classification (although it does accept in 

its core regressors as input-neurons). as opposed to forecasts / regressions The reason is that 

regression data, especially response variables that are too dependent on time (such as sales or 

demand) would require a cross validation framework that during the training process respects 

the time order of the data, making the use of StackNet not optimal as it primarily relies on the 

unbiased cross validation estimates generated in each part of the k-fold paradigm. On the other 

hand making one split based on time would mean that not many consecutive levels could be 

built with adequate data or the volume of the input data would have to be much bigger in order 

to account for the constant sub splitting of the data. To extend StackNet to include regression, 

the validation framework and how is implemented would be critical, however it is definitely a 

goal worth pursuing.   

The model has been tested with FMCG data in this thesis and has performed well via improving 

the overall performance and yield significant uplift against any of the input algorithms or 

simple or weighted averaging of them. In addition the methodology has been used successfully 

in winning data modelling challenges in the NLP space such as the Dato classification 

challenge for detecting specific type of advertising from the contents of a website hosted in 

[Kaggle 2015] and in the insurance space via detecting claims for the Homesite insurance in 

[Kaggle 2016]. Furthermore StackNet (the software) was used by multiple top 10 solutions in 

its first unofficial public release for the Renthop Kaggle classification challenge in 20179 to 

best predict rental prices. It is suggested that the methodology is extended to more diverse 

problems like image and sound classification.  

This ensemble framework allows many models to be combined, each one with its own 

specifications to order to achieve a more generalizable outcome. It is expected that this type of 

Meta model can be very complicated (or blackbox) to extract comprehensible information 

about the data. At the same time, even though both training and scoring can happen to some 

extend in parallel, it is natural that given the size of the ensemble the computational cost may 

be high especially when considering productionzing such approaches for large scale 

applications. It would be therefore advisable to extract the learnings of such process and 

compress it into simpler solutions – in other words go from a complicated (possibly 

computationally very expensive) model back to much simpler one, while maintaining a sensible 

level of accuracy. 

                                                           
9 The main blog is here : https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/30012  

https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/30012
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6.8 Conclusion  

 

Chapter 6 covered the StackNet model which connotes a methodology with an architecture 

similar to a normal feed forward neural network that makes use of stacked generalization in 

multiple levels in order to combine many algorithms and improve accuracy in many typical 

machine learning tasks that occur within the recommendation space and beyond. The initial 

implementation of the model is in Java because it is deemed to have certain advantages over 

other languages taking into account, speed, safety, popularity, platform compatibility and 

accessibility. 

The mathematical formulation of the model shares many similarity with that of the neural 

networks and it can be run with two different models, one of which assumes direct connection 

of each model layer only with the next geographical layer and another mode (also called 

restacking) that assumes each layer’s neuron is connected with all previous layers’ neurons 

before invoking activation. The main objective of the second mode is to counter the drawback 

of the training process that assumes each layer is activated only once (i.e there is only one 

model iteration).   

The training method of the model follows the principles of stacked generalization that assumes 

the data need to be split so that only the predictions in the hold out data are carried over in the 

next modelling phase. That model, in order to address the re-usability of data and the loss of 

unnecessary otherwise useful information, performs a k-fold cross validation in order to make 

certain that all the original input data is scored and pushed forward as features (or neuron 

outputs) in the next layers.  

The objects of the model have been described and they all follow a similar structure including 

an initialization step, followed by a phase where a different number of hyper parameters may 

be set to improve each individual model’s performance. Many algorithmic families are being 

represented in the StackNet model including Tree based algorithms, neural networks, LibFM, 

linear models, K nearest neighbours, kernels based methods, Naïve Bayes and more to be added 

other time. All models are trained using either typical Java data objects - to address 

compatibility and accessibility - or as other data types (dense to sparse) to address other needs 

regarding performance and memory optimization. Pre-processing steps like scaling have been 

added into the hyper parameters space of any algorithm along with many other attributes.  
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Furthermore different structures of StackNet are applied to the YearPredictionMSD Data Set 

to predict if a given song was created before or after 2002, demonstrating the uplift in terms of 

AUC and loglikelood occurring via this approach through the various levels of the training 

process. The sample code provided covers many aspects of the StackNet model and shows the 

impact they have on the overall outcome.  

Finally it is proposed that the model extends each arsenal of available algorithms via adding 

compatibility with other prominent machine learning packages or award winning 

implementations of different algorithms, add more data pre-processing steps in its hyper 

parameter spectrum and is used in many other possible diverse classification problems outside 

the recommendations space.  
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7. Conclusion and future work 

 

This chapter reviews the finding of this thesis based on the 4 different experiments that comprises it and 

also provides suggestions for future work and development plans to improve the work even further.  

 

7.1 Conclusion  

 

Formerly the thesis has utilized four different experiments all within the scope of improving 

recommender systems, where each one provides unique but complementary elements towards 

this goal.  

Univariate Analysis of the Dataset: Chapter three gave an overview of the available data (for 

research) that dunnhumby owns and comprises of millions of customer transactions for the 

course of two years for a specific retailer. The available data source include both customer 

transactions, demographic details and product level information data.  

Sequentially the training and test data used is formulated respecting the time order ensuring 

that past data is used to predict future data. Additionally a number of features are created and 

expressed in tandem with the target variable which simply connotes whether the customers 

bought a specific item next week given a number of personal transactions over the past 52 

weeks.  Three main factors were identified as the most prominent drivers for deriving such 

features, namely customer based features, product features and contextual data such as time or 

week number. Combinations of these proved to be the most indicative features for predicting 

the response variable. Exploiting the product hierarchy of the item space (such as department 

and manufacturers) described information possibly not captured by a direct customer-to-item 

relationship 

The relationship of the features in respect to the target variable was not always deemed as 

linear, therefore a brute-force optimized binning algorithm was introduced and utilized to 

capture such nonlinearities and uncover how much unique information each variable yields in 

respect to the target variable and a ranking was provided to describe the most prominent feature 

families.  
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To further promote the understanding in the FMCG recommendation field, the thesis provided 

an illustrative catalogue of the most representative families of such features along with 

descriptions regarding their derivations.  

Meta-modelling to predict top K products:  One of the main goals of the recommender 

systems in an FMCG environment is to improve recommendations via focusing on retention of 

loyal customers (that drive the most income) and also reward their loyalty via offering more 

relevant and personalized recommendations., therefore optimizing for top K precision is often 

used in marketing (where K is normally a small number between 5 and 20)  The available data 

as described in the previous chapter demonstrated significant linear and non-linear relationship, 

making it technically difficult to identify an algorithm that could easily excel in both without 

significant pre-processing.  

To improve precision for the top K products of each customer and leverage the different 

relationships inherent within the data, ensemble modelling was used and specifically Wolpert’s 

stacked generalization. The training data was split into 2 parts (training and validation) where 

various repressors and classifiers were built using the training data and predictions were made 

for the validation and test data (which was the following -i.e. future - week). Gradient boosting 

machines and neural networks seemed to perform the best in maximizing precision and overall 

discrimination (as measured by highest AUC).  

Furthermore, after combining (or stacking) all predictions in the validation data, forming a new 

training dataset, a random forest classifier was used to train on this data achieving higher 

precision @5, 10 and 20, as well as better overall AUC, against some field-base benchmarks 

(such as customer’s frequency of purchase of specific products and product popularity), all 

previous individual models that contributed to the stacking model, and a simple average as well 

as a rank-transformed average. 

Hybrid method to predict repeated, promotion-driven product purchases in an irregular 

testing environment: Chapter 5 examined a hybrid recommender system to improve accuracy 

of predictions for whether the customer of a retailer will buy again a recommended product 

assuming an irregular environment. The irregular environment was defined by different 

customer, different offered products and different time periods between the train and the test 

data. More specifically the overall aim was to maximize AUC for whether a customer will buy 

again a product within 2 months after having redeemed a coupon for it. Therefore the evaluation 
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metric measured the ability of the recommender system to suggest offers that are capable of 

creating a habit. 

Finding a cross validation methodology suitable for tis irregular environment was critical in 

obtaining reliable estimates for the test data, since the training data was consisted of 

transactions of different customers and different offers than the test data. Additionally the test 

data was chronologically placed in the future. Three different cross validation methodologies 

were examined. The first methodology measured AUC after splitting the train data randomly , 

but stratified based on offer ensuring all offers were proportionally equally populated in all 

folds of the validation procedure. The second method used N-1 offers to build a model and 

measure AUC for the offer left aside for validation. This process was repeat N times and the 

average AUC was retrieved. The reasoning for this method was derived form fact that the test 

data included different offers than the train data, therefore an ideal model should be able to 

predict offers that were not included in its training process.  The last method connotes the 

continuation of the second method where all predictions from all offers are concatenated into 

a single frame before calculating the overall AUC across all predicted offers for all samples. 

Ultimately the third methodology used the average of this holistic AUC along with the AUC 

of the second methodology. The intuition for the last method was based on the fact that the 

offers in the training data boasted different propensities and a sample had to be comparable not 

only within the offer but against any other offer. Given a set of features derived from the 

transactional history and a logistic regression model, this last methodology performed best in 

the test data, demonstrating a smaller gap between the cross validation and test results.  

Based on the last cross validation methodology, 2 different approaches/strategies were 

formulated. One content-based and another based on collaborative filtering. The first strategy 

assumed a direct or indirect relationship of a customer with the recommended product. This 

approach used ridge regression fitted using the future quantity of items bought as the response 

variable, creating a number of different features based on the customers’ transactional history. 

The second strategy attempted to match the shopping habits of customers that were offered the 

products with another group of customer that had bought these items prior to the sending of the 

coupon. It utilized gradient boosted trees to predict the natural logarithm of the number of times 

the customers bought the product 90 days before the actual coupon was sent. The features for 

this approach were more generic about the customer and not in relations with specific products.  

Unsupervised features based on neural networks were used to create summaries of different 

past customer activity. 
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The combination of the two approaches yielded the best results in the test data. Their merging 

was challenging because the first model was fitted to a regression response variable (e.g. the 

quantity) and the other approach natural logarithm of the counts the customer bought the item 

in the past. AUC is focused in the ranking of the prediction array, therefore all predictions from 

both approaches were transformed into ranks and were weighted equally to achieve the best 

AUC in the test data. 

The StackNet Model: Chapter 6 described the properties of the StackNet model – a new Meta 

modelling methodology that utilizes Wolpert’s stacked generalization of combining multiple 

models assuming a feedforward neural network architecture. Although the model was 

described formally for the first time in the current thesis, online references of the term has been 

used in numerous predictive modelling competition where such methodology was deemed the 

winner. 

The model shares similar properties with a simple multilayer perceptron type of neural 

network, where each perceptron may be replaced with any machine learning algorithm, 

regressor or classifier. The transformation function is no longer needed as it is now inherent to 

the selected algorithm. The methodology is implemented in the Java programming language 

because it was deemed a valid trade-off between, speed, safety, compatibility and popularity.  

There two available modes referring to the type of connections each layer has with the previous 

ones. The normal mode assumes that each layer’s neurons (or algorithms) takes as input the 

predictions of all algorithms in the direct previous layer. The second mode (called restacking) 

allows a layer to receive predictions from all previous neurons in all preceding layers, including 

the input data. The reasoning for the existence of the second mode is the fact that the training 

of the model occurs in one epoch so the model does not have the chance to revisit the initial 

data unless it is forced, allowing it yield extra information if any. Irrespective of which mode 

gets activated, all the models in a layer can be run in parallel to facilitate faster convergence.  

The created software supports many different input data formats to address the need for 

sparsity, performance and compatibility within the native Java code. Additionally many 

algorithms have been written from scratch to address the needs to a scalable efficient software 

in Java. Most commonly-used algorithmic families have been included such as tree-based 

methods, neural networks, linear methods, kernels, nearest neighbours, factorization machines 

and naïve Bayes. Among the implementations is Rendle’s LibFm and the award winning 

Liblinear.  
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Finally different StackNet architectures are being tested on the YearPredictionMSD Data Set 

in order to predict if a given song is created before or after 2002. It is shown that adding 

multiple modelling levels while tweaking the StackNet’s options can facilitate better 

performance.   

7.2 Future Work  

 

Univariate Analysis of the Dataset:  Chapter 3 utilized mostly the transactional data to give 

insight about the factors that connect customers with future product purchases.  In addition to 

transactional data, it also used some demographics of the customers and some very basic 

contextual data such as time of visit. Therefore further insight could be gained via examining 

other potential factors in the same space. 

The examination of the dataset demonstrated significant linear (such as how many times a 

customer has bought an item in the past) and nonlinear (such as when was the last time a 

customer bought an item versus every how often the item is being bought) relationships in 

respect to future purchases . To assess the predictability of the variables, an optimized binning 

methodology was utilized. While the latter ensures that the nonlinear relationships of the 

features (with respect to the response variable) are captured, still it does take away from the 

linear relationships. Another methodology that may well be utilized is the [MARS 1991] model 

that could potentially examine the variables not just in a univariate but also a multivariate 

context in order to give a more fair assessment for the predictability of a single variable.   

Ultimately a similar features examination approach could be implemented in other retailer 

environments, not just the grocery market in order to compare how consistently the discovered 

relationships are present in different datasets. 

Meta-modelling to predict top K products:  This chapter combined various algorithms to 

improve performance for the top k products for each customer using the available feature space 

as developed in the previous chapter. It would be of great interest to compare whether there is 

performance uplift via enriching the data set with additional features such as contextual data or 

whether additional transactional history prior to one year would improve results even further.  

The number of different models used in the ensemble required significant amount of time to 

tune and find the best hyper parameters. It would be vital for future performance optimization 
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to discover a reliable and at the same time not very time-consuming way to locate a good set 

of such hyper parameters that maximize the performance of any given response variable.  

In addition to saving computational time, the experiment was run with an ensemble of 10 

models, however bigger and more diverse ensembles could be exploited to improve 

performance for the given data. Additionally unsupervised methods (such as principal 

components analysis or singular value decomposition) could have been considered as a way to 

seize the data from different angles and train various classifiers with the new input data to 

generate new information to then feed onto for the Meta model. 

Ultimately a similar Meta modelling methodology could be implemented in other retailer 

markets besides the grocery one in order to compare how well such approach would hold with 

different input data.  

Hybrid method to predict repeated, promotion-driven product purchases in an irregular 

testing environment: The implemented methodology was formed in order to optimize AUC 

or in other words to maximize the overall discrimination of items (re)bought after sending a 

coupon or not. In most situation the retailer has a limited number of coupons to consider prior 

to sending the offers , therefore metric that take into account this information such as 

precision@k per product would be a good alternate way to approach the problem and it would 

have been interesting to compare whether such approach could work for this particular 

problem.  At the same time considering each customer could receive a certain number of 

coupons reversing the previous problem, thereby maximizing precision per customer (instead 

of per product) would also be noteworthy. 

A Meta-modelling as detailed in previous chapter was not deemed feasible to further improve 

the score in this challenge because the test data were well ahead in the future and very different 

distribution-wise with the training data, even when using a one-offer-out cross validation 

approach. Comparing with the potential uplift from other experiment present in the thesis 

(chapter 4 &6), different ensemble methods could be developed that create unbiased cross-

validation estimates that respect the time-element and therefore can be used to improve 

predictions through Meta modelling.  

The StackNet Model: The StackNet model will be as powerful as the algorithms available at 

its disposal to solve problems. In order to be more competitive and useful to the scientific 

community it will have to integrate more algorithms and their (award winning) 
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implementations, especially those made available in the Java programming language such the 

ones contained in the Weka suite or the H2O software package for predictive analytics.  

Data pre-processing steps such as features selection, feature elimination , providing variables’ 

importance , model selection  and  hyper parameter tuning could be additional improvements 

that would make the sued of the software more autonomous, making it easier for the data 

science community to work independently on one platform.  

Significant improvement could be achieved via extending the current methodology (made 

available for classification tasks) to general purpose regression problems. In order to do so 

efficiently a cross-validation framework needs to be implemented that takes into account the 

time element if presented in the data.  

Depending on how big or how deep a StackNet model may be, the resulting ensemble solution 

can be very computationally expensive as well as hard to derive insightful information from 

the data especially when considering large-scale , (possibly) real time solutions. To counter 

this, it is suggested that a process gets formulated that extracts the predictive (or insightful) 

elements from a complicated model back to a much simpler one, while maintaining a good 

level of the initial accuracy.   

Ultimately the current methodology could be extended to other machine learning fields outside 

the recommendation field, in problems as diverse as image or sound classification as its already 

successful implementation in the fields of insurance and natural language processing make a 

case for ability to extend this methodology to any machine learning task. 

 

 

 

 

 

 

 

 

 

 



170 
 

8.  Appendices  

 

8.1 Table of full univariate results for the first experiment 

 

Table 8.1 illustrates the full list of results for the variables’ predictive power for defining future 

purchases that were considered when scrutinizing the complete Journey dataset. It displays the 

AUC as well as Information Gain after binning all continuous variables. It also displays which 

level of the product hierarchy each variable corresponds too as well as it provides a short 

description for each one of them. 

 

Table 8-1 : Full Univariate results of binned variables measuring AUC and I-Gain for 

experiment 1  

Feature name Feature Description C P D M AUC Igain 

frequency26 Number of baskets the customer included the 

product in last 26 weeks 
✓ ✓     0.775 0.0039 

frequency39 Number of baskets the customer included the 

product in last 39 weeks 
✓ ✓     0.775 0.0039 

frequency52 Number of baskets the customer included the 

product in last 52 weeks 
✓ ✓     0.775 0.0038 

frequency13 Number of baskets the customer included the 

product in last 13 weeks 
✓ ✓     0.775 0.0039 

cycle_vs_lastbought Average cycle (52 weeks) minus days ago 

since last bought the product 
✓ ✓     0.775 0.0036 

average_cycle52 Every how many days the customer bought 

the product in last 52 weeks 
✓ ✓     0.774 0.0035 

last_day_bought Days from the target week since the customer 

last bought the product 
✓ ✓     0.774 0.0033 

average_cycle39 Every how many days the customer bought 

the product in last 39 weeks 
✓ ✓     0.766 0.0035 

average_cycle26 Every how many days the customer bought 

the product in last 26 weeks 
✓ ✓     0.747 0.0035 

popularity13 Number of baskets the product appeared in 

last 13 weeks 

  ✓     0.747 0.0011 

popularity26 Number of baskets the product appeared in 

last 26 weeks 

  ✓     0.742 0.0011 

popularity39 Number of baskets the product appeared in 

last 39 weeks 

  ✓     0.739 0.0010 

popularity52 Number of baskets the product appeared in 

last 52 weeks 

  ✓     0.735 0.0010 

average_cycle13 Every how many days the customer bought 

the product in last 13 weeks 
✓ ✓     0.709 0.0032 

frequencies_decay frequency52 divided by frequency13 ✓ ✓     0.709 0.0029 

frequency13man Same as frequency13 but for "manufacturer" ✓     ✓ 0.708 0.0007 

frequency26man Same as frequency26 but for "manufacturer" ✓     ✓ 0.707 0.0007 

frequency39man Same as frequency39 but for "manufacturer" ✓     ✓ 0.704 0.0006 

frequency52man Same as frequency52 but for "manufacturer" ✓     ✓ 0.702 0.0006 
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average_cycle52man Same as average_cycle52 but for 

"manufacturer" 
✓     ✓ 0.698 0.0006 

average_cycle39man Same as average_cycle39 but for 

"manufacturer" 
✓     ✓ 0.695 0.0006 

average_cycle26man Same as average_cycle26 but for 

"manufacturer" 
✓     ✓ 0.695 0.0006 

most_trialled Number of customer who bought the item 1st 

time the previous week 

  ✓     0.687 0.0008 

average_cycle13man Same as average_cycle13 but for 

"manufacturer" 
✓     ✓ 0.686 0.0006 

frequenciesman_dec

ay 

frequency52man divided by frequency13man ✓     ✓ 0.683 0.0006 

productsbought13 Total number of products the customer 

bought in last 13 weeks 
✓       0.632 0.0003 

productsbought26 Total number of products the customer 

bought in last 26 weeks 
✓       0.632 0.0003 

productsbought39 Total number of products the customer 

bought in last 39 weeks 
✓       0.630 0.0002 

distinct_item Distinct number of  products the customer 

bought in  last 52 weeks 
✓       0.625 0.0002 

productsbought52 Total number of products the customer 

bought in last 52 weeks 
✓       0.625 0.0002 

distinct_MANUFAC

TURER 

same as distinct_item but for "manufacturer" ✓       0.620 0.0002 

distinct_DEPARTM

ENT 

same as distinct_item but for "department" ✓       0.591 0.0001 

manpopularity52 same as popularity52 but for "manufacturer"       ✓ 0.590 0.0001 

popularity_decay popularity52 divided by popularity13   ✓     0.588 0.0001 

manpopularity39 same as popularity39 but for "manufacturer"       ✓ 0.586 0.0001 

manpopularity13 same as popularity13 but for "manufacturer"       ✓ 0.586 0.0001 

manpopularity26 same as popularity26 but for "manufacturer"       ✓ 0.585 0.0001 

frequency26dep Same as frequency26 but for "department" ✓   ✓   0.584 0.0001 

frequency39dep Same as frequency39 but for "department" ✓   ✓   0.583 0.0001 

frequency13dep Same as frequency13 but for "department" ✓   ✓   0.583 0.0001 

frequency52dep Same as frequency52 but for "department" ✓   ✓   0.579 0.0001 

visits26 Number of distinct days the customer visited 

in last 26 weeks 
✓       0.577 0.0001 

visits13 Number of distinct days the customer visited 

in last 13 weeks 
✓       0.577 0.0001 

transactions_withdis

count 

Total number of transactions with discount in 

last 52 weeks 
✓       0.577 0.0001 

visits39 Number of distinct days the customer visited 

in last 39 weeks 
✓       0.574 0.0001 

deppopularity13 same as popularity13 but for "department"     ✓   0.573 0.0001 

deppopularity26 same as popularity26 but for "department"     ✓   0.573 0.0001 

deppopularity39 same as popularity39 but for "department"     ✓   0.573 0.0001 

deppopularity_decay deppopularity52 divided by deppopularity13     ✓   0.573 0.0001 

visits52 Number of distinct days the customer visited 

in last 52 weeks 
✓       0.569 0.0001 

transactions_withdis

countman 

Number of times the manufacturer was sold 

with discount in 52 weeks 

      ✓ 0.567 0.0001 

transactions_withdis

countdep 

Number of times the department was sold 

with discount in 52 weeks 

    ✓   0.565 0.0001 

manpopularity_deca

y 

manpopularity52 divided by manpopularity13       ✓ 0.563 0.0001 

count_newitems Number of products the customer bought  last 

week for the 1st time 
✓       0.562 0.0001 

frequenciesdep_deca

y 

frequency52dep divided by frequency13dep ✓   ✓   0.559 0.0001 

average_cycle52dep Same as average_cycle52 but for 

"department" 
✓   ✓   0.559 0.0001 
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HH_COMP_DESC Household status ✓       0.557 0.0001 

INCOME_DESC Household income band ✓       0.557 0.0001 

average_cycle39dep Same as average_cycle39 but for 

"department" 
✓   ✓   0.556 0.0000 

AGE_DESC Household Age Band ✓       0.556 0.0001 

KID_CATEGORY_

DESC 

Household's kid category description ✓       0.555 0.0001 

average_cycle26dep Same as average_cycle26 but for 

"department" 
✓   ✓   0.555 0.0000 

MARITAL_STATU

S_CODE 

Household's Marital Status ✓       0.553 0.0000 

average_cycle13dep Same as average_cycle13 but for 

"department" 
✓   ✓   0.552 0.0000 

HOMEOWNER_DE

SC 

Household's homeowner status ✓       0.551 0.0000 

average_spendingite

m 

Average spent on a product in last 52 weeks   ✓     0.542 0.0000 

deppopularity52 same as popularity52 but for department     ✓   0.541 0.0000 

HOUSEHOLD_SIZ

E_DESC 

Household Size band ✓       0.540 0.0000 

average_discount Average discount per product in basket in last 

52 weeks 
✓       0.540 0.0000 

average_discountite

m 

Number of times the product was sold with 

discount in last 52 weeks 

  ✓     0.537 0.0001 

transactions_withdis

countitem 

Number products the customer  bought with 

discount in  last 52 weeks 
✓       0.535 0.0001 

visits_decay visits52 divided by visits13 ✓       0.535 0.0000 

average_spending Average spending per product in basket in 

last 52 weeks 
✓       0.533 0.0000 

average_quantity Average quantity per product in basket in last 

52 weeks 
✓       0.531 0.0000 

TRANS_TIME Time in hours where 12 am is '00' and 11pm 

is '23' (24 distinct values) 

        0.529 0.0000 

 

8.2 Additional charts of the features in experiment 1 

 

The following charts display additional information for some of the variables not analytically 

covered in the first experiment.  

 

8.2.1 Marital Status  
 

Figure 8.1 displays the marital status in relation to the probability of buying any item next 

week. Married people have higher probability buying any item as can be seen in the graph 

below: 
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Figure 8.1 : Marital status versus target variable 

    

8.2.2 Household composition 
 

Figure 8.2 illustrates the different household composition types along with the probability to 

buy any product in the future week. Smaller families seem to have higher probability to buy 

any given product: 

 

 

 

Figure 8.2 : Household composition type versus target 
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8.2.3 Household Size 
 

Figure 8.3 displays the Household size versus the target variable: 

 

Figure 8.3 :  Household size and target variable 

 

8.2.4 Kids’ Category number  
 

The number of kids in the family seems to be positively correlated with the probability to buy 

a given item in the future week as can be visualized through 8.4:  

 

 

Figure 8.4 : Kids’ number and target variable 
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8.2.5 Average Cycle of buying an item in last 52 weeks 
 

The following chart 8.5 portrays the probability to buy an item in the future week given the 

average number of days it takes for that item to be bought by the customer as measured in the 

last 52 weeks. The graph is peculiarly nonlinear, but this is primarily because the very small 

numbers imply that customer bought the item many times in a small period of time (e.g. stocked 

up), therefore there is less need for future purchases: 

 

 

Figure 8.5 : Average number of days to buy the item in the last 52 weeks versus target 

 

8.2.6 Average Cycle of buying an item in last 52 weeks 
 

Figure 8.6 shows the number of times a customer has bought an item that comes from the same 

manufacturer as the item to be considered for a possible future purchase.  The relationship may 

not be as linear as someone would expect.   
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Figure 8.6 : Times bought from same Manufacturer versus target 

 

 

8.2.7 Total items bought in last 52 weeks 
 

The next feature can be seen as a measure of how loyal a customer is, given the number of 

total units he/she has purchased over the last 52 weeks. The relationship is fairly linear with 

the probability to buy any given item in the next week as evident by 8.7:  

 

Figure 8.7 : Total items bought versus Target 
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8.2.8 Total transaction with any discount in last 52 weeks 
 

This is another customer-level variable derived from the purchase history of the customers and 

demonstrates how many times they leverage promotional opportunities. It can also be seen as 

form of loyalty and the relationship is fairly linear with the target variable as portrayed in 8.8.   

 

Figure 8.8 : Total transatcions with discount vs target 
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Figure 8.9 : Average Spend per item in last 52 weeks versus target 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.000%
0.020%
0.040%
0.060%
0.080%
0.100%
0.120%
0.140%
0.160%
0.180%
0.200%

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Average spend in last 52 weeks



179 
 

8.3 All simulations and rounds’ AUC results for plateauing 

experiment in 6.6 

 

Table 8-2 demonstrates the full results from all 50 simulations run as part of the experiment in 

6.6. 

  

Table 8-2: Simulations’ rounds results and cross validation AUC 

Round Ensemble input size cv AUC 

1 1 0.888939 

1 2 0.891189 

1 3 0.893003 

1 4 0.892853 

1 5 0.89341 

1 6 0.896835 

1 7 0.898658 

1 8 0.898369 

1 9 0.898132 

1 10 0.897842 

1 11 0.897973 

1 12 0.898314 

1 13 0.897963 

1 14 0.898653 

1 15 0.898902 

1 16 0.898717 

1 17 0.898391 

1 18 0.898497 

1 19 0.898593 

1 20 0.898617 

1 21 0.898865 

1 22 0.898704 

1 23 0.899372 

1 24 0.899569 

1 25 0.899241 

1 26 0.899624 

1 27 0.899869 

1 28 0.899832 

1 29 0.899717 

1 30 0.899326 

1 31 0.89957 

1 32 0.899765 

1 33 0.899766 

1 34 0.899554 

1 35 0.899617 

1 36 0.899621 

2 1 0.874569 

2 2 0.881201 

2 3 0.889765 

2 4 0.888908 

2 5 0.889636 

2 6 0.896584 

2 7 0.895865 

2 8 0.896044 

2 9 0.895862 

2 10 0.896291 

2 11 0.896368 



180 
 

2 12 0.897413 

2 13 0.898765 

2 14 0.899406 

2 15 0.89918 

2 16 0.898845 

2 17 0.898625 

2 18 0.899346 

2 19 0.899349 

2 20 0.898949 

2 21 0.89922 

2 22 0.898865 

2 23 0.898673 

2 24 0.899147 

2 25 0.899122 

2 26 0.899431 

2 27 0.899314 

2 28 0.89976 

2 29 0.899804 

2 30 0.899595 

2 31 0.900055 

2 32 0.899817 

2 33 0.899866 

2 34 0.899484 

2 35 0.899687 

2 36 0.899508 

3 1 0.873868 

3 2 0.888107 

3 3 0.891835 

3 4 0.891114 

3 5 0.898352 

3 6 0.898642 

3 7 0.897879 

3 8 0.897735 

3 9 0.898099 

3 10 0.898342 

3 11 0.89953 

3 12 0.899614 

3 13 0.899664 

3 14 0.899544 

3 15 0.899902 

3 16 0.900007 

3 17 0.900496 

3 18 0.900331 

3 19 0.900523 

3 20 0.900439 

3 21 0.900021 

3 22 0.900281 

3 23 0.900068 

3 24 0.900167 

3 25 0.899912 

3 26 0.900033 

3 27 0.899929 

3 28 0.900233 

3 29 0.899957 

3 30 0.899878 

3 31 0.899723 

3 32 0.89971 

3 33 0.899821 

3 34 0.899653 

3 35 0.899355 

3 36 0.899739 

4 1 0.888461 

4 2 0.891069 

4 3 0.892528 
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4 4 0.893014 

4 5 0.893691 

4 6 0.89385 

4 7 0.896744 

4 8 0.896221 

4 9 0.896145 

4 10 0.896123 

4 11 0.896187 

4 12 0.896387 

4 13 0.896564 

4 14 0.898482 

4 15 0.899003 

4 16 0.899233 

4 17 0.899099 

4 18 0.898868 

4 19 0.898805 

4 20 0.898956 

4 21 0.898747 

4 22 0.89922 

4 23 0.898854 

4 24 0.899019 

4 25 0.899102 

4 26 0.89888 

4 27 0.899008 

4 28 0.898898 

4 29 0.89932 

4 30 0.899476 

4 31 0.899206 

4 32 0.899224 

4 33 0.899389 

4 34 0.899342 

4 35 0.899448 

4 36 0.899492 

5 1 0.85652 

5 2 0.896044 

5 3 0.896312 

5 4 0.89626 

5 5 0.895959 

5 6 0.89618 

5 7 0.89669 

5 8 0.896578 

5 9 0.896581 

5 10 0.896764 

5 11 0.896483 

5 12 0.898161 

5 13 0.897778 

5 14 0.898044 

5 15 0.898216 

5 16 0.898143 

5 17 0.898279 

5 18 0.898322 

5 19 0.898954 

5 20 0.899415 

5 21 0.899378 

5 22 0.899144 

5 23 0.899165 

5 24 0.899212 

5 25 0.899171 

5 26 0.89917 

5 27 0.899081 

5 28 0.899231 

5 29 0.899452 

5 30 0.899586 

5 31 0.899036 
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5 32 0.899486 

5 33 0.898991 

5 34 0.899114 

5 35 0.899617 

5 36 0.89963 

6 1 0.888939 

6 2 0.88915 

6 3 0.890435 

6 4 0.893558 

6 5 0.893667 

6 6 0.894147 

6 7 0.894348 

6 8 0.895752 

6 9 0.895482 

6 10 0.896001 

6 11 0.896147 

6 12 0.89599 

6 13 0.898564 

6 14 0.898534 

6 15 0.898815 

6 16 0.899104 

6 17 0.899458 

6 18 0.899077 

6 19 0.899896 

6 20 0.900086 

6 21 0.900073 

6 22 0.899927 

6 23 0.900061 

6 24 0.899818 

6 25 0.899932 

6 26 0.89995 

6 27 0.899857 

6 28 0.899899 

6 29 0.899963 

6 30 0.899831 

6 31 0.900014 

6 32 0.89983 

6 33 0.899926 

6 34 0.899588 

6 35 0.899587 

6 36 0.899429 

7 1 0.889559 

7 2 0.893755 

7 3 0.895564 

7 4 0.896745 

7 5 0.899096 

7 6 0.899252 

7 7 0.899242 

7 8 0.899127 

7 9 0.898889 

7 10 0.899079 

7 11 0.899094 

7 12 0.899126 

7 13 0.898978 

7 14 0.898664 

7 15 0.898573 

7 16 0.898593 

7 17 0.898657 

7 18 0.898623 

7 19 0.898703 

7 20 0.898675 

7 21 0.898597 

7 22 0.898682 

7 23 0.898761 
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7 24 0.899061 

7 25 0.899277 

7 26 0.89891 

7 27 0.898925 

7 28 0.899146 

7 29 0.899742 

7 30 0.899631 

7 31 0.899787 

7 32 0.899854 

7 33 0.899819 

7 34 0.899592 

7 35 0.89925 

7 36 0.899686 

8 1 0.8796 

8 2 0.891198 

8 3 0.897057 

8 4 0.899672 

8 5 0.899465 

8 6 0.899643 

8 7 0.898777 

8 8 0.898515 

8 9 0.898667 

8 10 0.898855 

8 11 0.898433 

8 12 0.898577 

8 13 0.898533 

8 14 0.898536 

8 15 0.898771 

8 16 0.898683 

8 17 0.898823 

8 18 0.89877 

8 19 0.899235 

8 20 0.898897 

8 21 0.899299 

8 22 0.899215 

8 23 0.89908 

8 24 0.899209 

8 25 0.899389 

8 26 0.899413 

8 27 0.899346 

8 28 0.899418 

8 29 0.899164 

8 30 0.899497 

8 31 0.899342 

8 32 0.899472 

8 33 0.899789 

8 34 0.89951 

8 35 0.89965 

8 36 0.899636 

9 1 0.892438 

9 2 0.896743 

9 3 0.897281 

9 4 0.897122 

9 5 0.898818 

9 6 0.900127 

9 7 0.899783 

9 8 0.900028 

9 9 0.899834 

9 10 0.899746 

9 11 0.899785 

9 12 0.899592 

9 13 0.899609 

9 14 0.899668 

9 15 0.899815 
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9 16 0.89952 

9 17 0.899852 

9 18 0.899799 

9 19 0.89961 

9 20 0.899622 

9 21 0.899258 

9 22 0.89921 

9 23 0.899424 

9 24 0.899566 

9 25 0.89935 

9 26 0.899667 

9 27 0.899751 

9 28 0.899369 

9 29 0.899387 

9 30 0.899453 

9 31 0.899769 

9 32 0.899809 

9 33 0.899775 

9 34 0.899789 

9 35 0.899813 

9 36 0.899687 

10 1 0.882331 

10 2 0.891557 

10 3 0.899555 

10 4 0.899065 

10 5 0.898567 

10 6 0.898805 

10 7 0.898721 

10 8 0.898383 

10 9 0.897857 

10 10 0.897445 

10 11 0.897676 

10 12 0.898413 

10 13 0.898633 

10 14 0.898775 

10 15 0.898673 

10 16 0.898743 

10 17 0.898499 

10 18 0.898445 

10 19 0.898332 

10 20 0.898158 

10 21 0.898163 

10 22 0.898902 

10 23 0.898924 

10 24 0.899012 

10 25 0.899109 

10 26 0.898934 

10 27 0.899249 

10 28 0.898971 

10 29 0.898919 

10 30 0.89919 

10 31 0.899012 

10 32 0.898997 

10 33 0.898864 

10 34 0.899502 

10 35 0.899611 

10 36 0.899469 

11 1 0.857564 

11 2 0.896341 

11 3 0.897131 

11 4 0.897135 

11 5 0.897641 

11 6 0.898047 

11 7 0.898269 
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11 8 0.898001 

11 9 0.89791 

11 10 0.898069 

11 11 0.897891 

11 12 0.899949 

11 13 0.899979 

11 14 0.899485 

11 15 0.899401 

11 16 0.899462 

11 17 0.899457 

11 18 0.89882 

11 19 0.899163 

11 20 0.899114 

11 21 0.899265 

11 22 0.899248 

11 23 0.899225 

11 24 0.899568 

11 25 0.899494 

11 26 0.899821 

11 27 0.900096 

11 28 0.899751 

11 29 0.900001 

11 30 0.899828 

11 31 0.899826 

11 32 0.89964 

11 33 0.899848 

11 34 0.899976 

11 35 0.899843 

11 36 0.899701 

12 1 0.873344 

12 2 0.887281 

12 3 0.89069 

12 4 0.890959 

12 5 0.893531 

12 6 0.896479 

12 7 0.896111 

12 8 0.896547 

12 9 0.897692 

12 10 0.898069 

12 11 0.897989 

12 12 0.899072 

12 13 0.899363 

12 14 0.899273 

12 15 0.899136 

12 16 0.900151 

12 17 0.900116 

12 18 0.899923 

12 19 0.899741 

12 20 0.899685 

12 21 0.899128 

12 22 0.899345 

12 23 0.899281 

12 24 0.899098 

12 25 0.899322 

12 26 0.899716 

12 27 0.899379 

12 28 0.899303 

12 29 0.899877 

12 30 0.900011 

12 31 0.899763 

12 32 0.89977 

12 33 0.89982 

12 34 0.899726 

12 35 0.899613 
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12 36 0.899817 

13 1 0.873344 

13 2 0.884197 

13 3 0.89405 

13 4 0.893942 

13 5 0.897493 

13 6 0.897867 

13 7 0.898177 

13 8 0.898215 

13 9 0.9005 

13 10 0.900339 

13 11 0.900796 

13 12 0.901086 

13 13 0.900931 

13 14 0.900985 

13 15 0.899771 

13 16 0.899891 

13 17 0.899853 

13 18 0.899516 

13 19 0.899816 

13 20 0.899677 

13 21 0.899885 

13 22 0.89998 

13 23 0.900213 

13 24 0.899958 

13 25 0.899963 

13 26 0.899895 

13 27 0.900054 

13 28 0.900144 

13 29 0.899988 

13 30 0.899827 

13 31 0.899664 

13 32 0.899753 

13 33 0.899566 

13 34 0.899759 

13 35 0.899575 

13 36 0.899879 

14 1 0.877636 

14 2 0.887403 

14 3 0.888201 

14 4 0.893938 

14 5 0.895583 

14 6 0.895808 

14 7 0.895918 

14 8 0.897392 

14 9 0.89749 

14 10 0.89761 

14 11 0.897824 

14 12 0.898055 

14 13 0.900015 

14 14 0.900132 

14 15 0.900215 

14 16 0.899917 

14 17 0.900821 

14 18 0.900429 

14 19 0.900591 

14 20 0.90042 

14 21 0.900045 

14 22 0.900009 

14 23 0.899743 

14 24 0.899617 

14 25 0.899969 

14 26 0.899612 

14 27 0.899664 
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14 28 0.899729 

14 29 0.89958 

14 30 0.899423 

14 31 0.899711 

14 32 0.899636 

14 33 0.899446 

14 34 0.899705 

14 35 0.899883 

14 36 0.899719 

15 1 0.891452 

15 2 0.893092 

15 3 0.894886 

15 4 0.899034 

15 5 0.899005 

15 6 0.898628 

15 7 0.898714 

15 8 0.898975 

15 9 0.898789 

15 10 0.898995 

15 11 0.898645 

15 12 0.89874 

15 13 0.898921 

15 14 0.899194 

15 15 0.899276 

15 16 0.899003 

15 17 0.898841 

15 18 0.898556 

15 19 0.898832 

15 20 0.898708 

15 21 0.899076 

15 22 0.898981 

15 23 0.89889 

15 24 0.898926 

15 25 0.898797 

15 26 0.899164 

15 27 0.899034 

15 28 0.899073 

15 29 0.899268 

15 30 0.899575 

15 31 0.899532 

15 32 0.899578 

15 33 0.899585 

15 34 0.899285 

15 35 0.89931 

15 36 0.899576 

16 1 0.888939 

16 2 0.896025 

16 3 0.895895 

16 4 0.898935 

16 5 0.899006 

16 6 0.89939 

16 7 0.899338 

16 8 0.899418 

16 9 0.900333 

16 10 0.900004 

16 11 0.899915 

16 12 0.900414 

16 13 0.900204 

16 14 0.900215 

16 15 0.899983 

16 16 0.899777 

16 17 0.89987 

16 18 0.899797 

16 19 0.899328 
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16 20 0.899516 

16 21 0.899371 

16 22 0.899465 

16 23 0.899673 

16 24 0.899412 

16 25 0.899422 

16 26 0.899712 

16 27 0.899514 

16 28 0.899767 

16 29 0.899366 

16 30 0.899817 

16 31 0.899418 

16 32 0.899375 

16 33 0.899758 

16 34 0.899703 

16 35 0.899344 

16 36 0.899603 

17 1 0.874569 

17 2 0.888803 

17 3 0.893404 

17 4 0.896261 

17 5 0.899285 

17 6 0.898893 

17 7 0.898533 

17 8 0.89868 

17 9 0.898914 

17 10 0.898971 

17 11 0.898934 

17 12 0.898648 

17 13 0.899853 

17 14 0.899632 

17 15 0.899659 

17 16 0.899347 

17 17 0.899576 

17 18 0.89934 

17 19 0.899265 

17 20 0.899238 

17 21 0.899834 

17 22 0.899616 

17 23 0.899545 

17 24 0.899196 

17 25 0.89915 

17 26 0.89897 

17 27 0.898857 

17 28 0.899117 

17 29 0.899101 

17 30 0.899287 

17 31 0.898835 

17 32 0.899071 

17 33 0.899068 

17 34 0.899042 

17 35 0.899689 

17 36 0.899781 

18 1 0.808227 

18 2 0.893495 

18 3 0.895597 

18 4 0.896548 

18 5 0.896822 

18 6 0.895641 

18 7 0.896355 

18 8 0.898404 

18 9 0.897951 

18 10 0.898161 

18 11 0.898053 
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18 12 0.898019 

18 13 0.897933 

18 14 0.89803 

18 15 0.899574 

18 16 0.899668 

18 17 0.899423 

18 18 0.899176 

18 19 0.899247 

18 20 0.899204 

18 21 0.898932 

18 22 0.899417 

18 23 0.899707 

18 24 0.899241 

18 25 0.899488 

18 26 0.899943 

18 27 0.899784 

18 28 0.899708 

18 29 0.89976 

18 30 0.89964 

18 31 0.899585 

18 32 0.899614 

18 33 0.899675 

18 34 0.899482 

18 35 0.899769 

18 36 0.899748 

19 1 0.808227 

19 2 0.889594 

19 3 0.892304 

19 4 0.894871 

19 5 0.894535 

19 6 0.895792 

19 7 0.896101 

19 8 0.896189 

19 9 0.896334 

19 10 0.896602 

19 11 0.896487 

19 12 0.896833 

19 13 0.897074 

19 14 0.897777 

19 15 0.898383 

19 16 0.898235 

19 17 0.898059 

19 18 0.899179 

19 19 0.899404 

19 20 0.899159 

19 21 0.899154 

19 22 0.898951 

19 23 0.898864 

19 24 0.898591 

19 25 0.898634 

19 26 0.899106 

19 27 0.899271 

19 28 0.899239 

19 29 0.899384 

19 30 0.899304 

19 31 0.899318 

19 32 0.899562 

19 33 0.899633 

19 34 0.899134 

19 35 0.899349 

19 36 0.899717 

20 1 0.892438 

20 2 0.893977 

20 3 0.894211 
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20 4 0.894034 

20 5 0.895269 

20 6 0.896827 

20 7 0.896633 

20 8 0.896732 

20 9 0.896865 

20 10 0.897026 

20 11 0.896921 

20 12 0.897014 

20 13 0.89725 

20 14 0.897077 

20 15 0.897519 

20 16 0.897156 

20 17 0.897484 

20 18 0.897352 

20 19 0.897239 

20 20 0.897345 

20 21 0.897563 

20 22 0.897525 

20 23 0.897448 

20 24 0.897971 

20 25 0.897926 

20 26 0.899304 

20 27 0.899132 

20 28 0.898843 

20 29 0.898928 

20 30 0.899355 

20 31 0.899455 

20 32 0.899435 

20 33 0.899558 

20 34 0.899857 

20 35 0.899856 

20 36 0.89971 

21 1 0.888461 

21 2 0.889627 

21 3 0.890176 

21 4 0.892617 

21 5 0.893163 

21 6 0.894198 

21 7 0.893836 

21 8 0.895924 

21 9 0.895751 

21 10 0.89841 

21 11 0.898692 

21 12 0.900014 

21 13 0.899943 

21 14 0.900248 

21 15 0.90021 

21 16 0.900026 

21 17 0.89961 

21 18 0.899638 

21 19 0.899823 

21 20 0.899723 

21 21 0.899962 

21 22 0.900285 

21 23 0.900107 

21 24 0.900238 

21 25 0.899884 

21 26 0.899855 

21 27 0.899844 

21 28 0.899997 

21 29 0.89969 

21 30 0.89972 

21 31 0.899496 
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21 32 0.899612 

21 33 0.899435 

21 34 0.899528 

21 35 0.899609 

21 36 0.89965 

22 1 0.877636 

22 2 0.896801 

22 3 0.896944 

22 4 0.896826 

22 5 0.897182 

22 6 0.896704 

22 7 0.897903 

22 8 0.897556 

22 9 0.897746 

22 10 0.897621 

22 11 0.897967 

22 12 0.897672 

22 13 0.899877 

22 14 0.900038 

22 15 0.900162 

22 16 0.899912 

22 17 0.899881 

22 18 0.899748 

22 19 0.899745 

22 20 0.899867 

22 21 0.899637 

22 22 0.899636 

22 23 0.899672 

22 24 0.899678 

22 25 0.899466 

22 26 0.899484 

22 27 0.899635 

22 28 0.899676 

22 29 0.89961 

22 30 0.899447 

22 31 0.899422 

22 32 0.899701 

22 33 0.899781 

22 34 0.899842 

22 35 0.899342 

22 36 0.899142 

23 1 0.874569 

23 2 0.881201 

23 3 0.88947 

23 4 0.89805 

23 5 0.89856 

23 6 0.898919 

23 7 0.899108 

23 8 0.89963 

23 9 0.899736 

23 10 0.89967 

23 11 0.899812 

23 12 0.899695 

23 13 0.899896 

23 14 0.899578 

23 15 0.899674 

23 16 0.899304 

23 17 0.900386 

23 18 0.900323 

23 19 0.900797 

23 20 0.900682 

23 21 0.90035 

23 22 0.900599 

23 23 0.90012 
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23 24 0.899969 

23 25 0.900167 

23 26 0.900252 

23 27 0.900265 

23 28 0.900378 

23 29 0.899728 

23 30 0.899738 

23 31 0.899851 

23 32 0.899755 

23 33 0.899956 

23 34 0.899622 

23 35 0.899717 

23 36 0.899432 

24 1 0.879476 

24 2 0.891048 

24 3 0.892769 

24 4 0.895594 

24 5 0.894744 

24 6 0.895492 

24 7 0.896795 

24 8 0.897396 

24 9 0.897755 

24 10 0.897453 

24 11 0.897478 

24 12 0.898535 

24 13 0.898546 

24 14 0.898545 

24 15 0.899068 

24 16 0.899982 

24 17 0.899686 

24 18 0.899328 

24 19 0.900172 

24 20 0.899854 

24 21 0.899912 

24 22 0.899895 

24 23 0.899633 

24 24 0.899731 

24 25 0.899784 

24 26 0.899932 

24 27 0.899798 

24 28 0.899793 

24 29 0.899805 

24 30 0.899732 

24 31 0.899463 

24 32 0.89961 

24 33 0.899591 

24 34 0.899875 

24 35 0.899236 

24 36 0.899756 

25 1 0.88124 

25 2 0.89096 

25 3 0.891757 

25 4 0.892391 

25 5 0.892616 

25 6 0.895349 

25 7 0.899452 

25 8 0.899082 

25 9 0.899184 

25 10 0.898622 

25 11 0.898886 

25 12 0.897861 

25 13 0.898623 

25 14 0.898318 

25 15 0.898003 
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25 16 0.897589 

25 17 0.897886 

25 18 0.898253 

25 19 0.898624 

25 20 0.899027 

25 21 0.899155 

25 22 0.899424 

25 23 0.899103 

25 24 0.898949 

25 25 0.898907 

25 26 0.899269 

25 27 0.899147 

25 28 0.899141 

25 29 0.899232 

25 30 0.899832 

25 31 0.899547 

25 32 0.899621 

25 33 0.899828 

25 34 0.899842 

25 35 0.899689 

25 36 0.899317 

26 1 0.874569 

26 2 0.888741 

26 3 0.898832 

26 4 0.899864 

26 5 0.90035 

26 6 0.900529 

26 7 0.900288 

26 8 0.89945 

26 9 0.900165 

26 10 0.900033 

26 11 0.900581 

26 12 0.900104 

26 13 0.899894 

26 14 0.89976 

26 15 0.899495 

26 16 0.899388 

26 17 0.899866 

26 18 0.899652 

26 19 0.899934 

26 20 0.899306 

26 21 0.899341 

26 22 0.899434 

26 23 0.899458 

26 24 0.900215 

26 25 0.900254 

26 26 0.899897 

26 27 0.899978 

26 28 0.900031 

26 29 0.899855 

26 30 0.899701 

26 31 0.899469 

26 32 0.899576 

26 33 0.89955 

26 34 0.899493 

26 35 0.899728 

26 36 0.899215 

27 1 0.891452 

27 2 0.892866 

27 3 0.894278 

27 4 0.895929 

27 5 0.895903 

27 6 0.896172 

27 7 0.896208 
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27 8 0.895899 

27 9 0.895893 

27 10 0.895985 

27 11 0.897376 

27 12 0.897228 

27 13 0.897546 

27 14 0.898081 

27 15 0.898147 

27 16 0.897907 

27 17 0.898103 

27 18 0.898126 

27 19 0.897929 

27 20 0.898915 

27 21 0.898711 

27 22 0.899024 

27 23 0.89872 

27 24 0.898643 

27 25 0.898812 

27 26 0.898605 

27 27 0.898724 

27 28 0.898982 

27 29 0.898428 

27 30 0.898519 

27 31 0.898823 

27 32 0.898869 

27 33 0.898639 

27 34 0.899091 

27 35 0.899488 

27 36 0.899106 

28 1 0.891452 

28 2 0.892433 

28 3 0.895434 

28 4 0.896106 

28 5 0.895434 

28 6 0.895733 

28 7 0.895922 

28 8 0.896261 

28 9 0.896731 

28 10 0.896506 

28 11 0.896177 

28 12 0.897195 

28 13 0.897295 

28 14 0.897246 

28 15 0.897534 

28 16 0.897657 

28 17 0.897944 

28 18 0.897938 

28 19 0.897822 

28 20 0.897816 

28 21 0.898214 

28 22 0.898281 

28 23 0.898287 

28 24 0.898063 

28 25 0.897731 

28 26 0.898134 

28 27 0.89879 

28 28 0.899405 

28 29 0.899001 

28 30 0.899143 

28 31 0.899279 

28 32 0.899194 

28 33 0.899245 

28 34 0.89955 

28 35 0.899547 
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28 36 0.899245 

29 1 0.873344 

29 2 0.893371 

29 3 0.895197 

29 4 0.895268 

29 5 0.895896 

29 6 0.898011 

29 7 0.898379 

29 8 0.898123 

29 9 0.897597 

29 10 0.898509 

29 11 0.8983 

29 12 0.898928 

29 13 0.899297 

29 14 0.899022 

29 15 0.898924 

29 16 0.899214 

29 17 0.898854 

29 18 0.898883 

29 19 0.899153 

29 20 0.899227 

29 21 0.899041 

29 22 0.898806 

29 23 0.898809 

29 24 0.899013 

29 25 0.89861 

29 26 0.898387 

29 27 0.898367 

29 28 0.899121 

29 29 0.898759 

29 30 0.898938 

29 31 0.899088 

29 32 0.898926 

29 33 0.898983 

29 34 0.899047 

29 35 0.899087 

29 36 0.89951 

30 1 0.887965 

30 2 0.891271 

30 3 0.893625 

30 4 0.895727 

30 5 0.894757 

30 6 0.89613 

30 7 0.895934 

30 8 0.895653 

30 9 0.895755 

30 10 0.895385 

30 11 0.895825 

30 12 0.89626 

30 13 0.896651 

30 14 0.896763 

30 15 0.897839 

30 16 0.897796 

30 17 0.897451 

30 18 0.897577 

30 19 0.898726 

30 20 0.89844 

30 21 0.898556 

30 22 0.89872 

30 23 0.898615 

30 24 0.898539 

30 25 0.898597 

30 26 0.898609 

30 27 0.898503 
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30 28 0.898644 

30 29 0.898546 

30 30 0.899391 

30 31 0.899578 

30 32 0.899426 

30 33 0.89984 

30 34 0.899801 

30 35 0.899568 

30 36 0.899566 

31 1 0.873344 

31 2 0.887225 

31 3 0.890313 

31 4 0.893277 

31 5 0.894366 

31 6 0.897768 

31 7 0.897378 

31 8 0.897433 

31 9 0.898247 

31 10 0.898075 

31 11 0.898795 

31 12 0.899708 

31 13 0.899553 

31 14 0.899512 

31 15 0.899648 

31 16 0.899714 

31 17 0.900112 

31 18 0.899899 

31 19 0.900041 

31 20 0.899976 

31 21 0.899994 

31 22 0.899548 

31 23 0.899534 

31 24 0.899719 

31 25 0.899665 

31 26 0.899596 

31 27 0.90024 

31 28 0.899813 

31 29 0.90017 

31 30 0.899676 

31 31 0.899639 

31 32 0.899678 

31 33 0.899827 

31 34 0.899757 

31 35 0.899586 

31 36 0.899692 

32 1 0.888461 

32 2 0.889431 

32 3 0.890206 

32 4 0.892275 

32 5 0.89214 

32 6 0.894376 

32 7 0.896571 

32 8 0.896982 

32 9 0.897229 

32 10 0.897647 

32 11 0.898004 

32 12 0.898578 

32 13 0.898558 

32 14 0.899565 

32 15 0.899526 

32 16 0.899278 

32 17 0.89932 

32 18 0.899678 

32 19 0.899725 
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32 20 0.899495 

32 21 0.899523 

32 22 0.899349 

32 23 0.899447 

32 24 0.89952 

32 25 0.899307 

32 26 0.899335 

32 27 0.899762 

32 28 0.89963 

32 29 0.899731 

32 30 0.899969 

32 31 0.900025 

32 32 0.899968 

32 33 0.89974 

32 34 0.89993 

32 35 0.900002 

32 36 0.899409 

33 1 0.874569 

33 2 0.877314 

33 3 0.888059 

33 4 0.889989 

33 5 0.893638 

33 6 0.895053 

33 7 0.895909 

33 8 0.896256 

33 9 0.897636 

33 10 0.897358 

33 11 0.897153 

33 12 0.897185 

33 13 0.897375 

33 14 0.897387 

33 15 0.897861 

33 16 0.89778 

33 17 0.897762 

33 18 0.897877 

33 19 0.897577 

33 20 0.897752 

33 21 0.899117 

33 22 0.899045 

33 23 0.898991 

33 24 0.898841 

33 25 0.898882 

33 26 0.898999 

33 27 0.899023 

33 28 0.898997 

33 29 0.899119 

33 30 0.898774 

33 31 0.898937 

33 32 0.89914 

33 33 0.899444 

33 34 0.899683 

33 35 0.899646 

33 36 0.899575 

34 1 0.843332 

34 2 0.876716 

34 3 0.89315 

34 4 0.892684 

34 5 0.893762 

34 6 0.894797 

34 7 0.895147 

34 8 0.894813 

34 9 0.894798 

34 10 0.895372 

34 11 0.895551 
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34 12 0.897529 

34 13 0.897225 

34 14 0.897893 

34 15 0.89791 

34 16 0.897863 

34 17 0.897699 

34 18 0.897772 

34 19 0.897561 

34 20 0.897648 

34 21 0.897708 

34 22 0.899399 

34 23 0.89949 

34 24 0.899423 

34 25 0.89955 

34 26 0.8997 

34 27 0.900131 

34 28 0.899831 

34 29 0.900069 

34 30 0.899886 

34 31 0.899907 

34 32 0.899723 

34 33 0.899264 

34 34 0.899652 

34 35 0.899885 

34 36 0.899573 

35 1 0.888939 

35 2 0.889441 

35 3 0.891887 

35 4 0.892987 

35 5 0.892661 

35 6 0.895463 

35 7 0.898062 

35 8 0.897727 

35 9 0.898229 

35 10 0.89818 

35 11 0.897957 

35 12 0.898173 

35 13 0.898715 

35 14 0.898535 

35 15 0.898505 

35 16 0.89845 

35 17 0.899411 

35 18 0.899615 

35 19 0.899921 

35 20 0.899807 

35 21 0.899612 

35 22 0.899716 

35 23 0.89968 

35 24 0.899256 

35 25 0.899517 

35 26 0.899669 

35 27 0.899635 

35 28 0.899696 

35 29 0.899269 

35 30 0.899379 

35 31 0.89947 

35 32 0.899614 

35 33 0.899932 

35 34 0.899459 

35 35 0.899422 

35 36 0.899296 

36 1 0.889272 

36 2 0.89353 

36 3 0.895329 
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36 4 0.895668 

36 5 0.895324 

36 6 0.896116 

36 7 0.897939 

36 8 0.897879 

36 9 0.897874 

36 10 0.899616 

36 11 0.899762 

36 12 0.899768 

36 13 0.899938 

36 14 0.900025 

36 15 0.899834 

36 16 0.900023 

36 17 0.899774 

36 18 0.899829 

36 19 0.899933 

36 20 0.899855 

36 21 0.899721 

36 22 0.899594 

36 23 0.899516 

36 24 0.89945 

36 25 0.899591 

36 26 0.89963 

36 27 0.89946 

36 28 0.899939 

36 29 0.899851 

36 30 0.899997 

36 31 0.899814 

36 32 0.8998 

36 33 0.899894 

36 34 0.899839 

36 35 0.899559 

36 36 0.899766 

37 1 0.882331 

37 2 0.890289 

37 3 0.890275 

37 4 0.893882 

37 5 0.897316 

37 6 0.898218 

37 7 0.898508 

37 8 0.898239 

37 9 0.898176 

37 10 0.898322 

37 11 0.897793 

37 12 0.89818 

37 13 0.898229 

37 14 0.899793 

37 15 0.899834 

37 16 0.899211 

37 17 0.899385 

37 18 0.899446 

37 19 0.899236 

37 20 0.899523 

37 21 0.899251 

37 22 0.899798 

37 23 0.899775 

37 24 0.900285 

37 25 0.89988 

37 26 0.899978 

37 27 0.900027 

37 28 0.900036 

37 29 0.899759 

37 30 0.90016 

37 31 0.89945 
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37 32 0.899775 

37 33 0.899714 

37 34 0.899534 

37 35 0.899412 

37 36 0.899871 

38 1 0.8796 

38 2 0.889377 

38 3 0.892953 

38 4 0.894816 

38 5 0.897706 

38 6 0.8977 

38 7 0.899494 

38 8 0.899693 

38 9 0.89915 

38 10 0.899014 

38 11 0.898985 

38 12 0.898907 

38 13 0.898908 

38 14 0.899004 

38 15 0.898734 

38 16 0.898865 

38 17 0.898972 

38 18 0.899486 

38 19 0.899357 

38 20 0.899214 

38 21 0.89899 

38 22 0.898828 

38 23 0.898712 

38 24 0.898811 

38 25 0.898828 

38 26 0.898887 

38 27 0.899183 

38 28 0.89925 

38 29 0.899508 

38 30 0.899552 

38 31 0.899471 

38 32 0.899598 

38 33 0.899426 

38 34 0.899522 

38 35 0.899845 

38 36 0.899247 

39 1 0.857766 

39 2 0.884345 

39 3 0.895834 

39 4 0.895728 

39 5 0.896385 

39 6 0.89635 

39 7 0.896974 

39 8 0.897039 

39 9 0.897134 

39 10 0.897147 

39 11 0.897217 

39 12 0.897174 

39 13 0.897325 

39 14 0.897279 

39 15 0.897975 

39 16 0.89786 

39 17 0.897776 

39 18 0.897953 

39 19 0.897987 

39 20 0.897954 

39 21 0.897839 

39 22 0.898285 

39 23 0.898362 
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39 24 0.898108 

39 25 0.898414 

39 26 0.898149 

39 27 0.898959 

39 28 0.898885 

39 29 0.898796 

39 30 0.898804 

39 31 0.899513 

39 32 0.899602 

39 33 0.899443 

39 34 0.899738 

39 35 0.899253 

39 36 0.899665 

40 1 0.808227 

40 2 0.893495 

40 3 0.895597 

40 4 0.896593 

40 5 0.896461 

40 6 0.895683 

40 7 0.896605 

40 8 0.896098 

40 9 0.89893 

40 10 0.899434 

40 11 0.900085 

40 12 0.900215 

40 13 0.900251 

40 14 0.900335 

40 15 0.900391 

40 16 0.900212 

40 17 0.900346 

40 18 0.900428 

40 19 0.9003 

40 20 0.900377 

40 21 0.900369 

40 22 0.90053 

40 23 0.900489 

40 24 0.900358 

40 25 0.900302 

40 26 0.900283 

40 27 0.900285 

40 28 0.900101 

40 29 0.899954 

40 30 0.899924 

40 31 0.900082 

40 32 0.900061 

40 33 0.900078 

40 34 0.899791 

40 35 0.899898 

40 36 0.899709 

41 1 0.889272 

41 2 0.890176 

41 3 0.892407 

41 4 0.894658 

41 5 0.895065 

41 6 0.895691 

41 7 0.895824 

41 8 0.895894 

41 9 0.895751 

41 10 0.895567 

41 11 0.895749 

41 12 0.895329 

41 13 0.895461 

41 14 0.895804 

41 15 0.895814 
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41 16 0.89542 

41 17 0.895711 

41 18 0.895536 

41 19 0.89719 

41 20 0.897273 

41 21 0.897553 

41 22 0.897406 

41 23 0.897291 

41 24 0.897808 

41 25 0.897894 

41 26 0.898414 

41 27 0.898377 

41 28 0.899156 

41 29 0.899184 

41 30 0.899266 

41 31 0.899375 

41 32 0.898928 

41 33 0.89967 

41 34 0.899493 

41 35 0.899722 

41 36 0.89953 

42 1 0.875029 

42 2 0.891034 

42 3 0.893633 

42 4 0.894017 

42 5 0.894879 

42 6 0.89518 

42 7 0.894878 

42 8 0.897558 

42 9 0.898964 

42 10 0.898633 

42 11 0.898391 

42 12 0.899454 

42 13 0.899197 

42 14 0.899395 

42 15 0.899259 

42 16 0.899305 

42 17 0.899044 

42 18 0.898854 

42 19 0.898731 

42 20 0.898928 

42 21 0.898841 

42 22 0.898547 

42 23 0.898837 

42 24 0.898297 

42 25 0.898852 

42 26 0.898657 

42 27 0.898673 

42 28 0.898608 

42 29 0.898584 

42 30 0.89849 

42 31 0.898349 

42 32 0.898825 

42 33 0.899572 

42 34 0.899526 

42 35 0.89945 

42 36 0.899562 

43 1 0.726286 

43 2 0.888872 

43 3 0.890987 

43 4 0.892395 

43 5 0.893807 

43 6 0.894465 

43 7 0.893911 
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43 8 0.894079 

43 9 0.894204 

43 10 0.894144 

43 11 0.895923 

43 12 0.895978 

43 13 0.89645 

43 14 0.896192 

43 15 0.896512 

43 16 0.897568 

43 17 0.898439 

43 18 0.898793 

43 19 0.898618 

43 20 0.899588 

43 21 0.899531 

43 22 0.899565 

43 23 0.899793 

43 24 0.899642 

43 25 0.899414 

43 26 0.899589 

43 27 0.899526 

43 28 0.899813 

43 29 0.899816 

43 30 0.899388 

43 31 0.899707 

43 32 0.899578 

43 33 0.899477 

43 34 0.8997 

43 35 0.899193 

43 36 0.899442 

44 1 0.857766 

44 2 0.895708 

44 3 0.899843 

44 4 0.899843 

44 5 0.898914 

44 6 0.898615 

44 7 0.898824 

44 8 0.898863 

44 9 0.898737 

44 10 0.898699 

44 11 0.898953 

44 12 0.899356 

44 13 0.899095 

44 14 0.89919 

44 15 0.898943 

44 16 0.899024 

44 17 0.89909 

44 18 0.899229 

44 19 0.899566 

44 20 0.899642 

44 21 0.900291 

44 22 0.900352 

44 23 0.899992 

44 24 0.899823 

44 25 0.899945 

44 26 0.899806 

44 27 0.899796 

44 28 0.899456 

44 29 0.899326 

44 30 0.899442 

44 31 0.89936 

44 32 0.899455 

44 33 0.89957 

44 34 0.899467 

44 35 0.899594 
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44 36 0.89948 

45 1 0.843332 

45 2 0.892907 

45 3 0.893914 

45 4 0.894425 

45 5 0.895924 

45 6 0.896389 

45 7 0.896358 

45 8 0.896503 

45 9 0.896543 

45 10 0.897526 

45 11 0.897358 

45 12 0.897179 

45 13 0.897826 

45 14 0.897468 

45 15 0.897334 

45 16 0.897854 

45 17 0.897821 

45 18 0.898718 

45 19 0.89851 

45 20 0.898624 

45 21 0.899152 

45 22 0.899055 

45 23 0.899256 

45 24 0.899082 

45 25 0.899279 

45 26 0.899023 

45 27 0.899104 

45 28 0.899028 

45 29 0.899294 

45 30 0.899496 

45 31 0.899574 

45 32 0.899697 

45 33 0.899562 

45 34 0.89954 

45 35 0.899795 

45 36 0.899693 

46 1 0.874506 

46 2 0.893331 

46 3 0.896094 

46 4 0.896263 

46 5 0.895901 

46 6 0.896243 

46 7 0.896671 

46 8 0.89683 

46 9 0.897796 

46 10 0.898051 

46 11 0.897905 

46 12 0.89934 

46 13 0.899613 

46 14 0.899189 

46 15 0.899021 

46 16 0.899039 

46 17 0.899066 

46 18 0.899381 

46 19 0.899103 

46 20 0.899006 

46 21 0.89917 

46 22 0.899193 

46 23 0.898891 

46 24 0.899483 

46 25 0.899693 

46 26 0.89997 

46 27 0.900026 



205 
 

46 28 0.899967 

46 29 0.899869 

46 30 0.899835 

46 31 0.899656 

46 32 0.899719 

46 33 0.899914 

46 34 0.899747 

46 35 0.899903 

46 36 0.899508 

47 1 0.857766 

47 2 0.893624 

47 3 0.89898 

47 4 0.89886 

47 5 0.898074 

47 6 0.897926 

47 7 0.898577 

47 8 0.898921 

47 9 0.899284 

47 10 0.900366 

47 11 0.900146 

47 12 0.900193 

47 13 0.899988 

47 14 0.90001 

47 15 0.899902 

47 16 0.89999 

47 17 0.899888 

47 18 0.899989 

47 19 0.900094 

47 20 0.899901 

47 21 0.899847 

47 22 0.900084 

47 23 0.900133 

47 24 0.90008 

47 25 0.900059 

47 26 0.89995 

47 27 0.899929 

47 28 0.899558 

47 29 0.899678 

47 30 0.899675 

47 31 0.899778 

47 32 0.899614 

47 33 0.899611 

47 34 0.899255 

47 35 0.89973 

47 36 0.899988 

48 1 0.857564 

48 2 0.893558 

48 3 0.896732 

48 4 0.896221 

48 5 0.896422 

48 6 0.898606 

48 7 0.898781 

48 8 0.899939 

48 9 0.899481 

48 10 0.899842 

48 11 0.899713 

48 12 0.899539 

48 13 0.899492 

48 14 0.899201 

48 15 0.899409 

48 16 0.899171 

48 17 0.89896 

48 18 0.898984 

48 19 0.899671 
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48 20 0.899573 

48 21 0.899694 

48 22 0.899283 

48 23 0.899668 

48 24 0.899467 

48 25 0.899686 

48 26 0.899575 

48 27 0.899414 

48 28 0.899383 

48 29 0.899089 

48 30 0.899258 

48 31 0.899474 

48 32 0.899484 

48 33 0.899775 

48 34 0.899792 

48 35 0.899626 

48 36 0.899688 

49 1 0.87152 

49 2 0.887391 

49 3 0.887489 

49 4 0.890667 

49 5 0.894639 

49 6 0.896554 

49 7 0.896198 

49 8 0.895573 

49 9 0.897042 

49 10 0.898167 

49 11 0.897887 

49 12 0.899414 

49 13 0.899409 

49 14 0.899805 

49 15 0.898943 

49 16 0.899326 

49 17 0.899559 

49 18 0.899762 

49 19 0.900099 

49 20 0.899984 

49 21 0.899961 

49 22 0.900079 

49 23 0.899896 

49 24 0.899861 

49 25 0.900137 

49 26 0.900207 

49 27 0.899996 

49 28 0.899941 

49 29 0.899662 

49 30 0.899719 

49 31 0.899971 

49 32 0.899588 

49 33 0.899569 

49 34 0.899475 

49 35 0.899428 

49 36 0.899538 

50 1 0.887472 

50 2 0.891457 

50 3 0.892766 

50 4 0.891866 

50 5 0.893035 

50 6 0.89579 

50 7 0.898327 

50 8 0.898065 

50 9 0.8982 

50 10 0.898184 

50 11 0.898264 
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50 12 0.899007 

50 13 0.899138 

50 14 0.899037 

50 15 0.898608 

50 16 0.898361 

50 17 0.898865 

50 18 0.899206 

50 19 0.899341 

50 20 0.899264 

50 21 0.899195 

50 22 0.899366 

50 23 0.899223 

50 24 0.899178 

50 25 0.899869 

50 26 0.899883 

50 27 0.899875 

50 28 0.899854 

50 29 0.899887 

50 30 0.899851 

50 31 0.8999 

50 32 0.899914 

50 33 0.899585 

50 34 0.899712 

50 35 0.899389 

50 36 0.899575 
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8.4 Equation Glossary 

 

This section includes all labelled equations. 

 

8.4.1 Model averaging 
 

 

                                Ŷ = G(X) =
1

L
∑ Gl(X)

L

l=1
=
1

L
∑ ŷl
L
l=1                                                  (2.1) 

 

8.4.2 Model bagging 
 

 

                                 Ŷ = G(XP) =
1

L
∑ Gl(X

pl)
L

l=1
=
1

L
∑ ŷl
L
l=1                                            (2.2) 

 

8.4.3 Boosting principle 
 

 

                                 Ŷ = G(X) = ∑ γlGl(X)
L

l=1
= ∑ γlŷl

L
l=1                                               (2.3) 

 

8.4.4 Gradient Boosting update  
 

 

                              Gl(X)  =  Gl−1(X)  + γlŷl                                                                     (2.4) 

 

8.4.5 Classification accuracy  
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                                Classification accuracy =  
Tp+ Tn

Tp+Tn+Fp+Fn
                                             (2.5) 

 

8.4.6 Precision at K  
 

 

                                 Precisionk =
Tpk

Tpk+Fpk
                                                                          (2.6) 

 

 

8.4.7 Sensitivity  
 

 

                                Sensitivity =
TP

TP+FN
                                                                              (2.7) 

 

8.4.8 Specificity 
 

                                Specificity =
TN

TN+FP
                                                                             (2.8) 

 

8.4.9 AUC  
 

                                AUC(X, Y) = ∑ ∑
L[f(xi

+)>f(xj
−)]+ 

1

2
L[f(xi

+)=f(xj
−)]

2n+n−

n−
j=1

n+
i=1                                (2.9) 

 

8.4.10 Pearson Correlation  
 

                              r(X, Y) =
∑ (xi−X̅)(yi−Y̅)
n

i=1

√[∑ (xi−X̅)
2n

i=1
][∑ (yi−Y̅)

2n

i=1
]

                                                    (2.10) 
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8.4.11 Squared error of OLS  
 

                                E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
=
1

2
∑ (yi −W

Txi)
2N

i=1
                            (2.11) 

 

8.4.12 Squared error of Ridge (accounting for L2 regularization) 
 

           E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
+
1

2
λ𝑊𝑇W =

1

2
∑ (yi −W

Txi)
2 +

1

2
λ𝑊𝑇W 

N

i=1
         (2.12) 

 

8.4.13 Ridge solution in matrix form  
 

                                 Ŵ=argmin 
W

E(w) = (XTX + λI)−1XTY                                                (2.13) 

 

8.4.14 Gradient Descent update of W  
 

                                W = W− a 
∂E

∂W
                                                                                   (2.14) 

 

8.4.15 Gradient Descent update of W in matrix notation  
 

 

                                 W = W−  α X𝑇(XW −  Y)                                                                         (2.15) 

 

8.4.16 Stochastic Gradient Descent update of W using 1 sample point  
 

                                 W = W−  α 𝑥𝑖(𝑊
𝑇𝑥𝑖 − 𝑦𝑖)                                                                      (2.16) 
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8.4.17 Probability of y=1 with the Logistic Regression Formula   
 

                              P(Y =  1 | X,W) =  σ(W⊤X) =
1

1+ e−W
⊤X

                                           (2.17) 

 

8.4.18 Log Likelihood function for Logistic Regression   
 

 LogL(W) = logP(Y | X,W) = ∑ logP(yi | xi,W)
N

i=1
=∑ −log(1 + e−yiW

Txi)
N

i=1
     (2.18) 

 

8.4.19 Estimating Coefficients W for Logistic Regression   
 

          𝑊̂ = argmin 
𝑊

LogL(w) = argmin 
𝑊

∑ −log(1 + e−yiW
Txi)  +

1

2
λ𝑊𝑇W 

N

i=1
               (2.19) 

 

8.4.20 Gradient of W in respect to minimizing Log Likelihood 
 

                                 ∇WLogL(W) =∑
xiyi

1+ eyiW
Txi

N

i=1
                                                         (2.20) 

 

8.4.21 Hinge Loss function 
 

 

                        HingeL(W) = HingeL(Y, X,W) =  ∑ max{0,1 − yiW
txi}

N

i=1
                  (2.21) 

 

8.4.22 Estimating coefficients W for hinge Loss   
 

 

     𝑊̂ = argmin 
𝑊

HingeL(W) = argmin 
𝑊

∑ max{0,1 − yiW
txi}

N

i=1
 +

1

2
λ𝑊𝑇W                 (2.22) 
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8.4.23 Gradient of W in respect to minimizing Hinge Loss 

 

                               ∇WHingeL(W) =∑
−yixi  , if  yiW

txi  < 1

0, if  yiW
txi  ≥ 1

N

i=1

                              (2.23) 

 

8.4.24 Generic squared error function 
 

                               𝐸( 𝑌̂ ) = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1
                                                                     (2.24) 

 

8.4.25 Output function of an one-hidden layer ANN  
 

  Ŷ = f (XJ,WJ,H) = G(∑ (wh,gσ(∑ (wj,hxj)
J

J=0
))

H

h=0

)                    (2.25) 

  

8.4.26 Hyperbolic Tangent activation function 
 

                                     tanh(u) =
eu+ e−u

eu− e−u
                                                                          (2.26) 

  

8.4.27 Relu activation function 
 

                                        relu(u) = max (0, 𝑢)                                                                   (2.27) 

 

8.4.28 estimating the Weights of an one-hidden layer ANN   
 

 

𝑊̂ = argmin 
𝑊

𝐸(𝑊) = argmin 
𝑊

∑ (𝑦𝑖 − G(∑ (wh,gσ(∑ (wj,hxi,j)
J

J=0
))

H

h=0

))

2𝑁

𝑖=1

    (2.28) 
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8.4.29 Gradient of Ws in respect to minimizing the squared loss in an 

one-hidden layer ANN   
 

                                     ∇E= (
∂E

∂𝑊1
,
∂E

∂𝑊2
, … . ,

∂E

∂𝑊𝑚
)                                                               (2.29) 

 

8.4.30 Gradient of any W vector in respect to minimizing the squared 

loss in an one-hidden layer ANN   
 

                                    W𝑚 = W𝑚 − 𝑎
∂E

∂𝑊𝑚
                                                                         (2.30) 

 

8.4.31 Bayes’ Theorem 
 

  

                                       P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌)P(𝑥1,𝑥2,…,𝑥𝐽|Y)

P(𝑥1,𝑥2,…,𝑥𝐽)
                                         (2.31) 

 

8.4.32 Bayes’ Theorem after assumption of independence 
 

  

                                    P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌) ∏ P(𝑥𝑗|𝑌)

𝐽
𝑗=1

P(𝑥1,𝑥2,…,𝑥𝐽)
                                              (2.32) 

 

8.4.33 Bayes’ Theorem after assumption of independence, excluding 

constant Denominator 
 

  

P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) ≈ P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1                                       (2.33) 
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8.4.34 Obtaining estimate for Y using Bayes’ Theorem based on the 

simplified formula 
 

                                      𝑌̂ = argmax 
𝑌

P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1                                                     (2.34) 

 

8.4.35 Probability of a continuous feature Xj that follows a Gaussian 

distribution to belong to a class of Y based on the Naïve Bayes’ 

theorem  
 

                                     P(𝑥𝑗|𝑌) =
𝟏

√𝟐𝝅𝝈𝒀
𝟐
 exp (− 

(𝑥𝑗−𝜇𝑌)
2

2σ𝑌
2 )                                            (2.35) 

8.4.36 Euclidian Distance between two data points x,p 
 

                                 Euclidian Distance(x, p)  = √∑ (xj − pj)2
J
j=1                                   (2.36) 

 

8.4.37 Rule for partitioning the data based on split point 𝐷𝑗,𝑠  

 

                                  {
𝑋𝑗 ≤ 𝐷𝑗,𝑠  → {X1, Y1}

𝑋𝑗 > 𝐷𝑗,𝑠  → {X2, Y2}
                                                                       (2.37) 

 

 

8.4.38 Entropy formula given Y with distinct classes C 
 

 

                                    En(𝑌) = ∑ −P(Y = c) log2 P(Y = c)
C
c=1                                         (2.38) 

 

8.4.39 Entropy formula given Y with distinct classes C and split point 

𝐷𝑗,𝑠 
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En (Y, Dj,s) = P(Dj,s = ′ ≤ 50′) En (𝑌Dj,s=′≤50′) + P(Dj,s = ′ > 50′) En (𝑌Dj,s=′>50′)   (2.39) 

 

8.4.40 Information Gain formula  
 

                                 IGain(Y, Dj,s) =  En(Y) − En (Y, Dj,s)                                              (2.40) 

 

8.4.41 Non-Negative Matrix Factorization Prediction 
 

                                 𝑌̂𝑖𝑗 = 𝑈𝑖𝑉𝑗                                                                                          (2.41) 

8.4.42 Estimating U, V based on squared loss 
 

 

                    Û,V̂=argmin E
            U,V

(U, V) = argmin
U,V

∑ ∑ (Yij − UiVj)
2m

j=1
n
i=1                                  (2.42) 

 

8.4.43 Estimating W, U based on squared loss in libFM 
 

 Ŵ, Û=argmin E(W,U)
            Ŵ,Û

= (𝑌 − (𝑋0 + 𝑋1𝑤1…+ 𝑋𝑚𝑤𝑚 + ∑ ∑ 𝑋𝑗𝑋𝑑𝑈𝑗𝑈𝑑
𝑚
𝑑=𝑗+1

𝑚
𝑗=1 ))

2
             (2.43) 

8.4.44 Prediction function of libFM  
 

f(W, U) = (X0 + X1w1…+ Xmwm + ∑ ∑ XjXdUj
Ud

m
d=j+1

m
j=1 )                                      (2.44) 

 

8.4.45 linear update of libFM  
 

                                ∇WE(W) = (f(W, U) − Y)X                                                               (2.45) 

 

8.4.46 Latent features’ update of libFM  
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                                 ∇UE(U) = (f(W,U) − Y)X ∑ UlXl
m
l=1                                                 (2.46) 

 

8.4.47 Energy function for RBMs  
 

             S(u) = −∑ ∑ ∑ Wij hjui
kK

k=1
F
j=1 − ∑ ∑ uibi

K
k=1 − ∑ hjbj

F
j=1

m
i=1

m
i=1                          (2.47) 

 

8.4.48 Estimate of W in RBMs  
 

                                 ∆wij = e (< uihj >data  − < uihj >T)                                             (2.48) 

 

8.4.49 Level 1 estimators’ function for stacking   
 

 

                      f1(xi, S
M, m) = Sm

M(xi)                                                                       (4.1) 
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8.4.50 Level 2 (Meta) estimators’ function   
 

                                 f2(xi, L, S
M) = L (f1(xi, S1

M), f1(xi, S2
M),… . , f1(xi, SM

M))                     (4.2) 

 

8.4.51 Average AUC using the Leave-one-offer-out schema 
 

              AUCper_offer(𝑌̂, 𝑌) =
1

N
∑ 𝐴𝑈𝐶( 𝑌𝑛̂, 𝑌𝑛)
N
n=1                                              (5.1) 

 

8.4.52 Average AUC using the Leave-one-offer-out schema plus 

vertical concatenation 
 

 

                        AUCoveral(Ŷ, Y) = AUC([Ŷ1|Ŷ2| … |ŶN], [Y1|Y2|… |YN])                                        (5.2) 

 

8.4.53 Average of the N-offer-out AUC and overall AUC 
 

 

     AUCfinal(AUCoverall, AUCperoffer) =
AUCoverall

2
+
AUCper_offer

2
                          (5.3) 

 

8.4.54 Average of two predictions converted to ranks  

 

                        hybrid(Ŷ𝑐𝑏, Ŷ𝑐𝑓) =
Ŷ𝑐𝑏
𝑟𝑎𝑛𝑘

2
+
Ŷ𝑐𝑓
𝑟𝑎𝑛𝑘

2
                                                                 (5.4) 

 



218 
 

8.4.55 Ranking a sorted vector.  

 

                                  ŷ𝑐𝑏,𝑖
𝑟𝑎𝑛𝑘 = {

0 𝑖 = 0
i                ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 > ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

ŷ𝑐𝑏,−1
𝑟𝑎𝑛𝑘               ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 = ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

                                        (5.5) 

 

8.4.56 Connection function between input data and one hidden unit in 

the form of as linear perceptron 
 

                                 f1,h(x, 𝑠) = s(G(xj)) =  s(xj)                                                              (6.2) 

 

8.4.57 Connection function between input data and one hidden unit in 

the form of any algorithm 
 

                                 f1(x, 𝑠, ℎ) = s(G(xj)) =  s(xj)                                                            (6.2) 

 

8.4.58 Connection function between input data and one hidden unit in 

the form of any algorithm assuming linear activation on input 
 

                                 f1,h(x, 𝑠) = s(xj)                                                                                  (6.3) 

 

8.4.59 Connection function between input data and one hidden unit in 

the form of any algorithm simplified 
 

                                f1(x, 𝑆) = Sℎ(xj)                                                                                  (6.4) 

 

8.4.60 Connection function between first and second hidden layer 
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                                f2,m(x, l, S) = l(f1(x, S1), f1(x, S2),… . , f1(x, S𝐻))                                 (6.5)      

   

8.4.61 Connection function between first and second hidden layer 

simplified 
 

                                f2(x, L, S) = L𝑚(f1(x, S1), f1(x, S2), … . , f1(x, S𝐻))                                   (6.6)        

 

8.4.62 Connection function between first and second hidden with 

generic vector of estimators 
 

                                 f2(x, V) = V2,𝑚 (f1(x, V1,1), f1(x, V1,2), … . , f1(x, V1,𝐷1))                      (6.7)   

 

8.4.63 Connection function for any given layer n 
 

 

             fn(x, V) = V𝑛,𝑘 (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… . , fn−1(x, V𝑛−1,𝐷𝑛−1))              (6.8)        

8.4.64 Connection function for any given layer through restacking 

mode 
 

fn(x, V) = V𝑛,𝑘

(

 
 

fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… , fn−1(x, V𝑛−1,𝐷𝑛−1),

fn−2(x, V𝑛−2,1), fn−2(x, V𝑛−2,2), . . . , fn−2(x, V𝑛−2,𝐷𝑛−2),
… ,

f𝑛−𝑁+1(x, V𝑛−𝑁+1,1), f𝑛−𝑁+1(x, V𝑛−𝑁+1,2),… , f𝑛−𝑁+1(x, V𝑛−𝑁+1,𝐷𝑛−𝑁+1))

 
 

       (6.9)        

      

8.4.65 Optimizing parameters for any estimator in StackNet 
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OV𝑛,𝑘
̂ = argmin 

OV𝑛,𝑘

LL(OV𝑛,𝑘 , (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… . , fn−1(x, V𝑛−1,𝐷𝑛−1)) , Y)   (6.10) 

 

8.4.66 Example optimizing parameters for any estimator assuming a 

squared loss function 
 

                      OV𝑛,𝑘
̂ = argmin 

OV𝑛,𝑘
̂

𝐸(OV𝑛,𝑘
̂) = argmin 

OV𝑛,𝑘
̂

∑ (𝑦
𝑖
− V𝑛,𝑘(𝑥𝑖))

2
𝑁

𝑖=1
                             (6.11) 

 

8.4.67 Diversity of an ensemble based on the correlation matrix of 

predictions  
 

                                diversity(R) =
1

N×N
∑ ∑ r(n, k)N

k=1
N
n=1                                               (6.12) 
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