
1

Investigating machine learning methods in

recommender systems
Improving prediction for the top K items

Marios Michailidis

Supervisor: Professor Philip Treleaven

Supervisor: Giles Pavey

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy

of the

University College London

May 2017

2

Declaration

I, Marios Michailidis, confirm that the work presented in this thesis is my own. Where

information has been derived from other sources, I confirm that this has been indicated in the

thesis.

……………………………………………

Marios Michailidis

3

Abstract

This thesis investigates the use of machine learning in improving predictions of the top K1

product purchases at a particular a retailer. The data used for this research is a freely-available

(for research) sample of the retailer’s transactional data spanning a period of 102 weeks and

consisting of several million observations. The thesis consists of four key experiments:

1. Univariate Analysis of the Dataset: The first experiment, which is the univariate

analysis of the dataset, sets the background to the following chapters. It provides

explanatory insight into the customers’ shopping behaviour and identifies the drivers

that connect customers and products. Using various behavioural, descriptive and

aggregated features, the training dataset for a group of customers is created to map their

future purchasing actions for one specific week. The test dataset is then constructed to

predict the purchasing actions for the forthcoming week. This constitutes a univariate

analysis and the chapter is an introduction to the features included in the subsequent

algorithmic processes.

2. Meta-modelling to predict top K products: The second experiment investigates the

improvement in predicting the top K products in terms of precision at K (or

precision@K) and Area Under Curve (AUC) through meta-modelling. It compares

combining a range of common machine learning algorithms of a supervised nature

within a meta-modelling framework (where each generated model will be an input to a

secondary model) with any single model involved, field benchmark or simple model

combination method.

3. Hybrid method to predict repeated, promotion-driven product purchases in an

irregular testing environment: The third experiment demonstrates a hybrid

methodology of cross validation, modelling and optimization for improving the

accuracy of predicting the products the customers of a retailer will buy after having

1 Top K or Top-K Recommendations is an industry term that recommenders use to describe the K most likely

products a customer will buy [Yang et al. 2012] in the future. K is commonly an integer smaller than 20.

4

bought them at least once with a promotional coupon. This methodology is applied in

the context of a train and test environment with limited overlap - the test data includes

different coupons, different customers and different time periods. Additionally this

chapter uses a real life application and a stress-test of the findings in the feature

engineering space from experiment 1. It also borrows ideas from ensemble (or meta)

modelling as detailed in experiment 2.

4. The StackNet model: The fourth experiment proposes a framework in the form of a

scalable version of [Wolpert 1992] stacked generalization being extended through cross

validation methods to many levels resembling in structure a fully connected

feedforward neural network where the hidden nodes represent complex functions in the

form of machine learning models of any nature. The implementation of the model is

made available in the Java programming language.

The research contribution of this thesis is to improve the recommendation science used in the

grocery and Fast Moving Consumer Goods (FMCG) markets. It seeks to identify methods of

increasing the accuracy of predicting what customers are going to buy in the future by

leveraging up-to-date innovations in machine learning as well as improving current processes

in the areas of feature engineering, data pre-processing and ensemble modelling. For the

general scientific community this thesis can be exploited to better understand the type of data

available in the grocery market and to gain insights into how to structure similar machine

learning and analytical projects. The extensive, computational and algorithmic framework that

accompanies this thesis is also available for general use as a prototype to solve similar data

challenges.

5

Acknowledgements

I would like to express my gratitude to my supervisors at UCL, Prof. Philip Treleaven and

Giles Pavey for their guidance and for making this research possible with their friendly support,

patience and domain expertise.

I would like to express my gratitude to UCL, colleagues and academic staff for providing me

with the necessary knowledge, resources and support in order to be able to conduct this

research.

I would like to acknowledge dunnhumby ltd for sponsoring this research project as well as for

providing the rich data required to conduct the experiments.

I would also like to thank Gert Jacobusse for his great mentoring and collaboration through

various machine learning challenges including the Acquire Valued Shoppers’ challenge.

Last but not least, I would like to seize the opportunity to dedicate this thesis to my family and

specifically my father Savvas Michailidis and my mother Androniki Kazani, who showed love

and support and have been the rocks I have been leaning on throughout my life.

6

Contents

1. Introduction ... 15

1.1 Motivation ... 15

1.2 Objectives of this Research ... 20

1.3 Research Methodology ... 22

1.3.1 Univariate Analysis of the Dataset .. 22

1.3.2 Meta-modelling to predict top K products .. 23

1.3.3 Hybrid method to predict repeated, promotion-driven product purchases in an irregular

testing environment ... 24

1.3.4 The StackNet Model ... 25

1.4 Research Contribution... 26

1.5 Structure of the thesis .. 28

2. Background ... 30

2.1 Univariate Analysis of the Dataset .. 30

2.1.1 Brief Overview of recent recommender systems .. 30

2.1.2 Feature Types .. 32

2.1.3 Binning of features .. 33

2.2 Meta-modelling to predict top K products .. 34

2.2.1 Overview of ensemble methods .. 35

2.2.2 The Metrics ... 39

2.2.3 The Algorithms .. 43

2.3 Hybrid method to predict repeated, promotion-driven product purchases in an irregular testing

environment .. 57

2.4 The StackNet model .. 58

2.4.1 Stacking .. 58

2.4.2 Stacking diversity and complexity ... 59

2.4.3 Neural Network .. 61

2.4.4 Applications for combining Algorithms on multiple levels ... 61

3. Univariate Analysis of the Dataset .. 63

3.1 Overview of Available Data Sources .. 63

3.2 Defining the experiment.. 63

3.2.1 Modelling population and target Variable .. 64

3.2.2 The notion of seasonality and time lag .. 65

7

3.2.3 Dominance of the frequency of purchase and exploiting the product hierarchy 67

3.2.4 Predictive grouping of the features .. 68

3.2.5 Optimized binning to capture non-linearity ... 68

3.3 Features’ ranking and dictionary ... 70

3.4 Univariate Analysis ... 73

3.4.1 Household and Product features .. 73

3.4.2 Household and manufacturer or department .. 75

3.4.3 Product Features ... 75

3.4.4 Department and Manufacturer ... 77

3.4.5 Household features ... 77

3.4.6 Contextual feature – day of the week ... 81

3.5 Impact of binning .. 81

3.6 Conclusion .. 84

4. Meta-modelling to predict top K products .. 86

4.1 Introduction ... 86

4.2 Data preparation .. 86

4.2.1 Type of features included .. 86

4.2.2 Treatment of categorical features .. 87

4.2.3 Treatment of numerical features ... 87

4.2.4 Treatment of missing values ... 87

4.3 Training, validation and test sets ... 88

4.4 The meta model architecture and performance ... 89

4.4.1 Meta model definition ... 89

4.4.2 Meta model base layer and performance .. 91

4.4.3 Meta model output layer performance .. 93

4.5 Conclusion .. 98

5. Hybrid method to predict repeated, promotion-driven product purchases in an irregular testing

environment .. 100

5.1 Introduction ... 100

5.2 Problem to Solve ... 100

5.3 The data ... 101

5.4 Objective to optimize .. 102

5.5 Cross Validation Strategy ... 103

5.6 The Strategies .. 108

5.5.1 Content based strategy 1: Exploit relationship of customer with product 109

5.5.2 Collaborative filtering Strategy 2: Customer “looks like” one who had bought the item .. 113

8

5.5.3 Blending the strategies ... 116

5.7 Conclusion .. 118

6. The StackNet Model ... 120

6.1 Introduction ... 120

6.2 Software Review ... 121

6.2.1 Machine learning Packages ... 122

6.2.2 Java programming Language .. 123

6.3 StackNet Model .. 123

6.3.1 Mathematical formulation ... 124

6.3.2 Modes .. 126

6.3.3 Training with K-fold cross validation ... 127

6.3.4 The input data type (software specific) ... 129

6.3.5 The objects .. 130

6.4 Using StackNet for “Song year of release” classification ... 136

6.4.1 Training and test data .. 136

6.4.2 First layer single model ... 137

6.4.3 2nd layer single models ... 139

6.4.4 3rd layer models ... 140

6.4.5 Summary of the experiment .. 144

6.5 Investigating diversity-performance trade-off .. 145

6.5.1 The data ... 145

6.5.2 The diversity metric .. 147

6.5.3 The ensembles’ structure .. 148

6.5.4 The ensembles’ first layer performance .. 149

6.5.5 The ensembles’ diversity .. 150

6.5.6 The ensembles’ final performance .. 152

6.5.7 Conclusion diversity-performance trade-off ... 152

6.6 Investigating ensemble plateauing .. 153

6.6.1 The data ... 153

6.6.2 The setup of the experiment .. 154

6.6.3 Results of the experiment .. 156

6.6.4 Conclusion of the experiment ... 159

6.7 Future Work .. 159

6.8 Conclusion .. 161

7. Conclusion and future work .. 163

7.1 Conclusion .. 163

9

7.2 Future Work .. 167

8. Appendices .. 170

8.1 Table of full univariate results for the first experiment .. 170

8.2 Additional charts of the features in experiment 1 ... 172

8.2.1 Marital Status .. 172

8.2.2 Household composition ... 173

8.2.3 Household Size ... 174

8.2.4 Kids’ Category number ... 174

8.2.5 Average Cycle of buying an item in last 52 weeks ... 175

8.2.6 Average Cycle of buying an item in last 52 weeks ... 175

8.2.7 Total items bought in last 52 weeks .. 176

8.2.8 Total transaction with any discount in last 52 weeks .. 177

8.2.9 Average Spend per item in last 52 weeks ... 177

8.3 All simulations and rounds’ AUC results for plateauing experiment in 6.6 179

8.4 Equation Glossary ... 208

8.4.1 Model averaging .. 208

8.4.2 Model bagging ... 208

8.4.3 Boosting principle .. 208

8.4.4 Gradient Boosting update... 208

8.4.5 Classification accuracy .. 208

8.4.6 Precision at K ... 209

8.4.7 Sensitivity .. 209

8.4.8 Specificity .. 209

8.4.9 AUC ... 209

8.4.10 Pearson Correlation .. 209

8.4.11 Squared error of OLS ... 210

8.4.12 Squared error of Ridge (accounting for L2 regularization) .. 210

8.4.13 Ridge solution in matrix form .. 210

8.4.14 Gradient Descent update of W ... 210

8.4.15 Gradient Descent update of W in matrix notation ... 210

8.4.16 Stochastic Gradient Descent update of W using 1 sample point 210

8.4.17 Probability of y=1 with the Logistic Regression Formula ... 211

8.4.18 Log Likelihood function for Logistic Regression .. 211

8.4.19 Estimating Coefficients W for Logistic Regression ... 211

8.4.20 Gradient of W in respect to minimizing Log Likelihood ... 211

8.4.21 Hinge Loss function ... 211

10

8.4.22 Estimating coefficients W for hinge Loss .. 211

8.4.23 Gradient of W in respect to minimizing Hinge Loss ... 212

8.4.24 Generic squared error function .. 212

8.4.25 Output function of an one-hidden layer ANN .. 212

8.4.26 Hyperbolic Tangent activation function... 212

8.4.27 Relu activation function ... 212

8.4.28 estimating the Weights of an one-hidden layer ANN .. 212

8.4.29 Gradient of Ws in respect to minimizing the squared loss in an one-hidden layer ANN 213

8.4.30 Gradient of any W vector in respect to minimizing the squared loss in an one-hidden layer

ANN .. 213

8.4.31 Bayes’ Theorem ... 213

8.4.32 Bayes’ Theorem after assumption of independence .. 213

8.4.33 Bayes’ Theorem after assumption of independence, excluding constant Denominator .. 213

8.4.34 Obtaining estimate for Y using Bayes’ Theorem based on the simplified formula 214

8.4.35 Probability of a continuous feature Xj that follows a Gaussian distribution to belong to a

class of Y based on the Naïve Bayes’ theorem ... 214

8.4.36 Euclidian Distance between two data points x,p .. 214

8.4.37 Rule for partitioning the data based on split point 𝐷𝑗, 𝑠... 214

8.4.38 Entropy formula given Y with distinct classes C ... 214

8.4.39 Entropy formula given Y with distinct classes C and split point 𝐷𝑗, 𝑠 214

8.4.40 Information Gain formula .. 215

8.4.41 Non-Negative Matrix Factorization Prediction .. 215

8.4.42 Estimating U, V based on squared loss .. 215

8.4.43 Estimating W, U based on squared loss in libFM .. 215

8.4.44 Prediction function of libFM .. 215

8.4.45 linear update of libFM.. 215

8.4.46 Latent features’ update of libFM.. 215

8.4.47 Energy function for RBMs ... 216

8.4.48 Estimate of W in RBMs ... 216

8.4.49 Level 1 estimators’ function for stacking ... 216

8.4.50 Level 2 (Meta) estimators’ function ... 217

8.4.51 Average AUC using the Leave-one-offer-out schema ... 217

8.4.52 Average AUC using the Leave-one-offer-out schema plus vertical concatenation 217

8.4.53 Average of the N-offer-out AUC and overall AUC ... 217

8.4.56 Connection function between input data and one hidden unit in the form of as linear

perceptron ... 218

11

8.4.57 Connection function between input data and one hidden unit in the form of any algorithm

 .. 218

8.4.58 Connection function between input data and one hidden unit in the form of any algorithm

assuming linear activation on input .. 218

8.4.59 Connection function between input data and one hidden unit in the form of any algorithm

simplified .. 218

8.4.60 Connection function between first and second hidden layer .. 218

8.4.61 Connection function between first and second hidden layer simplified 219

8.4.62 Connection function between first and second hidden with generic vector of estimators219

8.4.63 Connection function for any given layer n ... 219

8.4.64 Connection function for any given layer through restacking mode 219

8.4.65 Optimizing parameters for any estimator in StackNet ... 219

8.4.66 Example optimizing parameters for any estimator assuming a squared loss function 220

8.4.67 Diversity of an ensemble based on the correlation matrix of predictions 220

Bibliography ... 221

12

List of Figures

Figure 2.1 : Meta modelling paradigm with K-Fold cross validation ... 39

Figure 2.2: Roc Curve and AUC (Area Under the Curve) .. 41

Figure 2.3: Single layer neural network .. 48

Figure 2.4: The 2 phases of the Stacked Generalization procedure .. 59

Figure 3.1 : Feature engineering process and definition of target variable ... 65

Figure 3.2 : Seasonality in weekly sales in units for product 826249 ... 66

Figure 3.3 : Feature engineering process for different time stamps .. 66

Figure 3.4 : Probability to buy an item in the target week given previous purchase status 67

Figure 3.5 : Optimised Binning Algorithm ... 69

Figure 3.6 : Frequency of purchase of last 52 weeks vs. target .. 73

Figure 3.7 : Average Cycle minus last time bought vs target ... 74

Figure 3.8 : Frequency's decay vs target ... 74

Figure 3.9 : Frequency' of purchase of department in last 52 weeks vs target 75

Figure 3.10 : Product popularity of last 52 weeks versus target ... 76

Figure 3.11 : Trialled products’ popularity versus target .. 76

Figure 3.12 : Popularity decay versus target ... 77

Figure 3.13 : Age band versus target .. 78

Figure 3.14 : Income band versus target ... 78

Figure 3.15 : Kids band versus target ... 79

Figure 3.16 : Total visits in last 52 weeks vs target .. 79

Figure 3.17: Number of distinct products vs target .. 80

Figure 3.18 : New items bought and number of distinct products vs target ... 80

Figure 3.19 : Day pf the week vs target .. 81

Figure 4.1 : Process for generating train and test predictions in the first layer 89

Figure 4.2 : Illustration of the stacking (Meta) model .. 95

Figure 5.1: Uneven distribution of offers between training and test sets .. 102

Figure 5.2: N-Offer Cross validation procedure ... 103

Figure 5.3 : Timeline of customer with coupon redemption ... 110

Figure 5.4 : ROC curve of strategy 1 based on the validation schema ... 113

Figure 5.5 : Target variable was formed 90 days prior to sending the coupon 115

Figure 5.6 : ROC curve of strategy 2 based on the validation schema ... 116

Figure 5.7 : Distribution of strategy 1(left) and 2 (right) for two offers offer_37 and offer_24 116

Figure 6.1 : StackNet model with 4 layers used to maximize AUC and win the Truly Native Kaggle

challenge. .. 124

Figure 6.2 : StackNet’s link modes ... 126

Figure 6.3 : Example of K-fold scoring-output for StackNet given an algorithm in a neuron where

K=5 ... 127

Figure 6.4 : 3-layer StackNet with Restacking OFF ... 141

Figure 6.5 : 3-layer StackNet with Restacking ON .. 142

Figure 6.6: Pseudo code for generating average AUC estimates per round 156

Figure 6.7: Model round versus cross-validation AUC .. 158

Figure 8.1 : Marital status versus target variable .. 173

13

Figure 8.2 : Household composition type versus target .. 173

Figure 8.3 : Household size and target variable ... 174

Figure 8.4 : Kids’ number and target variable .. 174

Figure 8.5 : Average number of days to buy the item in the last 52 weeks versus target 175

Figure 8.6 : Times bought from same Manufacturer versus target ... 176

Figure 8.7 : Total items bought versus Target .. 176

Figure 8.8 : Total transatcions with discount vs target ... 177

Figure 8.9 : Average Spend per item in last 52 weeks versus target .. 178

List of Tables

Table 2-1 : Confusion matrix and its elements ... 40

Table 2-2: Frequency of the distinct classes of Y ... 53

Table 2-3: Frequency matrix for the class labels of Y and a 2-way directions of split point Dj,s 54

Table 3.1 : Probability to buy an item from a manufacturer given previous purchases 68

Table 3.2 : Features’ dictionary with predictability statistics and features’ groups mapping 70

Table 3-3: Comparison of AUC before and after binning sorted by proportional gain 82

Table 4-1 : Single models involved in the ensemble and their hyper parameters 91

Table 4-2 : Performance of single models in UC and Precision@K .. 92

Table 4-3 : Results of benchmarks, single best models and Meta model in AUC, Precision@K 96

Table 4-4 : results with proportional differences to the Meta model .. 96

Table 5-1: Sorted average propensity to buy per offer ... 105

Table 5-2: Sorted predictions and actual values for a random sample and a given offer x 105

Table 5-3: Sorted predictions and actual values for a random sample and a given offer y 106

Table 5-4: Vertical merge of tables 5-2 and 5-3 ... 106

Table 5-5: Results on AUC for all validation schemas ... 108

Table 5.6: List features’ descriptions derived for strategy one ... 110

Table 5.7: AUC results on individual strategies and combined for the test data. 117

Table 6-1: Tree specific hyper parameters in StackNet .. 132

Table 6-2: Random Forest specific hyper parameters in StackNet ... 132

Table 6-3: Gradient Boost Random Forest of trees’ specific hyper parameters in StackNet 132

Table 6-4: Linear Regression hyper parameters in StackNet .. 133

Table 6-5: Logistic Regression hyper parameters in StackNet ... 133

Table 6-6: LSVC and LSVR hyper parameters in StackNet ... 134

Table 6-7: libFM hyper parameters in StackNet ... 134

Table 6-8: hyper parameters of Softmaxnnclassifier and Multinnregressor in StackNet 135

Table 6-9: hyper parameters of Naïve Bayes in StackNet .. 135

Table 6-10: First Layer models in StackNet ... 138

Table 6-11: Performance of 1st layer models in StackNet ... 138

Table 6-12: Second layer models in StackNet .. 139

Table 6-13: Performance of 2nd Layer models in StackNet ... 140

Table 6-14: Third layer models in StackNet ... 140

Table 6-15: Performance of 3-Layer StackNets and their predecessors ... 141

Table 6-16: Features and number of distinct values ... 145

Table 6-17: Generated n-way interactions and type of interaction ... 146

14

Table 6-18: Models and hyper parameters for the first ensemble ... 148

Table 6-19: Models and hyper parameters for the mixed ensemble ... 149

Table 6-20: Linear models’ performance in AUC for cv and test .. 149

Table 6-21: mixed models’ performance in AUC for cv and test ... 150

Table 6-22: linear models’ correlation matrix .. 151

Table 6-23: mixed models’ correlation matrix.. 151

Table 6-24: Linear and mixed models’ level 1 diversity .. 151

Table 6-25: Linear and mixed models’ level 1 diversity .. 152

Table 6-26: Pool of 36 models (9 +27) along their parameters and AUC cv performance 154

Table 6-27: Model rounds and cross-validation AUC .. 157

Table 8-1 : Full Univariate results of binned variables measuring AUC and I-Gain for experiment 1

 .. 170

Table 8-2: Simulations’ rounds results and cross validation AUC ... 179

15

1. Introduction

This chapter presents an overview of the current thesis. It introduces the thesis topic and

outlines my motivations for conducting the research. It then sets out the specific objectives of

the research and introduces the experimental methodology.

1.1 Motivation

Background: Driven by large organisations keen to use data to develop a deep understanding

of what products their customers like to buy, recommendation science has received increased

attention over the last decade. The extensive number of publications [Sarwar Badrul et al. 2001]

in collaborative filtering as well as the emergence of big-prize data challenges such as the

Netflix competition offering $1m to the winning entry [netflix prize 2009], indicate just how

valuable businesses regard their capability to predict customer tastes and behaviours with

increasing levels of accuracy.

Univariate Analysis of the Dataset: Whist machine learning algorithms have gone a long way

in identifying deep relationships within and extracting great predictive power from structured

and unstructured data [Arel et al. 2010], exploring the underlying data through univariate

analysis has commonly provided useful sources for better feature engineering and

improvements in the prediction process [Domingos 2012]. Therefore, to better improve

recommendations it seems a credible step to analyse and comprehend what drives the shopping

process with the aim of identifying rudimentary links that connect customers to specific items.

Such knowledge can later be utilised in algorithmic frameworks and modelling experiments. It

can also serve as a preliminary step to understanding the underlying data utilised by this thesis.

Meta-modelling to predict top K products: Recommendation science in a generic form has

had great success in providing a means to efficiently link customers to items [Herlocker et al.

2004]. The various works of [Yehuda Koren 2009] on factorization machines and collaborative

16

filtering stand as great innovations in the field. Another inspiring example is the work of

[Salakhutdinov et al. 2007] in implementing Boltzmann’s neutral networks to more accurately

predict the products customers will buy.

Significant advances have been made from the era when limited data could be used for data

analysis [Gandomi et al. 2015]. Increased storage capabilities have allowed companies to store

extra details about transactions, as well as contextual data such as weather, time of day and

sales channel. [Karatzoglou 2010] has successfully integrated such contextual information

while performing collaborative filtering experiments. More recent work, specifically in the use

of learning-to-rank algorithms by [Weston et al. 2013] show the potential of experimenting

with new approaches in the field.

The relationship of customer to product in the form of feature interaction has been widely

investigated, with approaches using collaborative filtering being amongst the most notable

examples [Koren et al. 2009]. However, the (online) grocery environment is special when it

comes to efficient recommendations in the sense that customers tend to choose their favourite

or usual items (instead of actively looking for new challenges). Indeed, past purchase frequency

is the overwhelming element in defining what will be bought. Therefore knowing how many

times customer A bought product B in a fixed period of time can yield a very good prediction

as to whether the customer will buy the item again within a certain time-frame (such as next

week) [Boyet et al. 2005]. Additionally, there is only a certain number of recommendations a

retailer can make and since the frequency with which a customer purchases an item is such an

important predicto, most of these recommendations are determined by simply knowing this

feature. Simple and efficient it may be, there is opportunity to significantly improve the

recommendation list. This can be achieved via making use of the extensive frameworks of

different machine learning families as well as leveraging the best practices in machine learning.

Additionally there is room for investigating the impact of any extra features (aside from

frequency of purchase) that have influence in determining the customers’ next purchases.

Many of the aforementioned techniques such as recommendation science or collaborative

filtering utilize machine learning. As a separate field, machine learning is also receiving

increased attention due to the increases in potential that advances in computational speed brings

[Mjolsness 2001]. Many techniques and approaches have been developed and are available as

open-source solutions. Many of these are referred to in [Witten et al. 2005] and [Michalski

1998]. They list a large number of supervised and unsupervised machine learning techniques

17

including, decision trees, random forests, gradient boosted trees, Naïve Bayes classifier, neural

networks, logistic regression, k nearest neighbours, support vector machines and derivatives of

these methods. According to [Mohri et al. 2012] supervised algorithms are trained on labelled

data, which means the ground truth is known for a given case. These techniques are discussed

in detail in chapter 2.

Machine learning has evolved to include many such tools, models or general processes for

creating predictive algorithms. Some machine learning approaches combine multiple

algorithms to improve predictions. These approaches are known as ensemble methods and have

been applied in many industry and research fields [Tan et al. 2003], [Dietterich 2000] often

producing better results than single algorithm approaches. It is therefore speculated that a

possible way to improve predictions in respect to what the customer will buy in the future is to

utilize ensemble methods and find the right mixture of different machine learning models that

by nature tend to capture different forms of interactions, be it linear or non-linear. An ensemble

methodology would promote intuitiveness and possibly yield solid results in predicting what

the customer will buy in the future, since instead of focusing on one approach (that has certain

advantages and disadvantages), the focus could be shifted to leveraging the advantages of all

methods included.

Hybrid method to predict repeated, promotion-driven product purchases in an irregular

testing environment: A popular application of recommendation science in the grocery (or

FMCG) field is the allocation of promotional coupons as it is considered a very efficient way

to increase customer loyalty. Consumers in the United States of America saved $3.8 billion in

2002 by shopping with coupons [Michelle Rubrecht 2014] which means that improvements in

allocation efficiency (in terms of identifying the best coupon to customer matches) could have

a huge impact in loyalty generation and in turn the retailer’s bottom line.

In recommender systems, predictive models often need to be built on small subsets of

customers and products with incomplete, sparse or limited data. [Hu et al. 2006] addressed this

problem by proposing a hybrid user and item-based collaborative system. Additionally,

predictive algorithms, irrespective of the limitations on which they have been built, need to be

able to extrapolate and generalize in unforeseen environments. [Lika et al. 2014] addresses the

cold start problem in recommender systems needing to make predictions for new customers

and products. [Garcin et al. 2014] highlights the difference between offline and online accuracy

18

evaluations, demonstrating that the best recommendation strategy may be different for the

instore and online environments.

Ultimately, the main objective of this experiment is to improve coupon allocation (as a means

to boosting customer loyalty) within the context of an irregular testing environment. The

irregularity of this environment is that predictive algorithms have to be built with limited data

or with subsets of customers and products meaning that recommendations are tested on

different customers and different promotional products to those which are used to train the

algorithm.

The StackNet model: It has been almost 25 years since [Wolpert 1992] introduced stacked

generalization (or stacking) as a way to combine the predictions of multiple machine learning

models using another (Meta) model. Until today there has not been a prominent software

implementation of this algorithm although the advent in computing power allows the running

of multiple machine models in parallel. At the same time deep learning has (re)surfaced

[Schmidhuber 2015] as a strong predictive algorithm and through its multiple hidden layers

and neuron synapses, it can exploit deep relationships inherent within the data. Combining the

two methodologies of stacking and deep learning could therefore potentially yield uplift in the

performance of machine learning tasks. Such an approach would require several algorithms to

be available, however it could hardly be stated that there is a package or library that has

everything (even the common ones). For the average data scientist it requires an extensive

skillset of multiple programming tools, software and other resources to be able to leverage the

benefits of different techniques. Therefore availability of the algorithms is still a fundamental

factor in building better prediction modes and stimulating science.

 The focus in recommendation and data science in general has not only been in making smarter

(as in more accurate and/or inspiring) recommendations. There is an ever increasing appetite

to make recommendation generation faster, more memory efficient and more automated. In

order to leverage today’s big data, scalability in both recommendation and machine learning

science is vital [Zhao et al. 2002]. Even the most comprehensive packages (such as R) that

have a great variety of different techniques, are still lacking when it comes to scalability (for

some algorithms) thus making the use of big data (with hundreds of millions of records)

problematic. There is an irreversible move towards bigger and bigger data ([Mims 2010] and

[Sutter 2005]) and CPU’s are not getting fast enough at a fast enough rate to keep up with

19

scaling requirements. The only way to keep up with increasingly fast-paced environments is to

make applications scalable by dividing each task into different threads.

The main motivation for using the StackNet model is to create a methodology that uses stacked

generalization and applies it within a neural network architecture where the inputs of any nodes

could be any machine learning model (and not just perceptions as is commonly the case). By

using this approach, one would expect to yield better generalization results in various domains,

including the recommendation space.

In conclusion my motivations for the current thesis can be summarised (per chapter) as:

 Univariate Analysis of the Dataset: To understand the factors or features (other than

frequency of purchase) that drive customers to buy certain products.

 Meta-modelling to predict top K products: To improve recommender systems,

especially for the top K items (that the customer has probably bought many times), by

using cutting edge machine learning, leveraging a variety of different algorithms and

approaches within a meta modelling framework and to prove that such a methodology

can overcome any single model approach involved or simple ensemble method.

 Hybrid method to predict repeated, promotion-driven product purchases in an

irregular testing environment: To predict, using a hybrid method within the context

of an irregular testing environment of different customers and different offers, whether

customers will buy a product again after receiving a coupon for it.

 The StackNet model: To demonstrate that the stacked generalization method applied

within a neural network framework can achieve higher levels of accuracy and to

introduce new scalable applications in the scientific community as a means to further

extend academia’s capabilities in predictive modelling classification tasks (including

the ones related to recommendation science).

20

1.2 Objectives of this Research

The overall goal of this thesis is to apply ensemble machine learning approaches to improve

recommendations. The data used for this research is a freely-available sample of the retailer’s

transactional data (also enriched with many descriptive fields) and consisting of several million

observations. Each experiment contributes to the overall goal in unique ways which are further

analysed below:

Univariate analysis of the dataset: The main objective from this experiment is to better

understand the drivers that define next purchases for customers and improve predictions for

the top K (commonly 10) items they will buy in the following week. The research will use

engineered features that have to do with customers’ past purchasing history as well as general

descriptive fields and will associate them with the propensity to buy a product in the following

week. In this way a simple but insightful indication will be derived for each feature in the

dataset. To facilitate capturing more information from the input data, an optimized binning

technique will be deployed.

Meta-modelling to predict top K products: This chapter investigates the uplift from using a

stacked generalization approach to predicting what the customers of a retailer will buy in the

following week. This uplift is measured against any single algorithm model used in the stacking

model, all field benchmarks and other simple ensemble approaches such as model averaging.

The underlying premise is that more accurate recommendations will yield value to the

customers since the recommended items are more likely to be relevant to them. A more relevant

customer experience will in turn produce loyalty to the retailer and product brand.

Hybrid method to predict repeated, promotion-driven product purchases in an irregular

testing environment: The third experiment borrows elements from the previous two

experiments in regards to feature engineering and model ensembling within a retail

environment. It aims to improve recommendations in such environments by predicting with a

hybrid modelling methodology which products the customers will buy again after having

redeemed a coupon for them at least once. Furthermore it aims to tackle the problem of an

irregular testing environment of different customers and offers by proposing a novel cross-

validation methodology to measure and improve the accuracy of the predictive algorithms, the

usefulness of derived features, the tuning of the algorithms’ hyper parameters and the overall

modelling process in general.

21

The StackNet model: The objective of the final experiment, namely the StackNet model is to

provide an algorithmic implementation of Wolpert’s stacked generalization within a

feedforward neural network architecture to efficiently combine multiple machine learning

models with the scope of improving accuracy in classification (and recommendation)

problems. Apart from the methodology, along with the technical considerations, another aim

of the thesis is to provide the algorithmic software infrastructure (in the Java programming

language) to run all the algorithms in the form of a new library that could be accessed by

anyone. The software will support multiple algorithms used for research, along with data pre-

processing steps, feature engineering capabilities, data transformations and cross-validations

methods. Therefore as an additional objective this tool aims to offer more options in multi-

algorithmic approaches for large-scale problems.

The multiple objectives of this research can be summarised as follows:

 Univariate Analysis of the Dataset: Understand the retailer’s available data set,

especially in respect to its predictive power in determining what the customers are going

to buy in the future.

 Meta-modelling to predict top K products: Leverage the benefits arising from

multiple machine learning techniques and ensemble methodologies such as stacking to

make more accurate recommendations as measured via multiple metrics against

numerous single models, field benchmarks such as product popularity or simple

ensemble methods like model averaging.

 Hybrid method to predict repeated, promotion-driven product purchases in an

irregular testing environment: Improve accuracy in predicting which products the

customers will buy after having redeemed an offer for them, using a hybrid modelling

methodology, assuming an irregular testing environment of different products and

customers.

 The StackNet model: Provide an implementation of stacked generalization [Wolpert

1992] within a neural network framework as a means to combine multiple diverse

models to improve the accuracy in classification tasks.

22

1.3 Research Methodology

The following sections explain the research methodology utilised in each of the chapters in the

current thesis.

1.3.1 Univariate Analysis of the Dataset

To achieve its objectives, this thesis will use the freely available (for research) data of a big

retailer in the grocery space. In summary this dataset contains a stream of customers’

transactions for the period of 102 weeks. Multiple fields are known for each transaction such

as the time of purchase, item price, quantity of products purchased, discounts applied, and

whether the product was on promotion or not. The dataset also contains hierarchical

information about the products as well as other descriptive information about the customers

such as age group and/or household type.

The actual experiment will use a portion of this data (54 weeks), covering the period of week

47 to week 101. One year of transactional data was deemed enough to create the modelling

datasets. The overall expectation is to learn how the aforementioned features contained within

the dataset define future purchases. That is, if all these variables are known for a period of 52

weeks (from 47 to 99), to determine if it is possible to predict what the customers are going to

buy in the weeks after week 99, in other words week 100 and week 101 respectively.

This chapter will initially use basic descriptive analysis in the form of basic statistics and

explanatory graphs to examine the distribution of certain customer characteristics, product

features and other variables. The supervised metric of AUC (Area Under the roc Curve) will

then be utilized to gauge the strength of the binary target variable (as in “will buy” or “will not

buy”) with each one of the possible predictors. The volume of the data available will allow a

thorough, statistically significant and comprehensive investigation that could easily be

generalized across other similar grocery retail environments. It is therefore a rare and valuable

research opportunity.

Finally, this experiment treats some of the variables as nonlinear and will use an optimized

binning method (based on the AUC metric as mentioned above) to capture these non-linearities

23

and replace them with the log of the odds of the target variable in such a way that the

relationship with the target variable can be linearized and its predictive power better captured.

Furthermore the uplift in AUC is estimated for all variables considered both in absolute and

proportional terms, before and after the optimized binning method is applied. The end result of

this chapter will be the ranking (based on AUC) of how predictive the individual feature, or its

respective family is, in determining whether the customers are going to buy a specific product

the following week.

1.3.2 Meta-modelling to predict top K products

The same data sources will be used for this experiment. The question to be answered is whether

predictions for the top K products the customers are going to buy the following week can be

improved by using a meta-modelling approach versus all single-models involved, simple

ensemble methodologies or field benchmarks. The main hypothesis is that by combing multiple

machine learning methods that are different in nature (and therefore possess different

advantages), a significantly better solution will be achieved than if a single-method approach

were used.

The combination of models will be made via a secondary model that will use the previous

methods as inputs. Undertaking such a method aims to leverage the advantages of all the

different applied methodologies to reach a more generalizable solution to this classification

problem. The supervised techniques to be applied will include linear regression, logistic

regression, decision trees, random forests, gradient boosting machines, multilayer perception

(neural networks), kernel-based models and factorization machines. Some of these methods

include a stage of feature selection and may further include some data transformation processes

such as scaling and outlier removal.

The training set formed includes the creation of a number of aggregated features based on the

transactional data for the period of week 47 to week 99 and the target to predict is a binary

indicator that shows whether the item under consideration is bought the following week (100)

by a given customer. The test set uses the period of weeks 48 to 100 and the target week of

101. The training/validation split will be 80-20. The same split of data is being used to both

tune the models’ hyper parameters and then to make predictions. The criterion to optimize is

precision K [5 10 20] and Area Under the ROC Curve (AUC). Apart from the aforementioned

24

algorithms, a series of different benchmarks such as product popularity and customer’s

frequency of purchase per item, are also derived to facilitate comparisons among the different

models’ results.

After all models are fitted and all predictions are made and saved for both the validation data

and the (future) test data, a random forest model will be used to combine all the predictions of

the validation data as inputs to maximize AUC and precision K for the test data. The final

tuning of this meta model is attained using a 5-fold cross validation. The performance of this

model is compared against all single models involved, the created benchmark and simple

combinations of the single models such as normal average and rank-transformed average.

1.3.3 Hybrid method to predict repeated, promotion-driven product

purchases in an irregular testing environment

Given a set of customers of a retailer along with a subset of their past transactions where each

customer has received and redeemed a coupon, a predictive modelling methodology is applied

to improve predictions of whether the customers will buy the redeemed product again in the

future. The dataset is divided into 2 parts. 160,000 are used for training the model and the

remainder are used for testing. The datasets have minimal overlap between them as they include

mostly different offers and different customers (and refer to different time periods). The

objective is to maximize the AUC (Area Under the roc Curve) of whether a customer will

repurchase a product previously bought via a coupon recommendation.

This experiment investigates different cross validation methodologies to tackle the small

overlap between the training and test data in order to maximize AUC, ensuring that a model

will be able to generalize well in unobserved data. It further demonstrates the internal cross

validation results of each methodology on a subset of features generated from the transactional

history of customers along with the actual results they yield in the test data. The first validation

methodology includes a random stratification of the training data based on offer so that each

offer is equally (proportion-wise) represented in any train and validation splits. The other

methodology ensures that splits are based on the number of offers where N-1 (out of N) offers

is used to build models and maximize the AUC in the nth offer. The last methodology adds

25

another step to the previous methodology via merging all predictions from all N offers together

before estimating a global AUC out of all offers’ predictions.

Furthermore it creates different recommendation methodologies, one content-based and

another based on collaborative filtering to generate a hybrid methodology. The first (content-

based) approach assumes that the prediction of whether the customer will buy the item or not

is dependent on the direct relationship he or she has with the item (i.e if it or items from the

same brand were bought in the past). The model of choice Ridge Regression [Tikhonov 1977]

trains on the actual number of times the customer bought the item after the offer date.

The second (collaborative filtering) approach assumes that the propensity of an item to be

purchased by a customer is strongly related to the likelihood that the customer belongs to the

group of customers that like the item and would have bought it even if they had never received

an offer for it. In this approach the target variable is created from the transactional data by

taking the natural logarithm of how many times the item was bought 90 days prior to the offer

date. Separate models are then trained on each different. The model of choice was gradient

boosting trees [Breiman 1997] and many features were generated from the transactional history

as well as by using deep learning and Restrictive Boltzmann Machines (RBMs) [Smolensky

1986] from the raw data.

Given both models have been trained on different target variables, the predictions are

transformed to ranks before combining them. The final hybrid model uses an average of the

two approaches (after applying the rank transformation).

1.3.4 The StackNet Model

The StackNet Model attempts to leverage the benefits of various machine learning algorithms

and approaches in order to maximize performance against various accuracy metrics. The

underlying architecture of the models and how they are connected with each other is very

similar to what is found in a feedforward neural network. Each trained model is a node in a

modelling architecture of various layers starting from models trained directly from the input

data (which constitutes the input layer). Each new layer then uses as inputs the predictions (or

outputs) of the previous layer until the final output is reached (which may be zero or one in a

binary problem).

26

[Wolpert 1992] proposed the stacked generalization methodology as a means to combine the

predictions from many different neural network models by using a holdout set. This new set of

features forms a new dataset that is trained with another neural network in order to improve the

performance in the test data. The ability of a model to generalize in unseen data may be

sensitive to the number of available observations, hence a modelling architecture of multiple

levels would have to be constantly splitting the training data in order to generate unbiased

samples. A critical suggestion is to be able to re-use the initial training dataset multiple times

without compromising the integrity in the way information of the target variable is being

carried to multiple levels. This research demonstrates a k-fold cross-validation paradigm to

reconstruct the initial training data with predictions of a given algorithm.

Traditional neural networks have various ways of reaching convergence (such as back

propagation). However, in the StackNet architecture, each model is validated on holdout data

which is later used for further modelling (as features), which means that traditional modelling

through various epocs (or iterations) would not make much difference in the final outcome

versus optimizing the hyper parameters of the selected model-features. To accelerate

convergence this research proposes two different types of connections among the different

layers, one that assumes a direct forward connection from the models of one layer to the next

and another that requires each layer to include as inputs all models from previous layers.

Finally aside from the theoretical underpinnings of this methodology, the effectiveness of the

algorithm can be better comprehended with an actual implementation. Therefore multiple

algorithms will be re-implemented in the Java programming language, leveraging multi-

threaded technologies to create a machine learning library for the implementation of the

StackNet model.

1.4 Research Contribution

This section will be divided into four parts to align with the experiments as defined in the

abstract. This research contributes to existing literature in a number of new ways.

Univariate Analysis of the Dataset: The Complete Journey dataset [dunnhumby 2014]

contains datasets of customer transactions from the grocery (or FMCG) field of a large enough

breadth and volume for descriptive analysis to be considered robust and statistically significant.

27

This allows for better understanding of and thorough mapping of the average retail customer

and enables credible insight into the factors that link customers to future purchases to be

derived. The non-linearity of certain features in respect to future purchases is addressed using

an optimized binning methodology. This will also facilitate future modelling of these features.

Meta-modelling to predict top K products: This chapter focuses on improving prediction

offuture purchases using a meta-modelling approach taking advantage of a portion of the main

algorithmic families that have been developed (or resurfaced) over the last decade in machine

learning. Its novelty is derived from demonstrating that such an approach can outperform any

single model involved in the mix, any simple model combination method or field benchmark

in the grocery recommendation space. This is highlighted against the metrics of AUC and

precision at K (or precision@K).

Hybrid method to predict repeated, promotion-driven product purchases in an irregular

testing environment: The distribution of coupons is a common challenge for recommenders

to optimize in the grocery field as customer satisfaction and loyalty are influenced by it. Often

such recommender systems need to be built with limited or a subset of data and be able to

extrapolate well to unseen environments of different customers and offered products. This

research proposes an N-offer cross validation methodology to improve predictions in such

environments by maximizing AUC of the products the customers will buy again in the future.

Furthermore, using the same validation methodology it proposes a novel combination of a

feature-driven, content-based approach and a collaborative filtering approach to improve

results on top of these single methods involved.

The StackNet model: Ultimately this chapter re-implements Wolpert’s stacked generalization

and combines it with a feedforward neural network architecture in order to provide a scalable

framework to combine multiple algorithms in order to achieve higher accuracy in classification

tasks (including but not limited to the recommendation science). The methodology is also made

available to the general scientific community in the form of a machine learning library

implemented in the Java programming language, aiming to address the issues arising from the

unavailability of certain algorithms for large scale problems. This is the first software

application fully dedicated to meta modelling.

28

1.5 Structure of the thesis

Structure of this thesis

 Chapter 2 Literature Review: describes the literature pertinent to this research and

reviews background information on a number of key concepts in the areas that this

research spans.

 Chapter 3 Univariate Analysis of the Dataset: Chapter 3 scrutinizes the retailer’s

available dataset and provides explanatory insight in regards to the features that are

going to be used later for the prediction algorithms. It addresses the non-linearity of

certain features derived from customers’ transactional history and proposes a binning

methodology to aid capturing it.

 Chapter 4 Meta-modelling to predict top K products: Chapter 4 part investigates

the improvement in prediction for forecasting the customers’ top K products in their

next visit to the retailer’s store via combining an arsenal of different supervised

machine learning algorithms. Furthermore it examines the improvement in prediction

of the top K products for these customers using a meta-modelling approach versus all

single models involved, simple ensemble models and field-related benchmarks.

 Chapter 5 Hybrid method to predict repeated, promotion-driven product

purchases in an irregular testing environment: This chapter utilizes the findings

from the previous two chapters regarding feature engineering and model combination

to improve predictions regarding which products the customers of a retailer will buy

again in the future after having received an offer for them. This prediction is further

enhanced by a cross validation methodology tested to yield better AUC results in an

irregular future environment where the scoring population includes different customers

and largely different offers than those used to create the models. It then proposes a

hybrid model of a content-based approach along with a collaborative filtering approach

to further improve results on top of any of these two single methods involved.

 Chapter 6 The StackNet model: Chapter 6 describes the StackNet model which

constitutes a scalable implementation of Wolpert’s stacked generalization within a

feedforward neural network architecture with the aim of improving predictions in

29

classification (as well as recommendation) tasks. Subsequently many considerations

regarding efficient fitting of this algorithm are explained and various modes and

modelling characteristics are analyzed. The overall usability of the model is presented

through its Java implementation which accompanies this research work. Different

instances of StackNet models with multiple levels and architectures are then tested to

rank the likelihood of a given song being created before or after 2002 using a set of 90

numerical attributes out of 515,345 songs that come from a subset of the Million Song

Dataset [Bertin-Mahieux et al. 2011].

 Chapter 7 Conclusion: Chapter 7 provides an overall conclusion of this research with

a summary of the key findings and their implications. The thesis ends with a number of

recommendations per chapter in the form of future work that could be done in this area

to further improve results.

30

2. Background

This chapter provides the literature review that underpins the topics analysed and evolved in

this thesis. The chapter starts with a historical overview of the evolution of recommender

systems and the machine learning applications within this field. It then goes on to offer a

comparative overview of the different machine learning methods as well as an explanation of

the common statistical measures utilized in the field.

2.1 Univariate Analysis of the Dataset

2.1.1 Brief Overview of recent recommender systems

The main aim of the thesis is to improve recommendations for customers in a retail

environment - specifically grocery retail. Recommendation science in this context can be

defined as the principles, techniques and applications that facilitate the process of suggesting

an item (product) to a customer [Ricci 2001]. Recommendation science has received increased

attention in recent years [Sarwar Badrul et al. 2001] and has been widely used by internet

companies of all sizes (notably Facebook, Amazon and Google).

Since the onset of online retailing, the ability to recommend relevant products to customers has

been a hugely important marketing tool for driving sales [Weng et al. 2004]. In today’s era of

Big Data [Chen et al. 2012], where there is an increased capacity to store and process large

quantities of data, making recommendations has become a data-driven process [Linden et a.

2003]. The advances in algorithmic data processing and in machine learning have allowed

frameworks to be developed [Gandomi et al. 2015] which improve predictions and

consequently recommendations.

Corporations have invested heavily in unlocking the power of their data to successfully connect

customers and products. [netflix 2009] paid $1,000,000 for the algorithm that could best

predict the rating a customer would attribute to a given film. [Expedia 2013] did the same for

optimizing hotel rankings to maximize customer click-through and purchase rates.

[StumbleUpon 2013] tried to understand the elements that make a website relevant at a given

31

time. Indeed, data challenges have been used by many different companies to optimize

recommendations for a diverse range of products/services including retail, music, art and

geography and have taken many different forms such as image-based recommendations. There

are now many organizations (such as dunnhumby) whose business offering is to provide such

recommendation services. There are also numerous open source applications including [LibFM

2012], [LibFFM 2015], [GraphChi 2012] and [RankLib 2013] which are specifically

dedicated to this field.

The data driven version of recommendation science has three main expressions. Content-based

recommendation science can be defined as the process of selecting products because they

adhere to a specific set of characteristics. For example a company that recommends art to

customers would use such a method to classify a piece of art as modern so as to be able to

recommend it to a customer who has previously purchased modern art. However, although this

method is easy and quick to implement, its exploration of the relationships which connect

customers and products is very superficial. Collaborative recommendations are the next step

up - they look for deeper connections. Applied to the earlier art world example, a collaborative

recommendation process would seek to understand similarities between customers as it

assumes that customers who share similar characteristics are likely to have similar preferences.

However, depending on the size of the database, it can be a very time-consuming process to

calculate similarities across all customers in order to make the best recommendations. In

practice hybrid recommendations which combine the benefits of the content-based and

collaborative approaches are often used and can be effective [Adomavicius et al. 2005].

In the current thesis, recommendation science will be perceived as a more abstract machine

learning field. Admittedly the relationship between customer and product is vividly complex

and many successful unsupervised algorithms (such as Singular Value Decomposition [Golub

1970]) are commonly used to find and map these underlying complexities and generate features

that explain them. [Pedregosa 2011] defined unsupervised learning methods as those in which

the training data consists of a set of input vectors without any corresponding target values. The

goal in such problems is to discover groups of similar vectors within the data. This particular

approach is referred to as clustering. Another example is to determine the distribution of data

within the input space, known as density estimation, or to project the data from a high-

dimensional space down to two or three dimensions for the purpose of visualization.

32

2.1.2 Feature Types

There are four key elements that define purchase behavior. The first element is the number of

times a customer has previously purchased the product. This is a critical feature in the majority

of commercial recommendation engines. A customer’s purchase history and their loyalty to a

specific brand or product can greatly influence their propensity to buy an item. [Meyer-

Waarden 2008] demonstrated that loyal customers (who visit more often) respond more

positively (than non-loyal) to product recommendations given a certain number of factors.

Similarly, based on data from various businesses, [Marcus in 1998] created a Customer Value

Matrix which provides an approach to defining customer value using information such as

frequency of purchase and purchase cycle.

The second key element is useful in introducing customers to new products. It is based on the

idea that people sharing similar characteristics will like similar products. As [Ahn 2008]

describes, the cold-start problem can be addressed by using features generated from customer-

to-customer and product-to-product associations through approaches such as collaborative

filtering. Customer segmentation itself has gained ground with the use of unsupervised machine

learning techniques such as Principal Components [Pearson 1901] analysis, Singular Value

Decomposition [Golub 1970] and other forms of information decomposition techniques as well

as clustering techniques such as in K-means [MacQueen 1967] and Hierarchical [Ward 1963].

The resulting customer segments can then be leveraged later on in a modelling and prediction

processes. The idea of using this kind of latent space to generate features has led to the

development of customer-to-item generation methods using matrix factorization techniques

[Koren et al. 2009]. These techniques have also been developed further to be utilized in

supervised form, for regression or classification problems. A landmark in this kind of

combination of supervised learning, using unsupervised features is LibFM [Rendle 2012].

More recent advancements in this space include the inclusion of deep learning and neural

networks to create a similar latent space feature library that can be used to summarize

customers and products based on input data. Restrictive Boltzaman Machines [Smolensky

1986] have also been used in dimensionality reduction and have also been applied in

collaborative filtering with success [Salakhutdinov et al. 2007].

The third element is based on product attributes. Linden et al. [2001] highlights the efficacy

of item-based elements such as item quality or item popularity in contributing to the accuracy

33

of product recommendation models. Product attributes such as price, recent sales, discounts as

well as attributes relating to product categorization hierchy (food Pizza Pappa John’s) can

be useful additions in predicting a product’s likelihood of being purchased.

The fourth element that drives purchase behavior is contextual information. [Setten et al. 2004]

describe this as “any information that can be used to characterize the situation of an entity”.

Their demonstration of context-aware recommendations constitutes state-of-the-art

recommendation science today. [Adomavicius et al. 2005] also emphasize the importance of

contextual information such as time, temperature and location in models from many different

disciplines including e-commerce personalization, information retrieval, ubiquitous and mobile

computing, data mining, marketing, and management.

In summary, the key drivers of purchase behavior can be categorized into four key groups:

 Features that describe the customer

 Features that describe the item

 Features that describe the relationship of customer and item

 Contextual Features

All the aforementioned features will be examined in accordance with the propensity of the

customer to buy an item in following week.

2.1.3 Binning of features

[Dougherty et al. 1995] defines the binning of features as the discretization of continuous

variables, that is to say the method through which continuous variables are transformed into

discrete counterparts. Such methods may be based on unsupervised of supervised algorithms.

Supervised binning methods take into account the information contained in a target variable

to define the most optimal bins against various metrics. Examples include methods used in

decision tree algorithms such as CHAID [Kass 1980], CART [Breiman 1984], ID3 [Quinlan

1986], C4.5 [Quinlan 1993] and J48 [Bouckaert 2010]. While decision trees can find the

optimal cut-offs iteratively both in a univariate and multivariate context as part of their learning

procedure, there are also methods dedicated solely to transforming variables optimally via

binning (i.e. to be used for further modelling). Many of these methods fall into MDLP (Minimal

34

Description Length Principle) whereby a variable is split into a certain number of bins (hybrid

method) or all distinct values are considered (standard method). Then all these bins are

gradually being merged based on the impact they yield against a supervised metric such as

Entropy (defined at 2.2.2). This merging of bins is repeated until an optimum number of bins

is formed against some criteria that have to do with complexity and optimization [Xi 2006].

Unsupervised methods bin the variables based on underlying distributions. [Han et al. 2006]

enumerate various unsupervised methods including histogram-based approachs where they

detail two commonly applied variations: binning based on equal width and binning based on

equal population (also referred to as equal frequency). The first method consists of binning a

variable based on equal intervals (e.g. every 10 points) while the latter ensures that each bin

contains an equal number of samples. Clustering is another frequently used method described

by [Han et al. 2006] whereby bins (or clusters) are created based on the closeness of data points.

Binning based on observation and intuition also fall into the category of unsupervised binning

methods.

The binning of continuous variables has been largely used in credit scoring applications where

variables need to be expressed as categories in order to create credit scorecards [Lucas 2001],

[Hsieh et al. 2010], [Siami et al. 2013], [Zeng 2014]. However there have also been examples

where binning of continuous variables has been employed in the collaborative filtering and

recommendation space. [Hao et al.2016] use discretization techniques to transform input

features for collaborative filtering models predicting the occurrence of certain pathological

states such as sudden cardiac death and recurrent myocardial infraction. [Poirier et. al 2010]

apply an optimal discretization method of numerical features to improve the predictive

algorithm for recommending movies via exploiting blogs of textual data from the web.

2.2 Meta-modelling to predict top K products

The following sections give an overview of the common ensemble methods in predictive

modelling, some of the typical metrics commonly selected to optimize these methods and a

selected but representative sample of the supervised algorithms that are often used in machine

learning.

35

2.2.1 Overview of ensemble methods

The idea of combining different machine learning or statistical methods (also known as

ensembling) to reach a better solution is not new in data science. [Breiman 1996] demonstrated

that bagging i.e. model averaging, commonly performs better than any single model. [Granger

1969] used a forecasting average mechanism to improve forecasts and achieve lower root mean

squared errors in a model predicting how many customers would use an airline service. There

are various methodologies for combining models. The most common methodologies are listed

below:

2.2.1.1 Simple averaging

Simple averaging is the simplest form of ensembling . It assumes each model has an equal

weight in the final model. In scientific notation it could be represented by equation 2.1:

 𝑌̂ = 𝐺(𝑋) =
1

𝐿
∑ 𝐺𝑙(𝑋)

𝐿

𝑙=1
=
1

𝐿
∑ 𝑦̂𝑙
𝐿
𝑙=1 (2.1)

,where X ∈ℜ is a tabular dataset, G(X) is the function that maps X to a target variable Y ∈R, L is

the number of estimators in the ensemble, and 𝑦̂𝑙 is the prediction of each estimator and 𝑌̂ the

final prediction of the ensemble [Ashtawy et al. 2015] .

2.2.1.2 Bagging

This method is very similar to simple averaging. The difference is that each model is built on

a bootstrapped set that consists of samples extracted via replacement from the main dataset.

According to [Kuncheva et al. 2003], if the single models can yield diversity, that is to say

bring in new information, it can benefit the overall ensemble model. Bootstrapping allows the

models to become slightly different (as they are trained with different subsets of the data)

36

thereby increasing the diversity of information they bring to the whole. In scientific notation

it may take the form of equation 2.2:

 𝑌̂ = 𝐺(𝑋𝑃) =
1

𝐿
∑ 𝐺𝑙(𝑋

𝑝𝑙)
𝐿

𝑙=1
=
1

𝐿
∑ 𝑦̂𝑙
𝐿
𝑙=1 , (2.2)

where XP ∈ ℜP is a tabular dataset with sample size P, G(XP) is the function that maps X to a

target variable 𝐘 ∈ R. XPl is a tabular dataset with the sample size of P, but generated using

bootstrapping via randomly selecting samples from the original XP. L is the number of

estimators in the ensemble, and 𝒚̂𝒍 the prediction of each estimator and 𝒀̂ the final prediction

of the ensemble [Ashtawy et al. 2015].

In the context of this thesis, the term bagging will include other forms of randomized averaging,

specifically Pasting for when random subsets of the dataset are drawn as random subsets of the

samples [Breiman 1999], Random Subspaces [Ho 1998] for when random subsets of the dataset

are drawn as random subsets of the features and Random Patches [Louppe et al. 2012] when

base estimators are built on subsets of both samples and features.

2.2.1.3 Boosting

In boosting each model is added sequentially to the ensemble in order to improve overall

performance. [Kearns 1988] was the first to propose a sequential approach and it can be very

effective in combining weak learners into a powerful ensemble. A notable advantage of this

method is that the weight of each model is adjusted and focused on the errors of the previous

model(s), therefore making it easier to focus on the less explored or more difficult areas of the

data space. On the other hand these methods tend to lead too overfitting. In employing boosting

techniques, it is therefore important to penalize predictions via a shrinkage parameter or

learning rate (or eta) to prevent overfitting from occuring.

There are various methods for boosting models, the most well-known of which are Adaboost,

Logitboost and Gradient Boosting (or MART). Since the latter is most commonly used, it will

also be considered by the current thesis.

The boosting may take the equation:

37

 𝑌̂ = 𝐺(𝑋) = ∑ γ𝑙𝐺𝑙(𝑋)
𝐿

𝑙=1
= ∑ γ𝑙𝑦̂𝑙

𝐿
𝑙=1 (2.3)

 X ∈ ℜ is the tabular dataset, G(X) is the function (which commonly takes the form of a decision

tree) that maps X to a target variable Y ∈ R, L is the number of estimators in the ensemble, 𝑦̂𝑙

is the prediction of each estimator in the ensemble and 𝑌̂ is the final prediction of the ensemble.

γ𝑙 is the shrinkage applied to each estimator. It is common that the shrinkage is constant

irrespective of the estimator [Ashtawy et al. 2015].

The gradient boosting model uses the negative gradient of a differentiable loss function to

update each model. This update can take the form of equation 2.4:

 𝐺𝑙(𝑋) = 𝐺𝑙−1(𝑋) + γ𝑙𝑦̂𝑙 (2.4)

In other words each estimator can be summarized as the weighted (by learning rate) sum of

predictions of the preceding l-1 estimators plus the prediction 𝑦̂𝑙 of the estimator lth that is

trained on the residuals of the 𝐺𝑙−1(𝑋) estimator with the target variable Y. In this thesis,

Gradient Boosting will be used with decision trees as base learners.

2.2.1.4 Meta-model weight computation with cross-validation

Another way to combine models is by creating another model (commonly referred to as a meta-

model) that takes as inputs the outputs of other models. For example, [Jin et al. 2009] used a

generalized linear model for binary outcomes to combine different predictors for estimating

the probability of a subject having a certain disease. The improvement in performance of the

predictions of these models was measured using the Area Under the ROC Curve (AUC).

[Smyth and Wolpert 1999] demonstrated the sensitivity of a stacking approach to over-fitting

given the involved models’ complexity. A stacking model (as almost any other machine

learning model) naturally over performs in the data it has been created with, causing it to lose

38

some of its ability to generalize in previously unseen data. The high complexity of a stacking

model that naturally involves multiple algorithms at its base, each one likely to have different

considerations and modelling assumptions, massively increases the possibility of over fitting.

For that reason when utilizing a stacking model it is vital to do so by creating unbiased

prediction for previously unseen or validation data. More commonly this is achieved via a K-

fold cross validation where each model is trained on a subset of the initial data and predictions

are formed for the other subset. The predictions as well as the real target values for that subset

are saved for further modelling. As [Kohavi 1995] stated, this procedure reduces the variance

of the final estimation although it increases the bias. According to the same paper

bootstrapping each fold can reduce the variance even further.

Assuming that all different models applied to the same set have been cross-validated in exactly

the same way and all predictions are saved for the same folds on the data, then these predictions

can form a new set where the new target Y will be the concatenation of all validation targets

of the k-folds validation sets and the new covariate matrix X will be consisted by J models

where each j is a different model applied to the same cross-validation procedure. This process

can be better explained via pseudocode.

The Meta modelling with K-Folds Paradigm takes the following parameters:

 SplitPercent: The percentage of the initial set to be used for validation at each k fold of

cross-validation, for example 30% (and 70% for the training set)

 K: The number of cross validations to run (for example 10).

 x0: The initial set of features to use to train each different model (classifier in this case,

but it could be a regressor for a regression problem).

 y: The target or label variable , that takes values of 1 or 0.

 n: The number of training points (e.g. the rows of the dataset)

 C: The number of different classifiers within the ensemble.

 𝑦̂: Is 2dimensional vector of predictions with sample size equal to the rows of the kth

validation dataset and dimensionality equal to the number of classifiers C.

 x1: The new set of features where each column denotes the concatenated predictions of

a chosen classifier to each of the K validation sets. Its columns will be C, as many as

the chosen classifiers.

 y1: Is the concatenated subsets of the target variable y of all K validation datasets.

 G: The final Meta model to be trained with x1 as feature set and y1 the label.

39

The algorithm can be further portrayed via pseudo code by figure 2.1 as:

1. For k=1 to k=K, the initial dataset { x, y} with rows n get split by SplitPercent to

form a new train set :

traink = {𝑥k , 𝑦k} with sample size (1 − SplitPercent x n)

and validation set

validationk = {𝑥m , 𝑦m} with sample size (SplitPercent x n)

a. For c=1 to c=C, a classifier is trained on the traink set and predictions 𝑦̂mare made

for the {𝑥m , 𝑦m} validationk set

i. Predictions get concatenated horizontally: 𝑦̂ → [𝑦̂ ~ 𝑦̂m]

b. 𝑦̂ is concatenated vertically: 𝑥1 → [𝑥1| 𝑦̂]

c. 𝑦m is also concatenated vertically: 𝑦1 → [𝑦1| 𝑦m]

2. The Meta model G is now fitted on the {𝑥1, 𝑦1}

Figure 2.1 : Meta modelling paradigm with K-Fold cross validation

The general process of using models’ predictions on some validation data as inputs to other

meta-models was first introduced by [Wolpert et al. 1992] and they gave it the name of stacked

generalization or stacking, where various neural networks with different structures were

combined to achieve a better generalization error in a prediction task.

In the current thesis, Stacking will be used along with bagging and with random decision trees

to achieve a better generalization error.

2.2.2 The Metrics

A common objective in recommendation science is to improve the classification accuracy of

future purchase predictions (e.g. what the customer will buy in their next visit to the retailer).

There are various metrics that can be used to judge the efficacy of the different modelling

techniques or methods that set out to achieve this objective. It is only through using a

40

combination of these metrics that we can compare the merits of the different options. The

current thesis will focus on the most widely used and representative families of these metrics.

2.2.2.1 Classification Accuracy

Classification accuracy, represented by formula 2.5, is probably the most common measure in

classification tasks and is computed for a given cut-off probability (normally 0.5 or 50%) using

the elements of the confusion matrix [Pearson 1904] as:

Table 2-1 : Confusion matrix and its elements

 It is the category It is NOT the category

Predicted the category True Positives (TP) False Positives (FP)

Predicted NOT the category False Negatives (FN) True Negatives (TN)

Based on the elements of the confusion matrix, the classification accuracy can be denoted as:

 Classification accuracy =
TP+ TN

TP+TN+FP+FN
 (2.5)

A pitfall of this metric is that it does not question the ranking of the predicted score in respect

to the target variable and is only focused on whether the classification is correct at a given cut-

off point.

2.2.2.2 Precision@k

This metric is perhaps more suitable for recommendation science as it describes how predictive

a method is at any given point in the recommendation list (where products are ranked by

relevance score) [Powers 2011] – although optimization efforts tend to be focused on the results

at the top of the list. The following equation displays the measure of precision for a specific k,

where k refers to the product’s position in the ranked list.

41

 Precision@k =
TPk

TPk+FPk
 (2.6)

2.2.2.3 AUC (Area Under Curve)

The ROC (Receiver Operator Characteristics) curve was first introduced by [Green & Swets

1966]. It describes the confusion matrix of sensitivity (represented by formula 2.7) and 1-

specificity (represented by formula 2.8) for each possible cut-off of the prediction’s array.

 Sensitivity =
TP

TP+FN
 (2.7)

 Specificity =
TN

TN+FP
 (2.8)

In recommendation science, sensitivity is the percentage of customers who buy the offered (or

recommended) product who were predicted to buy it and specificity is the percentage of

customers who do not buy the offered product who were predicted not to buy it. An explanatory

graph that breaks down the AUC to its basic elements is illustrated in figure 2.2:

Figure 2.2: Roc Curve and AUC (Area Under the Curve)

42

In other words it reflects how the prediction’s accuracy changes for all possible cut-offs.

More specifically the AUC formula 2.9 can be written as:

 AUC(X, Y) = ∑ ∑
L[f(xi

+)>f(xj
−)]+

1

2
L[f(xi

+)=f(xj
−)]

2n+n−

n−
j=1

n+
i=1 (2.9)

, where X is a feature with real values and Y another feature with 2 possible labels, one deemed

as positive and one negative (commonly -1 for the negative and +1 for the positive or 0 for the

negative and 1 for the positive). A sample xn extracted from X is often a value in the range (0,

1) and expresses the probability of that nth sample to belong to the positive class of Y. The Y

is not included in the formula 2.9, but it has been used to determine which samples (out of n+)

belong to the positive class and which samples (out of n-) belong to the negative class. A sample

retrieved from X which belongs to the positive class can be referred to as xi and from the

negative class as xj. L is the function which returns 1 if the argument contained in the brackets

is true and 0 otherwise. For a perfect AUC score all positive observations need to have a higher

score then the negative observations ([𝐟(𝐱𝐢
+) > 𝐟(𝐱𝐣

−)]).

2.2.2.4 Pearson Correlation

Pearson’s correlation coefficient, often denoted as r (or R) is a form of a bivariate linear

correlation. It was introduced by Karl Pearson in the 1880s [Mukaka 2012]. The formula to

obtain the coefficient for two vectors X, Y, where xi,yi are single samples from X,Y, is:

 r(X, Y) =
∑ (xi−X̅)(yi−Y̅)
n

i=1

√[∑ (xi−X̅)
2n

i=1
][∑ (yi−Y̅)

2n

i=1
]

 (2.10)

where X̅ is the mean for vector X∈ℜ and Y̅ the mean of vector Y∈ℜ.

43

2.2.3 The Algorithms

One of the main objectives of this thesis is to exploit state-of-the-art machine learning

algorithms to better optimize the given metrics via ensemble methods. These algorithms can

be either of a supervised or unsupervised nature. This chapter will focus mostly on the

implementation details of the algorithms. Many of the algorithms have a number of hyper

parameters associated with them and quite often finding the right values for these parameters

is important in obtaining good estimates. The hyper parameters for each algorithm are listed in

6.3.5, under the experiment using the StackNet model.

2.2.3.1 Linear Regression

Linear or Ordinary Least Squares regression (OLS) is one of the most widely used statistical

methods and consequently machine learning algorithms that attempts to linearly combine

various inputs by means of finding the optimum coefficients which minimize the squared error

in respect to a dependent variable Y ∈ ℜ [Craven et al. 2011]. In simple terms it minimizes

equation 2.11:

 E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
=
1

2
∑ (yi −W

Txi)
2N

i=1
 (2.11)

where W is the vector of coefficients ∈ ℜ and has the same size as the number of features in

the dataset X ∈ ℜ with sample size N plus one more feature if a constant value is included. ŷi

is the predicted value for a given sample i derived from the multiplication of the transposed

vector of coefficients WTwith the feature vector xi of a single sample i. Very commonly OLS

regression is used with a modification to account for multicollinearity [Wold 1984] in the data

that can heavily bias predictions, namely regularization (often denoted as c, C or λ). The latter

can be seen as a form of penalty that is applied to the coefficients in order to halt their values

from growing uncontrollably. The most prominent form of regularization is the L2 applied to

the coefficients. The previous equation can now be written as 2.12:

44

 E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
+
1

2
λ𝑊𝑇W =

1

2
∑ (yi −W

Txi)
2 +

1

2
λ𝑊𝑇W

N

i=1
 (2.12)

This is also called Ridge Regression [Tikhonov, 1946]. In matrix form the solution can be

obtained via equation 2.13:

 Ŵ=argmin
W

E(w) = (XTX + λI)−1XTY (2.13)

where XTX is the covariance matrix of the given features, a scalar λ for the regularization term

and I an identity matrix where all the values of the diagonal have the value of 1. The Ŵ indicates

the OLS estimate of W.

Equation 2.13 demonstrates that in order to find the optimal coefficients W, it is required to

compute the inverse of the XTX + λI matrix, which can be can be expensive if data

dimensionality is large. In order to avoid this operation, there are methods that use iterative

minimization of the loss function E. One family of these methods is the gradient descent (GD)

[Bottou 2010].

To solve the W using this method, the vector W is initialized with some values w0. Then (and

until convergence) the E gets optimized iteratively. W gets updated by moving along the

direction of the negative gradient −
∂E

∂W
 as shown in equations 2.14 and 2.15:

 W = W− a
∂E

∂W
 (2.14)

or in matrix notation:

 W = W− α XT(XW − Y) (2.15)

where a is the learning rate or the step by which the weights W are updated iteratively. The

value a is typically found experimentally during a cross validation procedure.

45

Stochastic Gradient Descent (SGD) is another form of a gradient optimization method of a

differentiable function that uses the gradient of that function to reach its minimum point. The

term stochastic refers to the fact that the path to the minimum point can be achieved

incrementally without requiring to parse the whole dataset at once, but instead sample by

sample. For this specific reason SGD is commonly associated with online learning [Ma et al.

2009] for its ability to update the current parameter values as soon as the respective labels are

known, using the gradient of the function. In this case the update of W can occur using one

sample point xi as illustrated in equation 2.16:

 W = W− α 𝑥𝑖(𝑊
𝑇𝑥𝑖 − 𝑦𝑖) (2.16)

2.2.3.2 Logistic Regression

Logistic Regression (LR) is a modification of the initial OLS problem where the output score

can be expressed as a probability for a given label Y to belong to a class of 1 or -1. In other

words the interest is in predicting the label probabilities P(Y | X, W), given a feature vector X

and some coefficients W. The probability that the label is 1, using the Logistic Regression

model is derived using equation 2.17:

 P(Y = 1 | X,W) = σ(W⊤X) =
1

1+ e−W
⊤X

 (2.17)

where σ is the logistic (or sigmoid) function which maps all real number into (0, 1) [Li et al.

2016]. The function to minimize is the log likelihood, denoted as logL:

 LogL(W) = logP(Y | X,W) = ∑ logP(yi | xi,W)
N

i=1
=∑ −log(1 + e−yiW

Txi)
N

i=1
 (2.18)

46

Where log is the natural logarithm (or the logarithm to the base of the mathematical constant

e), e is the Euler's number and N is the sample size of X. Adding the λ regularization term, the

coefficients W can be derived via minimizing the LogL [Minka 2003]:

 𝑊̂ = argmin
𝑊

LogL(W) = argmin
𝑊

∑ −log(1 + e−yiW
Txi) +

1

2
λ𝑊𝑇W

N

i=1
 (2.19)

There is no closed-form solution to solve 2.19 but it can be solved iteratively using Gradient

Decent on W. In that case, the gradient (∇) of W (excluding regularization) in respect to the

LogL can be computed with 2.20:

 ∇WLogL(W) =∑
xiyi

1+ eyiW
Txi

N

i=1
 (2.20)

2.2.3.3 Linear Support Vector Machine

Linear SVM is a scalable and easy to implement model that linearly combines various features

to achieve the best linear separation of two classes, normally 1 and -1. While logistic regression

focuses on giving an estimate of probability to an event, SVM is more focused on getting the

classification correct [Rosasco et al. 2004]. The most common loss associated with this kind

of linear separation is the Hinge loss, denoted as HingeL. Given a feature set X ∈ ℜ and

corresponding label Y ∈ ℜ, where each yi ∈{−1,1}, the loss function can be computed as:

 HingeL(W) = HingeL(Y, X,W) = ∑ max{0,1 − yiW
txi}

N

i=1
 (2.21)

47

where W is the vector of coefficients. Their optimum values (that minimize the Hinge loss) can

be obtained via 2.22 assuming that there is a λ penalty:

 𝑊̂ = argmin
𝑊

HingeL(W) = argmin
𝑊

∑ max{0,1 − yiW
txi}

N

i=1
 +

1

2
λ𝑊𝑇W (2.22)

The optimal W can be found using gradient and sub gradient methods on W. The gradient (∇)

of W (excluding regularization) in respect to the HingeL (excluding regularization) can be

computed with 2.23 [Collobert et al. 2001]:

 ∇WHingeL(W) =∑ {
−yixi , if yiW

txi < 1

0, if yiW
txi ≥ 1

N

i=1

 (2.23)

2.2.3.4 Multilayer perceptron and neural networks

Moving away from the linear models, neural networks have been used extensively in machine

learning applications and in various fields, including recommendation science for many years

[Christakou et al. 2007]. Neural Networks or just NNs may take various shapes and create

complicated structures using various functions for input or output. For the purposes of this

thesis only the multilayer perceptron neural network type will be examined and specifically

one of its most simple forms to ensure scalability. A typical multilayer perceptron with 1

hidden layer and 5 hidden neurons can be viewed in figure 2.3.

48

Figure 2.3: Single layer neural network2

As illustrated in 2.3, given some input features X ∈ ℜ with dimensionality J (XJ), a

transformation takes place within the hidden layer by summing up all the dot products of each

sample xi with some Wj vectors with size equal to the dimensionality (J) of the input data. This

is repeated for the output layer using the hidden layer as input and a new set of Wh with

dimensionality H, equal to the number of neurons of the hidden layer. The output of this

network can be used to optimize both the squared loss function presented in 2.11 for regression

tasks and the LogLikelihood function 2.18 for classification tasks problems. In the context of

the squared loss function, the latter can be expressed in 2.24 generically given some estimates 𝑌̂

∈ ℜ, which are the result of the output of the network and a target variable Y ∈ ℜ.

 𝐸(𝑌̂) = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1
 (2.24)

The output of the network can be expressed as a function f which takes as input the feature set

XJ and given a 2-dimensional vector of W with size J,H, it outputs estimates Ŷ given equation

2.25 [Ashtawy et al. 2015] :

Ŷ = f (XJ,WJ,H) = G(∑ (wh,gσ(∑ (wj,hxj)
J

J=0
))

H

h=0

) (2.25)

2 obtained (and edited) from http://docs.opencv.org/modules/ml/doc/neural_networks.html

http://docs.opencv.org/modules/ml/doc/neural_networks.html

49

Where G is a linear activation function of the output neuron as G (u) = u, σ is the activation

function for the hidden-layer neurons which was previously defined in 2.17 in the context of

Logistic Regression. Wh,g refers to the weights associated with the links connecting the hidden

units to the output layer, Wj,h represents the weights of input-to-hidden layer links, and xj is the

jth feature of X. The weight variables W0,h serve as bias parameters.

Other common activation functions (apart from the sigmoid σ) are the hyperbolic tangent,

denoted as tanh displayed in 2.26 and the rectifier denoted as relu [LeCun et al.2015], displayed

in 2.27:

 tanh(u) =
eu+ e−u

eu− e−u
 (2.26)

 relu(u) = max (0, 𝑢) (2.27)

where u is the input to a neuron. The minimization problem for the squared loss function can

be expressed with 2.28:

𝑊̂ = argmin
𝑊

𝐸(𝑊) = argmin
𝑊

∑ (𝑦𝑖 − G(∑ (wh,gσ(∑ (wj,hxi,j)
J

J=0
))

H

h=0

))

2𝑁

𝑖=1

 (2.28)

The most common way to minimize function 2.28 is by using Back Propagation (BP) [Rojas

1996] along with Gradient Descent. The main concept of BP is that starting from the output

and moving backwards (towards input), the emissions of the neurons’ derivatives (gradients)

carry the details of the residual error with the target variable Y and formulate the updates for

all weights accordingly.

The weights in a generic network with number of layers L (including input and output) are the

only parameters that can be modified to make the quadratic error E as low as possible. Because

E is calculated by the extended network exclusively through composition of the node functions,

it is a continuous and differentiable function of the weights W1, W2, . . . ,Wm in the network

50

[Rojas 1996], where m is the size of the layers L - 1. E can be minimized by using an iterative

process of gradient descent, for which the gradient is calculated as:

 ∇E= (
∂E

∂𝑊1
,
∂E

∂𝑊2
, … . ,

∂E

∂𝑊𝑚
) (2.29)

Each Wm is updated using the increment:

 W𝑚 = W𝑚 − 𝑎
∂E

∂𝑊𝑚
 (2.30)

, where a represents a learning rate, which defines the step length of each iteration in the

negative gradient direction [Rojas 1996].

2.2.3.5 Naïve Bayes Classifier

Naive Bayes methods are a set of supervised learning algorithms based on applying Bayes’

theorem with the “naive” assumption of independence between every pair of features. Given a

class variable Y and a dependent feature vector X with size J, Bayes’ theorem states the

following relationship [Pedregosa et al. 2011]:

 P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌)P(𝑥1,𝑥2,…,𝑥𝐽|Y)

P(𝑥1,𝑥2,…,𝑥𝐽)
 (2.31)

Using the naive rule that all features j are independent given the value of the class variable

[Zhang 2004]:

 P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌) ∏ P(𝑥𝑗|𝑌)

𝐽
𝑗=1

P(𝑥1,𝑥2,…,𝑥𝐽)
 (2.32)

51

Since P(𝑥1, 𝑥2, … , 𝑥𝐽) is constant given the input, equation 2.32 can be further simplified as

2.33:

 P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) ≈ P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1 (2.33)

The estimate of Y, denoted as Ŷ can be calculated using the Maximum A Posteriori (MAP)

method (from Bayesian statistics) to estimate P(𝑌) and P(𝑥𝑗|𝑌) [Gauvain 1994].

 𝑌̂ = argmax
𝑌

P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1 (2.34)

The different naive Bayes classifiers differ mainly by the assumptions they make regarding the

distribution of P(𝑥𝑗|𝑌). A widely used version of Naïve Bayes assumes a Gaussian distribution

of continuous features X to belong in a class c of the label variable Y:

 P(𝑥𝑗|𝑌) =
𝟏

√𝟐𝝅𝝈𝒀
𝟐
 exp (−

(𝑥𝑗−𝜇𝑌)
2

2σ𝑌
2) (2.35)

where parameters σ𝑌 (variance) and μ𝑌 (mean) are estimated using maximum likelihood [Hand

et al. K 2001].

2.2.3.6 K Nearest Neighbours (KNN)

KNN is another supervised machine learning algorithm (for regression and classification) that

is also very commonly used, particularly because it is easy to implement. It has been used in

the recommendation space but has been criticized for being slow compared to other techniques.

52

It also requires a significant amount of memory to store the main dataset from which

neighbours are discovered [Ravi et al. 2009].

The main principle behind KNN is that for each observation i to be classified from a feature

set P with dimensionality J, the K closest observations are discovered based on a distance

metric D from another dataset X (with the same dimensionality) where the label Y is known.

The final predictions are formulated based on a predefined number of training samples (K)

with closest distance D to the xi point, and the estimate 𝑌̂ is made based on the majority of the

class label contained in these K closest observations.

There are various ways to calculate the closeness of a data observation with another. One of

the most commonly used measures is Euclidian distance. Due to its popularity Euclidian

distance will be used as the main distance measure for this thesis. For two 2 observations x and

p retrieved from the main feature sets X,P respectively, the Euclidian distance [Weinberger et

al. 2005] with dimensionality J can be estimated as:

 Euclidian Distance(x, p) = √∑ (xj − pj)2
J
j=1 (2.36)

Where xj is the value of feature j in the data point x, retrieved from feature set X and pj the

value of feature j in the data point p, retrieved from feature set P.

2.2.3.7 Decision Trees, Random Forests and Gradient Boosting Trees

Decision Trees are non-parametric algorithms used for regression or classification. Through

sequential partitioning of a given feature (where the partitioning process continues until a

specific goal or stopping criteria are met), they attempt to achieve more discriminating results

in regards to the target variable.

The common training process for a Decision Tree algorithm can be described as follows: for

a feature set X with dimensionality J, all x1, x2,…,XJ features are selected one by one and

frequencies of the unique classes c of the target variable Y are estimated for all possible distinct

values Dj of the xj vector. Out of all possible distinct values D from all feature vectors in X, the

best distinct value (Dj) for a vector Xj is determined using a metric that quantifies the amount

53

of information explained in respect to the target variable Y, if this value is used to partition X.

Assuming the best point occurs for distinct value s in feature j, two different feature sets

{X1,Y1},{X2,Y2} will be created out of the initial X as displayed in equation 2.37:

 {
𝑋𝑗 ≤ 𝐷𝑗,𝑠 → {X1, Y1}

𝑋𝑗 > 𝐷𝑗,𝑠 → {X2, Y2}
 (2.37)

where X1, X2are subsets of X and Y1, Y2 subsets of Y. Two separate decision trees are then

drawn based on the new sets and this process is repeated until certain criteria are met like the

maximum depth of the tree or the total size of nodes in the tree. There are many metrics that

can define the optimal split and many ways to split a tree into subsets, but in this thesis binary

splits will be considered as already displayed.

A common splitting criterion for a classification task is using Entropy to find the best partition.

Entropy measures the amount of information contained within a certain dichotomization of the

data in respect to the proportion of the classes of label Y [Thomas et al. 2002]. Given C the

number of distinct classes in Y, the Entropy (Denoted as En) for all distinct classes of Y can

be estimated with 2.38:

 En(𝑌) = ∑ −P(Y = c) log2 P(Y = c)
C
c=1 (2.38)

To better illustrate this, consider the following example of two classes. Table 2-2 presents the

frequencies of the binary classes of Y:

Table 2-2: Frequency of the distinct classes of Y

Y

c=0 c=1

15 15

Based on table 2-2, P(Y = 0) =
15

30
= 0.5 and P(Y = 1) = 0.5. Therefore:

 En(𝑌) = −0.5 log2 0.5 − 0.5 log2 0.5 = 1.0

54

Considering a potential split point Dj,s = 50 , table 2-2 can be expanded to 2-3 in order to

include the frequency matrix of the class labels of Y and the two directions (≤ and >) of Dj,s.

Table 2-3: Frequency matrix for the class labels of Y and a 2-way directions of split point Dj,s

 Y

 c=0 c=1 Sum

𝐃𝐣,𝐬

<= 50 10 7 17

> 50 5 8 13

Sum 15 15 30

Now Entropy can be computed based on the actual frequencies of the classes c and the two

directions of the split point 𝐃𝐣,𝐬 based on formula 2.39:

En (Y, Dj,s) = P(Dj,s = ′ ≤ 50′) En (𝑌Dj,s=′≤50′) + P(Dj,s = ′ > 50′) En (𝑌Dj,s=′>50′) (2.39)

Replacing all elements based on the frequency table 2-3:

P(Dj,s = ′ ≤ 50′) =
17

30
≈0.567 ,

P(Dj,s = ′ > 50′) =
13

30
≈0.433 ,

En (𝑌Dj,s=′≤50′) = −
10

17
 log2

10

17
 −

7

17
 log2

7

17
 ≈ 0.977,

En (𝑌Dj,s=′>50′) = −
5

13
 log2

5

13
 −

8

13
 log2

8

13
 ≈ 0.9612,

En (Y, Dj,s) = (0.567 × 0.977) + (0.433 × 0.9612) ≈ 0.9704

The final step to determining the value of the split is to measure how much information was

gained before considering the Dj,s split point and after. This information gain is often denoted

as IGain (formula 2.40) and measures the difference between initial entropy (prior to splitting)

and after the split:

55

 IGain(Y, Dj,s) = En(Y) − En (Y, Dj,s) (2.40)

In the aforementioned example IGain(Y, Dj,s) = 1.0 − 0.9704 = 0.0296.

Random Forest will be implemented through bagging (as explained in (2.2) by averaging many

different randomized trees where the random factor will also be imputed by tuning various tree-

specific parameters such as maximum number features to be considered for a split, maximum

number of possible cut-offs for a given feature as well as other hyper parameters such as

minimum number of samples in a single node, maximum tree size (in levels) and number of

trees [Breiman, 2001].

Gradient Boosting Trees, or MARTs (multivariate additive regression trees) will have the form

of (2.3) where Decision Trees are the base learners.

2.2.3.8 Matrix Factorization and LibFM

Non-Negative Matrix Factorization (or for simplicity NNMF) in the recommendation world is

a way to summarize a (normally sparse) matrix of item-to-customer interactions. It usually

consists of a U vector of size f for the customers and a V vector of size f for the items where

the prediction 𝑌̂𝑖𝑗 of a customer i (out of n) to buy product j (out of m) is the dot product of the

two vectors as illustrated in 2.41:

 𝑌̂𝑖𝑗 = 𝑈𝑖𝑉𝑗 (2.41)

The size f is a hyper parameter and is often referred to as the latent feature for these vectors.

Assuming the loss to be minimized is the squared error E, the U,V can be obtained by equation

2.42:

56

 Û,V̂=argmin E
U,V

(U, V) = argmin
U,V

∑ ∑ (Yij − UiVj)
2m

j=1
n
i=1 (2.42)

Whilst NNMF has been commonly used to capture pairwise interactions between customers

and items, LibFM [Rendle 2012] combines linear models (such as linear regression) with

factorized pairwise interactions to provide more holistic models. Assuming a squared loss

function E, a target variable Y feature set X with dimensionality m and a matrix with latent

features 𝑼 of size m x f, the optimization function can be summarised as equation 2.43:

 Ŵ, Û=argmin E(W,U)
 Ŵ,Û

= (𝑌 − (𝑋0 + 𝑋1𝑤1…+ 𝑋𝑚𝑤𝑚 + ∑ ∑ 𝑋𝑗𝑋𝑑𝑈𝑗𝑈𝑑
𝑚
𝑑=𝑗+1

𝑚
𝑗=1))

2
 (2.43)

The scoring function consists of 2 parts, the linear model and the dot product of all possible

pairwise interactions within a given sample. The prediction function f from 2.43, is fully

elaborated in equation 2.44:

 f(W, U) = (X0 + X1w1…+ Xmwm + ∑ ∑ XjXdUj
Ud

m
d=j+1

m
j=1) (2.44)

LibFM can also be solved with gradient methods where the linear and pairwise model are split

into two different updates. The linear update is described in equation 2.45:

 ∇WE(W) = (f(W, U) − Y)X (2.45)

The latent features’ vectors update occurs when creating the 2-way interactions and takes the

form of equation 2.46 [Rendle et al. 2011]:

 ∇UE(U) = (f(W,U) − Y)X ∑ UlXl
m
l=1 (2.46)

57

2.3 Hybrid method to predict repeated, promotion-driven

product purchases in an irregular testing environment

Retailers have been using discount or promotional coupons for years as a way of driving

customer loyalty. The introduction of loyalty card data has enabled them to make the process

of coupon allocation more efficient. Information derived from purchase history has allowed

retailers to allocate coupons based on individual customer preferences. Making coupons more

relevant to customers leads to increased customer satisfaction and increased sales [Cherney et

al. 1998].

One way of measuring the effectiveness of a coupon, is to calculate the likelihood of the

associated product being purchased - not just in the coupon redemption period but afterwards

as well. In other words a coupon can be considered effective if it has the potential to create a

purchase habit. Habits tend to lead to increased sales which can have a long term impact on

both the retailer and supplier. Using discrete choice modelling, [Lewis 2004] found that

promotional coupons can increase annual sales for a substantial portion of exposed customers.

Restrictive Boltzmann Machines (RBMs) are which are a family of deep learning methods

suitable for binary problems such as this one (will a promoted product be purchased and

purchased again). RBMs may take a specific form when used to calculate the probability of a

user i giving a specific rating to a certain product – or in this case a flag of 1/0 for whether the

user will buy the item or not in the future. Assuming there are m users and n products, ui=1

will demonstrate that user i will buy a certain product. A set of different units h are used to

connect the weights of user to the respective values (of 1 or 0) for the specific products he/she

will buy. The hidden units h can be seen as closely related with the latent features in matrix

factorization and its size F is a hyper parameter to be tuned. The function S that maps the

RBM’s formulation (or in general the Energy term) for a set of k hidden units can simply be

written as equation 2.47:

58

 S(u) = −∑ ∑ ∑ Wij hjui
kK

k=1
F
j=1 − ∑ ∑ uibi

K
k=1 − ∑ hjbj

F
j=1

m
i=1

m
i=1 (2.47)

where the weights W connect the u,h visible and hidden units respectively and b their respective

biases. The respective gradients of an approximation of the gradient function called Contrastive

Divergence [Hinton 2002] for a Wi,j can be computed as in equation 2.48:

 ∆wij = e (< uihj >data − < uihj >T) (2.48)

where e is the learning rate (normally a small value such as 0.001) and the expectation <.>T

refers to the extraction of different samples and formulation of the conditional probabilities p

(ui=1/h) and p(1/V).

2.4 The StackNet model

The StackNet model is named after stacking and neural networks. The following section

reviews briefly the notions of stacking and neural networks. Later it examines applications in

current literature that have combined the two.

2.4.1 Stacking

[Wolpert 1992] introduced the concept of a meta model being trained on the outputs of various

generalisers with the scope of minimizing the generalization error of a target variable. This

methodology was successfully used to improve performances in various tasks, including

translating text to phonemes and bettering the performance of a single surface-fitter.

According to [Wolpert 1992] stacked generalization includes 2 stages. In the first stage the data

is split into 2 parts. A number of different generalizers (or estimators) are fitted on the first part

59

of the data and then predictions are made for the other part. This process is described in the

paper as the creating phase. The guessing phase on the other hand gathers and concatenates all

these predictions forming a new dataset and a new (meta) generalizer is used to treat these as a

new data set and make predictions to some other (test) data. Wolpert also states that this

approach could even be used with just 1 generalizer in the creating phase. In this particular

scenario the meta learner corrects the mistakes of the single model based on the results from

the second dataset.

This 2-phase process is illustrated by Wolpert in his original paper (figure 2.4):

Figure 2.4: The 2 phases of the Stacked Generalization procedure3

2.4.2 Stacking diversity and complexity

[Wolpert 1992] addresses the importance of strong generalizers as part of the ensemble in order

to achieve better (smaller) errors in the unobserved data, highlighting that “dumb” models (or

models that lack sophistication) could be replaced by more sophisticated ones in order to

achieve better performance. He also demonstrates that the performance of the ensemble as well

3 Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259.

60

as its ability to generalize in an unobserved framework is affected by the diversity contained

within all the generalizers. [Rogova 1994] further emphasizes that the main component

determining the effectiveness of an ensemble is the level of error-independence within the

contained generalizers. In other words, the generalizers need to be making different errors.

The need for diversity within the ensemble is explored in many different studies including

[Sharkey 1996], [Sharkey et al. 1997], [Zhou et al 2002], [Melville et al. 2003], [Melville et al.

2005]. [Sharkey 1996], [Sharkey et al. 1997] define four different types of diversity in an

ensemble for classification problems. The first type refers to cases where only one generalizer

makes an error within each sample. This type can lead to very high accuracies. Another type

of diversity that leads to high accuracy is when the majority of generalizers predict the correct

answer. The third type refers to cases where at least one generalizer outputs the right answer

(even this scenario can lead to good predictions). The fourth type includes cases where all

generalizers make a mistake. In this scenario, getting the right predictions is particularly

challenging.

Another way to measure ensemble diversity is presented in the work of [Tsoumakas et al.

2009]. Tsoumakas introduces the idea of correlation–based model pruning whereby models

which are highly correlated with another are removed. The study demonstrates that pruning in

this way results in a substantial reduction of the computational cost of stacking and can on

occasion also improve predictions.

The concept of correlations as a way of detecting diversity within an ensemble is also presented

in the work of [Kuncheva et al. 2003]. This study investigates 10 different metrics for

measuring diversity within an ensemble. These metrics include four averaged pairwise

measures (the Q statistic [Yule 1900], the correlation [Sneath 1973], the disagreement [Ho

1998], the double fault [Giacinto et al. 2001]) and six non-pairwise measures (the entropy of

the votes [Cunningham et al. 2000], the difficulty index [Hansen et al. 1990], the variance

[Kohavi-Wolpert 1996], the interrater agreement [Dietterich 2003], the generalized diversity

[Partridge et al. 1997] and the coincident failure diversity [Partridge et al. 1997]). Although the

study highlights the link between diversity and performance, it is unable to identify a definite

link between diversity and improvements in accuracy. They further conclude that the problem

of measuring diversity and so using it effectively for building better classifiers is still to be

solved.

61

2.4.3 Neural Network

A specific type of neural network has already been defined in the current thesis in the previous

chapter. Conceptually such artificial networks were first created in an attempt to mimic the

biological neural networks in the human brain. [Rosenblatt 1958] was the first to create a very

simple version of a neural network – the perceptron.

The usage of ANNs (Artificial Neural Networks) flourished when back propagation was

developed and it was found that it could be used to combine multiple perceptrons in the form

of various hidden layers between some input data and an outcome.

The advances in computing power and specifically the usage of GPUs have allowed the

previously slow NN machine learning models to be run at greater speeds [Schmidhuber 2015]

taking the form of today’s deep learning.

Furthermore the inclusion of a dropout term, advances in gradient-based methods as well as

regularization methods as a means to prevent neural networks from both over and under fitting

have further boosted the use of these algorithms in various fields including image, sound, and

text classification as well as recommendation tasks [Hinton et al. 2014].

2.4.4 Applications for combining Algorithms on multiple levels

[Breiman 1996] borrows the idea of [Wolpert 1992] for stacked generalization and extends it

to regression trees as well as ridge regressions using cross validation as a means to give

improved prediction accuracy.

[Van der Laan et al. 2007] propose a new prediction method for creating a weighted average

of many candidate algorithms to build a super learner. They propose a fast algorithm for

constructing this super learner in a prediction which uses V-fold cross-validation to select

weights to combine an initial set of candidate learners.

[LeDell 2015] proposes a scalable learning methodology using a super learner (also known as

stacking) to combine multiple, typically diverse, base learning algorithms into a single,

powerful prediction function through a secondary learning process called meta learning . This

62

methodology reduces the computational burden of ensemble learning while retaining superior

model performance.

[Zhou et al. 2017] propose the use of multi-level random forests to improve predictions in the

image classification space and achieve similar performance to other state of the art methods

including convolutional neural networks.

63

3. Univariate Analysis of the Dataset

This chapter presents an overview of the dataset that will be used in this thesis and maps the

features that will be used in the analysis that facilitate predicting what the customer will buy

next week given a visit. Given the nature of the grocery sales data, understanding the drivers

that connect customer and products is critical for applying specific machine learning

algorithms and to improve performance.

3.1 Overview of Available Data Sources

This chapter uses the freely-available data for research from dunnhumby ltd4 . Specifically, the

set of available data is named “The Complete Journey” and holds the complete transactions of

2,500 frequent buyers for a supermarket chain for a period of 102 weeks amounting to

2,595,732 entries including fields such as time stamp, discount, price, store and place. The term

used to describe the buyer is “household_key” and represents the buyer-entity of the purchases

that are made. It is should be noted that it is likely that the members of the same family belong

to the same household_key.

The retailer has also provided information about the products (expressed via a product_id) such

as the brand-manufacturer or the department (such as Dairy) where the product belongs to.

There are 92,339 unique products along with 6,476 different manufacturers and 44 distinct

departments. Additionally, in the supplied datasets there is a unique list of all the

household_keys with demographic information about the household’s status such as age band,

income band, marital status and more. Coupon and promotional data are also presented in

separate files, but will not be exploited in this chapter (see Chapter X).

3.2 Defining the experiment

4 www.dunnhumby.com/sourcefiles

http://www.dunnhumby.com/sourcefiles

64

The following sections share generic information about the population of the experiment and

the target variable. In addition, the presence of seasonality is highlighted alongside the

distinctive ability of Customer’s historical frequency of purchase explaining their future

purchases. Later sections display a hierarchy of predictive features considered for the

experiment as well as an algorithm that finds the optimal bins for each feature in respect to the

target variable. This is to best capture non-linear relationships and gauge their predictive power

more efficiently. The impact of this type of continuous feature discretization is gauged via

estimating the difference in predictability of features (as measured by AUC) before and after

binning has been applied both in actual and proportional terms.

3.2.1 Modelling population and target Variable

The main focus of this chapter is to explain some key features (based on the provided sets of

data) that may affect the probability of a customer buying a product next week given a visit.

The latter part emphasizes that the focus is on predicting the correct products assuming the

customer has visited the store in a target time period. This is also boosted from the

understanding that, generally, all 2,500 households are frequent buyers. Therefore, a model of

whether the customer will visit or not is not critical in this case. It can be assumed that these

are customers who do the majority of their shopper at this particular supermarket chain.

The volume of 92,000 different products is deemed unnecessarily high since some of these

products were very rarely bought during the year. To simplify the process, only products that

were bought more than 30 times in the last year (weeks from 50 to 102) were considered in the

process - resulting in only 9,788 unique products ids, which is around 10 % of the initial pool

of items. This suggests that most of the transactions of this retailer are concentrated in a small

group of products. For the scope of this analysis, each customer (out of 2,500) is related with

any of the 9,788 products yielding 24,470,000 possible customer-to-product pairs to be

explored for a particular week.

The fundamental question to answer then becomes: if some of the purchasing history for these

customers in respect to these products, as well as general information about the customer and

the item, is known at a point in time, can sensible predictions be made for as to whether the

customer will buy the product in a specific (future) point (week)? In light of this, two different

datasets are formed in different time periods (with the same features) to serve as training and

65

test datasets. The first set uses week 100 as the target week (for which predictions are due)

while the test week is number 101. For each different target week, 52 previous weeks are used

to compute features that summarize the relationship of the customer and the products. The

demographics and product detail data are assumed to be stable for the purposes of this analysis.

The feature engineering process that utilizes the past year of transactions to create aggregated

features for up to the target week can be visualized in graph 3.1:

Figure 3.1 : Feature engineering process and definition of target variable

The initial set of 24,470,000 unique customer-to-product pairs is further halved by including

only those customers that did visit the retailer’s stores during week 53 (or 54 for the test set).

Only 1,288 households visited in the target week 53 and 1,311 in week 54. The distinct number

of different products bought by the selected group of customers in the target week is 27,109,

and 21,540 for the test set. This can also be viewed as the total pairs triggered out of the total

customer-to-item combinations, a fairly small but still viable number. For the purposes of the

univariate analysis, the datasets are merged to aid the significance of the results.

3.2.2 The notion of seasonality and time lag

It is generally agreed that customer preferences may change (or discontinue as stated in

[Tripsas 2008]) over time, so any feature engineering that attempts to map the customer

relationship with the item or the item’s global preference in a certain point in time needs to

account for that possible fluctuation. Furthermore, there are products that are bought either

more or less during certain periods owing to seasonality or because of unobserved factors (such

as general popularity decline because of a competitor’s new product). To better visualize this

in figure 3.2, the product with id 826249 demonstrates fluctuation in its weekly sales over the

66

102-weeks timespan. Quite clearly a prediction for week 62 or 24 where product sales seem to

be rising would be more optimistic versus weeks 1 or 2.

Figure 3.2 : Seasonality in weekly sales in units for product 826249

To address this, all features created through the current feature engineering process based on

the transactional history will be expressed through different time periods and lags. For example,

instead of simply creating the number of times the customer bought the item in the last 52

weeks, last 39, last 26, last 13, the ratios of these will be created in respect to the target week

too. Note that the weeks are NOT mutually exclusive (i.e. week 13 is included in week 52).

The process can be illustrated with figure 3.3:

Figure 3.3 : Feature engineering process for different time stamps

0

20

40

60

80

100

120

140

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

7
7

8
1

8
5

8
9

9
3

9
7

1
0

1

Sa
le

s
in

 U
n

it
s

Week

67

3.2.3 Dominance of the frequency of purchase and exploiting the

product hierarchy

The most obvious and strong finding regarding whether the customer will buy a product in a

particular week or not is the number of times he/she has bought this item in the past (i.e. last

52 weeks). This can be referred to as the frequency of purchase in the last 52 weeks. Thus out

of the 9,800 items considered for each customer, as illustrated in figure 3.4, they have almost

3% probability to buy an item he/she has bought before in the last 52 weeks (which accounts

for 55% of the total pairs that actually happen in the target week) versus 0.07% for an item

he/she has not:

Figure 3.4 : Probability to buy an item in the target week given previous purchase status

In other words, by knowing whether the customer has bought the item in the past, it helps

isolate 55% of the total customer-item pairs that occur in the target week in a much smaller

part of the population. In contrast, the remaining 45% of the total occurring pairs that belong

to a group of products that the customer has never bought, necessitate further information to

aid the capture the underlying relationships between the two.

This gap is aimed to be filled by exploiting the product hierarchy, which in this scenario will

be the manufacturer and the department in which the item belongs to, since a customer has

higher chance to buy a product that belongs to a category or brand he/she has purchased before.

As can be illustrated in table 3.1, a customer is twice as likely to buy an item from a

manufacturer he/she bought before 12 or more times than one he/she has bought fewer times

in the previous 52 weeks.

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

No Yes

C
u

st
o

m
e

r-
p

ro
d

u
ct

 P
ai

rs

Has customer A bought product B in previous 52 weeks

Total customer-to-product
pairs

Probability to buy in target
week

68

Table 3.1 : Probability to buy an item from a manufacturer given previous purchases

Times bought in previous 52 weeks Probability to buy in target week

0 to 11 0.09%

more than 11 0.17%

3.2.4 Predictive grouping of the features

The feature space in this chapter is divided to a finite number of distinct groups to better exploit

its potential and comprehend its predictive power. These groups can be summarized as:

1. Household features : These are features about the household itself and can be further

divided to :

1.1. Demographics: This is provided by the retailer, features like age or income band.

1.2. Transaction-based: These are features that are created by aggregating the transactional

data and they aim to capture loyalty (such as number of visits or average spending)

and cardinality (potential of the customer to try many different products or/and

tendency to buy new items.)

2. Product features: These refer to certain attributes of the product such as popularity and

accessibility.

3. Manufacturer features: Same as product but for manufacturer.

4. Department features: Same as product but for department.

5. Household and product features: This refers to a set of features that map the historical

relationship of a customer with the product such as times bought, average cycle and last

bought.

6. Household and manufacturer features: Similar as above but for manufacturer.

7. Household and department features: Similar as above but for department.

8. Contextual features: This includes time and day of the week.

3.2.5 Optimized binning to capture non-linearity

69

To better assess the potential of numerical continuous variables to explain the target variable,

optimized binning was used to split the feature into segments and replace each part with the

log of the odds of the target variable for this segment in order to capture the inherent

nonlinearities while maximizing a specific metric. As explained above and since this is

essentially a binary classification problem, the metric to optimize was AUC. The logic of the

algorithm is similar to the MDLP (Minimal Description Length Principle) explained in 2.1.3,

with the main difference that the metric used to define the best bins at its iteration is AUC. The

methodology is also expressed to work against any potential optimization metric for regression

or classification.

Initially a continuous variable is divided into 100 equal (in size) bins where the odds of

purchases versus non-purchases are known for the target week. Note that the number of the

initial bins is a hyper parameter and can be selected differently. Then in order to reduce the

number of bins and therefore increase the number of observations per bin, the best pair of

neighboring bins to merge are found by considering all possible combinations and comparing

the uplift of AUC until the number of bins is trimmed down to 10 (which is also a hyper

parameter).

Optimized binning Algorithm is displayed using pseudo code in figure 3.5:

Input: Feature X, Initial number of bins N, final number of Bins n, metric as m

Output: Model parameters = (Xnew)

𝑿𝒏𝒆𝒘 ← 𝑿(𝑵)

𝑾𝒉𝒊𝒍𝒆 𝑵 > 𝒏 𝒅𝒐:

 𝒇𝒐𝒓 𝒊 ∈ (𝟐,… . . , 𝐍) 𝒅𝒐:

𝑿𝒏𝒆𝒘𝒕𝒆𝒎𝒑(𝐍 − 𝟏) ← 𝒎𝒆𝒓𝒈𝒆(𝑿𝒏𝒆𝒘((𝒊 − 𝟏), (𝒊)))

𝒎𝒆𝒕𝒓𝒊𝒄𝒊 ← 𝒎(𝑿𝒏𝒆𝒘𝒕𝒆𝒎𝒑(𝐍 − 𝟏))

𝑿𝒏𝒆𝒘(𝐍 − 𝟏) ← 𝒎𝒆𝒓𝒈𝒆(𝑿𝒏𝒆𝒘((𝐦𝐚𝐱𝐢𝐧𝐝𝐞𝐱(𝒎𝒆𝒕𝒓𝒊𝒄𝒊) − 𝟏),𝒎𝒂𝒙𝒊𝒏𝒅𝒆𝒙 (𝒎𝒆𝒕𝒓𝒊𝒄𝒊)))

𝑵 ← 𝑵 − 𝟏

𝑼𝒏𝒕𝒊𝒍 𝑺𝒕𝒐𝒑𝒑𝒊𝒏𝒈 𝒄𝒓𝒊𝒕𝒆𝒓𝒊𝒂 𝒊𝒔 𝒎𝒆𝒕

Figure 3.5 : Optimised Binning Algorithm

70

3.3 Features’ ranking and dictionary

The previous data exploration phase generated over 100 features (with lags and different time

stamps) some of which were discarded from the potential pool of variables to consider for being

too weak or for having significant number of missing values. The final set of features sums to

75 – all categorical, via transforming the continuous ones with the optimized binning algorithm

to better capture the non-linearity that connects them with the target variable.

The following table of features provides a description of the generated features (accounting for

the appropriate time lag) along with a marker that points into which one or many of the

previously-mentioned features’ groups the features belong to. Additionally the table is sorted

in a descending manner using the AUC statistic that has been explained before. The

interpretation should be that the higher this statistic, the higher the predictive power of the

feature to efficiently point to the ‘0’ or ‘1’ class of the target variable. It should be noted that

this is just the univariate descriptive power of these features. It may be assumed that many of

the features share common information (or in other words there is multi-colinearity in the data)

and that a feature’s unique descriptive power to predict the target variable may not be

accurately found via this method. Nevertheless that can be used to understand the main

predictive power of each feature group.

The different feature groups as described in section 3.2.4 are denoted as C for customer, P for

product, D for department and M for manufacturer. All the generated features used in this

experiment are portrayed more analytically in table 3.2. The table displays the feature name, a

brief description for what it represents, the different feature groups it belongs too as well as the

AUC of the feature in respect to the target variable after applying the optimized binning

algorithm in figure 3.5:

Table 3.2 : Features’ dictionary with predictability statistics and features’ groups mapping

Feature name Feature Description C P D M AUC

frequency26 Number of baskets the customer included the product

in last 26 weeks
✓ ✓ 0.775

71

frequency39 Number of baskets the customer included the product

in last 39 weeks
✓ ✓ 0.775

frequency52 Number of baskets the customer included the product

in last 52 weeks
✓ ✓ 0.775

frequency13 Number of baskets the customer included the product

in last 13 weeks
✓ ✓ 0.775

cycle_vs_lastbought Average cycle (52 weeks) minus days ago since last

bought the product
✓ ✓ 0.775

average_cycle52 Every how many days the customer bought the

product in last 52 weeks
✓ ✓ 0.774

last_day_bought Days from the target week since the customer last

bought the product
✓ ✓ 0.774

average_cycle39 Every how many days the customer bought the

product in last 39 weeks
✓ ✓ 0.766

average_cycle26 Every how many days the customer bought the

product in last 26 weeks
✓ ✓ 0.747

popularity13 Number of baskets the product appeared in last 13

weeks

 ✓ 0.747

popularity26 Number of baskets the product appeared in last 26

weeks

 ✓ 0.742

popularity39 Number of baskets the product appeared in last 39

weeks

 ✓ 0.739

popularity52 Number of baskets the product appeared in last 52

weeks

 ✓ 0.735

average_cycle13 Every how many days the customer bought the

product in last 13 weeks
✓ ✓ 0.709

frequencies_decay frequency52 divided by frequency13 ✓ ✓ 0.709

frequency13man Same as frequency13 but for "manufacturer" ✓ ✓ 0.708

frequency26man Same as frequency26 but for "manufacturer" ✓ ✓ 0.707

frequency39man Same as frequency39 but for "manufacturer" ✓ ✓ 0.704

frequency52man Same as frequency52 but for "manufacturer" ✓ ✓ 0.702

average_cycle52man Same as average_cycle52 but for "manufacturer" ✓ ✓ 0.698

average_cycle39man Same as average_cycle39 but for "manufacturer" ✓ ✓ 0.695

average_cycle26man Same as average_cycle26 but for "manufacturer" ✓ ✓ 0.695

most_trialled Number of customer who bought the item 1st time

the previous week

 ✓ 0.687

average_cycle13man Same as average_cycle13 but for "manufacturer" ✓ ✓ 0.686

frequenciesman_decay frequency52man divided by frequency13man ✓ ✓ 0.683

productsbought13 Total number of products the customer bought in last

13 weeks
✓ 0.632

productsbought26 Total number of products the customer bought in last

26 weeks
✓ 0.632

productsbought39 Total number of products the customer bought in last

39 weeks
✓ 0.630

distinct_item Distinct number of products the customer bought in

last 52 weeks
✓ 0.625

productsbought52 Total number of products the customer bought in last

52 weeks
✓ 0.625

distinct_MANUFACTURER same as distinct item but for "manufacturer" ✓ 0.620

distinct_DEPARTMENT same as distinct item but for "department" ✓ 0.591

manpopularity52 same as popularity52 but for "manufacturer" ✓ 0.590

popularity_decay popularity52 divided by popularity13 ✓ 0.588

manpopularity39 same as popularity39 but for "manufacturer" ✓ 0.586

manpopularity13 same as popularity13 but for "manufacturer" ✓ 0.586

manpopularity26 same as popularity26 but for "manufacturer" ✓ 0.585

frequency26dep Same as frequency26 but for "department" ✓ ✓ 0.584

frequency39dep Same as frequency39 but for "department" ✓ ✓ 0.583

frequency13dep Same as frequency13 but for "department" ✓ ✓ 0.583

frequency52dep Same as frequency52 but for "department" ✓ ✓ 0.579

visits26 Number of distinct days the customer visited in last

26 weeks
✓ 0.577

72

visits13 Number of distinct days the customer visited in last

13 weeks
✓ 0.577

transactions_withdiscount Total number of transactions with discount in last 52

weeks
✓ 0.577

visits39 Number of distinct days the customer visited in last

39 weeks
✓ 0.574

deppopularity13 same as popularity13 but for "department" ✓ 0.573

deppopularity26 same as popularity26 but for "department" ✓ 0.573

deppopularity39 same as popularity39 but for "department" ✓ 0.573

deppopularity_decay deppopularity52 divided by deppopularity13 ✓ 0.573

visits52 Number of distinct days the customer visited in last

52 weeks
✓ 0.569

transactions_withdiscountman Number of times the manufacturer was sold with

discount in 52 weeks

 ✓ 0.567

transactions_withdiscountdep Number of times the department was sold with

discount in 52 weeks

 ✓ 0.565

manpopularity_decay manpopularity52 divided by manpopularity13 ✓ 0.563

count_newitems Number of products the customer bought last week

for the 1st time
✓ 0.562

frequenciesdep_decay frequency52dep divided by frequency13dep ✓ ✓ 0.559

average_cycle52dep Same as average_cycle52 but for "department" ✓ ✓ 0.559

HH_COMP_DESC Household status ✓ 0.557

INCOME_DESC Household income band ✓ 0.557

average_cycle39dep Same as average_cycle39 but for "department" ✓ ✓ 0.556

AGE_DESC Household Age Band ✓ 0.556

KID_CATEGORY_DESC Household's kid category description ✓ 0.555

average_cycle26dep Same as average_cycle26 but for "department" ✓ ✓ 0.555

MARITAL_STATUS_CODE Household's Marital Status ✓ 0.553

average_cycle13dep Same as average_cycle13 but for "department" ✓ ✓ 0.552

HOMEOWNER_DESC Household's homeowner status ✓ 0.551

average_spendingitem Average spent on a product in last 52 weeks ✓ 0.542

deppopularity52 same as popularity52 but for department ✓ 0.541

HOUSEHOLD_SIZE_DESC Household Size band ✓ 0.540

average_discount Average discount per product in basket in last 52

weeks
✓ 0.540

average_discountitem Number of times the product was sold with discount

in last 52 weeks

 ✓ 0.537

transactions_withdiscountitem Number products the customer bought with discount

in last 52 weeks
✓ 0.535

visits_decay visits52 divided by visits13 ✓ 0.535

average_spending Average spending per product in basket in last 52

weeks
✓ 0.533

average_quantity Average quantity per product in basket in last 52

weeks
✓ 0.531

TRANS_TIME Time in hours where 12 am is '00' and 11pm is '23'

(24 distinct values)

 0.529

The strangest single feature of table 3.2 boasts an AUC of 0.775 (frequency26) which can be

considered quite high as it comes from a single feature and shows once again the importance

of an existing relationship between a customer and a product.

73

3.4 Univariate Analysis

The findings of the previous section will be summarized in tandem with the hierarchy of the

feature groups presented in the previous section of this chapter:

3.4.1 Household and Product features

This group of features is by far the most important one in this analysis as it dominates the top

of the features board. It is sensible that the more times a customer has bought a product the

higher the chance to buy it at any given week (see figure 3.6):

Figure 3.6 : Frequency of purchase of last 52 weeks vs. target

For items bought over 13 times, the probability to buy becomes immensely (and non-linearly)

higher than the rest of the bands and can reach 35 %.

Additionally for a customer, knowing the average number of days between purchases of a

product and subtracting that number by the number of days since he/she last bought it, can

facilitate understanding when he or she is going to buy the item again in the future. For example

if a customer buys a product every 12 days and it was last bought 5 days ago, he/she is expected

to buy the item 7 days from now. Negative values for this feature represent customers who

stopped buying the product after some point and positive values customers who may have just

0.000%
5.000%

10.000%
15.000%
20.000%
25.000%
30.000%
35.000%
40.000%

0' 1' '2' '3' '4' '5' '6' 7- 8' 9-12' 13-177'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Times bought in the last 52 weeks

74

bought the item and it is not the time yet to buy it again. This feature is represented in figure

3.7:

Figure 3.7 : Average Cycle minus last time bought vs target

Another interesting point arises by visualizing the ratio of purchases in the previous 52 and 13

weeks. Assuming that the customer buys the product evenly across the year then a ratio of 4

would be expected, since the first 13 weeks are included in 52. Figure 3.8 clearly shows that

when the times the customer bought the item in last 52 weeks is more than 4 times bigger than

the times bought in last 13 weeks, then the probability to buy the product increases.

Figure 3.8 : Frequency's decay vs target

0.000%

2.000%

4.000%

6.000%

8.000%

10.000%

12.000%

14.000%

16.000%

'-364 to
-149'

'-148 to
-101'

'-99 to -
78'

'-77 to -
58'

'-57 to -
39'

'-38 to -
21'

'-20 to -
5'

'-4 to
20'

'21 to
180'

Never
Bought'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Average cycle minus last time bought

0.000%

2.000%

4.000%

6.000%

8.000%

10.000%

12.000%

14.000%

16.000%

Never
bought

1' 2' '3' '4' '5' '6' '7' '8 to 9' '10 to
74'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Times bought in last 52 weeks divded by times bought in last 13 weeks

75

3.4.2 Household and manufacturer or department

The importance of this group lies in when a direct relationship between a customer and product

is not known and therefore these higher levels of the product hierarchy are used to infer it. As

can be speculated the relationship is not as strong as with the products themselves, however

the discrimination is clear (i.e. higher values denote higher probability to buy the item) as

illustrated in the customer’s department frequency of purchase of the last 52 weeks in figure

3.9:

Figure 3.9 : Frequency' of purchase of department in last 52 weeks vs target

3.4.3 Product Features

The product related features rank second in the list of the most predictive features and are quite

important because a household-to-product link is not always assumed. The mapping of

different periods and lags allows the capturing of additional seasonality elements in the

products. Product popularity over the last 52 weeks is defined as the number of different

baskets, in which the product was included. There is a strong positive relationship between the

times included and the probability to buy in the target week as illustrated in figure 3.10:

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

0 to 11' '12 to
38'

'39 to
85'

'86 to
151'

'152 to
237'

'238 to
333'

'334 to
458'

'459 to
619'

'620 to
876'

'877 to
2866'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

times bought from departement in last 52 weeks

76

Figure 3.10 : Product popularity of last 52 weeks versus target

In order to better capture the propensity of customers to buy new products (that they have never

bought before) and to map seasonality, a trialed feature was introduced, which can be defined

as the number of different customer that bought the items in the previous-to-the-target week

that have never bought it before in previous 51 weeks. In other words it expresses the tendency

of the product to be bought for the first time in the very recent week. The greater the number

of people who bought the product for the first time in the previous week, the higher the chance

for a given customer to buy that item in the target week as illustrated in figure 3.11:

Figure 3.11 : Trialled products’ popularity versus target

0.000%

0.100%

0.200%

0.300%

0.400%

0.500%

0.600%

0.700%

0.800%

0 to 23' '24 to
33'

'34 to
39'

'40 to
46'

'47 to
55'

'56 to
67'

'68 to
84'

'85 to
115'

'116 to
184'

'185 to
17192'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Popularity of last 52 weeks

0.000%

0.500%

1.000%

1.500%

2.000%

2.500%

0' 1' '2' '3' '4' '5' '6' '7' '8 to 9' '10 to
44'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

"New Purchases" in the previous week

77

Compared to product popularity, the top band in this feature can yield higher probabilities, max

2% versus 0.7%.

Another interesting finding is the relationship between popularity of last 52 weeks divided by

the popularity of last 13 weeks as displayed in figure 3.12. Unlike frequency of purchase,

products that are slightly under-indexed (in this scenario, bought more frequently as of late)

seem to have higher probability to be bought in the target week.

Figure 3.12 : Popularity decay versus target

3.4.4 Department and Manufacturer

The assumption with this group of features was that in cases where the product is very difficult

to be determined, at least the notion of department or manufacturer can give some insight as to

what products may be more popular in a specific period. Admittedly this is the weakest of all

other groups and the respective popularity-based features seem to expresses a similar but much

weaker positive relationship with the target variable.

3.4.5 Household features

As previously stated, household features may either be derived specifically from the

transactional data or can be extracted from the demographics dataset the retailer has provided.

The most dominant features in the latter group are the age in figure, income and kids bands. As

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

[0, 1.9)' '[1.9,
2.46)'

'[2.46,
2.8)'

'[2.8,
3.08)'

'[3.08,
3.36)'

'[3.36,
3.7)'

'[3.7,
4.08)'

'[4.08,
4.66)'

'[4.66,
5.76)'

'[5.76,
338]'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Popularity 52 divided by Popularity 13

78

can be viewed in figure 3.13, the age groups between 25 and 54 possess higher probability to

buy any product in the target week:

Figure 3.13 : Age band versus target

Additionally there seems to be a positive relationship between income and propensity to buy

where higher income is associated with higher chance to buy a product in the target week as

illustrated in 3.14:

Figure 3.14 : Income band versus target

Ultimately the number of children also possesses a positive relationship with the target as more

kids result in higher propensity for purchase any product as can also be viewed in figure 3.15:

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

'19-24' '25-34' '35-44' '45-54' '55-64' '65+' Not given'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Age band

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Income band

79

Figure 3.15 : Kids band versus target

Another household-type group of features is centered on measuring how loyal a customer is by

how frequently he/she visits the retailer’s stores. The assumed relationship (i.e. the more a

customer visits the higher the chance to buy any item) is verified as illustrated in figure 3.16

where more visits for a customer equate to higher probability to buy any product:

Figure 3.16 : Total visits in last 52 weeks vs target

Furthermore, customers’ cardinality-based features (such as number of different products the

customer has bought in 2.17) possess predictive power too:

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

'1' '2' '3+' 'None/Unknown' Not Given'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Kids Band

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0 to 17' '18 to
26'

'27 to
35'

'36 to
44'

'45 to
54'

'55 to
65'

'66 to
79'

'80 to
98'

'99 to
128'

'129 to
302'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Total visits in last 52 weeks

80

Figure 3.17: Number of distinct products vs target

Another useful household-type feature is the count of products the customers has bought for

the first time in the previous (from the target) week. This feature expresses the tendency of the

customer to buy items he/she has never bought before and is illustrated in figure 3.18. It

displays a positive relationship with the target variable:

Figure 3.18 : New items bought and number of distinct products vs target

The group of customers who are more adventurous and like to try products they have never

bought before have higher probability to buy any item in the target week.

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

0.350%

0to 107' '108 to
174'

'175 to
241'

'242 to
304'

'305 to
370'

'371 to
449'

'450 to
539'

'540 to
648'

'649 to
834'

'835 to
2196'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Number of distinct products bought in last 52 weeks

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Count of new items bought last week

81

3.4.6 Contextual feature – day of the week

An interesting pattern is present in the day of the week in figure 3.19. There is less tendency to

buy an item in the middle of the week, compared to the other days.

Figure 3.19 : Day pf the week vs target

3.5 Impact of binning

Under certain assumptions it is feasible to quantify the impact of binning for the numerical

features in respect to AUC. For completeness the quantification will include some of the

demographic features which were given as binned categorical variables even though they were

not subject to the optimized binning algorithm. The proposed method suggests measuring the

difference in AUC before any binning was applied and after, both in simple and proportional

terms. Gain can be defined as AUC after binning minus AUC before binning. Proportional gain

can be defined as gain divided by AUC before binning.

HH_COMP_DESC, KID_CATEGORY_DESC, MARITAL_STATUS_CODE and

HOMEOWNER_DESC were excluded from this comparison because they could not be

expressed in a numerical form. The rest of the categorical variables have been converted to

numerical using the average of the band they represent. For example in AGE_DESC category

‘35-44’ was replaced with 39.5.

0.00%
0.02%
0.04%
0.06%
0.08%
0.10%
0.12%
0.14%
0.16%
0.18%
0.20%

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Day of the week

82

Before applying binning, all missing values for a given feature were assigned a value that is

lower than the minimum of all the non-missing values for that feature. This decision is derived

logically as in most cases missing values in this context are generated due to absence of past

purchases and are associated with a lower chance to buy any item. If missing values were

replaced with the mean, this would have favored the binning method since for many of the non-

binned features it would have interrupted the increasingly monotonic relationship they may

have with the target variable.

After applying binning, all binned values (or categories) are replaced with the average of the

target variable. For example the category of ‘35-44’ in AGE_DESC has an average probability

to buy of 0.2098%, hence all ‘35-44’ categories are replaced with 0.002098. In this context all

missing values are treated as a separate category and are replaced with the average probability

to buy, same as with any other variable.

The table 3-3 presents the gain of all features in terms of AUC before and after binning, sorted

in a descending manner by proportional gain.

Table 3-3: Comparison of AUC before and after binning sorted by proportional gain

Included Fields AUC before binning AUC after binning AUC gain Gain%

popularity_decay 0.4929 0.5885 0.0955 19.38%

manpopularity_decay 0.4927 0.5633 0.0706 14.32%

deppopularity_decay 0.5023 0.5728 0.0705 14.04%

visits_decay 0.4832 0.5352 0.0520 10.75%

average_spending 0.4849 0.5330 0.0481 9.92%

TRANS_TIME 0.4891 0.5293 0.0402 8.23%

average_spendingitem 0.5137 0.5423 0.0286 5.57%

average_quantity 0.5136 0.5309 0.0173 3.37%

AGE_DESC 0.5438 0.5556 0.0118 2.17%

average_cycle52man 0.6867 0.6979 0.0112 1.63%

frequency52man 0.6907 0.7019 0.0112 1.62%

average_cycle39man 0.6860 0.6955 0.0095 1.38%

average_cycle26man 0.6854 0.6947 0.0093 1.36%

average_cycle13man 0.6773 0.6864 0.0091 1.34%

frequency39man 0.6945 0.7038 0.0093 1.34%

frequency13man 0.6986 0.7077 0.0091 1.30%

frequency52dep 0.5716 0.5785 0.0069 1.20%

frequency26dep 0.5773 0.5840 0.0067 1.16%

frequency26man 0.6988 0.7068 0.0080 1.14%

frequency13dep 0.5765 0.5826 0.0061 1.06%

frequenciesman_decay 0.6768 0.6835 0.0067 0.99%

frequency39dep 0.5772 0.5828 0.0056 0.97%

average_cycle26dep 0.5497 0.5550 0.0053 0.96%

distinct_DEPARTMENT 0.5856 0.5911 0.0054 0.93%

average_cycle52dep 0.5538 0.5589 0.0051 0.92%

average_cycle39dep 0.5517 0.5565 0.0048 0.87%

average_cycle13dep 0.5473 0.5517 0.0044 0.80%

distinct_MANUFACTURER 0.6158 0.6204 0.0046 0.75%

83

INCOME_DESC 0.5541 0.5567 0.0026 0.47%

manpopularity52 0.5872 0.5896 0.0024 0.40%

average_discountitem 0.5344 0.5365 0.0021 0.39%

transactions_withdiscountitem 0.5335 0.5352 0.0017 0.32%

count_newitems 0.5600 0.5617 0.0016 0.29%

transactions_withdiscount 0.5757 0.5768 0.0011 0.20%

average_discount 0.5387 0.5396 0.0009 0.17%

manpopularity26 0.5845 0.5851 0.0006 0.10%

average_cycle13 0.7086 0.7092 0.0006 0.08%

average_cycle26 0.7465 0.7471 0.0006 0.08%

average_cycle39 0.7649 0.7655 0.0006 0.08%

average_cycle52 0.7739 0.7745 0.0006 0.08%

visits13 0.5764 0.5769 0.0004 0.07%

last_day_bought 0.7733 0.7739 0.0006 0.07%

deppopularity26 0.5729 0.5733 0.0004 0.07%

deppopularity39 0.5729 0.5733 0.0004 0.07%

visits26 0.5768 0.5771 0.0003 0.06%

visits39 0.5738 0.5741 0.0003 0.06%

deppopularity52 0.5404 0.5407 0.0003 0.06%

deppopularity13 0.5730 0.5733 0.0003 0.05%

visits52 0.5688 0.5691 0.0003 0.05%

productsbought39 0.6297 0.6300 0.0003 0.05%

distinct_item 0.6250 0.6253 0.0003 0.04%

popularity39 0.7382 0.7385 0.0003 0.04%

popularity26 0.7419 0.7422 0.0003 0.04%

popularity13 0.7462 0.7465 0.0003 0.04%

productsbought26 0.6317 0.6320 0.0002 0.04%

frequenciesdep_decay 0.5591 0.5593 0.0002 0.04%

productsbought52 0.6243 0.6245 0.0002 0.04%

popularity52 0.7347 0.7350 0.0002 0.03%

productsbought13 0.6318 0.6320 0.0002 0.03%

cycle_vs_lastbought 0.7744 0.7746 0.0002 0.02%

most_trialled 0.6871 0.6872 0.0001 0.01%

transactions_withdiscountdep 0.5650 0.5651 0.0000 0.01%

manpopularity39 0.5860 0.5861 0.0000 0.01%

frequencies_decay 0.7086 0.7087 0.0000 0.01%

transactions_withdiscountman 0.5672 0.5673 0.0000 0.01%

manpopularity13 0.5857 0.5858 0.0000 0.01%

HOUSEHOLD_SIZE_DESC 0.5404 0.5404 0.0000 0.00%

frequency13 0.7750 0.7748 -0.0002 -0.03%

frequency39 0.7753 0.7751 -0.0002 -0.03%

frequency52 0.7752 0.7750 -0.0002 -0.03%

frequency26 0.7754 0.7751 -0.0003 -0.04%

HH_COMP_DESC - 0.5569 - -

KID_CATEGORY_DESC - 0.5554 - -

MARITAL_STATUS_CODE - 0.5531 - -

HOMEOWNER_DESC - 0.5512 - -

Certain features have over 10% gain in terms of AUC. The features that recorded the biggest

gain % were those that had an AUC near the random value of 0.5. The variable

popularity_decay (that demonstrated the biggest gain %) is signifying a distinct non-linear

relationship with the target variable, also illustrated in figure 3.12.

On the opposite spectrum, the features with highest absolute AUC such as frequencyXX have

their AUC slightly worsened after applying binning. This is not unexpected as a customer who

has bought an item more times, will have a higher chance to buy it again and any binning

84

applied flattens any gain that could have been derived from the increasing number of purchases.

For example category ‘9-12’ of frequency52 has an average propensity of 18.6653% to buy an

item. This representation cannot leverage that fact that frequency52=9 has less propensity than

frequency52=12.

Out of 72 features, 66 (or 91.17%) demonstrated some gain after applying binning, 1 out of 72

(or 1.39%) had no change and 4 out of 72 (or 5.56%) had their AUC worsened. The average

gain % of AUC across all features is 1.59% or 0.0084 (in simple terms). It can be expressed

that binning in most cases does facilitate the uncovering of more information in respect to the

target variable and it is further expected that certain machine learning algorithm could benefit

from the transformed (with binning) variables.

3.6 Conclusion

This chapter presented findings from the freely available big dataset from dunnhumby.com

labelled as “the complete journey” which consists of multiple smaller sets and gave an

overview of the basic elements and attributes available for this thesis as well as explained the

notions of household and product as they appear in the dataset.

Many supervised machine learning methods rely solely on the features provided to produce a

good result, while others can create the features themselves based on the transactional data

(like matrix factorization) . The univariate analysis performed in this chapter gave a base for

the features that will be inputs in various machine learning algorithms in later chapters of the

thesis and also gave insight as to what may be the most predictive features and/or which areas

need to be further explored.

The generated features were transformed to capture non-linear relationships through an

optimized-binning method and were expressed through multiple time stamps to account for

recency, seasonality, cyclicality as well as change of habits through time. The binning of

variables was measured to account for an average gain of 1.59% in terms of AUC. 91.17% of

the total features demonstrated a gain in the range of [0.000, 0.096] AUC points.

By segmenting the features space into multiple categories based on the customers’ attributes

and the product hierarchy clearly exhibited that features which capture a direct customer-to-

product relationship tend to be the most predictive for explaining behavior in the target week.

85

Additionally product-based features as well as indirect relationships of the customer with the

product (via exploiting the product’s heritage through department and brand) may fill the gap

of an absent direct relationship. Finally contextual features like time and day of the week do

not seem very predictive, but may still add value in particular scenarios in specific algorithms.

86

4. Meta-modelling to predict top K products

This chapter demonstrates the use of meta-modelling to improve the performance in predicting the top

K products for a group of 2,500 loyal customers of a retailer in respect to metrics such Precision at K

and AUC using the same underlying data demonstrated in chapter 3. The ensemble model aims to

surpass in these metrics any single model involved, any simple ensemble methods and standard

benchmarks such as product popularity and customer’s frequency of purchase.

4.1 Introduction

The machine learning toolkit has been expanded to many different algorithms and data

transformations that in line with the recent advents in both hardware and software has permitted

the ability to investigate data from many different angles. For different problems different

algorithms may perform better given the underlying structure of the data and other conditions

that affect the modelling process, such as the metric to optimize type of input data, volume of

data, scarcity and dimensionality. For example linear regression can be best when relationships

in the data are linear. The following experiment will make use of Meta modeling (and in this

instance stacking) to improve performance in top K products as a means to leverage different

machine algorithms and compare results over base models and simple benchmarks.

4.2 Data preparation

4.2.1 Type of features included

The data is the same as demonstrated in chapter 3 and it includes a set of 75 features as

illustrated in table 3-2. They include item based features, product-hierarchy features (like

department and manufacturer), customer-based features, combinations of all the previous

elements, demographics and contextual features (such as time).

87

4.2.2 Treatment of categorical features

AGE_DESC and INCOME_DESC have been replaced with the average of the groups they

represent. For example category '150-174K' of INCOME_DESC was replaced with 162 in the

data. The rest of the categorical variables, namely KID_CATEGORY_DESC,

HOUSEHOLD_SIZE_DESC, HH_COMP_DESC, HOMEOWNER_DESC, MARITAL

STATUS_CODE have been replaced with sequential ids. The process is also known as ‘label

encoding’ [Géron 2017]. Although this technique suffers from the assumption that the

categories follow an exact ordinal relationship [Garreta et al. 2013], it has the benefit of not

increasing the dimensionality of the dataset. Furthermore some models within the ensemble

(such as the tree-based ones) have the capacity to deal with this, via being non-linear in how

they process the features.

4.2.3 Treatment of numerical features

Numerical features have been converted using maximum absolute scaling as a means to control

outliers. Applying scaling also facilitates convergence. According to [Mika 2010] scaling the

data is an important factor in aiding convergence of gradient methods. Some of the algorithms

deployed for the experiment are of linear nature and use Stochastic Gradient Descent (SGD) to

optimize their weights.

The maximum absolute scaling method essentially rescales the data to be within the range of

[-1, 1]. The process requires finding the maximum absolute value of each feature and then

dividing each feature with this value [Lee et al. 2017]. This scaling method was preferred over

others, because it does not shift the centre of the features, hence the algorithms can still leverage

the sparsity of the data. In other words the zero values would remain as zeros after the scaling.

4.2.4 Treatment of missing values

There are 2 types of missing values in the dataset.

The first type of missing data includes values generated due to computational complications

when deriving the features. For example deriving the standard deviation of purchasing cycles

with only one purchase is not feasible and it is regarded as a missing value. In this context

88

replacing with a mean or median value (as it is commonly preferred) could create the false

representation that this case represents a common purchasing pattern, where in reality these are

cases that do not have many past purchases. According to [Lutz 2010] missing values could be

replaced with an indicative value outside the range of the values such as -9999. Additionally

assigning missing values with indicative and distinctive values (or codes) such as 999 or -9 is

further cited by [Ruel et al. 2015] and [Acock 2005]. Eventually such reasoning was preferred,

because it could allow certain algorithms (of non-linear nature such as tree-based ones) to

isolate these values and treat them accordingly. This is feasible, because they are outside the

range of the rest of the values. To avoid having missing values represented with a very large

value (like -9999), instead -100 was selected to alleviate convergence difficulties with linear

methods. Another reason for assigning a negative value was based on the fact that in most

situations this kind of missing value was associated with absence of past purchases. Naturally,

absence of past purchases is associated with lower probability to buy the item, hence a negative

value could facilitate linear algorithms to capture it.

The other type of missing data refers to values explicitly given as such from the retailer’s

dataset, for example with the demographic features. These missing values were replaced with

-1. This value satisfied the premise of having values outside the range of every other value and

followed the same ordinal pattern applied to categorical features due to label encoding as

described in section 4.2.2.

4.3 Training, validation and test sets

The train and test data include all customers that shopped in their respective targets weeks (53

and 54 respectively) as in this experiment the focus is on maximizing precision given visit. All

the features have been computed for a period of up to 52 weeks prior to the target week with

exception of demographic data that is captured during application time. The train data has

12,606,944 records (9,788 x 1,288) and the test data 12,832,068 (9,788 x 1,311. The train data

is further split into training data via selecting randomly 80% of the customers who shopped in

the target week (53) and all their respective (9,788) products , while the remaining formed the

validation data (20%).

89

4.4 The meta model architecture and performance

The following subsections contain information about the meta model’s overall multi-layered

architecture.

4.4.1 Meta model definition

The meta model will use as inputs various other models’ predictions which are fitted directly

on the 80% of the customers’ features of the train data (labelled as training data) and made for

the 20% of the customers’ features of the train data (or just the validation data). For simplicity

train data is training and validation data together. Similar predictions are being made for the

test data with same parameters as with the train data, but this time using the train data. All these

new inputs will be stacked together and form two new data sets for the train (which will have

size equal to the validation) and test sets respectively. A model will be used to fit the new train

data and make the final predictions for the test data.

This process can be summarized graphically in figure 4.1:

Figure 4.1 : Process for generating train and test predictions in the first layer

Note that this process does not use the k-fold paradigm (although it could) as explained in

chapter 2 but a simple random split based on the unique customers that visited in the training

week. The reason being that the 20% of train data is actually 2,519,432 rows, enough to build

90

consistent meta models on top of it. At the same time it reflects a better representation of test

data that include as portion of different customers (with the same items considered) than a

standard random split.

The aforementioned process is similar to a 1 hidden layer neural network where the input layer

is the feature set X and the hidden layer is all the models’ predictions (or activation functions)

on the 20% of the validation data. Equation 4.2 describes the output of a single hidden unit,

given a sample point xi (from X) and the m (out of M) models from a vector of models S𝑀 in

equation 4.1:

 f1(xi, S
M, m) = Sm

M(xi) (4.1)

For example in a linear regression model this 𝑆𝑚
𝑀

 model will be the coefficients of the model

multiplied by the input features xi plus some constant value. The numbering of 1 in f (e.g f1)

demonstrates that this function takes place between the input data and the first hidden layer.

The M in S demonstrates that the total size of the models’ vector is M. The advantage of this

method is that any model-function can be used as activation function in the meta-model: be the

individual model parametric or non-parametric, regressors or classifier and may even include

other ensemble type models such as boosted algorithms, bagged models or a simple arithmetic

mean.

The output layer is the prediction that comes out by combining all other f1 models’ predictions

(or neurons) through another model L and leads in this case to probabilistic output similar in

concept to a Softmax output layer. The function that connects the predictions with the target

variable through another (Meta) model is summarized by equation 4.2:

 f2(xi, L, S
M) = L (f1(xi, S1

M), f1(xi, S2
M),… . , f1(xi, SM

M)) (4.2)

Where L is the Meta model used to combine all other previous models’ predictions given their

activations-models in S.

91

4.4.2 Meta model base layer and performance

The Meta model’s performance in the based layer is explained in tandem with the model

parameters chosen to maximize it and the metrics selected to capture it.

4.4.2.1 Model parameters

In this experiment the first level consists of 10 different machine learning models, regressors

or classifiers, all trained on the input features while outputting predictions with dimensionality

equal to one (which connotes probability to buy in classifiers and the regression continuous

output for regressors). The specific model selection was chosen in order to cover at least one

representative of each one of the common algorithmic families, however some, mostly KNN-

based have been excluded due to being too inefficient.

Each model has been tuned mildly around the default hyper parameters using the 20%

(validation set) to determine the best set of parameters. This process was not time consuming

as the basic logic is the models don’t have to be heavily tuned, in similar way where a Random

Forest is consisted of weaker trees to reduce variance and improve its ability to generalize to

unseen data. Another reason towards that end is the fact that the output predictions will be used

for the Meta model, therefore are required to be able to generalize rather than being dataset-

specific. Table 4-1 demonstrates the models used in the experiment’s first layer and their main

parameters:

Table 4-1 : Single models involved in the ensemble and their hyper parameters

Models in first layer Parameters

Ridge regression C =0.001

Neural net classifier C=0.00001, learn_rate=0.009,h1,h2=(30,20),connection=relu, out=Softmax

Neural Net regression C=0.00001, learn_rate=0.009,h1,h2=(30,20),connection=relu, out=Linear

Naïve Bayes classifier Shrinkage=0.1

Logit (L2 regul) maxim Iterations=100, C=1.0

Logit (L1 regul) maxim Iterations=100, C=1.0

SVM (Linear kernel) maxim Iterations=100, C=1.0

LibFm classifier maxim Iterations=100,C=0.0001, init_values=0.05,learn_rate=0.01,Lfeatures=4

Gradient boosted Random Forest

regressor

estimators=300,max_depth=12,max_features=0.3,min_leaf=12.0,shrinkage=0.04,

row subsample=0.95

Gradient boosted Random Forest

classifier

estimators=300,max_depth=12,max_features=0.3,min_leaf=12.0,shrinkage=0.04,

row subsample=0.95

92

Linear models have been preferred because they were faster to run and easier to converge.

Ultimately all experiments have been run on a Linux server with 32 cores and 256 GB of RAM.

One of the advantages of this methodology is that all the aforementioned models can be run in

parallel and when all of them are completed, then the next layer can be initiated making full

leverage of all resources available. All software used was designed specifically for this

experiment using the Java programming language. The software used comes from the

[StackNet 2017] Meta Modelling Framework and library which is explained in chapter 6.

4.4.2.2 Metrics

Table 4.2 demonstrates the performance of the aforementioned models in AUC in both

validation and test data (for consistency) and the precisions @5, @10 and @20 for the test set

with the same models:

Table 4-2 : Performance of single models in UC and Precision@K

Models in first layer AUC TRAIN AUC TEST Precision@5 Precision@10 Precision@20

Ridge regression 0.86036 0.85466 21.59% 17.20% 13.38%

Neural net classifier 0.86277 0.85105 27.39% 21.04% 15.57%

Neural net regression 0.84320 0.83338 27.73% 21.49% 15.80%

Naïve Bayes classifier 0.83668 0.81483 8.32% 8.23% 7.73%

Logit (L2 regularization) 0.85099 0.83982 26.84% 20.61% 15.31%

Logit (L1 regularization) 0.84274 0.82045 15.60% 11.23% 9.01%

SVM (Linear kernel) 0.81874 0.80474 14.21% 11.23% 9.17%

LibFm classifier 0.84593 0.83504 18.41% 14.88% 11.87%

Gradient boosted Random

Forest regressor

0.86277 0.84803 26.38% 21.04% 15.16%

Gradient boosted Random

Forest classifier

0.87761 0.86515 27.25% 21.74% 15.96%

It is not surprising that gradient boosted trees performed the best in terms of AUC in both

training and test as there were significant non-linear relationships as presented in chapter 3.

The performance of linear models is also commendable. In chapter 3, frequency of purchase

was demonstrated to be one of the most important predictors in determining next purchases. At

the same time there were other features (like popularity decay) which were exhibiting nonlinear

relationships with the target variable. The Neural Network with linear output can (theoretically)

exploit these two types of features and demonstrates a precision @5 higher than tree-based

models. It seems that the Gradient boosted Random Forest classifier regains the lead in

precision @10 and @20 making use of the apparent nonlinear relationships present in the data

to maximize its predictive accuracy.

mailto:Precision@5
mailto:Precision@10
mailto:Precision@20

93

The AUC is particularly high given that it may take values between 0.55 and 1. The High AUC

occurs because the datasets include all retention and non-retention combinations of customer-

item pairs and therefore it is easy to discriminate the former from the latter. Additionally in an

FMCG environment having previous experience in buying products greatly augments the

chance of such pairs occurring again in the future making the overall discrimination of any

model much stronger given it includes these kind of relational features.

Ultimately the performance of the models in both training and test seem to vary significantly

and this may be due to the time lag between train and test which causes some of the models to

lose their ability to generalize as efficiently in future data (overfitting). Other models

(particularly the L1 ones) may have been underperforming because some of the hyper

parameters force the models to remain more in the surface instead of searching and leveraging

deeper relationships (underfitting). Irrespective of the reasons that may lead to such gaps,

assuming the link between training-validation and train-test is not compromised (so that an

overfitted or underfitted model in the validation data is understood as such in the test data too),

the Meta model can make use of such information to improve results on the test data.

4.4.3 Meta model output layer performance

Similar to the base layer models, performance for the output layer is explained in tandem with

the model parameters chosen to maximize it, the benchmarks to compare against and the overall

performance based on the pre-defined metrics.

4.4.3.1 Model parameters

The two set of predictions (one for the validation data and one for the test data) became inputs

to a random forest classifier Meta model that had two outputs, the probability to buy an item

next week and the probability not to buy next week. The reason this algorithm was chosen was

because it is known to generalize well to unseen data (due to bagging), it is nonlinear and

previous experiment showed similar algorithms to dominate performance wise.

5 That would entail random prediction in connection with the target variable

94

The model had its hyper parameters tuned through a simple 50-50 random validation step

(again) based on unique customers. The final hyper parameters include 3,000 estimators,

maximum tree depth of 6, feature subsample of 0.3, leaf size of l00, row subsample of 0.9 and

uses the Entropy metric (or information Gain) as the main criterion to determine the split. The

first thing to note is the bigger ensemble size than before, product of the much smaller data (4

times smaller than before) that allows to run more bags faster and at the same time provides

an extra layer against over fitting. All other parameters are constrained (or more reserved)

compared to the initial models in order to maximize performance. For example performance

was decreasing with higher maximum depth because of the inability of the model to remain

general hence not overfitting its training data. Similarly low feature subsample ensures there

is not over-reliance in specific input feature (or first layer model), while high minimum leaf

boosts significance of the results in each node via increasing its size.

Ultimately the final Meta model was built under similar principles of the previous models,

having its hyper parameters tuned through an equivalent validation procedure with focus on

avoiding overfitting, while leveraging most of the benefits arisen from the individual model-

inputs of the previous layer.

4.4.3.2 Benchmarks

In order to compare the performance of the meta model a number of different baselines have

been used. The first baseline is the best model’s performance from the previous layer for the

test data (which was Gradient Boosted Random Forest classifier for AUC, precision@10 and

precision@20 and Neural Network Regression for Precision@5). Comparison with this

baseline basically demonstrates whether Meta modelling actually yields better results than any

one of the previous base models. Another baseline, arguably the most basic one, is the

popularity of the products purchased in the last 26 weeks for the given customer population.

Popularity as explained in Chapter 3 is defined as the number of baskets a product has been

included in the customers baskets. This metric facilitate gauging how better the model is to

discriminate irrespective of prior personalised knowledge. The personalised version of the

previous metric is the frequency of purchase of the item per customer, given his/her visits in

the last 26 weeks. Equivalently this metric measures how many times a customer has included

an item in the basket, in the last 26 weeks (and like popularity ignores quantity).

95

Apart from these simple metrics, some ensemble metrics will be used as well. A simple (equally

weighted) average of all input 10 models will be used to assess whether combining the results

yields any uplift in the aforementioned metrics. However this method is still biased in a way

because the output of some models is now always a probability since many regressors have

been used in previous phases beforehand. To counter this effect a simple Ranking average will

be used to combine all the models. This method is basically a simple average after transforming

all scores to their rank value based on their order. This ensures that even models with higher

means and variances (that may even exceed the bounds of 0 and 1) can now be blended in a

fair manner along with the rest of the models. Also precision and AUC are both affected only

by the ranking of the score, therefore maintaining a probabilistic output is not really necessary.

These five metrics will be used to compare performance against the performance of the

Random Forest Classifier Meta model in both actual and proportional manner.

4.4.3.3 Graphical representation of the model

The following graph 4.2 shows a graphical representation of the whole in order to make

apparent the similarity of this modelling procedure with the single layer neural network.

Figure 4.2 : Illustration of the stacking (Meta) model

96

4.4.3.4 Results

Table 4.3 shows the results of all benchmarks and the meta model in actual results:

Table 4-3 : Results of benchmarks, single best models and Meta model in AUC, Precision@K

MODELS AUC_TEST Precision@5 Precision@10 Precision@20

Popularity 26 weeks 0.75548 12.53% 8.62% 6.20%

Frequency 26 weeks 0.75636 27.54% 20.72% 15.01%

Average of all 10 models 0.85374 26.90% 21.24% 15.80%

Rank Average of all 10 models 0.85708 21.98% 17.41% 13.69%

GBRF (AUC, P@10,P@20) or

NNreg(P@5)

 0.86515 27.73% 21.74% 15.96%

Meta Random Forest Classifier 0.86759 28.17% 22.16% 16.20%

Table 4-4 portrays the proportional difference/deterioration of each model in comparison to the

Meta model:

Table 4-4 : results with proportional differences to the Meta model

MODELS AUC_TEST Precision@5 Precision@10 Precision@20

Popularity 26 weeks -12.92% -55.50% -61.11% -61.71%

Frequency 26 weeks -12.82% -2.22% -6.51% -7.33%

Average of all 10 models -1.60% -4.50% -4.13% -2.47%

Rank Average of all 10 models -1.21% -21.95% -21.43% -15.50%

GBRF (AUC, P@10,P@20) or

NNreg(P@5)

-0.28% -1.57% -1.89% -1.48%

Meta Random Forest Classifier 0.00% 0.00% 0.00% 0.00%

By all metrics considered the meta model Random Forest classifier outperforms all of the

benchmarks and simple ensemble methods. The popularity and frequency benchmarks have

performed relatively poorly in terms of AUC in comparison to the rest of the methods and

benchmarks, however the latter one has done commendably well in precision, due to the fact

that it is a personalized metric. Interestingly the average of all previous models performs

relatively well in all precision metrics but worse than ranking average in terms of AUC.

The Gradient Boosted Random Forest from the first layer (a base model) seems to outperform

all other simple benchmarks and simple ensemble methods (although it is also a part of it).

Given the time lag and the significant difference in performance between train and test among

the 10 models, a simple (or even a ranking) average is suboptimal.

mailto:Precision@5
mailto:Precision@10
mailto:Precision@20
mailto:Precision@5
mailto:Precision@10
mailto:Precision@20

97

Compared to a simple average, the Meta model leverages the strengths and weaknesses of each

model as well as the shared information between them and is able to outscore every other

benchmark (including the GBRF) by at least 1.4% in all precision metrics and a small but

potentially valuable 0.28% in AUC. Especially at precision@10 (which seems to be the metric

the retailer most favours) the difference reaches close to 2%. The proportional difference

against the popularity metric exceeds 55% for all precision metrics and is roughly 13% for

AUC.

Subsequently the Meta modelling methodology, given the time lag and the commendable

variance among the based models (that led simple ensemble methods to fail) has managed to

outperform any other single model or simple benchmark and it should be noted that even some

of the input-base models were product of ensembling themselves (like the GBRF) . This

methodology could have worked with more models (possibly improving on the results over the

best single model even further) or even less base models for a simpler yet faster solution. It

should also be noted that such methodology does not need to be strictly associated with this

particular problem of improving results for the top k products, but could be refactored possible

with different holdout methods to be utilized in other problems of typical classification of

regression.

4.4.3.5 Estimating financial impact of stacking model

The potential uplift of the stacking approach in terms of revenue (for the grocery market) could

be calculated under certain assumptions. The dataset contains 276,484 unique baskets spanned

over 102 weeks. The average price of the selling item based on the transactional data is

approximately 3.10$ for the same period. Every basket contains 9.39 products on average.

Since the average number of products in a basket is near 10, it can be assumed that uplift in

precision at 10 is the most appropriate to base any calculations regarding financial impact.

It can be further assumed that the best single model for precision at 10 could be used as the

baseline to measure the uplift. The uplift in precision at 10 between the stacking model and the

best performing single model (GBM) is 0.42% (or 22.16% minus 21.74%). Assuming this

uplift is incremental and the GBM model is already providing recommendations, on every 238

(or 100 divided by 0.42) items sold, there is 1 extra item that would come from the stacking

model.

98

The dataset contains 2,595,732 purchased items from 2,500 households (for the same period

of 102 weeks). It can be roughly estimated that 10,906 extra times (or 2,595,732 divided by

238) could be sold over the same period for the same number of households. Since the average

price for any item was calculated to be approximately 3.10$, the additional revenue subject to

these extra items would be 33,808.6$ (or 3.10$ multiplied by 10,906). The estimated revenue

across a more mature market with 10 million shoppers (that demonstrate similar purchasing

behaviour) would be approximately 13,500,000$ (if 2,500 shoppers account for 33,808.6$).

Although this approach of estimating the financial benefit assumes that all uplift in offline

precision of the stacking model versus the best performing single model is incremental (which

is unlikely to be the case), yet it does not account for the long term benefits of providing better

recommendations to customers and the effect they may have to the overall customer

satisfaction and loyalty. It should be noted that according to [Anderson et al. 2003] loyal

customers may be worth up to 10 times as much as the average customer (for a given seller)

over their buying lifetimes.

4.5 Conclusion

A noble goal of the recommendation science in an FMCG environment is to improve the

ranking of the recommendation given, especially to loyal customers that are predisposed to buy

more. This objective can naturally be optimised via creating a powerful set of features that best

describe the customer to item relationship as well as selecting suitable machine learning

algorithms to fit on this data and leverage the linear and nonlinear relationships inherent within

these features. To further boost results a Meta modelling methodology can be considered which

combines various machine learning algorithms and uses their outputs predictions as inputs to

a new higher level (meta) model.

Similarly, with a single hidden layer neural network many different models have been fitted in

parallel on a subset of the retailers training data for a given week and made predictions (outputs)

for another subset as well as the test data that occur in a future week. These predictions are then

stacked together forming new modelling datasets and are used to build a new Random Forest

(Meta) model outputting the probability to buy or not to buy a product resembling the typical

softmax function of neural network classifier.

99

Compared to a number of different simple benchmarks (like frequency of purchase and item

popularity) and ensembling methodologies (like average and rank average), the Meta model

has performed the best in all metrics considered, scoring significantly better against most of

the baselines; outperforming all and significantly outperforming most

This methodology could be further improved via adding more base level models (or neurons)

at the cost of more computational time or with less models to save time at the cost of some loss

in terms of accuracy. Particularly where the additional base models capture a new aspect of the

problem, such methodology, with some changes in the validation framework and the input

futures and models could be extended to different optimization problems of classification or

regression.

100

5. Hybrid method to predict repeated,

promotion-driven product purchases in an

irregular testing environment

This chapter details a hybrid recommendation methodology to improve the accuracy of predictions

regarding which products the customers of a retailer will buy again in the future after having received

and redeemed an offer for them. This methodology is applied within an irregular testing environment

where the models needs to be built with a subset of customers and offers and validated in an

environment of different customers and offers (as well as different time periods)..

5.1 Introduction

The focus of this chapter is to demonstrate a hybrid methodology containing a content-based

approach and a collaborative filtering approach to improve the accuracy of predictions for

which products the customers of a retailer will buy again in the future, assuming they have

already received and redeemed an offer for them. The accuracy of this methodology is validated

based on an irregular testing environment. Irregular in this context is defined by the fact that

the recommendation models need to be trained on a subset of customers and offered products

and applied to a different set of customers and offered products (as well as different time

periods). In such an environment, finding a suitable cross validation methodology to train the

models, create and select features as well as tune the models’ hyper parameters was proven to

be critical for boosting the results in the test data. The cross validation methodology and the

hybrid model is based on the co-winning solution with Gert Jacobusse of the “Acquire valued

shoppers challenge” predictive modelling competition held on the kaggle.com platform.

5.2 Problem to Solve

There were 310,000 customers that were sent and redeemed a coupon for a product. The

simplified statement of the problem is:

Will the customer buy the redeemed product again in the future?

101

5.3 The data

In this challenge the analyst was given 2 datasets of:

 160,000 customers as training set and

 150,000 customers as a test set

The training set had two additional features not contained in the test data. The first is the

number of times the customer bought the offered product after redeeming it once in the past

and the second is just a binary indicator that specifies whether the customer bought the offered

product at least once, past the first coupon’s redemption. Additional data fields included the

value of each transaction, the department where the product was conceptually taken from, the

quantity of the purchase as well as the product measure and size. All these fields are common

to the typical retailer datasets.

In addition there was a source dataset containing a subset of the customers’ transactions for the

training and test sets commencing from sometime in the past until the day the customer

redeemed the offered coupon. The redemption date in the test data is always in the future

compared to the training data.

There is no specific field dedicated to represent the product (such as a product id as it is

commonly referred to), however in the context of this experiment a product can be defined as

the unique combination of three basic elements of the product hierarchy that are present in the

data, namely:

1. The brand the product belongs to

2. The category

3. The company that produced it

There were 37 different offers 23 of which mostly appear in the training set (and 24 in total)

and the remaining 13 mostly appear in the test set (and 29 in total). This uneven distribution of

offers between training and test data is presented in figure 5.1:

102

Figure 5.1: Uneven distribution of offers between training and test sets

In summary, the training of models would have to be made on different customers and different

offers (as well as different time periods) than the ones available in the test data which

constitutes an irregular (and difficult) environment to create accurate predictions for.

5.4 Objective to optimize

The objective function to be maximized was the AUC. The ROC (Receiver Operator

Characteristics) curve was first introduced by [Reen and Swets 1966] and it portrays the

confusion matrix of sensitivity and 1-specificity for each possible cut-off of the prediction’s

array. This metric was explained previously in 2.2.2.3.

For this particular problem, sensitivity is the percentage of those that did buy the offered

product past the offered date and the model did predict they’ll do so. Similarly specificity can

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

50,000

records in training set records in test set

103

be defined (in this scenario) as the percentage of these customers that did not buy the offered

product after they were sent the coupon and were correctly classified as such by the model.

5.5 Cross Validation Strategy

The cross validation strategy was driven from the fact that there were (almost entirely) different

offers in the test data than in the training data as demonstrated in figure 5.1. Three different

validation methodologies were considered as a means to internally gauge performance and

optimize the modelling parameters as well as derive and select features to maximize

performance in the test data.

The first method was a random K-fold cross validation (as defined in 2.2.1) stratified based on

the offers. The stratification ensures that every offer is represented equally (as a proportion) to

the training and validation data. In other words if offer z makes up for 10% of the total samples,

K is 5 and sample size is 160,000, then in the first fold 128,000 will be used for training (or

160,000 x 80%) and offer z will account for 12,800 of the training cases (or 128,000 x 10%).

At the same time the validation data for that same fold will have the remaining cases which are

32,000 and 10% (or 3,200) of them will be attributed to offer z. This method was repeated with

multiple K in the range of [5, 15].

The second cross validation methodology was formulated to always build a model with N-1

offers and use the nth to test it. This process is repeated N times until all offers are scored and

the average AUC per offer is retrieved. The process is also illustrated bellow.

Figure 5.2: N-Offer Cross validation procedure

104

In other words what is optimized is the average AUC per offer (denoted as AUCper_offer for

simplicity) for each offer in the training set, also expressed in equation 5.1:

 AUCper_offer(Ŷ, Y) =
1

N
∑ AUC(Yn̂, Yn)
N
n=1 (5.1)

, where Ŷ is the prediction vector for all samples in the training dataset and Y the actual labels.

 Yn̂, Yn refer to a subset of these predictions, labels, limited to the samples belonging to offern.

These predictions (Yn̂) were generated using all other offers’ samples as inputs to a model.

Assuming a feature set X and offer n>1, to generate the feature set Xm used to build a model

that predicts Yn̂, all samples attributed to any of the N offers are concatenated vertically apart

from those samples belonging to n as Xm = [X1| … |Xn−1|Xn+1| … |XN]. The same applies to

generate Ym from Y. Then an estimator (or model) is used to train on the pair of {Xm, Ym} to

produce estimates Yn̂, based on Xnas input. This reasoning for making predictions using N-1

offers can be defined as leave-one-offer-out for future reference.

Although this cross validation approach is sensible because it utilises into its schema the fact

that the offers in the test data are generally unknown, however it does not essentially optimizes

for the actual (overall) AUC. Optimizing for the overall AUC connotes that the prediction

needs to discriminate well against any offer (or against any sample) and not just within the

offer. This type of AUC can be denoted as AUCoverall measured after all 𝑌𝑛̂, 𝑌n from 5.1 are

concatenated vertically.

 AUCoveral(Ŷ, Y) = AUC([Ŷ1|Ŷ2|… |ŶN], [Y1|Y2|… |YN]) (5.2)

 Based on the known offers, the average propensity was differing significantly ranging from

7.4% for offer9 to 50.7% for offer2. Table 5-1 demonstrates the sorted average propensity to

buy each offer based on the training data.

105

Table 5-1: Sorted average propensity to buy per offer

Offer Propensity to buy

offer2 0.507

offer24 0.434

offer17 0.424

offer25 0.378

offer26 0.341

offer22 0.321

offer23 0.305

offer19 0.285

offer15 0.230

offer5 0.214

offer4 0.210

offer8 0.199

offer3 0.196

offer6 0.194

offer16 0.186

offer21 0.177

offer7 0.166

offer20 0.166

offer14 0.161

offer13 0.143

offer10 0.106

offer12 0.106

offer11 0.085

offer9 0.074

Optimizing only based on the current schema and given the differences in propensity levels per

offer, could generate a model where a sample for a given offer is not comparable to all other

samples from all other offers. To further demonstrate this problem, consider the following two

tables (5-2 and 5-3). The first table (5-2) displays the sorted (per target and score) predictions

and actual values for a small random sample of 10 cases for a random offer.

Table 5-2: Sorted predictions and actual values for a random sample and a given offer x

Prediction for offerx Actual for offerx

0.91 1

0.56 1

0.77 1

0.44 1

0.33 1

106

0.46 0

0.34 0

0.23 0

0.2 0

0.05 0

The AUC given this set of predictions and target information is 0.88 .The second table (5-3)

also displays the sorted (per target and score) predictions and actual values for a small random

sample of 10 cases for a different random offer.

Table 5-3: Sorted predictions and actual values for a random sample and a given offer y

Prediction for offery Actual for offery

0.65 1

0.6 1

0.59 1

0.57 1

0.55 1

0.58 0

0.56 0

0.53 0

0.52 0

0.51 0

The AUC for this sample is again 0.88, however the range of values is smaller here as all scores

are between 0.51 and 0.65. Table 5-4 shows the (vertical) concatenation of tables 5-2 and 5-3,

denoted as [offersx | offery].

Table 5-4: Vertical merge of tables 5-2 and 5-3

Prediction for [offersx | offery] Actual for [offersx | offery]

0.91 1

0.56 1

0.77 1

0.44 1

0.33 1

0.46 0

0.34 0

0.23 0

0.2 0

0.05 0

107

0.65 1

0.6 1

0.59 1

0.57 1

0.55 1

0.58 0

0.56 0

0.53 0

0.52 0

0.51 0

In this example, the AUC after the merge of the samples is again 0.825, which connotes a

6.25% drop over the individual AUCs. This occurs because the negative samples in table 5-3

have on average higher score than negative samples of 5-2 and lean more towards the positive

values of 5-2 superseding more of them.

Coalescing all this information, namely prime knowledge of the distribution of offers in the

test data, the diversity of known propensities per offer in the train data plus the potential loss

in overall AUC if predictions of different offers are not intersecting optimally, led to the

formulation of a third cross validation approach.

The thrid cross validation strategy used the same approach with the second of leave-one-offer-

out when estimating AUC, but instead of only monitoring the average AUC per offer (or

AUCper_offer), the predictions and labels for all offers were concatenated vertically (similarly as

tables 5-2 and 5-3 were used to form table 5-4) and the overall AUC (or AUCoverall) was

computed based on that concatenated frame. The final metric to maximize (denoted as

AUCfinal) was the average of the two AUCs as presented in the following equation.

 AUCfinal(AUCoverall, AUCperoffer) =
AUCoverall

2
+
AUCper_offer

2
 (5.3)

The features used to test which cross validation method performs better were derived from the

transactional history and included past counts of purchases from the same category, brand or

company and combinations of them. The features used connote a subset of those used in 5.6.1

and the focus was not to achieve the highest accuracy but compare which validation method

performs better before significant amount of time is invested in finding the best features,

108

algorithms and overall modelling parameters. The supervised model used to validate the

approaches was Logistic regression (defined in 2.2.3), modelled to predict the probability of

whether a customer will repeat or not. The only parameter that was changing subject to

performance throughout the different validation schemas was the L2 regularization parameter

(denoted as c). The results of the different cross validation methodologies are listed in the

following table.

Table 5-5: Results on AUC for all validation schemas

Validation schemas AUC_CV AUC_TEST

Stratified K-Fold (K=5) 0.683 0.579

Stratified K-Fold (K=10) 0.699 0.578

Stratified K-Fold (K=15) 0.712 0.576

Leave-one-offer validation 0.655 0.588

Leave-one-offer + concatenation 0.632 0.601

The stratified K-Fold methods gave very promising internal results, however they

underperformed in the test data compared to the other methods. The Leave-one-offer out

method experienced a drop in the local results, but substantial improvement in the test.

Ultimately the Leave-one-offer plus concatenation had the weakest local results but the best

performance in the test data. Due to the substantial difference between the train and the test

data, the more common cross validation methods were not able to generalize well, whereas the

methods that included the Leave-one-offer approach were able to achieve better results. Based

on these outcomes, the latter validation schema, namely Leave-one-offer plus concatenation

(or AUCfinal) was selected to aid the modelling process.

5.6 The Strategies

A fundamental difficulty in any FMCG’s predictions is the fact that they can be quite different

in nature and therefore it becomes quite challenging to create a holistic model (that could

potentially be applicable to any offer). On the other hand, creating a product-specific model

cannot generalize very effectively (especially to cold-start problems where the customer has

never bought the product before), plus it has to be built on limited data.

mailto:Precision@5

109

Based on the aforementioned challenges two main strategies were formed to better generalize

in the test data as well as deal with the cold-start problem:

1) Content-based: Make predictions scrutinizing the relationship of the customer with a

product and any of its sub-elements (of brand, category and company).

2) Collaborative filtering: Find those customers that although they do not have a direct

relationship with the product, still look like other customers who have such relationship.

5.5.1 Content based strategy 1: Exploit relationship of customer with

product

The following sections contain information regarding the reasoning for employing strategy 1,

the features generated under it, the data pre-processing steps that were utilized to improve

performance, the selected algorithms and the actual performance in respect to the AUC metric

in the test data.

5.5.1.1 Assumption

The assumption of the first strategy was that a customer who has bought from the same,

company, brand and category will have higher chance to buy the products once offered. This

model generalizes well against any item and any product because it maps only the relationship

of the customer with the item by means of how many times the relationship occurred in the

past.

5.5.1.2 Feature engineering

The generated features map the timeline of the relationship a customer had with a product prior

to the sending of the coupon. Consider the following figure (5.3) where a customer could have

bought a product in certain past occasions:

110

Figure 5.3 : Timeline of customer with coupon redemption

A customer could have bought a product multiple times in the past at different intervals. At

some point in time he/she received an offer (in this case a coupon) to buy this product and

he/she responded positively via buying the product. The algorithm is tasked to predict whether

the product will be bought again by the same customer in the future. This approach assumes

that there is a pre-existing relationship of the customer buying the product or any of the

hierarchy groups (such as brand, category or company) in the past. Therefore the generated

features try to gauge how strong that relationship is as measured by different time intervals

such as last 30, 60, 90, 120, 150, 180, 360 or more days.

For example consider feature category_30 which shows how many times a customer has bought

from the same category (as the offered product) in the last 30 days prior to the offer. The

assumption is that if a customer has bought from the same category multiple times in the past,

there is higher chance that he/she will become a repeater after receiving and redeeming an

offer. Apart from customer-to-product related features, customer-based only and product-based

only features were generated. Customer-based only features refer to attributes that describe the

customers’ preferences to the store such as average spending and number of visits over fixed

periods of time. Product-based only features include general category, brand and company

popularity for the same time intervals as well as average price and spending. The final list of

features for strategy one is displayed bellow in greater detail in table 5.6:

Table 5.6: List features’ descriptions derived for strategy one

Features Description of customers' features

category_30 Times bought the same category in last 30 days

category_60 Times bought the same category in last 30 to 60 days

category_120 Times bought the same category in last 90 to 120 days

category_180 Times bought the same category in last 120 to 180 days

category_360 Times bought the same category in last 180 to 360 days

category_over360 Times bought the same category in more than 360 days

brand_120 Times bought the same brand in last 90 to 120 days

brand_180 Times bought the same brand in last 120 to 180 days

brand_360 Times bought the same brand in last 180 to 360 days

brand_over360 Times bought the same brand in more than 360 days

company_30 Times bought the same company in last 30 days

111

company_60 Times bought the same company in last 30 to 60 days

company_90 Times bought the same company in last 60 to 90 days

company_120 Times bought the same company in last 90 to 120 days

company_180 Times bought the same company in last 120 to 180 days

company_360 Times bought the same company in last 180 to 360 days

company_over360 Times bought the same company in more than 360 days

category_brand_30 Times bought the same category&brand in last 30 days

category_brand_60 Times bought the same category&brand in last 30 to 60 days

category_brand_90 Times bought the same category&brand in last 60 to 90 days

category_company_30 Times bought the same category&company in last 30 days

category_company_60 Times bought the same category&company in last 30 to 60 days

brand_company_30 Times bought the same brand&company in last 30 days

brand_company_60 Times bought the same brand&company in last 30 to 60 days

brand_company_90 Times bought the same brand&company in last 60 to 90 days

brand_company_120 Times bought the same brand&company in last 90 to 120 days

brand_company_180 Times bought the same brand&company in last 120 to 180 days

brand_company_360 Times bought the same brand&company in last 180 to 360 days

brand_company_over360 Times bought the same brand&company in more than 360 days

category_brand_company_30 Times bought the same category&brand&company in last 30 days

category_brand_company_60 Times bought the same category&brand&company in last 30 to 60 days

category_brand_company_90 Times bought the same category&brand&company in last 60 to 90 days

category_brand_company_120 Times bought the same category&brand&company in last 90-120 days

category_brand_company_180 Times bought the same category&brand&company in last 120 -180 days

category_brand_company_360 Times bought the same category&brand&company in last 180-360 days

distinct_bought_company Number of dIstinct companies has bought

distinct_bought_category_brand Number of distinct categories and brands' combos has bought

distinct_bought_category_company Number of distinct categories and companies' combos has bought

distinct_bought_brand_company Number of distinct brand and companies' combo has bought

transaction purchase count_30 proportion of total transactions that occurred 30 days

transaction purchase count_60 proportion of total transactions that occurred 30 to 60 days

transaction purchase count_90 proportion of total transactions that occurred 60 to 90 days

transaction purchase count_120 proportion of total transactions that occurred 90 to 120 days

transaction purchase count_180 proportion of total transactions that occurred 120 to 180 days

amount_paid30 Average amount paid by (per transaction) in the last 30 days

amount_paid60 Average amount paid by (per transaction) in the last 30 to 60 days

amount_paid90 Average amount paid by (per transaction) in the last 60 to 90 days

amount_paid120 Average amount paid by (per transaction) in the last 90 to 120 days

amount_paid180 Average amount paid by (per transaction) in the last 120 to 180 days

Interaction: brand_30_transaction

purchase

count_120

Interaction of the times the brand was bought in the last 30 days with

the proportion of the total transactions in the last 120 days

Interaction: brand_company_30

_distinct_bought_category

Interaction of the times the brand and company combo was bought in the

last 30 days with the distinct number of different categories

All possible pairwise interactions of features were considered and their contributions in AUC

was gauged based on the cross validation procedure as defined in 5.5 after adding each

interaction one-by-one in a forward manner. Only 2 interactions were found to improve

AUCfinal and are listed at the bottom of table 5.6.

112

5.5.1.3 Pre-processing

To ensure unbiased predictions given the large amount of personal transactions and the

potential threat of outliers, extreme observations both by means of quantity (>25) and amount

spend (>£30) where excluded from the analysis. Additionally missing values where simply

replaced by -1 to ensure that there is no overlap with the mostly-positive values that most of

the features boasted. The logic for the treatment of missing values is also explained in 4.2.4.

5.5.1.4 Modelling

The target variable was the number of times the customer bought a recommended product past

the offered date and not the binary indicator. Because of the nature of the different offers

training on the actual counts provided an extra layer of confidence for these offers that are

bought multiple times. Adding the number of times the customer bought a recommended

product as samples’ weight and treating the problem as binary did not yield better results than

regarding it as a regression task.

The preferred model was Ridge Regression (which is Least Squares regression with L2

regularization) trained on the number of times the customers bought the product past the

offered date with a high alpha of 49. This parameter was selected based on the same cross

validation procedure explained in section 5.5.

5.5.1.5 Performance

The ridge model did quite well in its higher predicted scores (i.e. commonly items the customer

has bought before) in the left part of curve as illustrated in figure 5.4 for the validation data.

113

Figure 5.4 : ROC curve of strategy 1 based on the validation schema

It scored 0.610 in the test set.

5.5.2 Collaborative filtering Strategy 2: Customer “looks like” one

who had bought the item

Similar with strategy 1, the following sections contain information regarding the reasoning for

employing strategy 2, the features generated under it, the pre-processing steps that took place

to improve performance, the selected algorithms and the actual performance in respect to the

AUC metric.

5.5.2.1 Assumption

The general principle was to find what drives the customers to buy the products irrespective of

the sending of the offer. In other words the main question was:

 Would the customers have bought the product, had they not received the offer anyway?

114

This is achieved by observing how much a customer that there is some evidence he/she likes

the product, looks like another one. This is (naturally) quite powerful for items the customer

has no previous relationship direct or indirect.

5.5.2.2 Feature engineering

The generated features for this approach were more abstract in regards to the relationship of

the customer with the product. They map or cluster customer behaviours and characteristics

such as loyalty, attitude towards specific product departments and level of cardinality.

More specifically the exact features included:

 Counts of top 30 (most popular) departments

 Counts of top 30 (most popular) categories

 Mean quantity, amount purchased by the customer

 Number of records, visits, departments, categories, companies, brands bought by each

customer as cardinality measure.

 Mean number of brands by category, categories by department, categories by date, dates

by category, departments by date, dates by department

 Percent during the weekend of quantity, amount, records, visits

 Percent returned (aka transactions with negative value)

Additional features were created with deep learning by training two Restricted Boltzmann

Machines (RBMs) with Bernoulli distribution on Boolean indicators for all remaining (53 after

top 30) departments and next 100 (after top 30) categories. Those RBMs were trained with a

learning rate of 0.05, 20 iterations and 10 components that are input to the modelling. Only the

test set was used for training. There was no feature selection to this strategy and the level of

noise and collinearity of the data was handled with high shrinkage during hyper parameter

tuning phase of the modelling process.

5.5.2.3 Pre-processing

115

In order to avoid extreme observations, all the features where transformed by taking the natural

logarithm. The most fundamental pre-processing step was how the target variable was

formulated as it did not use the repeaters’ count or the binary indicator. Instead the target

variable was the logarithm of the number of times the customer bought the product 90 days

before the coupon was sent as portrayed in figure 5.5:

Figure 5.5 : Target variable was formed 90 days prior to sending the coupon

5.5.2.4 Modelling

The models of choice that used all the aforementioned features for strategy 2 were 2 GBMs

[Pedregosa et al. 2011] (Gradient Boosting Machines – Regression) trained on the natural

logarithm of counts as computed 90 days prior to sending the coupon (to avoid extreme

observations). Separate models were made for each offer. The first GBM was trained on

customers who did receive the offer. The second on those who did not. The reason behind this

division was that customer showed different behaviour in propensity levels to buy the product

before and after receiving the coupon, so the models attempted to capture this information. The

GBMs were trained with a learning rate of 0.1, 400 estimators, and maximum features per level

equal to 2, no usage of subsampling with a least squares loss.

5.5.2.5 Performance

Strategy 2 did very well on new items (right part of the curve) and on higher probability

purchased items. Also it discriminated quite equivalently across all offers. It scored 0.616 on

the test set. The graphical representation of the ROC curve and the AUC for the validation set

can be visualized in figure 5.6:

116

Figure 5.6 : ROC curve of strategy 2 based on the validation schema

5.5.3 Blending the strategies

To decide how to combine (or not) the two strategies, the distribution of the scores for certain

offers was observed. For instance offers 1230218 and 1208329 had similar score distributions

for strategy 1 and strategy 2 as illustrated by figure 5.7:

Figure 5.7 : Distribution of strategy 1(left) and 2 (right) for two offers offer_37 and offer_24

117

As previously cited, the first model was predicting expected quantity of items’ bought and the

second model on the logarithm of counts as measured 90 days before the sending of the coupon.

AUC is a metric that focuses on the ranking of the score distribution and expects that

observations with higher score should be correlated with higher probability to buy the item.

Whether the score correctly measures that probability is irrelevant to AUC as long as higher

scored cases have higher chance to buy the item and vice versa.

Given the different range of possible values of the two groups, the outputs were converted to

ranks (to account for the fact that they were trained on different targets). This method is also

explained as rank averaging by [Henk van Veen 2015]. Based on the similarity of the

distributions (in respect to score’s order and probability to buy), the strategies were given equal

weight. This can be represented with equation 5.3:

 hybrid(Ŷ𝑐𝑏, Ŷ𝑐𝑓) =
Ŷ𝑐𝑏
𝑟𝑎𝑛𝑘

2
+
Ŷ𝑐𝑓
𝑟𝑎𝑛𝑘

2
 (5.4)

, where the hybrid mode is defined using two predictions as inputs, the content based (denoted

as Ŷ𝑐𝑏) and the collaborative filtering based (denoted Ŷ𝑐𝑓) .The final result is the average of the

two predictions after transforming them into ranks to account for the fact that they have been

generated using models trained with different target variables. To create the rank of Ŷ𝑐𝑏 (which

is denoted as Ŷ𝑐𝑏
𝑟𝑎𝑛𝑘) , the vector Ŷ𝑐𝑏 gets sorted in an ascending manner and becomes Ŷ𝑐𝑏

𝑠𝑜𝑟𝑡.

Then for every i out of K, Ŷ𝑐𝑏
𝑠𝑜𝑟𝑡 = [ŷ𝑐𝑏,0

𝑠𝑜𝑟𝑡, ⋯ , ŷ𝑐𝑏,𝐾
𝑠𝑜𝑟𝑡] , Ŷ𝑐𝑏

𝑟𝑎𝑛𝑘 = [ŷ𝑐𝑏,0
𝑟𝑎𝑛𝑘 , ⋯ , ŷ𝑐𝑏,𝐾

𝑟𝑎𝑛𝑘] where:

 ŷ𝑐𝑏,𝑖
𝑟𝑎𝑛𝑘 = {

0 𝑖 = 0
i ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 > ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

ŷ𝑐𝑏,−1
𝑟𝑎𝑛𝑘 ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 = ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

 (5.5)

Creating these 2 diverse strategies was critical in achieving the top score, because each method

tried to leverage the weaknesses of the other, hence their combination yielded a significant

boost in AUC for the test data. The final AUC on the test data is 0.626. The consolidated results

of the 2 individuals strategies and their combination is listed below:

Table 5.7: AUC results on individual strategies and combined for the test data.

118

Strategies AUC_TEST

Strategy 1: Content-based 0.610

Strategy 2: Collaborative filtering 0.616

strategy1rank x 0.5 + strategy2rank x 0.5 0.626

5.7 Conclusion

This chapter described a hybrid method for improving predictions on what the customers of a

retailer will buy again in the future given historical purchases of the retailer’s products due to

coupons’ offers. In other words the challenge was focusing on predicting the recommendations

that would be more suitable in creating a habit of purchasing these offered products. The

displayed methodology was adjusted to make predictions in an irregular environment where

the train data different significantly from the test data by means of having different customers,

different offered products and different time periods.

Building a reliable cross validation strategy was integral for selecting and tuning a model that

could generalize efficiently in the test data. Three different cross validation strategies were

considered. The first strategy was a random k-fold cross validation stratified based on the offer.

The second method connoted a leave-one-offer-out schema, accounting for the fact that the test

data was consisting primarily from offers not present substantially in the train data. The last

strategy gave an equal weight to the AUC as computed from the second strategy plus the overall

AUC after concatenating all predictions for all n-1 offers again based on the second method.

The third method that boasted the best results on the test data (and the smaller gap between

train and test AUC performance) was conceptualized from the fact the average propensity of

the offers differ significantly. Predicting well inside the histogram of predictions for one offer

did not ensure that these predictions will be comparable (propensity wise) with predictions of

all other offers resulting in a possible AUC loss.

The hybrid method deployed to maximize AUC in the test data had the form of two separate

strategies, each one with its own pipeline of data pre-processing, handling of missing values,

features’ derivations as well as models’ selection and tuning of their hyper parameters. The

first strategy was based on content-based filtering and the second strategy on collaborative

filtering.

mailto:Precision@5

119

The first approach assumed a direct (via purchasing a product) or indirect (via purchasing from

the same department, brand or manufacturer) existing relationship that a customer may have

with a product. This approach used simple ridge regression to estimate the actual number of

times the customer is going to buy the product (again) in the future.

 The second strategy attempted to estimate a score of a customer buying a product even when

such relationship as explained before does not exist. This was exploited via finding the

characteristics of customers that bought the items (included in the offers) prior to sending the

coupon and cross-reference them with these that did receive the coupon to detect similarities.

This approach utilized one model per different offer to estimate the tendency of a customer

buying the corresponding items using gradient boosted machines and unsupervised models as

part of its input data. The target variable for this approach was the natural logarithm of the

number of times the customer bought the item 90 days before the coupon was sent.

The ensemble of the two approaches was challenging because the first model was fit on an

untransformed regression response variable (e.g. the quantity) and the other model with was

the natural logarithm of the number of times the customer bought the product 90 days prior the

sending of the coupon. To maximize AUC, these predictions were transformed to ranks and

were equally weighted to achieve the best performance in the test data.

120

6. The StackNet Model

This chapter covers the properties of the StackNet Model. The StackNet Model is a scalable Meta

modelling methodology based on a feedforward neural network architecture implemented in the Java

programming language where each single activation function is approximated via the usage of different

machine learning algorithms with the overall aim to improve accuracy in any machine learning

supervised problems.

6.1 Introduction

The rigorous interest in developing better and faster machine learning models in tandem with

the rapid growth of the hardware power has made it possible to scale increasingly complex

prediction algorithms in order to improve prediction accuracy in many different data science

fields. Many algorithms that were developed in the past and were abandoned due to their

expensive computational requirements – such as deep learning – are now being re-examined

as a means to improve predictions even further. In 1992 stacked Generalization was introduced

as a way to combine many different neural network models of similar architecture with another

neural network model in order to improve prediction accuracy.

The StackNet model is a methodology primarily based on neural networks in order to combine

many different algorithms so that every single link function between layers is replaced with a

different machine learning algorithm. The intuition behind this is that the underlying data rarely

follow perfectly a specific distribution and an ensemble of different models with different

parametric-or-not assumptions can achieve better performance (at the cost of additional

computational power).

Note that the function that connects the input layer with one hidden unit h (out of H) from the

first hidden layer, takes the form of a linear regression where a single sample x (out of X) with

dimensionality J is multiplied with a set of weights WJ,H to output an estimate. The function f1

that describes the above link is displayed in equation 6.1:

121

 f1,h(x) = ∑ (J
j=1 G(xj)Wj,h) (6.1)

, given a linear activation G on the input sample x from a dataset X and the Wj,h, the weights

that link feature j with the single neuron h . The hidden layer outputs (f1), assuming there is no

other activation taking place. Assuming that this function can be described as a single estimator

in the form of a linear regression, this could be re-written more generally as in equation 6.2:

 f1,h(x, 𝑠) = s(G(xj)) = s(xj) (6.2)

, where s is linear regression function. The G function can be removed as the connection is

assumed to be linear in respect to the input data point x. The proposed methodology can be

extended so that s can be any other machine learning algorithm that given some input data x,

produces (and outputs) a score. In the case that many different s algorithms are used, this

methodology has the potential to achieve better results than the individual algorithms that

comprise it. The initial version of the model is built in the Java programming language.

In contrast to feedforward neural networks, rather than being trained through back propagation,

the network is built iteratively one layer at a time using Wolpert’s stacked generalization, each

of which uses the final target Y as its target. StackNet’s ability to improve accuracy is

demonstrated via creating different instances of StackNet models with multiple levels and

architectures which are then used to rank best the likelihood of a certain song being created

before or after 2002 using a set of 90 numerical attributes out of 515,345 songs that come from

a subset of the Million Song Dataset [2011]. The latter is a freely-available collection of audio

features and metadata for a million contemporary popular music tracks with focus on using this

metadata to predict the year a song was created.

 Two additional experiments are made, one that measures the trade-off between model

complexity and performance and another that investigates the trade-off between models’

diversity within the StackNet model and performance. Both these experiments link back to the

considerations in literature (section 2.4.2) for building ensembles that are not computational

expensive and perform as best as possible.

6.2 Software Review

122

The following sections briefly reviews other software work in the predictive analytics space

with an ensemble functionality. It also reviews the Java programming language in the context

of this thesis.

6.2.1 Machine learning Packages

The most popular machine learning software with the ability to combine many algorithms with

various ensemble methods is [sklearn 2013], implemented in python with multithreaded

capabilities , bringing together many prominent packages focused in different machine learning

methods , including [Liblinear 2008] (for large scale linear modelling) and the award winning

[Libsvm 2011] (for support vector machines) . The [Weka 2009] data mining Software has

made extensive use of ensemble methods in the Java programming language. [Ranklib, 2013]

also written in Java, provides modules to combine many learn-to-rank algorithms with various

ensemble methods such as bagging and boosting. Many packages exist in the R programming

language such as [Carret 2012] or [Rattle 2011] with the aim of bringing many algorithms

under the same framework in order to facilitate modelling via ensembling. [Keras 2013], which

is based on [Theano 2010] made it possible to combine easily and efficiently many different

deep learning architectures.

The [H2O 2016] predictive modelling open source software package contains a module called

Stacked Ensemble that uses Super Learning or Stacked Regression defined as a class of

algorithms that involves training a second-level “metalearner” to find the optimal combination

of the base learners. [LeDell 2015] proposed a scalable learning methodology with a software

application to combine multiple, typically diverse, base learning algorithmswith a Super

Learner.

Although the stacked generalization concept was introduced in 1992 by Wolpert et al. and a

few software applications leveraged this to boost accuracy, even after the advent of deep

learning (as of the recent era), there has not been until today any prominent software package

that makes use of this methodology with the score of expanding it onto more than one level.

Nevertheless the concept of deep ensembling has been very frequently used especially in the

form of Gradient Boosting Trees and the award winner [Xgboost 2016].

123

6.2.2 Java programming Language

Java was first developed in 1995 and has now one of the most popular programming languages

in the world, however is the first choice when it comes to data science and machine learning

[Puget 2016]. It is also deemed more verbose than Python [Prechelt 2000] and R [Murtagh

2005]. However Java, is still a good choice when it comes to building large distributed machine

learning systems. One of Java’s main advantages over many other languages is that it can be

used without many (if any) changes with any operational system and it is also relatively quick

compared to most object oriented languages [Brose et al. 2001] .

Regarding the current thesis, although it is acknowledged that Java is not as fast as C or C++,

nevertheless was deemed to be the language of choice to develop the application given its

overall characteristics and specifically its popularity, safety and simplicity [Tiobe 2017].

6.3 StackNet Model

The StackNet model refers to an extension of [Wolpert’s 1992] stacked generalization to

multiple algorithms using a neural network architecture with multiple layers where each

neuron’s function is replaced with a different machine learning algorithm each time. The name

of the model originates from“Stack” that directly refers to “stacked generalization” and “net”

because of the aforementioned neural network architecture. The model developed by the author

(as methodology) was first used (and the term was introduced) in the winning solution of “Truly

Native”6 [2015] data modelling competition hosted by the popular platform Kaggle.com. The

final StackNet structure which won that challenge can be viewed in figure 6.1 and included 4

layers with various algorithms for each one. StackNet has also been used (and won) other

predictive modelling challenges such as the Homesite Quote Conversion7 [2016] also hosted

by the kaggle.com platform.

6 http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
7 http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-
clobber/

http://blog.kaggle.com/2015/12/03/dato-winners-interview-1st-place-mad-professors/
http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-clobber/
http://blog.kaggle.com/2016/04/08/homesite-quote-conversion-winners-write-up-1st-place-kazanova-faron-clobber/

124

Figure 6.1 : StackNet model with 4 layers used to maximize AUC and win the Truly Native

Kaggle challenge.

6.3.1 Mathematical formulation

The function that connects the input layer with the neuron h in the first hidden layer was defined

previously (assuming a linear activation function on the input data) equation 6.3:

 f1,h(x, 𝑠) = s(xj) (6.3)

where s could be any (machine learning) algorithm that takes some input data x and outputs a

score. Assuming there is a vector S with size H that contains the functions of different

algorithms in respect to the input data, f1,h can be re-written as 6.4 for a given neuron h:

125

 f1(x, 𝑆) = Sℎ(xj) (6.4)

To add another layer, the outputs of all f1(x, 𝑆, ℎ) will be used as inputs to a f2 function that

given a new (Meta) model l, attributed to a neuron m (in the second layer), the original vector

of S models (with size H) of the first hidden layer and the input data x, will have the form of

6.5:

 f2,m(x, l, S) = l(f1(x, S1), f1(x, S2),… . , f1(x, S𝐻)) (6.5)

Following the same reasoning as 6.4, if there is a vector L of neurons of size M, then f2 could

be re-written as 6.6 for a given neuron m :

 f2(x, L, S) = L𝑚(f1(x, S1), f1(x, S2), … . , f1(x, S𝐻)) (6.6)

Instead of having different vectors of models for different layers (in this case S for layer one

and L for layer two), there could be a 2-dimenional vector V that holds all these algorithms

with size N,DN, where N is the number of the hidden layers and Dn the number of hidden

neurons (or models) within the hidden layer n. Therefore, replacing L, S from 6.6 with V would

result in 6.7:

 f2(x, V) = V2,𝑚 (f1(x, V1,1), f1(x, V1,2), … . , f1(x, V1,𝐷1)) (6.7)

This logic could be extrapolated to any number of layers N, where the nth layers uses the outputs

of the predictions of the leyer n-1 to as inputs in order to output a score. Assuming there is a

neuron k in the nth layer, its output would be generated using 6.8:

 fn(x, V) = V𝑛,𝑘 (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… . , fn−1(x, V𝑛−1,𝐷𝑛−1)) (6.8)

126

6.3.2 Modes

The “stacking” element of the StackNet model could be run with 2 different modes. The first

mode (also set as the default) is the one already mentioned in 6.8 and assumes that each layer

uses the predictions (or output scores) of the direct previous one, which is similar to a typical

feedforward neural network. The second mode (also called restacking) assumes that each layer

uses previous neurons activations as well as all previous layers’ neurons. Therefore the

previous formula can be re-written as equation 6.9 (assuming the layers N>3):

fn(x, V) = V𝑛,𝑘

(

fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… , fn−1(x, V𝑛−1,𝐷𝑛−1),

fn−2(x, V𝑛−2,1), fn−2(x, V𝑛−2,2), . . . , fn−2(x, V𝑛−2,𝐷𝑛−2),
… ,

f𝑛−𝑁+1(x, V𝑛−𝑁+1,1), f𝑛−𝑁+1(x, V𝑛−𝑁+1,2),… , f𝑛−𝑁+1(x, V𝑛−𝑁+1,𝐷𝑛−𝑁+1))

 (6.9)

The intuition behind this mode is driven from the fact that the higher level algorithm have

extracted information from the input data, but rescanning the input space may yield new

information not obvious from the first passes. This is also driven from the forward training

methodology discussed below and assumes that convergence needs to happen within one model

iteration. The following graph (6.2) illustrates the difference between the two modes.

Figure 6.2 : StackNet’s link modes

127

6.3.3 Training with K-fold cross validation

The typical neural networks are most commonly trained with a form of back propagation. Back

propagation requires a differentiable loss function. In the premise that any machine learning

algorithm could be included in a StackNet model, it is not currently easy to formalize the back

propagation training approach since not all losses from all models are differentiable. Therefore

stacked generalization is used to train this network instead.

Stacked generalization requires a forward training methodology that splits the data into two

parts – one of which is used for training and the other for predictions. The reason this split is

necessary is to avoid over fitting. However splitting the data in just 2 parts would mean that in

each new layer the second part needs to be further dichotomized. This has the effect of

increasing the bias as each algorithm will have to be trained on increasingly less data.

To overcome this drawback the algorithm utilizes a k-fold cross validation (where k is a hyper

parameter) so that all the original training data is stored in different k batches thereby outputting

as many predictions as there are samples in the training data. Therefore the training process is

consists of 2 parts:

1. Split the data k times and run k models to output predictions for each k part and then

concatenate the k parts back together to the original order so that the output predictions

can be used in later stages of the model. This process is illustrated below in figure 6.3:

Figure 6.3 : Example of K-fold scoring-output for StackNet given an algorithm in a neuron where K=5

128

2. Rerun the algorithm on the whole training data to be used later on for scoring the

external test data. There is no reason to limit the ability of the model to learn using

100% of the training data since the output scoring is already fairly unbiased (given that

it is always scored as multiple holdout sets).

It should be noted that (1) is only applied during training to create unbiased predictions for the

second layers’ model to fit on the predictions of the previous layer during scoring time (and

after model training is complete) only (2) is in effect.

The k-fold may also be viewed as a form of regularization where smaller number of folds (but

higher than 1) ensure that the validation data is big enough to demonstrate how well a single

model could generalize. On the other hand higher k means that the models come closer to

running with 100% of the training and may yield more unexplained information. The best

values could be found through cross validation.

Another possible way to implement this could be to save all the k models and use the average

of their predicting to score the unobserved test data, but this will result in all the models not

being trained with 100% of the training data and may therefore be suboptimal. It should be

noted that the loss function the StackNet model optimizes is defined by the last model in the

last layer and therefore it is algorithm-specific. For example if a logistic regression model is

chosen in the last layer, all other models’ outputs from previous layers are used within the

logistic regression model to optimize a log likelihood function.

The optimal parameters O of the V𝑛,𝑘 algorithm (which may be weights, nodes, latent vectors,

support vectors or else depending of the algorithm’s type) , denoted as OV𝑛,𝑘 can be specified

given a loss function LL to minimize (suitable for the algorithm’s type), a normal connection

mode and a target variable Y as:

OV𝑛,𝑘
̂ = argmin

OV𝑛,𝑘

LL(OV𝑛,𝑘 , (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2), … . , fn−1(x, V𝑛−1,𝐷𝑛−1)) , Y) (6.10)

, where the minimization of the loss function is subject to some parameters OV𝑛,𝑘 of V𝑛,𝑘, the

input data of this algorithm as produced from (1) and the target variable Y. For example if the

129

squared loss function E was used (in the place of L) as the main function to minimize, given

a dataset X and a single sample from it as xi ,6.10 could be re-written as:

 OV𝑛,𝑘
̂ = argmin

OV𝑛,𝑘
̂

𝐸(OV𝑛,𝑘
̂) = argmin

OV𝑛,𝑘
̂

∑ (𝑦
𝑖
− V𝑛,𝑘(𝑥𝑖))

2
𝑁

𝑖=1
 (6.11)

It should be noted, that function LL does not need to be only subject to minimization, but

maximization too. Also, theoretically, the function LL may not need the target variable Y at all

and unsupervised models could be used too, for any layer that is not the Nth (last)

6.3.4 The input data type (software specific)

The StackNet model as implemented in Java supports three different input data formats:

6.3.4.1 Java’s double 2-dimensional array

This is one of the most common Java objects and can be perceived as arrays of double arrays,

coded as double [][]. This Object was chosen to be used so that the algorithms are accessible

to anyone without requiring a special input format, however it is not the friendliest method to

do so from a memory point of view as it is a complex object that consists of many smaller in-

memory objects, all with different addresses making column-wise loops relatively slow.

However it has been found to be quite efficient when there are many features in the input data

(so that every in-row loop is more efficient).

6.3.4.2 Fixed-size matrix or fsmatrix

This is a complex object that is also interpreted as a 2-dimensional array, but similar to C arrays

it is actually a 1-dimensional Java double array with a fixed size equal to the product of rows

and column of the desired data matrix. This object requires much less memory to store its data

and can be quite fast for most operations. However it still connotes a dense representation and

therefore cannot scale in very sparse problems. The fsmatrix require a row and column

dimension to be initialized like:

fsmatrix sample_matrix= new fsmatrix(int rows, int columns);

130

6.3.4.3 Sparse matrix or smatrix

Sparse matrix refers to a way to store the data so that all zero elements are not captured. In

other words it represents a mapping that points only to the non-zero elements and consist of 3

java 1-dimensional arrays – one double array to store the non-zero elements, a integer array to

hold the dimension’s position (e.g. the column) for each of the non-zero elements and the last

integer array connotes the start and end index for each row based on the previous 2 arrays.

Depending on the algorithms the 2 integer arrays may switch positions (so that the first points

to rows and the second one to columns) in order to speed up the training and scoring process.

Additionally (and after activation) the matrix contains a hash-table for quick column or row

value accessing, however this comes with additional memory overhead and it is optional.

Depending on the sparsity of the input data this matrix may increase the training speed multiple

times, requiring much less data. The smatrix can be created via providing any of the previous

two input data objects (fsmatrix or 2-dimensional Java double array) or can be constructed

manually via providing the three 1-dimensional Java arrays as stated previously.

6.3.5 The objects

While there many existing algorithms in the java programming language, in order to address

the needs to scalability and optimal performance under the StackNet framework, most of the

algorithms had to be written from scratch. Although the initial arsenal of available algorithms

in the StackNet software may not be deemed very rich, nevertheless crucial effort was made to

include representatives from most algorithmic families which fall into the following categories.

6.3.5.1 Tree-based algorithms

Tree-based algorithms are likely to be commonly used and form one of the most predictive

class of algorithms. These algorithms include standard decision tree regressors and classifiers.

Depending on the way multiple trees can be combined this class also includes Random Forests

(e.g. bagging of trees) or Gradient boosted Trees for both regression and classification. It

should be noted that for binary classification the trees also support an AUC split criterion apart

from the common ones (e.g. information gain).Gradient Boosting has been implemented so

131

that the base estimators are Random Forests and no single decision trees, however the default

number of trees for such forests is one which equates them to decision trees. A Gradient

Boosting model is implemented via initializing it:

GradientBoostingForestClassifier model = new GradientBoostingForestClassifier();

Then any number of hyper parameters may be defined as:

model.estimators=100;
model.threads=3;
model.verbose=true;
model.copy=false;
model.trees=1;
model.shrinkage=0.1;
model.cut_off_subsample=1.0;
model.feature_subselection=0.1;
model.max_depth=8;
model.max_features=1.0;
model.max_tree_size=-1;
model.min_leaf=2.0;
model.min_split=5.0;
model.Objective="RMSE";
model.row_subsample=0.9;
model.seed=1;

All models follow the exact same structure and the details about the tuneable hyper parameters

can be found in the Javadoc accompanying the release of the software.

To train the algorithm the fit() method is invoked that takes as input a data object (any of the

three kinds) as defined above. The response variable defined in the hyper parameter section

and not in the fit method for optimization reasons:

smatrix X = null;
double response []= new double [X.GetRowDimension()];
model.target=response;
model.fit(X);

Once the algorithm is fitted, predictions can be extracted in the form of probabilities or class

results:

double probabilities[]=model.predict_proba(X);
double classes[]=model.predict(X);

The tree-related parameters are presented in table 6-1 as they appear within StackNet.

132

Table 6-1: Tree specific hyper parameters in StackNet

Parameter Explanation

max_depth Maximum depth of the tree

objective The objective based on which the split is determined. It may be “RMSE “for regression and

“Entropy” for classification and ”AUC” for binary classification

row_subsample Proportion of observations to consider

max_features Proportion of columns (features) to consider in each level

cut_off_subsample Proportion of best cut offs to consider. This controls how Extremely Randomized the tree will be

feature_subselection Proportion of columns (features) to consider for the whole tree

min_leaf Minimum weighted sum of cases to keep after splitting node

min_split Minimum weighted sum of cases to split a node

max_tree_size Maximum number of nodes allowed in the tree

The Random forest related parameters are presented in table 6-2:

Table 6-2: Random Forest specific hyper parameters in StackNet

Parameter Explanation

estimators Number of trees to build. In most situations after 100 it does not improve dramatically more

The Gradient Boosted Forests of trees’ related parameters are presented in table 6-3:

Table 6-3: Gradient Boost Random Forest of trees’ specific hyper parameters in StackNet

Parameter Explanation

estimators Number of Random Forests to build. In most situations after 100 it does not improve dramatically mor.

trees Number of trees in each Forest. The default is 1 which basically connotes a tree estimator

shrinkage Penalty applied to each estimator. Smaller values prevent overfitting. Needs to be between 0 and 1. There is

also a negative correlation between estimators and shrinkage.

6.3.5.2 Linear regression

Linear regression is implemented with L2 (Ridge), or L1 (Lasso) regularizations and can be

trained with various optimizations algorithms such as the ordinary method (with matrix

multiplications) and stochastic gradient decent methods.

The Linear Regression related parameters are presented in table 6-4:

133

Table 6-4: Linear Regression hyper parameters in StackNet

Parameter Explanation

C Regularization value, the more, the stronger the regularization. A value here basically triggers

a Ridge regression

Type Can be one of “Routine”, “SGD” Routine is the Ordinary Least Squares method which is solved with

matrix multiplications

Objective “RMSE”

learn_rate For SGD

UseConstant If true it uses an intercept

maxim_Iteration Maximum number of iterations

6.3.5.3 Logistic regression

Logistic regression is also implemented with L2 (Ridge), or L1 (Lasso) regularizations and can

be trained with a Newton-Raphson (with matrix multiplication) method, stochastic gradient

decent method and the Liblinear’s implementation. Multinomial logistic regression is

implemented via running 1 model for each one of the distinct classes of the target variable.

The Logistic Regression related parameters are presented in table 6-5:

Table 6-5: Logistic Regression hyper parameters in StackNet

Parameter Explanation

C Regularization value, the more, the stronger the regularization

Type Can be one of “Liblinear”, SGD”. Default is Liblinear.

learn_rate For SGD

UseConstant If true it uses an intercept.

maxim_Iteration Maximum number of iterations

6.3.5.4 Linear support vector machines

StackNet includes Liblinear’s fast implementations for both regression and classification as

well as SGD for when a linear kernel is selected. These models are denoted as LSVC for

classification and LSVR for regression.

The LSV related parameters are presented in table 6-6:

134

Table 6-6: LSVC and LSVR hyper parameters in StackNet

Parameter Explanation

C Regularization value, the more, the stronger the regularization.

Type “SGD”

learn_rate For SGD

UseConstant If true it uses an intercept

maxim_Iteration Maximum number of iterations

6.3.5.5 LibFM

The factorization machines’ representative in the StackNet software is LibFM (which is

commonly used in the recommender systems’ area). This is implemented with L2

regularization and convergence is reached via using stochastic gradient decent and supports

both regression and classification.

The libFM related parameters are presented in table 6-7:

Table 6-7: libFM hyper parameters in StackNet

Parameter Explanation

C Regularization value, the more, the stronger the regularization

C2 Regularization value for the latent features

Lfeatures Number of latent features to use.

init_values Initialise values of the latent features with random values between [0,init_values)

learn_rate For SGD

maxim_Iteration Maximum number of iterations

Type Only “SGD”

UseConstant If true it uses an intercept

6.3.5.6 Neural networks

A very specific architecture of neural networks has been implemented as this software did not

aim to become a comprehensive deep learning library but rather a tool that achieves better

accuracy via combining different machine learning algorithms leveraging the pros and cons of

each algorithmic family (or at least the most prominent representatives) using CPU. Therefore

a-two-layer neural network has been implemented that supports regularization. The number of

hidden units in each layer is a hyper parameter. Both regression and classification can be run

so that they optimize a multi-label objective directly or via breaking down to many single-

response problems.

135

The neural networks are denoted as Softmaxnnclassifier for classification and Multinnregressor

for regression. The main difference is that the Softmaxnnclassifier has a softmax output layer

suitable for classification problems and Multinnregressor has a simple linear output activation.

The parameters of these models are presented in table 6-8:

Table 6-8: hyper parameters of Softmaxnnclassifier and Multinnregressor in StackNet

Parameter Explanation

C Regularization value, the more, the stronger the regularization

h1 Number of the 1st level hidden units

h2 Number of the 2nd level hidden units

init_values Initialise values of hidden units with random values between [0,init_values)

smooth Value to divide gradients and aid convergence

connection_nonlinearity Can be one of “Relu”,”Linear”,”Sigmoid”,”Tanh”. Commonly Relu performs best.

learn_rate For SGD

maxim_Iteration Maximum number of iterations

Type Only “SGD”.

UseConstant If true it uses a bias/intercept in each node.

6.3.5.7 Naïve Bayes

The simple Naïve Bayes implementation was included to provide quick solutions at the cost of

– in most cases – some loss in accuracy. A scaling or regularization parameter has been added

to control the size of the product in the probability estimation.

The only parameter associated with Naïve Bayes is presented in table 6-9:

Table 6-9: hyper parameters of Naïve Bayes in StackNet

Parameter Explanation

Shrinkage Can be seen as a form of a penalty to avoid really big products’ failures.

6.3.5.8 All algorithms

All included algorithms follow a similar structure where, after initialization, any number of

hyper parameters may be added. Additionally most of the algorithms support scaling to aid

convergence, particularly useful for linear algorithms optimized via gradient based methods.

The default scaling object is a maxscaler() which connotes that every feature is divided by its

absolute maximum value. This ensures that all values will be within the range of [-1, 1]. The

136

scaling method is a hyper parameter of the model and gets invoked in fit() and predict()

methods.

Additionally, all estimators include a seed (integer) value in order to be able to replicate any

randomized procedures included in the algorithms. They also include a threads term that

controls parallelism within the model training and predicting. There are some other

miscellaneous options too, like whether to copy the data or to print updates about the

algorithms’ progress via setting a verbose parameter.

All algorithms can accept hyper parameters within the one command using a string of space

separated parameters as parameter_name:value. Most algorithms support some form of

verbosity so that they print information about their progress and can be copied. By invoking

the PrintInformation() , the details of the given object are printed.

6.4 Using StackNet for “Song year of release” classification

The functionality of StackNet, and specifically, its ability to combine different machine

learning models in order to achieve a better classification outcome can be better demonstrated

through an experimentation with real data. In the following experiment different versions of

StackNet with different modes, levels and structures will be used to rank best the likelihood of

a certain song being created before or after 2002 using a set of 90 numerical attributes out of

515,345 songs that come from a subset of the Million Song Dataset [Bertin-Mahieux et al.

2011].

6.4.1 Training and test data

The current experiment will use the YearPredictionMSD Data Set available in University of

California (UCI’s) Machine Learning Repository [Lichman 2013] and connotes a part of the

Million Song Dataset. The data set contains 515,345 rows, each one representing a song that is

described using 90 numerical features as well as an indicator in the beginning ranging from

1922 to 2011 stating the year the song was created. The nature of the features is not within the

scope of this experiment, however it is stated in the online repository that the features are

137

extracted from the 'timbre' features from [The Echo Nest API nd] which is an online resource

that provides metadata and audio analysis for millions of tracks and powers many music

applications on the web and smart phones. The first 12 features are related to timbre averages

and the remaining 78 to timbre covariance. These are calculated based on all 'segments', each

segment being described by a 12-dimensional timbre vector.

The experiments uses the first 463,715 examples for training and the last 51,630 examples for

testing purposes. This split is suggested from the online resource, because it was designed in

such a way so that it avoids the 'producer effect' via making certain that no song from a given

artist ends up in both the training and test data set. Furthermore the target variable (namely the

year the song was created) is converted into a binary indicator for whether a given song was

created before or during 2002 (0) or after 2002 (1). The cut-off year of 2002 was selected to

proportionally balance the number of 0s and 1s in the data. For consistency with other

experiments the metric to optimize is again AUC and Loglikelihood.

6.4.2 First layer single model

The StackNet model utilizes different models as nodes to its first layer which is in direct

connection with input data. The first layer in this experiments consists of 12 models shuffled

from different machine learning methods, with the idea that diversity in early levels can yield

better predictions in later levels than the single model-nodes involved in this ensemble

framework. All models have been manually trained before entered into the StackNet model in

order to optimize their hyper parameters, using a random 5-fold cross validation process on the

training dataset.

The selected models and their most important hyper parameters can be viewed below in table

6-10:

138

Table 6-10: First Layer models in StackNet

Models in first layer Parameters

Logistic Regression

(Logistic_M1)
C=0.5

Random Forest Classifier

(Random_Forest_M1)

estimators=100, max_depth=15, max_features=0.3, min_leaf=5, row

subsample=0.95

SVM (Linear Kernel)

(Linear_Support_Vector_M1)
C=3.0

LibFm Classifier

(LibFm_M1)

maxim Iterations=16, C= 0.000001, init_values =0.9, learn rate =0.9,

Lfeatures=3

Naïve Bayes

(Naïve_Bayes_M1)
shrinkage=0.01

Neural Net Classifier

NN_2layersRelu_M1

C= 0.000001, learning rate=0.009, maxim_iterations=20,

h1,h2=(30,20), act=relu, out=softmax

Gradient Boosted RandomForest Classifier

(GBM_M1)

estimators=100, max_depth=8, max_features=0.5,min_leaf=2.0,

eta=0.1, row subsample=0.9

Linear Regression

(Linear_Regression_M1)
C=0.00001

Random Forest Classifier

(RandomForest_M1)

estimators=100, max_depth=8, max_features=0.5, min_leaf=2.0,

row subsample=0.9

Gradient Boosted RandomForest Regressor

(GBM_Regressor_M1)

estimators=100, max_depth=9, max_features=0.5,min_leaf=2.0,

eta=0.1, row subsample=0.9

RandomForest Regressor

(Random_Forest_Reg_M1)

estimators=100, max_depth=14, max_features=0.25 ,min_leaf=5,

row subsample=1.0

Linear Support Vector Regression

(Linear Support_Vector_Reg_M1)
C=3.0

Each model is run directly on the 90 features available in the dataset with no other data pre-

processing apart from maximum scaling. The performance of each one of the models in terms

of AUC and logloss is displayed in the following table 6-11:

Table 6-11: Performance of 1st layer models in StackNet

StackNet: First Layer Models AUC Loglikelihood

Logistic_M1 0.7759 0.5796

Random_Forest_M1 0.7913 0.5578

Linear_Support_Vector_M1 0.7753 4.3356

LibFm_M1 0.7757 0.5797

Naïve_Bayes_M1 0.6432 1.7416

NN_2layersRelu_M1 0.8002 0.5457

GBM_M1 0.8034 0.5409

Linear_Regression_M1 0.7744 0.7313

RandomForest _M1 0.7779 0.6148

GBM_Regressor_M1 0.8045 0.5990

Random_Forest_Reg_M1 0.7883 0.5634

Linear_Support_Vector_Reg_M1 0.7753 0.6295

The GBM models have performed best both in terms of AUC and logloss, with neural networks

being close behind. The best reported AUC is 0.804 which implies a strong discriminative

139

capability of classifying songs for whether they were created before or after 2002. The best

reported logloss is 0.541.

6.4.3 2nd layer single models

The models selected for the 2nd layer are only trained on 12 features – those being the output

predictions of the M1 models. These models can also be viewed as single-layer StackNets since

each one corresponds to a Meta algorithm that takes as inputs previous models’ predictions.

This time the selected number of models is only 4, since the initial 90-dimensional feature set

is already compressed down to 12 outputs and adding many more models is likely to recycle

the same information leading to overfitting. The final architecture has been found through

various trials of slightly different structures based on the 5-fold cross validation schema

mentioned before.

The parameters of each model in the second layer is illustrated in table 6-12:

Table 6-12: Second layer models in StackNet

Models in second layer Parameters

Logistic Regression

(Logistic_l2_M2)
C=0.5

Random Forest Classifier

(Random_Forest_M2)

estimators=1000, max_depth=7, max_features=0.4, min_leaf=1, row

subsample=1.0

Gradient Boosted RandomForest Classifier

(GBM_M2)

estimators=1000, max_depth=5, max_features=0.5, min leaf=1.0,

shrinkage=0.01, row subsample=0.9

Neural Net Classifier

(NN_2layersRelu_M2)

maxim Iterations=16, C= 0.000001, init_values=0.9, learn rate =0.9,

Lfeatures=3

 Note that in the second modelling phase, the optimum parameters of the models have become

more modest. For example the tree-based models have significantly smaller depths than their

predecessors. This occurs naturally since the underlying features-predictions from the previous

models are more correlated with target variable as there are meant to be predictions for it.

Therefore the new models do not need to be so exhaustive with the underlying feature set when

optimizing the error in respect to the target variable. Table 6-13 shows the absolute results of

the new M2 models as well as the proportion of improvement versus best results of the M1

models:

140

Table 6-13: Performance of 2nd Layer models in StackNet

StackNet: Second Layer Models AUC Loglikelihood AUC% Loglikelihood%

Logistic_l2_M2 0.8102 0.5328 0.71% 1.49%

Random_Forest_M2 0.8088 0.5343 0.53% 1.21%

GBM_M2 0.8100 0.5327 0.69% 1.52%

NN_2layersRelu_M2 0.8101 0.5332 0.69% 1.41%

The best AUC has now increased to the 0.81+ area which is a +0.71% proportional

improvement from the best M1 model in terms of AUC. The proportional impact in

loglikelihood is superior as the biggest increase is around 1.5% better than the best predecessor.

Interestingly, different types of 2nd layer models are better for each metric which may connote

that extra benefit could be derived via adding one more layer to the StackNet as it can be

assumed that each underlying model is utilizing the input information slightly differently.

6.4.4 3rd layer models

In the final layer, apart from running a new meta classifier on the output of the previous 4-

dimensional layer, a second meta classifier will be used that activates the “restacking”

StackNet mode which brings up to the same level all previous models (from all previous layers)

. In other words the First M3 StackNet will be run on a 4-dimensional feature set and the second

M3 Stacknet on 16-dimensional (12 + 4) feature set in order to compare the ability of the

restacking model to re-recycle information and perform better than the simple one. The

parameters of each model in the third and final layer is illustrated in table 6.14:

Table 6-14: Third layer models in StackNet

2 different StackNets Parameters

Random Forest Classifier

 (Random_Forest_M3)
estimators=1000, max_depth=6, max_features=0.7, Restacking OFF

Random Forest Classifier

(Random_Forest_Restack_M3)
estimators=1000, max_depth=6, max_features=0.7, Restacking On

Table 6.15 shows the results of all models included in the 2 StackNets as well as the absolute

and proportional (compared to the 1st layer model) performance of the new models:

141

Table 6-15: Performance of 3-Layer StackNets and their predecessors

StackNet: First Layer Models AUC Loglikelihood AUC_dif Loglikelihood%

Logistic_M1 0.7759 0.5796 - -

Random_Forest_M1 0.7913 0.5578 - -

Linear_Support_Vector_M1 0.7753 4.3356 - -

LibFm_M1 0.7757 0.5797 - -

Naïve_Bayes_M1 0.6432 1.7416 - -

NN_2layersRelu_M1 0.8002 0.5457 - -

GBM_M1 0.8034 0.5409 - 0.0000

Linear_Regression_M1 0.7744 0.7313 - -

RandomForest _M1 0.7779 0.6148 - -

GBM_Regressor_M1 0.8045 0.5990 0.0000 -

Random_Forest_Reg_M1 0.7883 0.5634 - -

Linear_Support_Vector_Reg_M1 0.7753 0.6295 - -

StackNet: Second Layer Models

Logistic_l2_M2 0.8102 0.5328 0.71% 1.49%

Random_Forest_M2 0.8088 0.5343 0.53% 1.21%

GBM_M2 0.8100 0.5327 0.69% 1.52%

NN_2layersRelu_M2 0.8101 0.5332 0.69% 1.41%

StackNets of Level 3

Random_Forest_M3(Restack:OFF) 0.8105 0.5323 0.74% 1.58%

Random_Forest _M3 (Restack:ON) 0.8115 0.5309 0.87% 1.84%

Both StackNet models yielded a small uplift in both AUC and log likelihood compared to their

direct predecessors. The structure of the first StackNet model (without Restacking) assumes

direct relationships from one layer to another. It has performed marginally better than the best

M2 model. Figure 6.4 displays the modelling architecture which assumes that there is a 90-

dimenional input dataset where all M1 models were trained on:

Figure 6.4 : 3-layer StackNet with Restacking OFF

The activation of the Restacking option has improved the results in both metrics even further.

One may find it difficult to comprehend how it is possible that some models which have been

142

trained with other models, to still benefit from the presence of the latter in the modelling

process. One need to note that the StackNet methodology assumes a normal forward pass of

the data where each algorithm is fitted directly to predict the target variable. In other words

there is not a concept of epochs as it is common in neural network models, since the algorithm

is trained using cross validation and making predictions based on the prediction errors of this

process for each model. In other words a specific model cannot be re-fitted to improve on the

errors it might have produced and it is left to the next-level to account for the errors. However

information missed in the early stages of the process may not be fully retrievable later on.

Restacking allows higher level models to re-use information contained in early models. It is

further possible that having more information about the data (as superior high-levelled Meta

models might do) can allow the algorithms to seize the initial data from different angles and

explore information not visible the first time.

Figure 6.5 demonstrates how the outlook of the models differs from figure 6.4 when restacking

mode is used:

Figure 6.5 : 3-layer StackNet with Restacking ON

The actual Java code to execute the 3-Layer StackNet starts with initializing a

StackNetClassifier Object:

 StackNetClassifier StackNet = new StackNetClassifier (); // Initialise a StackNet

143

Which is then followed by a 2 dimensional String array with the list of models in each layer

along with their hyper parameters in the form of as in "estimator [space delimited hyper

parameters]":

String models_per_level[][]=new String[][];// holds the parameters for each model

//First Level
{"LogisticRegression C:0.5 maxim_Iteration:100 verbose:true",
"RandomForestClassifier bootsrap:false estimators:100 threads:25
cut_off_subsample:1.0 feature_subselection:1.0 max_depth:15 max_features:0.3
max_tree_size:-1 min_leaf:2.0 min_split:5.0 row_subsample:0.95",
"LSVC C:3 maxim_Iteration:50",
"LibFmClassifier maxim_Iteration:16 C:0.000001 lfeatures:3 init_values:0.9
learn_rate:0.9 smooth:0.1",
"NaiveBayesClassifier Shrinkage:0.01",
"softmaxnnclassifier maxim_Iteration:20 C:0.000001 tolerance:0.01 learn_rate:0.009
smooth:0.02 h1:30 h2:20 connection_nonlinearity:Relu init_values:0.02",
"GradientBoostingForestClassifier estimators:100 threads:25 verbose:false trees:1
rounding:2 shrinkage:0.1 feature_subselection:0.5 max_depth:8 max_features:1.0
min_leaf:2.0 min_split:5.0 row_subsample:0.9",
"LinearRegression C:0.00001",
"GradientBoostingForestClassifier estimators:100 threads:3 verbose:true trees:1
rounding:2 weight_thresold:0.4 feature_subselection:0.5 max_depth:8
max_features:1.0 min_leaf:2.0 min_split:5.0 row_subsample:0.9",
"GradientBoostingForestRegressor estimators:100 threads:3 trees:1 rounding:2
shrinkage:0.1 feature_subselection:0.5 max_depth:9 max_features:1.0 min_leaf:2.0
min_split:5.0 row_subsample:0.9",
"RandomForestRegressor estimators:100 internal_threads:1 threads:25 verbose:true
cut_off_subsample:1.0 feature_subselection:1.0 max_depth:14 max_features:0.25
max_tree_size:-1 min_leaf:2.0 min_split:5.0 Objective:RMSE row_subsample:1.0",
"LSVR C:3 maxim_Iteration:50" ,
//Second Level
"RandomForestClassifier estimators:1000 threads:25 verbose=false
cut_off_subsample:0.1 feature_subselection:1.0 max_depth:7 max_features:0.4
max_tree_size:-1 min_leaf:1.0 min_split:2.0
row_subsample:1.0",
"GradientBoostingForestClassifier estimators:1000 threads:25 verbose:false trees:1
rounding:4 shrinkage:0.01 feature_subselection:0.5 max_depth:5 max_features:1.0
min_leaf:1.0 min_split:2.0 row_subsample:0.9",
"softmaxnnclassifier maxim_Iteration:20 C:0.000001 tolerance:0.01 learn_rate:0.009
smooth:0.02 h1:30 h2:20 connection_nonlinearity:Relu init_values:0.02",
"LogisticRegression C:0.5 maxim_Iteration:100 verbose:false" ,
//Third Level
"RandomForestClassifier estimators:1000 threads:25 verbose=false
cut_off_subsample:0.1 feature_subselection:1.0 max_depth:6 max_features:0.7
max_tree_size:-1 min_leaf:1.0 min_split:2.0 row_subsample:1.0"}
;

StackNet.parameters=models_per_level; // adding the models' specifications

144

The remaining parameters to be specified include the cross validation training schema, the

Restacking mode option, setting a random state as well as some other miscellaneous options:

StackNet.threads=4; // models to be run in parallel
StackNet.folds=5; // size of K-Fold
StackNet.stackdata=true; // use Restacking
StackNet.print=true; // this helps to avoid rerunning should the model fail
StackNet.output_name="restack";// prefix for each layer's output.
StackNet.verbose=true; // it outputs
StackNet.seed=1; // random state

Ultimately given a data object X and a 1 dimensional vector y, the model can be trained

using:

StackNet.target=y; // the target variable
StackNet.fit(X); // fitting the model on the training data

6.4.5 Summary of the experiment

Using a StackNet model on the YearPredictionMSD Data Set to predict if a given song was

created before or after 2002, has resulted in improved performance over AUC and log

likelihood compared to the single models involved in the process.

Building the various layers sequentially, it is clear that every new layer improves the

performance of their inputs (or their predecessor). The models need to become shallower or

simpler (parameter-wise) as StackNet becomes deeper to account for the already-compressed

information contained in the Meta-models.

Activating the Restacking mode and in the absence of the ability to recycle information through

multiple epochs (as it is normally the case with neural network frameworks), has allowed to

increase performance over a single feedforward direct approach. Computational time of the

models is primarily a factor of the available cores since every model can be run in parallel.

145

6.5 Investigating diversity-performance trade-off

In chapter 2.4.3 it was highlighted that a crucial component for improving the performance of

an ensemble is the diversity of the models contained. The following experiment investigates a

case of two ensembles built for a binary classification task, the first including models of linear

nature and the second models from various algorithmic families.

6.5.1 The data

The data used in this experiment can be found in kaggle.com8. The train dataset contains 33K

rows of anonymized historical information (summarized by 9 features) of the employees of a

company regarding their role within that company and the resources to which they have access.

The test data contain 59K rows and have similar structure. The dataset also contains a binary

target variable which connotes whether the employee should have access privileges or not. The

aim of such a classification model is to minimize the human involvement required to grant or

revoke employee access via predicting whether an employee should have special accesses or

not. The objective to optimize is AUC against models that either predict the probability for the

target to be 1 or just a score (for regression models). All the features are of categorical nature

and are expressed as integer codes. The features contain high cardinality. The number of unique

values for each feature is demonstrated in table 6-16.

Table 6-16: Features and number of distinct values

features unique values

feature1 7,518

feature2 4,243

feature3 128

feature4 177

feature5 449

feature6 343

feature7 2,358

feature8 67

feature9 343

8 https://www.kaggle.com/c/amazon-employee-access-challenge/data

https://www.kaggle.com/c/amazon-employee-access-challenge/data

146

In order to increase the feature space and allow the algorithms to produce different results, a

sample of n-way pairwise interactions of features were created where n=5. In other words all

possible combinations of 2, 3, 4 and 5 features were considered. The generated features based

on this process were assigned a new unique code. The resulted interactions were found using

random K-fold cross validation testing against AUC while using a logistic regression model.

The final table of features with interactions is presented below:

Table 6-17: Generated n-way interactions and type of interaction

Feature interactions n-way

Feature1_Feature2 2

Feature1_Feature4 2

Feature2_Feature3 2

Feature2_Feature4 2

Feature2_Feature5 2

Feature2_Feature6 2

Feature2_Feature7 2

Feature2_Feature8 2

Feature3_Feature6 2

Feature3_Feature7 2

Feature4_Feature7 2

Feature6_Feature7 2

Feature1_Feature2_Feature3 3

Feature1_Feature2_Feature4 3

Feature1_Feature3_Feature4 3

Feature1_Feature3_Feature5 3

Feature1_Feature4_Feature5 3

Feature1_Feature5_Feature6 3

Feature1_Feature5_Feature8 3

Feature1_Feature6_Feature8 3

Feature2_Feature3_Feature4 3

Feature2_Feature3_Feature6 3

Feature2_Feature3_Feature7 3

Feature2_Feature4_Feature6 3

Feature2_Feature4_Feature7 3

Feature2_Feature5_Feature6 3

Feature2_Feature5_Feature7 3

Feature2_Feature5_Feature8 3

Feature2_Feature6_Feature7 3

Feature2_Feature7_Feature8 3

Feature3_Feature4_Feature8 3

147

Feature4_Feature6_Feature7 3

Feature5_Feature6_Feature7 3

Feature1_Feature2_Feature3_Feature4 4

Feature1_Feature2_Feature3_Feature5 4

Feature1_Feature2_Feature3_Feature8 4

Feature1_Feature2_Feature4_Feature5 4

Feature1_Feature3_Feature4_Feature5 4

Feature1_Feature3_Feature5_Feature6 4

Feature1_Feature4_Feature7_Feature8 4

Feature2_Feature3_Feature4_Feature7 4

Feature2_Feature3_Feature5_Feature6 4

Feature2_Feature3_Feature5_Feature7 4

Feature2_Feature3_Feature7_Feature8 4

Feature2_Feature4_Feature7_Feature8 4

Feature1_Feature3_Feature4_Feature5_Feature7 5

Feature1_Feature3_Feature4_Feature5_Feature8 5

Feature2_Feature3_Feature4_Feature7_Feature8 5

Given the categorical nature of features, they have been transformed using dummy coding.

This means that each distinct value of a feature becomes its own binary variable indicating

whether that value is present in a sample row (denoted as 1) or not (denoted as 0). The

representation of this data within the algorithm is sparse as explained in 6.3.4.3 to allow for

memory-efficient computations.

6.5.2 The diversity metric

In 2.42 pairwise correlation among models’ predictions was highlighted as a possible means

of measuring the overall diversity of an ensemble. Assuming all level 1 models ae positively

correlated with each other, the overall diversity of the ensemble can be measured via taking the

average of all entries of the level 1 predictions’ corresponding Pearson correlation matrix as R.

Given the definition of Pearson correlation (r) in 2.2.2.4, an input size of N level 1 models, the

overall diversity for that first level based on correlation can be expressed as:

 diversity(R) =
1

N×N
∑ ∑ r(n, k)N

k=1
N
n=1 (6.12)

Where R is the correlation matrix of all level 1 predictions and rn,k the pairwise Pearson

correlation of the prediction of model n and the prediction of model k. Higher values would

connote a lower diversity, because the correlation (or similarity) between models is higher.

148

6.5.3 The ensembles’ structure

Two different ensembles were considered with nine input (level 1) models and one Meta model.

In both ensembles the Meta model is a Random Forest Classifier, however the input level 1

models differ between the 2 ensembles.

The first ensemble consists of 9 Logistic regression models trained with different C (L2),

regularization parameters, and optimization methods. These parameters were randomized

within some intervals. The interval for C was [0.001, 100]. Once the C value was set, the rest

of the parameters were tuned to get better performance as measured from inside StackNet’s K-

Fold cross validation mechanism for K=5. Table 6-18 presents the models’ name and their

hyper parameters:

Table 6-18: Models and hyper parameters for the first ensemble

Level 1 models of linear ensemble parameters

Logistic Regression_1 C=1.5 maxim_Iteration=100

Logistic Regression 2 C=0.002 maxim_Iteration=60

Logistic Regression 3 C=0.01 maxim_Iteration=200

Logistic Regression 4 C=5.5 maxim_Iteration=100

Logistic Regression 5 C=0.8 maxim_Iteration=100

Logistic Regression 6 C=10.0 maxim_Iteration=100

Logistic Regression 7 C=6.0 maxim_Iteration=100

Logistic Regression 8 C=15.0 maxim_Iteration=100

Logistic Regression 9 C=3.5 maxim_Iteration=100

The second ensemble includes models from other algorithmic families outside the linear

spectrum. The parameters of these models were tuned manually to maximize AUC based on

StackNet’s internal cross validation schema. Table 6-19 presents the models’ name and hyper

parameters of this mixed ensemble:

149

Table 6-19: Models and hyper parameters for the mixed ensemble

Level 1 models of mixed ensemble parameters

LogisticRegression_1 C=1. maxim_Iteration=100

LogisticRegression_2 C=0.001 maxim_Iteration=60

LSVC_3 C=0.01 maxim_Iteration=100

LinearRegression_4 C=20. maxim_Iteration=10

LibFmClassifier_5 maxim_Iteration=50 C=0.000001 C2=10. Lfeatures=2

softmaxnnclassifier_6 maxim_Iteration=30 C=0.00001 h1=30 h2=30

connection_nonlinearity=Relu

GradientBoostingClassifier_7 shrinkage=0.16 estimators=300 max_depth=7 max_features=0.6

LogisticRegression_8 C=0.5 maxim_Iteration=20

LSVC_9 C=0.5 maxim_Iteration=100

The mixed ensemble consists of three logistic regression models, two linear support vector

machines (denoted as LSVC), 1 linear regression model, one libFM classifier, a gradient

boosted tree model and a neural network model with Softmax output layer and 2 hidden layers

connected using a rectifier activation.

6.5.4 The ensembles’ first layer performance

Tables 6-20 and 6-21 illustrate the performance each one of the models in terms of AUC for

both the internal K-fold cross validation and the actual results in the test data:

Table 6-20: Linear models’ performance in AUC for cv and test

model cv AUC test

Logistic Regression_1 0.894 0.911

Logistic Regression_2 0.886 0.899

Logistic Regression_3 0.883 0.893

Logistic Regression_4 0.893 0.913

Logistic Regression_5 0.893 0.909

Logistic Regression_6 0.890 0.911

Logistic Regression_7 0.893 0.912

Logistic Regression_8 0.887 0.908

Logistic Regression_9 0.894 0.913

150

average 0.890 0.908

Table 6-21: mixed models’ performance in AUC for cv and test

model cv AUC test

LogisticRegression_1 0.893 0.910

LogisticRegression_2 0.886 0.899

LSVC_3 0.891 0.906

LinearRegression_4 0.875 0.890

LibFmClassifier_5 0.890 0.909

softmaxnnclassifier_6 0.881 0.900

GradientBoostingClassifier_7 0.851 0.865

LogisticRegression_8 0.880 0.893

LSVC_9 0.873 0.882

average 0.880 0.895

Apart from the individual results, the average of all models’ AUC is displayed for both the

internal cross validation and test results. The linear ensemble consists on average of stronger

models with better performance in the internal validation and test data. The best model in the

linear ensemble (LogisticRegression_9) boasts an AUC of 0.913 in the test data, while the best

model in the mixed ensemble (LogisticRegression_1) scores only 0.911 in the test data.

Additionally the overall average AUC of all models for the linear ensemble in the test data (of

0.908) is higher than the equivalent one for the mixed ensemble (of 0.895).

6.5.5 The ensembles’ diversity

In order to estimate diversity as defined in 6.5.2, the Pearson correlation matrix of all

predictions of all models needs to be computed. Table 6.22 illustrates the correlation matrix of

all linear models’ predictions for the test data. The model’s numbering follows the same order

as in table 6-20 (i.e. model1 is Logistic Regression_1 and model9 is Logistic Regression_9):

151

Table 6-22: linear models’ correlation matrix

 model1 model2 model3 model4 model5 model6 model7 model8 model9

model1 1.000 0.959 0.936 0.986 0.998 0.967 0.984 0.947 0.995

model2 0.959 1.000 0.985 0.952 0.954 0.934 0.951 0.915 0.959

model3 0.936 0.985 1.000 0.912 0.937 0.886 0.909 0.861 0.925

model4 0.986 0.952 0.912 1.000 0.974 0.995 1.000 0.985 0.998

model5 0.998 0.954 0.937 0.974 1.000 0.950 0.971 0.928 0.986

model6 0.967 0.934 0.886 0.995 0.950 1.000 0.996 0.997 0.987

model7 0.984 0.951 0.909 1.000 0.971 0.996 1.000 0.987 0.997

model8 0.947 0.915 0.861 0.985 0.928 0.997 0.987 1.000 0.973

model9 0.995 0.959 0.925 0.998 0.986 0.987 0.997 0.973 1.000

Using the formula of 6.5.2, the estimated diversity is 0.9648.

Table 6-23 illustrates the equivalent table for the mixed ensemble, where model1 is Logistic

Regression 1 and model9 is LSVC9:

Table 6-23: mixed models’ correlation matrix

 model1 model2 model3 model4 model5 model6 model7 model8 model9

model1 1.000 0.957 0.863 0.892 0.991 0.938 0.824 0.919 0.779

model2 0.957 1.000 0.888 0.923 0.951 0.950 0.784 0.871 0.771

model3 0.863 0.888 1.000 0.926 0.845 0.852 0.775 0.837 0.881

model4 0.892 0.923 0.926 1.000 0.881 0.874 0.763 0.846 0.819

model5 0.991 0.951 0.845 0.881 1.000 0.935 0.803 0.902 0.763

model6 0.938 0.950 0.852 0.874 0.935 1.000 0.773 0.849 0.743

model7 0.824 0.784 0.775 0.763 0.803 0.773 1.000 0.881 0.753

model8 0.919 0.871 0.837 0.846 0.902 0.849 0.881 1.000 0.836

model9 0.779 0.771 0.881 0.819 0.763 0.743 0.753 0.836 1.000

The estimated diversity based on 6-23 correlation matric is 0.8726. As it is expected, the mixed

ensemble has higher diversity as on average, the pairwise correlations between models’

predictions for the test data are lower than these in the linear model. The consolidated results

in table 6-24:

Table 6-24: Linear and mixed models’ level 1 diversity

Ensemble type diversity

Linear ensemble 0.9648

Mixed ensemble 0.8726

152

Based on the metric defined in 6.5.2, it can be concluded that the mixed ensemble is more

diverse than the linear one, which is not surprising given the bigger variety of the algorithms

contained.

6.5.6 The ensembles’ final performance

These nine model’s predictions were input to a higher level (Meta) classifier. Both ensembles’

level 1 output became input to Random Forest (level 2) classifier. The parameters of this model

included 300 trees, maximum tree depth equal to 8 and the proportion of features to consider

at each level of the tree was set to 50%. These parameters were obtained from within

StackNet’s cross validation procedure. The final results for the internal and test AUC results

for both Random Forest models are presented in table 6-25:

Table 6-25: Linear and mixed models’ level 1 diversity

Level 2 input cv AUC test

Random Forest on linear Ensemble 0.896 0.914

Random Forest on mixed ensemble 0.901 0.917

Difference (mixed – linear) +0.005 +0.003

The Level 2 Random Forest classifier that was trained on the outputs of the mixed ensemble

gave better results for AUC (cv + test), although the best individual model of the mixed

ensemble was not better than the best individual model of the linear ensemble, nor the average

AUC of the models contained in the mixed ensemble was better than the one of the models

contained in the linear ensemble.

6.5.7 Conclusion diversity-performance trade-off

The findings of the current experiment suggest that diversity (as measured based on correlation)

of inferior layers is critical for getting better results in the Meta layer. This was demonstrated

via creating 2 different ensembles, one that contained models of linear nature and another that

contained models from various algorithmic families. The former ensemble had on average

153

stronger individual models than the latter ensemble and the diversity metric (computed from

the predictions’ correlation matrix) showed lower diversity for the linear ensemble than the

mixed ensemble. A Random Forest Meta level 2 classifier trained on the outputs of both

ensembles demonstrates consistently (between internal CV and test results) better performance

for the mixed model. This concludes that selecting different algorithmic families as input (level

1) models generates higher diversity and achieves better performance than solely maximizing

the performance of one classifier (or one family of classifiers).

Ultimately, the diversity within the models proved to be more important in securing a better

generalization in the test data than having on average stronger but more correlated models

within the ensemble. While this finding may not be consistent when the models do not boast a

certain level of accuracy in respect to the target variable, however in the context of models

having strong predictive power (as in the example where all models had and AUC>0.85)

diversity was deemed more important for obtaining a better result.

6.6 Investigating ensemble plateauing

Formulating ensemble methods comes at a computation cost that based on the level of

sophistication may be quite considerable. Investigating the trade-off between diversity and

performance in 6.5 exhibited an interesting finding. Under certain assumptions regarding

strong predictors in the ensemble that boast positive correlations with one another, diversity

was more important in obtaining a better generalization error than having strong correlated

models. [Zhou et al. 2002] demonstrated that using a large number of models in an ensemble

is not better (performance-wise) than a (diverse) subset of these models. Combining all the

information, it is worth investigating to what extend (if any) adding more models to the

ensemble does not bring performance uplift.

6.6.1 The data

The data for this experiment is exactly the same as in 6.5.

154

6.6.2 The setup of the experiment

To investigate the (potential) point to which performance starts downgrading, a pool of 36 level

1 models was generated. It included 27 random models and the 9 models from the mixed

ensemble described in 6.5 which were significantly tuned based on cross validation

performance. The 27 models come from the following algorithmic families:

 Linear models

 Random forests

 Gradient boosted trees

 Neural networks with 2 hidden layers and Relu activation

 Linear support vector machines

 Factorization machines (LibFM)

The hyper parameters of these 27 models were initially randomized and then were recalibrated

(mildly) based on the K-fold cross-validation performance from within StackNet, where K=5.

The final list of models, their hyper parameters and their average cross validation AUC is listed

in table 6-26:

Table 6-26: Pool of 36 models (9 +27) along their parameters and AUC cv performance

Level 0 model with index Parameters cv AUC

LogisticRegression_1 C=1. maxim_Iteration=100 0.893

LogisticRegression_2 C=0.001 maxim_Iteration=60 0.886

LSVC_3 C=0.01 maxim_Iteration=100 0.891

LinearRegression_4 C=20. maxim_Iteration=10 0.875

LibFmClassifier_5 maxim_Iteration=50 C=0.000001 C2=10. Lfeatures=2 0.890

softmaxnnclassifier_6 maxim_Iteration=30 C=0.00001 h1=30 h2=30

connection_nonlinearity=Relu

0.881

GradientBoostingClassifier_7 shrinkage=0.16 estimators=300 max_depth=7 max_features=0.6 0.851

LogisticRegression_8 C=0.5 maxim_Iteration=20 0.880

LSVC_9 C=0.5 maxim_Iteration=100 0.873

LogisticRegression_9 C=5. maxim_Iteration=100 0.893

LogisticRegression_10 C=0.01 maxim_Iteration=120 0.883

LSVC_11 C=0.1 maxim_Iteration=200 0.884

LinearRegression_12 C=30. maxim_Iteration=20 0.877

LibFmClassifier_13 maxim_Iteration=40 C=0.00001 C2=15. Lfeatures=1 0.889

softmaxnnclassifier_14 maxim_Iteration=35 C=0.0005 h1=20 h2=20

connection_nonlinearity=Relu

0.882

GradientBoostingClassifier_15 shrinkage=0.15 stimators=400 max_depth=7 max_features=0.6 0.851

155

LogisticRegression_16 C=0.2 maxim_Iteration=20 0.877

LSVC_17 C=0.1 maxim_Iteration=100 0.846

LogisticRegression_18 C=10.0 maxim_Iteration=200 0.890

LogisticRegression_19 C=0.005 maxim_Iteration=90 0.884

LSVC_20 C=0.035 maxim_Iteration=200 0.889

LinearRegression_21 C=40. C=0.025 maxim_Iteration=30 0.878

LibFmClassifier_22 maxim_Iteration=50 C=0.000001 C2=20. Lfeatures=3 0.890

softmaxnnclassifier_23 maxim_Iteration=35 C=0.00005 h1=15 h2=10

connection_nonlinearity=Relu

0.881

GradientBoostingClassifier_24 shrinkage=0.15 estimators=500 max_depth=7 max_features=0.6 0.852

LogisticRegression_25 C=0.04 maxim_Iteration=20 0.869

LSVC_26 C=0.05 maxim_Iteration=100 0.809

LogisticRegression_27 C=30. maxim_Iteration=200 0.876

LogisticRegression_28 C=0.0005 maxim_Iteration=150 0.884

LSVC_29 C=0.01 maxim_Iteration=250 0.891

LinearRegression_30 C=50. maxim_Iteration=30 0.879

LibFmClassifier_31 maxim_Iteration=50 C=0.000001 C2=20 Lfeatures=3 0.890

softmaxnnclassifier_32 maxim_Iteration=35 C=0.00055 h1=25 h2=10

connection_nonlinearity=Relu

0.882

GradientBoostingClassifier_33 shrinkage=0.25 estimators=100 max_depth=6 max_features=0.6 0.836

LogisticRegression_34 C=0.004 maxim_Iteration=20 0.855

LSVC_35 C=0.005 maxim_Iteration=200 0.720

In order to estimate the plateauing, the following simulation steps are formulated:

1. Defined the number of simulations S=50.

2. In each simulation the order of the (N=36) level 1 models (which can be defined as S1

to S36) is randomly changed (i.e. shuffled).

3. Assuming a target variable Y, one-by-one the 36 models’ predictions are used as inputs

to a level 2 Meta classifier (denoted as F2). This Meta classifier is a Random forest with

300 trees, maximum tree depth equal to 8 and the proportion of features to consider at

each level of the tree was set to 50%. This is the same Meta Classifier used in 6.6. In

other words there are 36 rounds in each simulation and equal number of level 2 models

are built in each round. The first round builds an F2 model using only the first randomly

shuffled level 1 (Sn1) model. The second round builds the F2 model with two inputs

stacked together (Sn1 ~ Sn2) until the dimensionality for the input of the F2 model reaches

36 (Sn1, Sn2, …, Sn36) when all level 1 models have been stacked at round 36.

4. The cross validated AUC is computed at the end of each round.

5. The average cross validated AUC is reported for each round/order after all 50

simulations are completed.

156

Consider the following pseudocode assuming a number of base level (f1) predictions are

already made. Comments are made with italics:

1. A_AUC= [0,0,…,0] # array with size 36 initialized with zero values

2. I= [1,2,…,36] # array of indices

3. S= [f1(x, S1), f1(x, S2), …, f1(x, S36)] # base models predictions on the input data x

AS 2d matrix with 33K rows and 36 columns.

4. Y=[1,1,1,….,1] # Array with size around 33K where each yi ∈ {0,1}

5. For s=1  s=50 # for 50 simulations

a. F1data = [] # empty array to be populated with predictions from S

b. I_sfhuffledrandom_shuffle(I) # indices I are randomly shuffled

c. For n=1 n=36 # for all 36 base (f1) models

i. F1n = S [I_sfhuffled [n]] # retrieve a random f1 prediction from S

ii. F1data  [F1data ~ F1n] # stack predictions f1 to F1data

iii. AUCsn=0 # initialize AUC for s simulation and model round n

iv. Lm=Random Forest Classifier (params) # the F2 model, initialized

given some parameters

v. AUCsn=performKfold(Lm, F1data, Y, k=5) # obtain an average

AUC out of 5 estimates given 5 Lm models trained on 80% of the

data {F1data, Y} and making predictions to the remaining 20% of

the data.

vi. A_AUC [n]= A_AUC [n] + AUCsn # add AUC estimate to n round

6. For n=1 n=36

a. A_AUC[n]= A_AUC[n]/50 # obtain average AUC for all rounds based on

all simulations

Figure 6.6: Pseudo code for generating average AUC estimates per round

6.6.3 Results of the experiment

Table 6-27 demonstrates the consolidated (average) results for each model round after 50

simulations:

157

Table 6-27: Model rounds and cross-validation AUC

Round Average cv AUC

round1 0.87015

round2 0.89036

round3 0.89369

round4 0.89499

round5 0.89588

round6 0.89683

round7 0.89731

round8 0.89749

round9 0.89776

round10 0.89796

round11 0.89808

round12 0.89846

round13 0.89872

round14 0.89885

round15 0.89892

round16 0.89891

round17 0.89901

round18 0.89904

round19 0.89920

round20 0.89920

round21 0.89924

round22 0.89932

round23 0.89929

round24 0.89930

round25 0.89933

round26 0.89942

round27 0.89947

round28 0.89951

round29 0.89948

round30 0.89952

round31 0.89952

round32 0.89955

round33 0.89960

round34 0.89958

round35 0.89958

round36 0.89958

The results are also illustrated in graphical format in Figure 6.7:

158

Figure 6.7: Model round versus cross-validation AUC

Both sources of information conclude that the plateauing of AUC does occur. The best average

AUC performance is obtained when the 33rd model is inserted in the ensemble and (on average)

models that enter past this point deteriorate the performance. It would appear that most of the

AUC gain occurs within the first 10 rounds where AUC starts (on average) from 0.87 and ends

at approximately 0.898. The remaining (26) rounds are only able to lift AUC up to 0.899.

What is noteworthy is that the Meta learner performance (0.901) of the first 9 models which

had been manually tuned and were also part of the mixed ensemble in experiment 6.5,

demonstrated higher cross validation AUC than any of the ensembles in any round-order of

this experiment. It should be re-highlighted that these 9 models were also part of the current

experiment, which potentially concludes that in order to get better performance out of the

ensemble, it is better to include a number of diverse models, but increasing the size of the

ensemble will not necessary yield better results, instead the optimum number models as well

as the diversity of the algorithms need to be investigated for a given task.

Although on average the AUC of all the different rounds is not superior to the ensemble built

on top of the mixed ensembles’ 9 features, however there have been specific simulations where

a certain number of input models (in most cases less than 15 input models) is able to surpass

the performance of 0.901. The results for simulations and all rounds are in the appendix 8.3,

which further supports the argument for a diverse ensemble with as many models as required

to get better generalization results.

0.85500

0.86000

0.86500

0.87000

0.87500

0.88000

0.88500

0.89000

0.89500

0.90000

0.90500
A

ve
ra

ge
 c

v
A

U
C

model round

159

6.6.4 Conclusion of the experiment

This experiment investigated when (and if) the plateauing within the second level of a StackNet

model occurs given a certain number of input models. It demonstrated that given a certain

number of randomized simulations and Meta learners built on random subsets of level 1

models, the plateauing of the performance does occur and performance uplift past the 11th

model is incrementally minimal in comparison to the uplift occurring in the first 10 entered

input models. Performance also starts to drop after a certain point.

Part of the input level 1 models included those used in 6.5. Interestingly, on average, for any

randomly constructed input size dataset for the Meta learner, the performance of the ensemble

is not able to surpass this which was manually tuned in 6.5. However there have been a few

rounds of ensemble sizes of less than 15 that express a superior performance.

There is evidence to conclude that simply increasing the size of the ensemble will not give

better generalizations results. Instead effort is required to generate diverse models and the

optimal number of models needs to be specified based on cross validation results, potentially

along with feature selection techniques as suggested by [Zhou et al. 2002].

6.7 Future Work

The StackNet model will be as powerful (in terms of accuracy) as the strength of the algorithms

that is consisted of. Including more algorithms such as the award winning xgboost would

greatly improve the overall performance. Additionally compatibility with some of the already

prominent Java packages in machine learning such WEKA and RankLib would increase the

reach of different algorithmic families and will add diversity to the StackNet’s solutions.

The model would benefit for more data pre-processing steps (apart from scaling) to be part of

the spectrum of the available hyper parameters. Feature selection or feature elimination

algorithms could be invoked in a similar way inside the fit() and predict() methods . Other

additions could generate unsupervised features from the raw data (such as PCA and SVD)

becoming themselves hyper parameters of the model. Other parameters’ additions could

include subsampling methods, providing variables’ importance and different regularizations

methods for deciding the weight for each model.

160

For the meantime the StackNet model supports only classification (although it does accept in

its core regressors as input-neurons). as opposed to forecasts / regressions The reason is that

regression data, especially response variables that are too dependent on time (such as sales or

demand) would require a cross validation framework that during the training process respects

the time order of the data, making the use of StackNet not optimal as it primarily relies on the

unbiased cross validation estimates generated in each part of the k-fold paradigm. On the other

hand making one split based on time would mean that not many consecutive levels could be

built with adequate data or the volume of the input data would have to be much bigger in order

to account for the constant sub splitting of the data. To extend StackNet to include regression,

the validation framework and how is implemented would be critical, however it is definitely a

goal worth pursuing.

The model has been tested with FMCG data in this thesis and has performed well via improving

the overall performance and yield significant uplift against any of the input algorithms or

simple or weighted averaging of them. In addition the methodology has been used successfully

in winning data modelling challenges in the NLP space such as the Dato classification

challenge for detecting specific type of advertising from the contents of a website hosted in

[Kaggle 2015] and in the insurance space via detecting claims for the Homesite insurance in

[Kaggle 2016]. Furthermore StackNet (the software) was used by multiple top 10 solutions in

its first unofficial public release for the Renthop Kaggle classification challenge in 20179 to

best predict rental prices. It is suggested that the methodology is extended to more diverse

problems like image and sound classification.

This ensemble framework allows many models to be combined, each one with its own

specifications to order to achieve a more generalizable outcome. It is expected that this type of

Meta model can be very complicated (or blackbox) to extract comprehensible information

about the data. At the same time, even though both training and scoring can happen to some

extend in parallel, it is natural that given the size of the ensemble the computational cost may

be high especially when considering productionzing such approaches for large scale

applications. It would be therefore advisable to extract the learnings of such process and

compress it into simpler solutions – in other words go from a complicated (possibly

computationally very expensive) model back to much simpler one, while maintaining a sensible

level of accuracy.

9 The main blog is here : https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/30012

https://www.kaggle.com/c/two-sigma-connect-rental-listing-inquiries/discussion/30012

161

6.8 Conclusion

Chapter 6 covered the StackNet model which connotes a methodology with an architecture

similar to a normal feed forward neural network that makes use of stacked generalization in

multiple levels in order to combine many algorithms and improve accuracy in many typical

machine learning tasks that occur within the recommendation space and beyond. The initial

implementation of the model is in Java because it is deemed to have certain advantages over

other languages taking into account, speed, safety, popularity, platform compatibility and

accessibility.

The mathematical formulation of the model shares many similarity with that of the neural

networks and it can be run with two different models, one of which assumes direct connection

of each model layer only with the next geographical layer and another mode (also called

restacking) that assumes each layer’s neuron is connected with all previous layers’ neurons

before invoking activation. The main objective of the second mode is to counter the drawback

of the training process that assumes each layer is activated only once (i.e there is only one

model iteration).

The training method of the model follows the principles of stacked generalization that assumes

the data need to be split so that only the predictions in the hold out data are carried over in the

next modelling phase. That model, in order to address the re-usability of data and the loss of

unnecessary otherwise useful information, performs a k-fold cross validation in order to make

certain that all the original input data is scored and pushed forward as features (or neuron

outputs) in the next layers.

The objects of the model have been described and they all follow a similar structure including

an initialization step, followed by a phase where a different number of hyper parameters may

be set to improve each individual model’s performance. Many algorithmic families are being

represented in the StackNet model including Tree based algorithms, neural networks, LibFM,

linear models, K nearest neighbours, kernels based methods, Naïve Bayes and more to be added

other time. All models are trained using either typical Java data objects - to address

compatibility and accessibility - or as other data types (dense to sparse) to address other needs

regarding performance and memory optimization. Pre-processing steps like scaling have been

added into the hyper parameters space of any algorithm along with many other attributes.

162

Furthermore different structures of StackNet are applied to the YearPredictionMSD Data Set

to predict if a given song was created before or after 2002, demonstrating the uplift in terms of

AUC and loglikelood occurring via this approach through the various levels of the training

process. The sample code provided covers many aspects of the StackNet model and shows the

impact they have on the overall outcome.

Finally it is proposed that the model extends each arsenal of available algorithms via adding

compatibility with other prominent machine learning packages or award winning

implementations of different algorithms, add more data pre-processing steps in its hyper

parameter spectrum and is used in many other possible diverse classification problems outside

the recommendations space.

163

7. Conclusion and future work

This chapter reviews the finding of this thesis based on the 4 different experiments that comprises it and

also provides suggestions for future work and development plans to improve the work even further.

7.1 Conclusion

Formerly the thesis has utilized four different experiments all within the scope of improving

recommender systems, where each one provides unique but complementary elements towards

this goal.

Univariate Analysis of the Dataset: Chapter three gave an overview of the available data (for

research) that dunnhumby owns and comprises of millions of customer transactions for the

course of two years for a specific retailer. The available data source include both customer

transactions, demographic details and product level information data.

Sequentially the training and test data used is formulated respecting the time order ensuring

that past data is used to predict future data. Additionally a number of features are created and

expressed in tandem with the target variable which simply connotes whether the customers

bought a specific item next week given a number of personal transactions over the past 52

weeks. Three main factors were identified as the most prominent drivers for deriving such

features, namely customer based features, product features and contextual data such as time or

week number. Combinations of these proved to be the most indicative features for predicting

the response variable. Exploiting the product hierarchy of the item space (such as department

and manufacturers) described information possibly not captured by a direct customer-to-item

relationship

The relationship of the features in respect to the target variable was not always deemed as

linear, therefore a brute-force optimized binning algorithm was introduced and utilized to

capture such nonlinearities and uncover how much unique information each variable yields in

respect to the target variable and a ranking was provided to describe the most prominent feature

families.

164

To further promote the understanding in the FMCG recommendation field, the thesis provided

an illustrative catalogue of the most representative families of such features along with

descriptions regarding their derivations.

Meta-modelling to predict top K products: One of the main goals of the recommender

systems in an FMCG environment is to improve recommendations via focusing on retention of

loyal customers (that drive the most income) and also reward their loyalty via offering more

relevant and personalized recommendations., therefore optimizing for top K precision is often

used in marketing (where K is normally a small number between 5 and 20) The available data

as described in the previous chapter demonstrated significant linear and non-linear relationship,

making it technically difficult to identify an algorithm that could easily excel in both without

significant pre-processing.

To improve precision for the top K products of each customer and leverage the different

relationships inherent within the data, ensemble modelling was used and specifically Wolpert’s

stacked generalization. The training data was split into 2 parts (training and validation) where

various repressors and classifiers were built using the training data and predictions were made

for the validation and test data (which was the following -i.e. future - week). Gradient boosting

machines and neural networks seemed to perform the best in maximizing precision and overall

discrimination (as measured by highest AUC).

Furthermore, after combining (or stacking) all predictions in the validation data, forming a new

training dataset, a random forest classifier was used to train on this data achieving higher

precision @5, 10 and 20, as well as better overall AUC, against some field-base benchmarks

(such as customer’s frequency of purchase of specific products and product popularity), all

previous individual models that contributed to the stacking model, and a simple average as well

as a rank-transformed average.

Hybrid method to predict repeated, promotion-driven product purchases in an irregular

testing environment: Chapter 5 examined a hybrid recommender system to improve accuracy

of predictions for whether the customer of a retailer will buy again a recommended product

assuming an irregular environment. The irregular environment was defined by different

customer, different offered products and different time periods between the train and the test

data. More specifically the overall aim was to maximize AUC for whether a customer will buy

again a product within 2 months after having redeemed a coupon for it. Therefore the evaluation

165

metric measured the ability of the recommender system to suggest offers that are capable of

creating a habit.

Finding a cross validation methodology suitable for tis irregular environment was critical in

obtaining reliable estimates for the test data, since the training data was consisted of

transactions of different customers and different offers than the test data. Additionally the test

data was chronologically placed in the future. Three different cross validation methodologies

were examined. The first methodology measured AUC after splitting the train data randomly ,

but stratified based on offer ensuring all offers were proportionally equally populated in all

folds of the validation procedure. The second method used N-1 offers to build a model and

measure AUC for the offer left aside for validation. This process was repeat N times and the

average AUC was retrieved. The reasoning for this method was derived form fact that the test

data included different offers than the train data, therefore an ideal model should be able to

predict offers that were not included in its training process. The last method connotes the

continuation of the second method where all predictions from all offers are concatenated into

a single frame before calculating the overall AUC across all predicted offers for all samples.

Ultimately the third methodology used the average of this holistic AUC along with the AUC

of the second methodology. The intuition for the last method was based on the fact that the

offers in the training data boasted different propensities and a sample had to be comparable not

only within the offer but against any other offer. Given a set of features derived from the

transactional history and a logistic regression model, this last methodology performed best in

the test data, demonstrating a smaller gap between the cross validation and test results.

Based on the last cross validation methodology, 2 different approaches/strategies were

formulated. One content-based and another based on collaborative filtering. The first strategy

assumed a direct or indirect relationship of a customer with the recommended product. This

approach used ridge regression fitted using the future quantity of items bought as the response

variable, creating a number of different features based on the customers’ transactional history.

The second strategy attempted to match the shopping habits of customers that were offered the

products with another group of customer that had bought these items prior to the sending of the

coupon. It utilized gradient boosted trees to predict the natural logarithm of the number of times

the customers bought the product 90 days before the actual coupon was sent. The features for

this approach were more generic about the customer and not in relations with specific products.

Unsupervised features based on neural networks were used to create summaries of different

past customer activity.

166

The combination of the two approaches yielded the best results in the test data. Their merging

was challenging because the first model was fitted to a regression response variable (e.g. the

quantity) and the other approach natural logarithm of the counts the customer bought the item

in the past. AUC is focused in the ranking of the prediction array, therefore all predictions from

both approaches were transformed into ranks and were weighted equally to achieve the best

AUC in the test data.

The StackNet Model: Chapter 6 described the properties of the StackNet model – a new Meta

modelling methodology that utilizes Wolpert’s stacked generalization of combining multiple

models assuming a feedforward neural network architecture. Although the model was

described formally for the first time in the current thesis, online references of the term has been

used in numerous predictive modelling competition where such methodology was deemed the

winner.

The model shares similar properties with a simple multilayer perceptron type of neural

network, where each perceptron may be replaced with any machine learning algorithm,

regressor or classifier. The transformation function is no longer needed as it is now inherent to

the selected algorithm. The methodology is implemented in the Java programming language

because it was deemed a valid trade-off between, speed, safety, compatibility and popularity.

There two available modes referring to the type of connections each layer has with the previous

ones. The normal mode assumes that each layer’s neurons (or algorithms) takes as input the

predictions of all algorithms in the direct previous layer. The second mode (called restacking)

allows a layer to receive predictions from all previous neurons in all preceding layers, including

the input data. The reasoning for the existence of the second mode is the fact that the training

of the model occurs in one epoch so the model does not have the chance to revisit the initial

data unless it is forced, allowing it yield extra information if any. Irrespective of which mode

gets activated, all the models in a layer can be run in parallel to facilitate faster convergence.

The created software supports many different input data formats to address the need for

sparsity, performance and compatibility within the native Java code. Additionally many

algorithms have been written from scratch to address the needs to a scalable efficient software

in Java. Most commonly-used algorithmic families have been included such as tree-based

methods, neural networks, linear methods, kernels, nearest neighbours, factorization machines

and naïve Bayes. Among the implementations is Rendle’s LibFm and the award winning

Liblinear.

167

Finally different StackNet architectures are being tested on the YearPredictionMSD Data Set

in order to predict if a given song is created before or after 2002. It is shown that adding

multiple modelling levels while tweaking the StackNet’s options can facilitate better

performance.

7.2 Future Work

Univariate Analysis of the Dataset: Chapter 3 utilized mostly the transactional data to give

insight about the factors that connect customers with future product purchases. In addition to

transactional data, it also used some demographics of the customers and some very basic

contextual data such as time of visit. Therefore further insight could be gained via examining

other potential factors in the same space.

The examination of the dataset demonstrated significant linear (such as how many times a

customer has bought an item in the past) and nonlinear (such as when was the last time a

customer bought an item versus every how often the item is being bought) relationships in

respect to future purchases . To assess the predictability of the variables, an optimized binning

methodology was utilized. While the latter ensures that the nonlinear relationships of the

features (with respect to the response variable) are captured, still it does take away from the

linear relationships. Another methodology that may well be utilized is the [MARS 1991] model

that could potentially examine the variables not just in a univariate but also a multivariate

context in order to give a more fair assessment for the predictability of a single variable.

Ultimately a similar features examination approach could be implemented in other retailer

environments, not just the grocery market in order to compare how consistently the discovered

relationships are present in different datasets.

Meta-modelling to predict top K products: This chapter combined various algorithms to

improve performance for the top k products for each customer using the available feature space

as developed in the previous chapter. It would be of great interest to compare whether there is

performance uplift via enriching the data set with additional features such as contextual data or

whether additional transactional history prior to one year would improve results even further.

The number of different models used in the ensemble required significant amount of time to

tune and find the best hyper parameters. It would be vital for future performance optimization

168

to discover a reliable and at the same time not very time-consuming way to locate a good set

of such hyper parameters that maximize the performance of any given response variable.

In addition to saving computational time, the experiment was run with an ensemble of 10

models, however bigger and more diverse ensembles could be exploited to improve

performance for the given data. Additionally unsupervised methods (such as principal

components analysis or singular value decomposition) could have been considered as a way to

seize the data from different angles and train various classifiers with the new input data to

generate new information to then feed onto for the Meta model.

Ultimately a similar Meta modelling methodology could be implemented in other retailer

markets besides the grocery one in order to compare how well such approach would hold with

different input data.

Hybrid method to predict repeated, promotion-driven product purchases in an irregular

testing environment: The implemented methodology was formed in order to optimize AUC

or in other words to maximize the overall discrimination of items (re)bought after sending a

coupon or not. In most situation the retailer has a limited number of coupons to consider prior

to sending the offers , therefore metric that take into account this information such as

precision@k per product would be a good alternate way to approach the problem and it would

have been interesting to compare whether such approach could work for this particular

problem. At the same time considering each customer could receive a certain number of

coupons reversing the previous problem, thereby maximizing precision per customer (instead

of per product) would also be noteworthy.

A Meta-modelling as detailed in previous chapter was not deemed feasible to further improve

the score in this challenge because the test data were well ahead in the future and very different

distribution-wise with the training data, even when using a one-offer-out cross validation

approach. Comparing with the potential uplift from other experiment present in the thesis

(chapter 4 &6), different ensemble methods could be developed that create unbiased cross-

validation estimates that respect the time-element and therefore can be used to improve

predictions through Meta modelling.

The StackNet Model: The StackNet model will be as powerful as the algorithms available at

its disposal to solve problems. In order to be more competitive and useful to the scientific

community it will have to integrate more algorithms and their (award winning)

169

implementations, especially those made available in the Java programming language such the

ones contained in the Weka suite or the H2O software package for predictive analytics.

Data pre-processing steps such as features selection, feature elimination , providing variables’

importance , model selection and hyper parameter tuning could be additional improvements

that would make the sued of the software more autonomous, making it easier for the data

science community to work independently on one platform.

Significant improvement could be achieved via extending the current methodology (made

available for classification tasks) to general purpose regression problems. In order to do so

efficiently a cross-validation framework needs to be implemented that takes into account the

time element if presented in the data.

Depending on how big or how deep a StackNet model may be, the resulting ensemble solution

can be very computationally expensive as well as hard to derive insightful information from

the data especially when considering large-scale , (possibly) real time solutions. To counter

this, it is suggested that a process gets formulated that extracts the predictive (or insightful)

elements from a complicated model back to a much simpler one, while maintaining a good

level of the initial accuracy.

Ultimately the current methodology could be extended to other machine learning fields outside

the recommendation field, in problems as diverse as image or sound classification as its already

successful implementation in the fields of insurance and natural language processing make a

case for ability to extend this methodology to any machine learning task.

170

8. Appendices

8.1 Table of full univariate results for the first experiment

Table 8.1 illustrates the full list of results for the variables’ predictive power for defining future

purchases that were considered when scrutinizing the complete Journey dataset. It displays the

AUC as well as Information Gain after binning all continuous variables. It also displays which

level of the product hierarchy each variable corresponds too as well as it provides a short

description for each one of them.

Table 8-1 : Full Univariate results of binned variables measuring AUC and I-Gain for

experiment 1

Feature name Feature Description C P D M AUC Igain

frequency26 Number of baskets the customer included the

product in last 26 weeks
✓ ✓ 0.775 0.0039

frequency39 Number of baskets the customer included the

product in last 39 weeks
✓ ✓ 0.775 0.0039

frequency52 Number of baskets the customer included the

product in last 52 weeks
✓ ✓ 0.775 0.0038

frequency13 Number of baskets the customer included the

product in last 13 weeks
✓ ✓ 0.775 0.0039

cycle_vs_lastbought Average cycle (52 weeks) minus days ago

since last bought the product
✓ ✓ 0.775 0.0036

average_cycle52 Every how many days the customer bought

the product in last 52 weeks
✓ ✓ 0.774 0.0035

last_day_bought Days from the target week since the customer

last bought the product
✓ ✓ 0.774 0.0033

average_cycle39 Every how many days the customer bought

the product in last 39 weeks
✓ ✓ 0.766 0.0035

average_cycle26 Every how many days the customer bought

the product in last 26 weeks
✓ ✓ 0.747 0.0035

popularity13 Number of baskets the product appeared in

last 13 weeks

 ✓ 0.747 0.0011

popularity26 Number of baskets the product appeared in

last 26 weeks

 ✓ 0.742 0.0011

popularity39 Number of baskets the product appeared in

last 39 weeks

 ✓ 0.739 0.0010

popularity52 Number of baskets the product appeared in

last 52 weeks

 ✓ 0.735 0.0010

average_cycle13 Every how many days the customer bought

the product in last 13 weeks
✓ ✓ 0.709 0.0032

frequencies_decay frequency52 divided by frequency13 ✓ ✓ 0.709 0.0029

frequency13man Same as frequency13 but for "manufacturer" ✓ ✓ 0.708 0.0007

frequency26man Same as frequency26 but for "manufacturer" ✓ ✓ 0.707 0.0007

frequency39man Same as frequency39 but for "manufacturer" ✓ ✓ 0.704 0.0006

frequency52man Same as frequency52 but for "manufacturer" ✓ ✓ 0.702 0.0006

171

average_cycle52man Same as average_cycle52 but for

"manufacturer"
✓ ✓ 0.698 0.0006

average_cycle39man Same as average_cycle39 but for

"manufacturer"
✓ ✓ 0.695 0.0006

average_cycle26man Same as average_cycle26 but for

"manufacturer"
✓ ✓ 0.695 0.0006

most_trialled Number of customer who bought the item 1st

time the previous week

 ✓ 0.687 0.0008

average_cycle13man Same as average_cycle13 but for

"manufacturer"
✓ ✓ 0.686 0.0006

frequenciesman_dec

ay

frequency52man divided by frequency13man ✓ ✓ 0.683 0.0006

productsbought13 Total number of products the customer

bought in last 13 weeks
✓ 0.632 0.0003

productsbought26 Total number of products the customer

bought in last 26 weeks
✓ 0.632 0.0003

productsbought39 Total number of products the customer

bought in last 39 weeks
✓ 0.630 0.0002

distinct_item Distinct number of products the customer

bought in last 52 weeks
✓ 0.625 0.0002

productsbought52 Total number of products the customer

bought in last 52 weeks
✓ 0.625 0.0002

distinct_MANUFAC

TURER

same as distinct_item but for "manufacturer" ✓ 0.620 0.0002

distinct_DEPARTM

ENT

same as distinct_item but for "department" ✓ 0.591 0.0001

manpopularity52 same as popularity52 but for "manufacturer" ✓ 0.590 0.0001

popularity_decay popularity52 divided by popularity13 ✓ 0.588 0.0001

manpopularity39 same as popularity39 but for "manufacturer" ✓ 0.586 0.0001

manpopularity13 same as popularity13 but for "manufacturer" ✓ 0.586 0.0001

manpopularity26 same as popularity26 but for "manufacturer" ✓ 0.585 0.0001

frequency26dep Same as frequency26 but for "department" ✓ ✓ 0.584 0.0001

frequency39dep Same as frequency39 but for "department" ✓ ✓ 0.583 0.0001

frequency13dep Same as frequency13 but for "department" ✓ ✓ 0.583 0.0001

frequency52dep Same as frequency52 but for "department" ✓ ✓ 0.579 0.0001

visits26 Number of distinct days the customer visited

in last 26 weeks
✓ 0.577 0.0001

visits13 Number of distinct days the customer visited

in last 13 weeks
✓ 0.577 0.0001

transactions_withdis

count

Total number of transactions with discount in

last 52 weeks
✓ 0.577 0.0001

visits39 Number of distinct days the customer visited

in last 39 weeks
✓ 0.574 0.0001

deppopularity13 same as popularity13 but for "department" ✓ 0.573 0.0001

deppopularity26 same as popularity26 but for "department" ✓ 0.573 0.0001

deppopularity39 same as popularity39 but for "department" ✓ 0.573 0.0001

deppopularity_decay deppopularity52 divided by deppopularity13 ✓ 0.573 0.0001

visits52 Number of distinct days the customer visited

in last 52 weeks
✓ 0.569 0.0001

transactions_withdis

countman

Number of times the manufacturer was sold

with discount in 52 weeks

 ✓ 0.567 0.0001

transactions_withdis

countdep

Number of times the department was sold

with discount in 52 weeks

 ✓ 0.565 0.0001

manpopularity_deca

y

manpopularity52 divided by manpopularity13 ✓ 0.563 0.0001

count_newitems Number of products the customer bought last

week for the 1st time
✓ 0.562 0.0001

frequenciesdep_deca

y

frequency52dep divided by frequency13dep ✓ ✓ 0.559 0.0001

average_cycle52dep Same as average_cycle52 but for

"department"
✓ ✓ 0.559 0.0001

172

HH_COMP_DESC Household status ✓ 0.557 0.0001

INCOME_DESC Household income band ✓ 0.557 0.0001

average_cycle39dep Same as average_cycle39 but for

"department"
✓ ✓ 0.556 0.0000

AGE_DESC Household Age Band ✓ 0.556 0.0001

KID_CATEGORY_

DESC

Household's kid category description ✓ 0.555 0.0001

average_cycle26dep Same as average_cycle26 but for

"department"
✓ ✓ 0.555 0.0000

MARITAL_STATU

S_CODE

Household's Marital Status ✓ 0.553 0.0000

average_cycle13dep Same as average_cycle13 but for

"department"
✓ ✓ 0.552 0.0000

HOMEOWNER_DE

SC

Household's homeowner status ✓ 0.551 0.0000

average_spendingite

m

Average spent on a product in last 52 weeks ✓ 0.542 0.0000

deppopularity52 same as popularity52 but for department ✓ 0.541 0.0000

HOUSEHOLD_SIZ

E_DESC

Household Size band ✓ 0.540 0.0000

average_discount Average discount per product in basket in last

52 weeks
✓ 0.540 0.0000

average_discountite

m

Number of times the product was sold with

discount in last 52 weeks

 ✓ 0.537 0.0001

transactions_withdis

countitem

Number products the customer bought with

discount in last 52 weeks
✓ 0.535 0.0001

visits_decay visits52 divided by visits13 ✓ 0.535 0.0000

average_spending Average spending per product in basket in

last 52 weeks
✓ 0.533 0.0000

average_quantity Average quantity per product in basket in last

52 weeks
✓ 0.531 0.0000

TRANS_TIME Time in hours where 12 am is '00' and 11pm

is '23' (24 distinct values)

 0.529 0.0000

8.2 Additional charts of the features in experiment 1

The following charts display additional information for some of the variables not analytically

covered in the first experiment.

8.2.1 Marital Status

Figure 8.1 displays the marital status in relation to the probability of buying any item next

week. Married people have higher probability buying any item as can be seen in the graph

below:

173

Figure 8.1 : Marital status versus target variable

8.2.2 Household composition

Figure 8.2 illustrates the different household composition types along with the probability to

buy any product in the future week. Smaller families seem to have higher probability to buy

any given product:

Figure 8.2 : Household composition type versus target

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

Married' Not Married' Uknown' Other'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Marital Status

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

'1 Adult
Kids'

'2 Adults
Kids'

'2 Adults
No Kids'

'Single
Female'

'Single
Male'

'Unknown' 'Null'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Houshold Composition Band

174

8.2.3 Household Size

Figure 8.3 displays the Household size versus the target variable:

Figure 8.3 : Household size and target variable

8.2.4 Kids’ Category number

The number of kids in the family seems to be positively correlated with the probability to buy

a given item in the future week as can be visualized through 8.4:

Figure 8.4 : Kids’ number and target variable

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

'1' '2' '3' '4' 'Null'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Houshold size Band

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

'1' '2' '3+' None or U' Not Given'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Kids' Number Band

175

8.2.5 Average Cycle of buying an item in last 52 weeks

The following chart 8.5 portrays the probability to buy an item in the future week given the

average number of days it takes for that item to be bought by the customer as measured in the

last 52 weeks. The graph is peculiarly nonlinear, but this is primarily because the very small

numbers imply that customer bought the item many times in a small period of time (e.g. stocked

up), therefore there is less need for future purchases:

Figure 8.5 : Average number of days to buy the item in the last 52 weeks versus target

8.2.6 Average Cycle of buying an item in last 52 weeks

Figure 8.6 shows the number of times a customer has bought an item that comes from the same

manufacturer as the item to be considered for a possible future purchase. The relationship may

not be as linear as someone would expect.

0.000%

2.000%

4.000%

6.000%

8.000%

10.000%

12.000%

Never
bought

0' '1 to 9' '10 to
16'

'17 to
24'

'25 to
32'

'33 to
42'

'43 to
56'

'57 to
78'

'79 to
181'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Average Cycle of last 52 weeks' bands

176

Figure 8.6 : Times bought from same Manufacturer versus target

8.2.7 Total items bought in last 52 weeks

The next feature can be seen as a measure of how loyal a customer is, given the number of

total units he/she has purchased over the last 52 weeks. The relationship is fairly linear with

the probability to buy any given item in the next week as evident by 8.7:

Figure 8.7 : Total items bought versus Target

0.000%
0.050%
0.100%
0.150%
0.200%
0.250%
0.300%
0.350%
0.400%

Never
bought

0 to 1' '2' '3 to 4' '5 to 9' '10 to
23'

'24 to
67'

'68 to
145'

'146 to
271'

'272 to
1715'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Times bought in the last 52 weeks

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

0.300%

0.350%

0 to 140' '141 to
248'

'249 to
357'

'358 to
457'

'458 to
592'

'593 to
754'

'755 to
916'

'917 to
1175'

'1176 to
1581'

'1582 to
4159'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Items bought in last 52 weeks

177

8.2.8 Total transaction with any discount in last 52 weeks

This is another customer-level variable derived from the purchase history of the customers and

demonstrates how many times they leverage promotional opportunities. It can also be seen as

form of loyalty and the relationship is fairly linear with the target variable as portrayed in 8.8.

Figure 8.8 : Total transatcions with discount vs target

8.2.9 Average Spend per item in last 52 weeks

Customers who generally buy cheaper (on average) items they tend to have higher probability

to buy any given item. This is easy to conceive as most items of the retailer fall within a certain

price-range. This relationship is also exposed in the following chart 8.9:

0.000%

0.050%

0.100%

0.150%

0.200%

0.250%

Never '0' '1' '2' '3' '4 to 5' '6 to 9' '10 to
16'

'17 to
32'

'33 to
330'

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Tranasactions with discount in last 52 weeks

178

Figure 8.9 : Average Spend per item in last 52 weeks versus target

0.000%
0.020%
0.040%
0.060%
0.080%
0.100%
0.120%
0.140%
0.160%
0.180%
0.200%

P
ro

b
ab

ili
ty

 t
o

 b
u

y

Average spend in last 52 weeks

179

8.3 All simulations and rounds’ AUC results for plateauing

experiment in 6.6

Table 8-2 demonstrates the full results from all 50 simulations run as part of the experiment in

6.6.

Table 8-2: Simulations’ rounds results and cross validation AUC

Round Ensemble input size cv AUC

1 1 0.888939

1 2 0.891189

1 3 0.893003

1 4 0.892853

1 5 0.89341

1 6 0.896835

1 7 0.898658

1 8 0.898369

1 9 0.898132

1 10 0.897842

1 11 0.897973

1 12 0.898314

1 13 0.897963

1 14 0.898653

1 15 0.898902

1 16 0.898717

1 17 0.898391

1 18 0.898497

1 19 0.898593

1 20 0.898617

1 21 0.898865

1 22 0.898704

1 23 0.899372

1 24 0.899569

1 25 0.899241

1 26 0.899624

1 27 0.899869

1 28 0.899832

1 29 0.899717

1 30 0.899326

1 31 0.89957

1 32 0.899765

1 33 0.899766

1 34 0.899554

1 35 0.899617

1 36 0.899621

2 1 0.874569

2 2 0.881201

2 3 0.889765

2 4 0.888908

2 5 0.889636

2 6 0.896584

2 7 0.895865

2 8 0.896044

2 9 0.895862

2 10 0.896291

2 11 0.896368

180

2 12 0.897413

2 13 0.898765

2 14 0.899406

2 15 0.89918

2 16 0.898845

2 17 0.898625

2 18 0.899346

2 19 0.899349

2 20 0.898949

2 21 0.89922

2 22 0.898865

2 23 0.898673

2 24 0.899147

2 25 0.899122

2 26 0.899431

2 27 0.899314

2 28 0.89976

2 29 0.899804

2 30 0.899595

2 31 0.900055

2 32 0.899817

2 33 0.899866

2 34 0.899484

2 35 0.899687

2 36 0.899508

3 1 0.873868

3 2 0.888107

3 3 0.891835

3 4 0.891114

3 5 0.898352

3 6 0.898642

3 7 0.897879

3 8 0.897735

3 9 0.898099

3 10 0.898342

3 11 0.89953

3 12 0.899614

3 13 0.899664

3 14 0.899544

3 15 0.899902

3 16 0.900007

3 17 0.900496

3 18 0.900331

3 19 0.900523

3 20 0.900439

3 21 0.900021

3 22 0.900281

3 23 0.900068

3 24 0.900167

3 25 0.899912

3 26 0.900033

3 27 0.899929

3 28 0.900233

3 29 0.899957

3 30 0.899878

3 31 0.899723

3 32 0.89971

3 33 0.899821

3 34 0.899653

3 35 0.899355

3 36 0.899739

4 1 0.888461

4 2 0.891069

4 3 0.892528

181

4 4 0.893014

4 5 0.893691

4 6 0.89385

4 7 0.896744

4 8 0.896221

4 9 0.896145

4 10 0.896123

4 11 0.896187

4 12 0.896387

4 13 0.896564

4 14 0.898482

4 15 0.899003

4 16 0.899233

4 17 0.899099

4 18 0.898868

4 19 0.898805

4 20 0.898956

4 21 0.898747

4 22 0.89922

4 23 0.898854

4 24 0.899019

4 25 0.899102

4 26 0.89888

4 27 0.899008

4 28 0.898898

4 29 0.89932

4 30 0.899476

4 31 0.899206

4 32 0.899224

4 33 0.899389

4 34 0.899342

4 35 0.899448

4 36 0.899492

5 1 0.85652

5 2 0.896044

5 3 0.896312

5 4 0.89626

5 5 0.895959

5 6 0.89618

5 7 0.89669

5 8 0.896578

5 9 0.896581

5 10 0.896764

5 11 0.896483

5 12 0.898161

5 13 0.897778

5 14 0.898044

5 15 0.898216

5 16 0.898143

5 17 0.898279

5 18 0.898322

5 19 0.898954

5 20 0.899415

5 21 0.899378

5 22 0.899144

5 23 0.899165

5 24 0.899212

5 25 0.899171

5 26 0.89917

5 27 0.899081

5 28 0.899231

5 29 0.899452

5 30 0.899586

5 31 0.899036

182

5 32 0.899486

5 33 0.898991

5 34 0.899114

5 35 0.899617

5 36 0.89963

6 1 0.888939

6 2 0.88915

6 3 0.890435

6 4 0.893558

6 5 0.893667

6 6 0.894147

6 7 0.894348

6 8 0.895752

6 9 0.895482

6 10 0.896001

6 11 0.896147

6 12 0.89599

6 13 0.898564

6 14 0.898534

6 15 0.898815

6 16 0.899104

6 17 0.899458

6 18 0.899077

6 19 0.899896

6 20 0.900086

6 21 0.900073

6 22 0.899927

6 23 0.900061

6 24 0.899818

6 25 0.899932

6 26 0.89995

6 27 0.899857

6 28 0.899899

6 29 0.899963

6 30 0.899831

6 31 0.900014

6 32 0.89983

6 33 0.899926

6 34 0.899588

6 35 0.899587

6 36 0.899429

7 1 0.889559

7 2 0.893755

7 3 0.895564

7 4 0.896745

7 5 0.899096

7 6 0.899252

7 7 0.899242

7 8 0.899127

7 9 0.898889

7 10 0.899079

7 11 0.899094

7 12 0.899126

7 13 0.898978

7 14 0.898664

7 15 0.898573

7 16 0.898593

7 17 0.898657

7 18 0.898623

7 19 0.898703

7 20 0.898675

7 21 0.898597

7 22 0.898682

7 23 0.898761

183

7 24 0.899061

7 25 0.899277

7 26 0.89891

7 27 0.898925

7 28 0.899146

7 29 0.899742

7 30 0.899631

7 31 0.899787

7 32 0.899854

7 33 0.899819

7 34 0.899592

7 35 0.89925

7 36 0.899686

8 1 0.8796

8 2 0.891198

8 3 0.897057

8 4 0.899672

8 5 0.899465

8 6 0.899643

8 7 0.898777

8 8 0.898515

8 9 0.898667

8 10 0.898855

8 11 0.898433

8 12 0.898577

8 13 0.898533

8 14 0.898536

8 15 0.898771

8 16 0.898683

8 17 0.898823

8 18 0.89877

8 19 0.899235

8 20 0.898897

8 21 0.899299

8 22 0.899215

8 23 0.89908

8 24 0.899209

8 25 0.899389

8 26 0.899413

8 27 0.899346

8 28 0.899418

8 29 0.899164

8 30 0.899497

8 31 0.899342

8 32 0.899472

8 33 0.899789

8 34 0.89951

8 35 0.89965

8 36 0.899636

9 1 0.892438

9 2 0.896743

9 3 0.897281

9 4 0.897122

9 5 0.898818

9 6 0.900127

9 7 0.899783

9 8 0.900028

9 9 0.899834

9 10 0.899746

9 11 0.899785

9 12 0.899592

9 13 0.899609

9 14 0.899668

9 15 0.899815

184

9 16 0.89952

9 17 0.899852

9 18 0.899799

9 19 0.89961

9 20 0.899622

9 21 0.899258

9 22 0.89921

9 23 0.899424

9 24 0.899566

9 25 0.89935

9 26 0.899667

9 27 0.899751

9 28 0.899369

9 29 0.899387

9 30 0.899453

9 31 0.899769

9 32 0.899809

9 33 0.899775

9 34 0.899789

9 35 0.899813

9 36 0.899687

10 1 0.882331

10 2 0.891557

10 3 0.899555

10 4 0.899065

10 5 0.898567

10 6 0.898805

10 7 0.898721

10 8 0.898383

10 9 0.897857

10 10 0.897445

10 11 0.897676

10 12 0.898413

10 13 0.898633

10 14 0.898775

10 15 0.898673

10 16 0.898743

10 17 0.898499

10 18 0.898445

10 19 0.898332

10 20 0.898158

10 21 0.898163

10 22 0.898902

10 23 0.898924

10 24 0.899012

10 25 0.899109

10 26 0.898934

10 27 0.899249

10 28 0.898971

10 29 0.898919

10 30 0.89919

10 31 0.899012

10 32 0.898997

10 33 0.898864

10 34 0.899502

10 35 0.899611

10 36 0.899469

11 1 0.857564

11 2 0.896341

11 3 0.897131

11 4 0.897135

11 5 0.897641

11 6 0.898047

11 7 0.898269

185

11 8 0.898001

11 9 0.89791

11 10 0.898069

11 11 0.897891

11 12 0.899949

11 13 0.899979

11 14 0.899485

11 15 0.899401

11 16 0.899462

11 17 0.899457

11 18 0.89882

11 19 0.899163

11 20 0.899114

11 21 0.899265

11 22 0.899248

11 23 0.899225

11 24 0.899568

11 25 0.899494

11 26 0.899821

11 27 0.900096

11 28 0.899751

11 29 0.900001

11 30 0.899828

11 31 0.899826

11 32 0.89964

11 33 0.899848

11 34 0.899976

11 35 0.899843

11 36 0.899701

12 1 0.873344

12 2 0.887281

12 3 0.89069

12 4 0.890959

12 5 0.893531

12 6 0.896479

12 7 0.896111

12 8 0.896547

12 9 0.897692

12 10 0.898069

12 11 0.897989

12 12 0.899072

12 13 0.899363

12 14 0.899273

12 15 0.899136

12 16 0.900151

12 17 0.900116

12 18 0.899923

12 19 0.899741

12 20 0.899685

12 21 0.899128

12 22 0.899345

12 23 0.899281

12 24 0.899098

12 25 0.899322

12 26 0.899716

12 27 0.899379

12 28 0.899303

12 29 0.899877

12 30 0.900011

12 31 0.899763

12 32 0.89977

12 33 0.89982

12 34 0.899726

12 35 0.899613

186

12 36 0.899817

13 1 0.873344

13 2 0.884197

13 3 0.89405

13 4 0.893942

13 5 0.897493

13 6 0.897867

13 7 0.898177

13 8 0.898215

13 9 0.9005

13 10 0.900339

13 11 0.900796

13 12 0.901086

13 13 0.900931

13 14 0.900985

13 15 0.899771

13 16 0.899891

13 17 0.899853

13 18 0.899516

13 19 0.899816

13 20 0.899677

13 21 0.899885

13 22 0.89998

13 23 0.900213

13 24 0.899958

13 25 0.899963

13 26 0.899895

13 27 0.900054

13 28 0.900144

13 29 0.899988

13 30 0.899827

13 31 0.899664

13 32 0.899753

13 33 0.899566

13 34 0.899759

13 35 0.899575

13 36 0.899879

14 1 0.877636

14 2 0.887403

14 3 0.888201

14 4 0.893938

14 5 0.895583

14 6 0.895808

14 7 0.895918

14 8 0.897392

14 9 0.89749

14 10 0.89761

14 11 0.897824

14 12 0.898055

14 13 0.900015

14 14 0.900132

14 15 0.900215

14 16 0.899917

14 17 0.900821

14 18 0.900429

14 19 0.900591

14 20 0.90042

14 21 0.900045

14 22 0.900009

14 23 0.899743

14 24 0.899617

14 25 0.899969

14 26 0.899612

14 27 0.899664

187

14 28 0.899729

14 29 0.89958

14 30 0.899423

14 31 0.899711

14 32 0.899636

14 33 0.899446

14 34 0.899705

14 35 0.899883

14 36 0.899719

15 1 0.891452

15 2 0.893092

15 3 0.894886

15 4 0.899034

15 5 0.899005

15 6 0.898628

15 7 0.898714

15 8 0.898975

15 9 0.898789

15 10 0.898995

15 11 0.898645

15 12 0.89874

15 13 0.898921

15 14 0.899194

15 15 0.899276

15 16 0.899003

15 17 0.898841

15 18 0.898556

15 19 0.898832

15 20 0.898708

15 21 0.899076

15 22 0.898981

15 23 0.89889

15 24 0.898926

15 25 0.898797

15 26 0.899164

15 27 0.899034

15 28 0.899073

15 29 0.899268

15 30 0.899575

15 31 0.899532

15 32 0.899578

15 33 0.899585

15 34 0.899285

15 35 0.89931

15 36 0.899576

16 1 0.888939

16 2 0.896025

16 3 0.895895

16 4 0.898935

16 5 0.899006

16 6 0.89939

16 7 0.899338

16 8 0.899418

16 9 0.900333

16 10 0.900004

16 11 0.899915

16 12 0.900414

16 13 0.900204

16 14 0.900215

16 15 0.899983

16 16 0.899777

16 17 0.89987

16 18 0.899797

16 19 0.899328

188

16 20 0.899516

16 21 0.899371

16 22 0.899465

16 23 0.899673

16 24 0.899412

16 25 0.899422

16 26 0.899712

16 27 0.899514

16 28 0.899767

16 29 0.899366

16 30 0.899817

16 31 0.899418

16 32 0.899375

16 33 0.899758

16 34 0.899703

16 35 0.899344

16 36 0.899603

17 1 0.874569

17 2 0.888803

17 3 0.893404

17 4 0.896261

17 5 0.899285

17 6 0.898893

17 7 0.898533

17 8 0.89868

17 9 0.898914

17 10 0.898971

17 11 0.898934

17 12 0.898648

17 13 0.899853

17 14 0.899632

17 15 0.899659

17 16 0.899347

17 17 0.899576

17 18 0.89934

17 19 0.899265

17 20 0.899238

17 21 0.899834

17 22 0.899616

17 23 0.899545

17 24 0.899196

17 25 0.89915

17 26 0.89897

17 27 0.898857

17 28 0.899117

17 29 0.899101

17 30 0.899287

17 31 0.898835

17 32 0.899071

17 33 0.899068

17 34 0.899042

17 35 0.899689

17 36 0.899781

18 1 0.808227

18 2 0.893495

18 3 0.895597

18 4 0.896548

18 5 0.896822

18 6 0.895641

18 7 0.896355

18 8 0.898404

18 9 0.897951

18 10 0.898161

18 11 0.898053

189

18 12 0.898019

18 13 0.897933

18 14 0.89803

18 15 0.899574

18 16 0.899668

18 17 0.899423

18 18 0.899176

18 19 0.899247

18 20 0.899204

18 21 0.898932

18 22 0.899417

18 23 0.899707

18 24 0.899241

18 25 0.899488

18 26 0.899943

18 27 0.899784

18 28 0.899708

18 29 0.89976

18 30 0.89964

18 31 0.899585

18 32 0.899614

18 33 0.899675

18 34 0.899482

18 35 0.899769

18 36 0.899748

19 1 0.808227

19 2 0.889594

19 3 0.892304

19 4 0.894871

19 5 0.894535

19 6 0.895792

19 7 0.896101

19 8 0.896189

19 9 0.896334

19 10 0.896602

19 11 0.896487

19 12 0.896833

19 13 0.897074

19 14 0.897777

19 15 0.898383

19 16 0.898235

19 17 0.898059

19 18 0.899179

19 19 0.899404

19 20 0.899159

19 21 0.899154

19 22 0.898951

19 23 0.898864

19 24 0.898591

19 25 0.898634

19 26 0.899106

19 27 0.899271

19 28 0.899239

19 29 0.899384

19 30 0.899304

19 31 0.899318

19 32 0.899562

19 33 0.899633

19 34 0.899134

19 35 0.899349

19 36 0.899717

20 1 0.892438

20 2 0.893977

20 3 0.894211

190

20 4 0.894034

20 5 0.895269

20 6 0.896827

20 7 0.896633

20 8 0.896732

20 9 0.896865

20 10 0.897026

20 11 0.896921

20 12 0.897014

20 13 0.89725

20 14 0.897077

20 15 0.897519

20 16 0.897156

20 17 0.897484

20 18 0.897352

20 19 0.897239

20 20 0.897345

20 21 0.897563

20 22 0.897525

20 23 0.897448

20 24 0.897971

20 25 0.897926

20 26 0.899304

20 27 0.899132

20 28 0.898843

20 29 0.898928

20 30 0.899355

20 31 0.899455

20 32 0.899435

20 33 0.899558

20 34 0.899857

20 35 0.899856

20 36 0.89971

21 1 0.888461

21 2 0.889627

21 3 0.890176

21 4 0.892617

21 5 0.893163

21 6 0.894198

21 7 0.893836

21 8 0.895924

21 9 0.895751

21 10 0.89841

21 11 0.898692

21 12 0.900014

21 13 0.899943

21 14 0.900248

21 15 0.90021

21 16 0.900026

21 17 0.89961

21 18 0.899638

21 19 0.899823

21 20 0.899723

21 21 0.899962

21 22 0.900285

21 23 0.900107

21 24 0.900238

21 25 0.899884

21 26 0.899855

21 27 0.899844

21 28 0.899997

21 29 0.89969

21 30 0.89972

21 31 0.899496

191

21 32 0.899612

21 33 0.899435

21 34 0.899528

21 35 0.899609

21 36 0.89965

22 1 0.877636

22 2 0.896801

22 3 0.896944

22 4 0.896826

22 5 0.897182

22 6 0.896704

22 7 0.897903

22 8 0.897556

22 9 0.897746

22 10 0.897621

22 11 0.897967

22 12 0.897672

22 13 0.899877

22 14 0.900038

22 15 0.900162

22 16 0.899912

22 17 0.899881

22 18 0.899748

22 19 0.899745

22 20 0.899867

22 21 0.899637

22 22 0.899636

22 23 0.899672

22 24 0.899678

22 25 0.899466

22 26 0.899484

22 27 0.899635

22 28 0.899676

22 29 0.89961

22 30 0.899447

22 31 0.899422

22 32 0.899701

22 33 0.899781

22 34 0.899842

22 35 0.899342

22 36 0.899142

23 1 0.874569

23 2 0.881201

23 3 0.88947

23 4 0.89805

23 5 0.89856

23 6 0.898919

23 7 0.899108

23 8 0.89963

23 9 0.899736

23 10 0.89967

23 11 0.899812

23 12 0.899695

23 13 0.899896

23 14 0.899578

23 15 0.899674

23 16 0.899304

23 17 0.900386

23 18 0.900323

23 19 0.900797

23 20 0.900682

23 21 0.90035

23 22 0.900599

23 23 0.90012

192

23 24 0.899969

23 25 0.900167

23 26 0.900252

23 27 0.900265

23 28 0.900378

23 29 0.899728

23 30 0.899738

23 31 0.899851

23 32 0.899755

23 33 0.899956

23 34 0.899622

23 35 0.899717

23 36 0.899432

24 1 0.879476

24 2 0.891048

24 3 0.892769

24 4 0.895594

24 5 0.894744

24 6 0.895492

24 7 0.896795

24 8 0.897396

24 9 0.897755

24 10 0.897453

24 11 0.897478

24 12 0.898535

24 13 0.898546

24 14 0.898545

24 15 0.899068

24 16 0.899982

24 17 0.899686

24 18 0.899328

24 19 0.900172

24 20 0.899854

24 21 0.899912

24 22 0.899895

24 23 0.899633

24 24 0.899731

24 25 0.899784

24 26 0.899932

24 27 0.899798

24 28 0.899793

24 29 0.899805

24 30 0.899732

24 31 0.899463

24 32 0.89961

24 33 0.899591

24 34 0.899875

24 35 0.899236

24 36 0.899756

25 1 0.88124

25 2 0.89096

25 3 0.891757

25 4 0.892391

25 5 0.892616

25 6 0.895349

25 7 0.899452

25 8 0.899082

25 9 0.899184

25 10 0.898622

25 11 0.898886

25 12 0.897861

25 13 0.898623

25 14 0.898318

25 15 0.898003

193

25 16 0.897589

25 17 0.897886

25 18 0.898253

25 19 0.898624

25 20 0.899027

25 21 0.899155

25 22 0.899424

25 23 0.899103

25 24 0.898949

25 25 0.898907

25 26 0.899269

25 27 0.899147

25 28 0.899141

25 29 0.899232

25 30 0.899832

25 31 0.899547

25 32 0.899621

25 33 0.899828

25 34 0.899842

25 35 0.899689

25 36 0.899317

26 1 0.874569

26 2 0.888741

26 3 0.898832

26 4 0.899864

26 5 0.90035

26 6 0.900529

26 7 0.900288

26 8 0.89945

26 9 0.900165

26 10 0.900033

26 11 0.900581

26 12 0.900104

26 13 0.899894

26 14 0.89976

26 15 0.899495

26 16 0.899388

26 17 0.899866

26 18 0.899652

26 19 0.899934

26 20 0.899306

26 21 0.899341

26 22 0.899434

26 23 0.899458

26 24 0.900215

26 25 0.900254

26 26 0.899897

26 27 0.899978

26 28 0.900031

26 29 0.899855

26 30 0.899701

26 31 0.899469

26 32 0.899576

26 33 0.89955

26 34 0.899493

26 35 0.899728

26 36 0.899215

27 1 0.891452

27 2 0.892866

27 3 0.894278

27 4 0.895929

27 5 0.895903

27 6 0.896172

27 7 0.896208

194

27 8 0.895899

27 9 0.895893

27 10 0.895985

27 11 0.897376

27 12 0.897228

27 13 0.897546

27 14 0.898081

27 15 0.898147

27 16 0.897907

27 17 0.898103

27 18 0.898126

27 19 0.897929

27 20 0.898915

27 21 0.898711

27 22 0.899024

27 23 0.89872

27 24 0.898643

27 25 0.898812

27 26 0.898605

27 27 0.898724

27 28 0.898982

27 29 0.898428

27 30 0.898519

27 31 0.898823

27 32 0.898869

27 33 0.898639

27 34 0.899091

27 35 0.899488

27 36 0.899106

28 1 0.891452

28 2 0.892433

28 3 0.895434

28 4 0.896106

28 5 0.895434

28 6 0.895733

28 7 0.895922

28 8 0.896261

28 9 0.896731

28 10 0.896506

28 11 0.896177

28 12 0.897195

28 13 0.897295

28 14 0.897246

28 15 0.897534

28 16 0.897657

28 17 0.897944

28 18 0.897938

28 19 0.897822

28 20 0.897816

28 21 0.898214

28 22 0.898281

28 23 0.898287

28 24 0.898063

28 25 0.897731

28 26 0.898134

28 27 0.89879

28 28 0.899405

28 29 0.899001

28 30 0.899143

28 31 0.899279

28 32 0.899194

28 33 0.899245

28 34 0.89955

28 35 0.899547

195

28 36 0.899245

29 1 0.873344

29 2 0.893371

29 3 0.895197

29 4 0.895268

29 5 0.895896

29 6 0.898011

29 7 0.898379

29 8 0.898123

29 9 0.897597

29 10 0.898509

29 11 0.8983

29 12 0.898928

29 13 0.899297

29 14 0.899022

29 15 0.898924

29 16 0.899214

29 17 0.898854

29 18 0.898883

29 19 0.899153

29 20 0.899227

29 21 0.899041

29 22 0.898806

29 23 0.898809

29 24 0.899013

29 25 0.89861

29 26 0.898387

29 27 0.898367

29 28 0.899121

29 29 0.898759

29 30 0.898938

29 31 0.899088

29 32 0.898926

29 33 0.898983

29 34 0.899047

29 35 0.899087

29 36 0.89951

30 1 0.887965

30 2 0.891271

30 3 0.893625

30 4 0.895727

30 5 0.894757

30 6 0.89613

30 7 0.895934

30 8 0.895653

30 9 0.895755

30 10 0.895385

30 11 0.895825

30 12 0.89626

30 13 0.896651

30 14 0.896763

30 15 0.897839

30 16 0.897796

30 17 0.897451

30 18 0.897577

30 19 0.898726

30 20 0.89844

30 21 0.898556

30 22 0.89872

30 23 0.898615

30 24 0.898539

30 25 0.898597

30 26 0.898609

30 27 0.898503

196

30 28 0.898644

30 29 0.898546

30 30 0.899391

30 31 0.899578

30 32 0.899426

30 33 0.89984

30 34 0.899801

30 35 0.899568

30 36 0.899566

31 1 0.873344

31 2 0.887225

31 3 0.890313

31 4 0.893277

31 5 0.894366

31 6 0.897768

31 7 0.897378

31 8 0.897433

31 9 0.898247

31 10 0.898075

31 11 0.898795

31 12 0.899708

31 13 0.899553

31 14 0.899512

31 15 0.899648

31 16 0.899714

31 17 0.900112

31 18 0.899899

31 19 0.900041

31 20 0.899976

31 21 0.899994

31 22 0.899548

31 23 0.899534

31 24 0.899719

31 25 0.899665

31 26 0.899596

31 27 0.90024

31 28 0.899813

31 29 0.90017

31 30 0.899676

31 31 0.899639

31 32 0.899678

31 33 0.899827

31 34 0.899757

31 35 0.899586

31 36 0.899692

32 1 0.888461

32 2 0.889431

32 3 0.890206

32 4 0.892275

32 5 0.89214

32 6 0.894376

32 7 0.896571

32 8 0.896982

32 9 0.897229

32 10 0.897647

32 11 0.898004

32 12 0.898578

32 13 0.898558

32 14 0.899565

32 15 0.899526

32 16 0.899278

32 17 0.89932

32 18 0.899678

32 19 0.899725

197

32 20 0.899495

32 21 0.899523

32 22 0.899349

32 23 0.899447

32 24 0.89952

32 25 0.899307

32 26 0.899335

32 27 0.899762

32 28 0.89963

32 29 0.899731

32 30 0.899969

32 31 0.900025

32 32 0.899968

32 33 0.89974

32 34 0.89993

32 35 0.900002

32 36 0.899409

33 1 0.874569

33 2 0.877314

33 3 0.888059

33 4 0.889989

33 5 0.893638

33 6 0.895053

33 7 0.895909

33 8 0.896256

33 9 0.897636

33 10 0.897358

33 11 0.897153

33 12 0.897185

33 13 0.897375

33 14 0.897387

33 15 0.897861

33 16 0.89778

33 17 0.897762

33 18 0.897877

33 19 0.897577

33 20 0.897752

33 21 0.899117

33 22 0.899045

33 23 0.898991

33 24 0.898841

33 25 0.898882

33 26 0.898999

33 27 0.899023

33 28 0.898997

33 29 0.899119

33 30 0.898774

33 31 0.898937

33 32 0.89914

33 33 0.899444

33 34 0.899683

33 35 0.899646

33 36 0.899575

34 1 0.843332

34 2 0.876716

34 3 0.89315

34 4 0.892684

34 5 0.893762

34 6 0.894797

34 7 0.895147

34 8 0.894813

34 9 0.894798

34 10 0.895372

34 11 0.895551

198

34 12 0.897529

34 13 0.897225

34 14 0.897893

34 15 0.89791

34 16 0.897863

34 17 0.897699

34 18 0.897772

34 19 0.897561

34 20 0.897648

34 21 0.897708

34 22 0.899399

34 23 0.89949

34 24 0.899423

34 25 0.89955

34 26 0.8997

34 27 0.900131

34 28 0.899831

34 29 0.900069

34 30 0.899886

34 31 0.899907

34 32 0.899723

34 33 0.899264

34 34 0.899652

34 35 0.899885

34 36 0.899573

35 1 0.888939

35 2 0.889441

35 3 0.891887

35 4 0.892987

35 5 0.892661

35 6 0.895463

35 7 0.898062

35 8 0.897727

35 9 0.898229

35 10 0.89818

35 11 0.897957

35 12 0.898173

35 13 0.898715

35 14 0.898535

35 15 0.898505

35 16 0.89845

35 17 0.899411

35 18 0.899615

35 19 0.899921

35 20 0.899807

35 21 0.899612

35 22 0.899716

35 23 0.89968

35 24 0.899256

35 25 0.899517

35 26 0.899669

35 27 0.899635

35 28 0.899696

35 29 0.899269

35 30 0.899379

35 31 0.89947

35 32 0.899614

35 33 0.899932

35 34 0.899459

35 35 0.899422

35 36 0.899296

36 1 0.889272

36 2 0.89353

36 3 0.895329

199

36 4 0.895668

36 5 0.895324

36 6 0.896116

36 7 0.897939

36 8 0.897879

36 9 0.897874

36 10 0.899616

36 11 0.899762

36 12 0.899768

36 13 0.899938

36 14 0.900025

36 15 0.899834

36 16 0.900023

36 17 0.899774

36 18 0.899829

36 19 0.899933

36 20 0.899855

36 21 0.899721

36 22 0.899594

36 23 0.899516

36 24 0.89945

36 25 0.899591

36 26 0.89963

36 27 0.89946

36 28 0.899939

36 29 0.899851

36 30 0.899997

36 31 0.899814

36 32 0.8998

36 33 0.899894

36 34 0.899839

36 35 0.899559

36 36 0.899766

37 1 0.882331

37 2 0.890289

37 3 0.890275

37 4 0.893882

37 5 0.897316

37 6 0.898218

37 7 0.898508

37 8 0.898239

37 9 0.898176

37 10 0.898322

37 11 0.897793

37 12 0.89818

37 13 0.898229

37 14 0.899793

37 15 0.899834

37 16 0.899211

37 17 0.899385

37 18 0.899446

37 19 0.899236

37 20 0.899523

37 21 0.899251

37 22 0.899798

37 23 0.899775

37 24 0.900285

37 25 0.89988

37 26 0.899978

37 27 0.900027

37 28 0.900036

37 29 0.899759

37 30 0.90016

37 31 0.89945

200

37 32 0.899775

37 33 0.899714

37 34 0.899534

37 35 0.899412

37 36 0.899871

38 1 0.8796

38 2 0.889377

38 3 0.892953

38 4 0.894816

38 5 0.897706

38 6 0.8977

38 7 0.899494

38 8 0.899693

38 9 0.89915

38 10 0.899014

38 11 0.898985

38 12 0.898907

38 13 0.898908

38 14 0.899004

38 15 0.898734

38 16 0.898865

38 17 0.898972

38 18 0.899486

38 19 0.899357

38 20 0.899214

38 21 0.89899

38 22 0.898828

38 23 0.898712

38 24 0.898811

38 25 0.898828

38 26 0.898887

38 27 0.899183

38 28 0.89925

38 29 0.899508

38 30 0.899552

38 31 0.899471

38 32 0.899598

38 33 0.899426

38 34 0.899522

38 35 0.899845

38 36 0.899247

39 1 0.857766

39 2 0.884345

39 3 0.895834

39 4 0.895728

39 5 0.896385

39 6 0.89635

39 7 0.896974

39 8 0.897039

39 9 0.897134

39 10 0.897147

39 11 0.897217

39 12 0.897174

39 13 0.897325

39 14 0.897279

39 15 0.897975

39 16 0.89786

39 17 0.897776

39 18 0.897953

39 19 0.897987

39 20 0.897954

39 21 0.897839

39 22 0.898285

39 23 0.898362

201

39 24 0.898108

39 25 0.898414

39 26 0.898149

39 27 0.898959

39 28 0.898885

39 29 0.898796

39 30 0.898804

39 31 0.899513

39 32 0.899602

39 33 0.899443

39 34 0.899738

39 35 0.899253

39 36 0.899665

40 1 0.808227

40 2 0.893495

40 3 0.895597

40 4 0.896593

40 5 0.896461

40 6 0.895683

40 7 0.896605

40 8 0.896098

40 9 0.89893

40 10 0.899434

40 11 0.900085

40 12 0.900215

40 13 0.900251

40 14 0.900335

40 15 0.900391

40 16 0.900212

40 17 0.900346

40 18 0.900428

40 19 0.9003

40 20 0.900377

40 21 0.900369

40 22 0.90053

40 23 0.900489

40 24 0.900358

40 25 0.900302

40 26 0.900283

40 27 0.900285

40 28 0.900101

40 29 0.899954

40 30 0.899924

40 31 0.900082

40 32 0.900061

40 33 0.900078

40 34 0.899791

40 35 0.899898

40 36 0.899709

41 1 0.889272

41 2 0.890176

41 3 0.892407

41 4 0.894658

41 5 0.895065

41 6 0.895691

41 7 0.895824

41 8 0.895894

41 9 0.895751

41 10 0.895567

41 11 0.895749

41 12 0.895329

41 13 0.895461

41 14 0.895804

41 15 0.895814

202

41 16 0.89542

41 17 0.895711

41 18 0.895536

41 19 0.89719

41 20 0.897273

41 21 0.897553

41 22 0.897406

41 23 0.897291

41 24 0.897808

41 25 0.897894

41 26 0.898414

41 27 0.898377

41 28 0.899156

41 29 0.899184

41 30 0.899266

41 31 0.899375

41 32 0.898928

41 33 0.89967

41 34 0.899493

41 35 0.899722

41 36 0.89953

42 1 0.875029

42 2 0.891034

42 3 0.893633

42 4 0.894017

42 5 0.894879

42 6 0.89518

42 7 0.894878

42 8 0.897558

42 9 0.898964

42 10 0.898633

42 11 0.898391

42 12 0.899454

42 13 0.899197

42 14 0.899395

42 15 0.899259

42 16 0.899305

42 17 0.899044

42 18 0.898854

42 19 0.898731

42 20 0.898928

42 21 0.898841

42 22 0.898547

42 23 0.898837

42 24 0.898297

42 25 0.898852

42 26 0.898657

42 27 0.898673

42 28 0.898608

42 29 0.898584

42 30 0.89849

42 31 0.898349

42 32 0.898825

42 33 0.899572

42 34 0.899526

42 35 0.89945

42 36 0.899562

43 1 0.726286

43 2 0.888872

43 3 0.890987

43 4 0.892395

43 5 0.893807

43 6 0.894465

43 7 0.893911

203

43 8 0.894079

43 9 0.894204

43 10 0.894144

43 11 0.895923

43 12 0.895978

43 13 0.89645

43 14 0.896192

43 15 0.896512

43 16 0.897568

43 17 0.898439

43 18 0.898793

43 19 0.898618

43 20 0.899588

43 21 0.899531

43 22 0.899565

43 23 0.899793

43 24 0.899642

43 25 0.899414

43 26 0.899589

43 27 0.899526

43 28 0.899813

43 29 0.899816

43 30 0.899388

43 31 0.899707

43 32 0.899578

43 33 0.899477

43 34 0.8997

43 35 0.899193

43 36 0.899442

44 1 0.857766

44 2 0.895708

44 3 0.899843

44 4 0.899843

44 5 0.898914

44 6 0.898615

44 7 0.898824

44 8 0.898863

44 9 0.898737

44 10 0.898699

44 11 0.898953

44 12 0.899356

44 13 0.899095

44 14 0.89919

44 15 0.898943

44 16 0.899024

44 17 0.89909

44 18 0.899229

44 19 0.899566

44 20 0.899642

44 21 0.900291

44 22 0.900352

44 23 0.899992

44 24 0.899823

44 25 0.899945

44 26 0.899806

44 27 0.899796

44 28 0.899456

44 29 0.899326

44 30 0.899442

44 31 0.89936

44 32 0.899455

44 33 0.89957

44 34 0.899467

44 35 0.899594

204

44 36 0.89948

45 1 0.843332

45 2 0.892907

45 3 0.893914

45 4 0.894425

45 5 0.895924

45 6 0.896389

45 7 0.896358

45 8 0.896503

45 9 0.896543

45 10 0.897526

45 11 0.897358

45 12 0.897179

45 13 0.897826

45 14 0.897468

45 15 0.897334

45 16 0.897854

45 17 0.897821

45 18 0.898718

45 19 0.89851

45 20 0.898624

45 21 0.899152

45 22 0.899055

45 23 0.899256

45 24 0.899082

45 25 0.899279

45 26 0.899023

45 27 0.899104

45 28 0.899028

45 29 0.899294

45 30 0.899496

45 31 0.899574

45 32 0.899697

45 33 0.899562

45 34 0.89954

45 35 0.899795

45 36 0.899693

46 1 0.874506

46 2 0.893331

46 3 0.896094

46 4 0.896263

46 5 0.895901

46 6 0.896243

46 7 0.896671

46 8 0.89683

46 9 0.897796

46 10 0.898051

46 11 0.897905

46 12 0.89934

46 13 0.899613

46 14 0.899189

46 15 0.899021

46 16 0.899039

46 17 0.899066

46 18 0.899381

46 19 0.899103

46 20 0.899006

46 21 0.89917

46 22 0.899193

46 23 0.898891

46 24 0.899483

46 25 0.899693

46 26 0.89997

46 27 0.900026

205

46 28 0.899967

46 29 0.899869

46 30 0.899835

46 31 0.899656

46 32 0.899719

46 33 0.899914

46 34 0.899747

46 35 0.899903

46 36 0.899508

47 1 0.857766

47 2 0.893624

47 3 0.89898

47 4 0.89886

47 5 0.898074

47 6 0.897926

47 7 0.898577

47 8 0.898921

47 9 0.899284

47 10 0.900366

47 11 0.900146

47 12 0.900193

47 13 0.899988

47 14 0.90001

47 15 0.899902

47 16 0.89999

47 17 0.899888

47 18 0.899989

47 19 0.900094

47 20 0.899901

47 21 0.899847

47 22 0.900084

47 23 0.900133

47 24 0.90008

47 25 0.900059

47 26 0.89995

47 27 0.899929

47 28 0.899558

47 29 0.899678

47 30 0.899675

47 31 0.899778

47 32 0.899614

47 33 0.899611

47 34 0.899255

47 35 0.89973

47 36 0.899988

48 1 0.857564

48 2 0.893558

48 3 0.896732

48 4 0.896221

48 5 0.896422

48 6 0.898606

48 7 0.898781

48 8 0.899939

48 9 0.899481

48 10 0.899842

48 11 0.899713

48 12 0.899539

48 13 0.899492

48 14 0.899201

48 15 0.899409

48 16 0.899171

48 17 0.89896

48 18 0.898984

48 19 0.899671

206

48 20 0.899573

48 21 0.899694

48 22 0.899283

48 23 0.899668

48 24 0.899467

48 25 0.899686

48 26 0.899575

48 27 0.899414

48 28 0.899383

48 29 0.899089

48 30 0.899258

48 31 0.899474

48 32 0.899484

48 33 0.899775

48 34 0.899792

48 35 0.899626

48 36 0.899688

49 1 0.87152

49 2 0.887391

49 3 0.887489

49 4 0.890667

49 5 0.894639

49 6 0.896554

49 7 0.896198

49 8 0.895573

49 9 0.897042

49 10 0.898167

49 11 0.897887

49 12 0.899414

49 13 0.899409

49 14 0.899805

49 15 0.898943

49 16 0.899326

49 17 0.899559

49 18 0.899762

49 19 0.900099

49 20 0.899984

49 21 0.899961

49 22 0.900079

49 23 0.899896

49 24 0.899861

49 25 0.900137

49 26 0.900207

49 27 0.899996

49 28 0.899941

49 29 0.899662

49 30 0.899719

49 31 0.899971

49 32 0.899588

49 33 0.899569

49 34 0.899475

49 35 0.899428

49 36 0.899538

50 1 0.887472

50 2 0.891457

50 3 0.892766

50 4 0.891866

50 5 0.893035

50 6 0.89579

50 7 0.898327

50 8 0.898065

50 9 0.8982

50 10 0.898184

50 11 0.898264

207

50 12 0.899007

50 13 0.899138

50 14 0.899037

50 15 0.898608

50 16 0.898361

50 17 0.898865

50 18 0.899206

50 19 0.899341

50 20 0.899264

50 21 0.899195

50 22 0.899366

50 23 0.899223

50 24 0.899178

50 25 0.899869

50 26 0.899883

50 27 0.899875

50 28 0.899854

50 29 0.899887

50 30 0.899851

50 31 0.8999

50 32 0.899914

50 33 0.899585

50 34 0.899712

50 35 0.899389

50 36 0.899575

208

8.4 Equation Glossary

This section includes all labelled equations.

8.4.1 Model averaging

 Ŷ = G(X) =
1

L
∑ Gl(X)

L

l=1
=
1

L
∑ ŷl
L
l=1 (2.1)

8.4.2 Model bagging

 Ŷ = G(XP) =
1

L
∑ Gl(X

pl)
L

l=1
=
1

L
∑ ŷl
L
l=1 (2.2)

8.4.3 Boosting principle

 Ŷ = G(X) = ∑ γlGl(X)
L

l=1
= ∑ γlŷl

L
l=1 (2.3)

8.4.4 Gradient Boosting update

 Gl(X) = Gl−1(X) + γlŷl (2.4)

8.4.5 Classification accuracy

209

 Classification accuracy =
Tp+ Tn

Tp+Tn+Fp+Fn
 (2.5)

8.4.6 Precision at K

 Precisionk =
Tpk

Tpk+Fpk
 (2.6)

8.4.7 Sensitivity

 Sensitivity =
TP

TP+FN
 (2.7)

8.4.8 Specificity

 Specificity =
TN

TN+FP
 (2.8)

8.4.9 AUC

 AUC(X, Y) = ∑ ∑
L[f(xi

+)>f(xj
−)]+

1

2
L[f(xi

+)=f(xj
−)]

2n+n−

n−
j=1

n+
i=1 (2.9)

8.4.10 Pearson Correlation

 r(X, Y) =
∑ (xi−X̅)(yi−Y̅)
n

i=1

√[∑ (xi−X̅)
2n

i=1
][∑ (yi−Y̅)

2n

i=1
]

 (2.10)

210

8.4.11 Squared error of OLS

 E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
=
1

2
∑ (yi −W

Txi)
2N

i=1
 (2.11)

8.4.12 Squared error of Ridge (accounting for L2 regularization)

 E(W) =
1

2
∑ (yi − ŷi)

2N

i=1
+
1

2
λ𝑊𝑇W =

1

2
∑ (yi −W

Txi)
2 +

1

2
λ𝑊𝑇W

N

i=1
 (2.12)

8.4.13 Ridge solution in matrix form

 Ŵ=argmin
W

E(w) = (XTX + λI)−1XTY (2.13)

8.4.14 Gradient Descent update of W

 W = W− a
∂E

∂W
 (2.14)

8.4.15 Gradient Descent update of W in matrix notation

 W = W− α X𝑇(XW − Y) (2.15)

8.4.16 Stochastic Gradient Descent update of W using 1 sample point

 W = W− α 𝑥𝑖(𝑊
𝑇𝑥𝑖 − 𝑦𝑖) (2.16)

211

8.4.17 Probability of y=1 with the Logistic Regression Formula

 P(Y = 1 | X,W) = σ(W⊤X) =
1

1+ e−W
⊤X

 (2.17)

8.4.18 Log Likelihood function for Logistic Regression

 LogL(W) = logP(Y | X,W) = ∑ logP(yi | xi,W)
N

i=1
=∑ −log(1 + e−yiW

Txi)
N

i=1
 (2.18)

8.4.19 Estimating Coefficients W for Logistic Regression

 𝑊̂ = argmin
𝑊

LogL(w) = argmin
𝑊

∑ −log(1 + e−yiW
Txi) +

1

2
λ𝑊𝑇W

N

i=1
 (2.19)

8.4.20 Gradient of W in respect to minimizing Log Likelihood

 ∇WLogL(W) =∑
xiyi

1+ eyiW
Txi

N

i=1
 (2.20)

8.4.21 Hinge Loss function

 HingeL(W) = HingeL(Y, X,W) = ∑ max{0,1 − yiW
txi}

N

i=1
 (2.21)

8.4.22 Estimating coefficients W for hinge Loss

 𝑊̂ = argmin
𝑊

HingeL(W) = argmin
𝑊

∑ max{0,1 − yiW
txi}

N

i=1
 +

1

2
λ𝑊𝑇W (2.22)

212

8.4.23 Gradient of W in respect to minimizing Hinge Loss

 ∇WHingeL(W) =∑
−yixi , if yiW

txi < 1

0, if yiW
txi ≥ 1

N

i=1

 (2.23)

8.4.24 Generic squared error function

 𝐸(𝑌̂) = ∑ (𝑦𝑖 − 𝑦̂𝑖)
2𝑁

𝑖=1
 (2.24)

8.4.25 Output function of an one-hidden layer ANN

 Ŷ = f (XJ,WJ,H) = G(∑ (wh,gσ(∑ (wj,hxj)
J

J=0
))

H

h=0

) (2.25)

8.4.26 Hyperbolic Tangent activation function

 tanh(u) =
eu+ e−u

eu− e−u
 (2.26)

8.4.27 Relu activation function

 relu(u) = max (0, 𝑢) (2.27)

8.4.28 estimating the Weights of an one-hidden layer ANN

𝑊̂ = argmin
𝑊

𝐸(𝑊) = argmin
𝑊

∑ (𝑦𝑖 − G(∑ (wh,gσ(∑ (wj,hxi,j)
J

J=0
))

H

h=0

))

2𝑁

𝑖=1

 (2.28)

213

8.4.29 Gradient of Ws in respect to minimizing the squared loss in an

one-hidden layer ANN

 ∇E= (
∂E

∂𝑊1
,
∂E

∂𝑊2
, … . ,

∂E

∂𝑊𝑚
) (2.29)

8.4.30 Gradient of any W vector in respect to minimizing the squared

loss in an one-hidden layer ANN

 W𝑚 = W𝑚 − 𝑎
∂E

∂𝑊𝑚
 (2.30)

8.4.31 Bayes’ Theorem

 P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌)P(𝑥1,𝑥2,…,𝑥𝐽|Y)

P(𝑥1,𝑥2,…,𝑥𝐽)
 (2.31)

8.4.32 Bayes’ Theorem after assumption of independence

 P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) =
P(𝑌) ∏ P(𝑥𝑗|𝑌)

𝐽
𝑗=1

P(𝑥1,𝑥2,…,𝑥𝐽)
 (2.32)

8.4.33 Bayes’ Theorem after assumption of independence, excluding

constant Denominator

P(Y |𝑥1, 𝑥2, … , 𝑥𝐽) ≈ P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1 (2.33)

214

8.4.34 Obtaining estimate for Y using Bayes’ Theorem based on the

simplified formula

 𝑌̂ = argmax
𝑌

P(𝑌) ∏ P(𝑥𝑗|𝑌)
𝐽
𝑗=1 (2.34)

8.4.35 Probability of a continuous feature Xj that follows a Gaussian

distribution to belong to a class of Y based on the Naïve Bayes’

theorem

 P(𝑥𝑗|𝑌) =
𝟏

√𝟐𝝅𝝈𝒀
𝟐
 exp (−

(𝑥𝑗−𝜇𝑌)
2

2σ𝑌
2) (2.35)

8.4.36 Euclidian Distance between two data points x,p

 Euclidian Distance(x, p) = √∑ (xj − pj)2
J
j=1 (2.36)

8.4.37 Rule for partitioning the data based on split point 𝐷𝑗,𝑠

 {
𝑋𝑗 ≤ 𝐷𝑗,𝑠 → {X1, Y1}

𝑋𝑗 > 𝐷𝑗,𝑠 → {X2, Y2}
 (2.37)

8.4.38 Entropy formula given Y with distinct classes C

 En(𝑌) = ∑ −P(Y = c) log2 P(Y = c)
C
c=1 (2.38)

8.4.39 Entropy formula given Y with distinct classes C and split point

𝐷𝑗,𝑠

215

En (Y, Dj,s) = P(Dj,s = ′ ≤ 50′) En (𝑌Dj,s=′≤50′) + P(Dj,s = ′ > 50′) En (𝑌Dj,s=′>50′) (2.39)

8.4.40 Information Gain formula

 IGain(Y, Dj,s) = En(Y) − En (Y, Dj,s) (2.40)

8.4.41 Non-Negative Matrix Factorization Prediction

 𝑌̂𝑖𝑗 = 𝑈𝑖𝑉𝑗 (2.41)

8.4.42 Estimating U, V based on squared loss

 Û,V̂=argmin E
 U,V

(U, V) = argmin
U,V

∑ ∑ (Yij − UiVj)
2m

j=1
n
i=1 (2.42)

8.4.43 Estimating W, U based on squared loss in libFM

 Ŵ, Û=argmin E(W,U)
 Ŵ,Û

= (𝑌 − (𝑋0 + 𝑋1𝑤1…+ 𝑋𝑚𝑤𝑚 + ∑ ∑ 𝑋𝑗𝑋𝑑𝑈𝑗𝑈𝑑
𝑚
𝑑=𝑗+1

𝑚
𝑗=1))

2
 (2.43)

8.4.44 Prediction function of libFM

f(W, U) = (X0 + X1w1…+ Xmwm + ∑ ∑ XjXdUj
Ud

m
d=j+1

m
j=1) (2.44)

8.4.45 linear update of libFM

 ∇WE(W) = (f(W, U) − Y)X (2.45)

8.4.46 Latent features’ update of libFM

216

 ∇UE(U) = (f(W,U) − Y)X ∑ UlXl
m
l=1 (2.46)

8.4.47 Energy function for RBMs

 S(u) = −∑ ∑ ∑ Wij hjui
kK

k=1
F
j=1 − ∑ ∑ uibi

K
k=1 − ∑ hjbj

F
j=1

m
i=1

m
i=1 (2.47)

8.4.48 Estimate of W in RBMs

 ∆wij = e (< uihj >data − < uihj >T) (2.48)

8.4.49 Level 1 estimators’ function for stacking

 f1(xi, S
M, m) = Sm

M(xi) (4.1)

217

8.4.50 Level 2 (Meta) estimators’ function

 f2(xi, L, S
M) = L (f1(xi, S1

M), f1(xi, S2
M),… . , f1(xi, SM

M)) (4.2)

8.4.51 Average AUC using the Leave-one-offer-out schema

 AUCper_offer(𝑌̂, 𝑌) =
1

N
∑ 𝐴𝑈𝐶(𝑌𝑛̂, 𝑌𝑛)
N
n=1 (5.1)

8.4.52 Average AUC using the Leave-one-offer-out schema plus

vertical concatenation

 AUCoveral(Ŷ, Y) = AUC([Ŷ1|Ŷ2| … |ŶN], [Y1|Y2|… |YN]) (5.2)

8.4.53 Average of the N-offer-out AUC and overall AUC

 AUCfinal(AUCoverall, AUCperoffer) =
AUCoverall

2
+
AUCper_offer

2
 (5.3)

8.4.54 Average of two predictions converted to ranks

 hybrid(Ŷ𝑐𝑏, Ŷ𝑐𝑓) =
Ŷ𝑐𝑏
𝑟𝑎𝑛𝑘

2
+
Ŷ𝑐𝑓
𝑟𝑎𝑛𝑘

2
 (5.4)

218

8.4.55 Ranking a sorted vector.

 ŷ𝑐𝑏,𝑖
𝑟𝑎𝑛𝑘 = {

0 𝑖 = 0
i ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 > ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

ŷ𝑐𝑏,−1
𝑟𝑎𝑛𝑘 ŷ𝑐𝑏,𝑖

𝑠𝑜𝑟𝑡 = ŷ𝑐𝑏,𝑖−1
𝑠𝑜𝑟𝑡

 (5.5)

8.4.56 Connection function between input data and one hidden unit in

the form of as linear perceptron

 f1,h(x, 𝑠) = s(G(xj)) = s(xj) (6.2)

8.4.57 Connection function between input data and one hidden unit in

the form of any algorithm

 f1(x, 𝑠, ℎ) = s(G(xj)) = s(xj) (6.2)

8.4.58 Connection function between input data and one hidden unit in

the form of any algorithm assuming linear activation on input

 f1,h(x, 𝑠) = s(xj) (6.3)

8.4.59 Connection function between input data and one hidden unit in

the form of any algorithm simplified

 f1(x, 𝑆) = Sℎ(xj) (6.4)

8.4.60 Connection function between first and second hidden layer

219

 f2,m(x, l, S) = l(f1(x, S1), f1(x, S2),… . , f1(x, S𝐻)) (6.5)

8.4.61 Connection function between first and second hidden layer

simplified

 f2(x, L, S) = L𝑚(f1(x, S1), f1(x, S2), … . , f1(x, S𝐻)) (6.6)

8.4.62 Connection function between first and second hidden with

generic vector of estimators

 f2(x, V) = V2,𝑚 (f1(x, V1,1), f1(x, V1,2), … . , f1(x, V1,𝐷1)) (6.7)

8.4.63 Connection function for any given layer n

 fn(x, V) = V𝑛,𝑘 (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… . , fn−1(x, V𝑛−1,𝐷𝑛−1)) (6.8)

8.4.64 Connection function for any given layer through restacking

mode

fn(x, V) = V𝑛,𝑘

(

fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… , fn−1(x, V𝑛−1,𝐷𝑛−1),

fn−2(x, V𝑛−2,1), fn−2(x, V𝑛−2,2), . . . , fn−2(x, V𝑛−2,𝐷𝑛−2),
… ,

f𝑛−𝑁+1(x, V𝑛−𝑁+1,1), f𝑛−𝑁+1(x, V𝑛−𝑁+1,2),… , f𝑛−𝑁+1(x, V𝑛−𝑁+1,𝐷𝑛−𝑁+1))

 (6.9)

8.4.65 Optimizing parameters for any estimator in StackNet

220

OV𝑛,𝑘
̂ = argmin

OV𝑛,𝑘

LL(OV𝑛,𝑘 , (fn−1(x, V𝑛−1,1), fn−1(x, V𝑛−1,2),… . , fn−1(x, V𝑛−1,𝐷𝑛−1)) , Y) (6.10)

8.4.66 Example optimizing parameters for any estimator assuming a

squared loss function

 OV𝑛,𝑘
̂ = argmin

OV𝑛,𝑘
̂

𝐸(OV𝑛,𝑘
̂) = argmin

OV𝑛,𝑘
̂

∑ (𝑦
𝑖
− V𝑛,𝑘(𝑥𝑖))

2
𝑁

𝑖=1
 (6.11)

8.4.67 Diversity of an ensemble based on the correlation matrix of

predictions

 diversity(R) =
1

N×N
∑ ∑ r(n, k)N

k=1
N
n=1 (6.12)

221

Bibliography

Acland, D., & Levy, M. (2011). Habit formation, naiveté, and projection bias in gym

attendance.

Acock, A. C. (2005). Working with missing values. Journal of Marriage and family, 67(4),

1012-1028.

Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender

systems: A survey of the state-of-the-art and possible extensions. IEEE transactions on

knowledge and data engineering, 17(6), 734-749.

Adomavicius, G., & Tuzhilin, A. (2011). Context-aware recommender systems.

In Recommender systems handbook (pp. 217-253). Springer US.

Aher, S. B., & Lobo, L. M. R. J. (2011). Data mining in educational system using weka.

In International Conference on Emerging Technology Trends (ICETT) (Vol. 4, No. 10, pp.

100-110).

Ahn, H. J. (2008). A new similarity measure for collaborative filtering to alleviate the new

user cold-starting problem. Information Sciences, 178(1), 37-51.

Altman, N. S. (1992). An introduction to kernel and nearest-neighbor nonparametric

regression. The American Statistician, 46(3), 175-185.

Anand, S. S., & Mobasher, B. (2007). Contextual Recommendation, From Web to Social

Web: Discovering and Deploying User and Content Profiles: Workshop on Web Mining,

WebMine 2006, Berlin, Germany, September 18, 2006. Revised Selected and Invited

Papers.

Anderson, R. E., & Srinivasan, S. S. (2003). E‐satisfaction and e‐loyalty: A contingency

framework. Psychology & marketing, 20(2), 123-138.

Arel, I., Rose, D. C., & Karnowski, T. P. (2010). Deep machine learning-a new frontier in

artificial intelligence research [research frontier]. IEEE Computational Intelligence

Magazine, 5(4), 13-18.

222

Ashtawy, H. M., & Mahapatra, N. R. (2015). BgN-Score and BsN-Score: Bagging and

boosting based ensemble neural networks scoring functions for accurate binding affinity

prediction of protein-ligand complexes. BMC bioinformatics, 16(4), S8.

Bates, J. M., & Granger, C. W. (1969). The combination of forecasts. Journal of the

Operational Research Society, 20(4), 451-468.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G. & Bengio,

Y. (2010, June). Theano: A CPU and GPU math compiler in Python. In Proc. 9th Python

in Science Conf (pp. 1-7).

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., & Lamere, P. (2011, October). The Million

Song Dataset. In ISMIR (Vol. 2, No. 9, p. 10).

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In

Proceedings of COMPSTAT'2010 (pp. 177-186). Physica-Verlag HD.

Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., & Scuse,

D. (2010). WEKA Manual for Version 3-7-8. The university of WAIKATO.

Boyer, K. K., & Hult, G. T. M. (2005). Customer behavior in an online ordering

application: A decision scoring model. Decision Sciences, 36(4), 569-598.

Bratko, I., Michalski, R. S., & Kubat, M. (1999). Machine learning and data mining:

methods and applications.

Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and

regression trees. CRC press.

Breiman, L. (1996). Stacked regressions. Machine learning, 24(1), 49-64.

Breiman, L. (1997). Arcing the edge. Technical Report 486, Statistics Department,

University of California at Berkeley.

Breiman, L. (1999). Pasting small votes for classification in large databases and on-line.

Machine Learning, 36(1), 85-103.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Brose, G., Vogel, A., & Duddy, K. (2001). Java programming with CORBA: advanced

techniques for building distributed applications (Vol. 6). John Wiley & Sons.

223

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O. & Layton, R.

(2013). API design for machine learning software: experiences from the scikit-learn

project. arXiv preprint arXiv:1309.0238.

Chang, C. C., & Lin, C. J. (2011). LIBSVM: a library for support vector machines. ACM

Transactions on Intelligent Systems and Technology (TIST), 2(3), 27.

Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From

big data to big impact. MIS quarterly, 36(4).

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. arXiv preprint

arXiv:1603.02754.

Christakou, C., Vrettos, S., & Stafylopatis, A. (2007). A hybrid movie recommender system

based on neural networks. International Journal on Artificial Intelligence Tools, 16(05),

771-792.

Collobert, R., & Bengio, S. (2001). SVMTorch: Support vector machines for large-scale

regression problems. Journal of machine learning research, 1(Feb), 143-160.

Craven, B. D., & Islam, S. M. (2011). Ordinary least squares regression (pp. 224-228).

Sage Publications.

Cunningham, P., & Carney, J. (2000). Diversity versus quality in classification ensembles

based on feature selection.Technical Report TCD-CS-2000-02, Department of Computer

Science, Trinity College Dublin.

Dang, V. (2013). Ranklib.

Dietterich, T. G. (2000). Ensemble methods in machine learning. In International workshop

on multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.

Dietterich, T. (2000). An experimental comparison of three methods for constructing

ensembles of decision trees: Bagging, boosting and randomization. Machine Learning,

40:2, 139–157

Domingos, P. (2012). A few useful things to know about machine

learning. Communications of the ACM, 55(10), 78-87.

224

Dougherty, J., Kohavi, R., & Sahami, M. (1995, July). Supervised and unsupervised

discretization of continuous features. In Machine learning: proceedings of the twelfth

international conference (Vol. 12, pp. 194-202).

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul),

2121-2159.

Dunnhumby (2014). The Complete Journey. Dunnhumb USA, retrieved from

https://www.dunnhumby.com/sourcefiles

 Ensemble methods (2010), retrieved from http://scikit-

learn.org/stable/modules/ensemble.html

Fan, R. E., Chang, K. W., Hsieh, C. J., Wang, X. R., & Lin, C. J. (2008). LIBLINEAR: A

library for large linear classification. Journal of machine learning research, 9(Aug), 1871-

1874.

Freund, Y., & Schapire, R. E. (1995, March). A desicion-theoretic generalization of on-line

learning and an application to boosting. In European conference on computational learning

theory (pp. 23-37). Springer Berlin Heidelberg.

François Chollet (2015). keras, GitHub, GitHub repository,

https://github.com/fchollet/keras, 5bcac37.

Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of statistics,

1-67.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and

analytics. International Journal of Information Management, 35(2), 137-144.

Gao, W., Jin, R., Zhu, S., & Zhou, Z. H. (2013, May). One-Pass AUC Optimization.

In ICML (3) (pp. 906-914).

Garcin, F., Faltings, B., Donatsch, O., Alazzawi, A., Bruttin, C., & Huber, A. (2014,

October). Offline and online evaluation of news recommender systems at swissinfo. ch. In

Proceedings of the 8th ACM Conference on Recommender systems (pp. 169-176). ACM.

Garreta, R., & Moncecchi, G. (2013). Learning scikit-learn: machine learning in python.

Packt Publishing Ltd.

https://www.dunnhumby.com/sourcefiles
http://scikit-learn.org/stable/modules/ensemble.html
http://scikit-learn.org/stable/modules/ensemble.html
https://github.com/fchollet/keras
https://github.com/fchollet/keras/commit/5bcac375530eda2650fff962073a29b07b3b1926

225

Gauvain, J. L., & Lee, C. H. (1994). Maximum a posteriori estimation for multivariate

Gaussian mixture observations of Markov chains. IEEE transactions on speech and audio

processing, 2(2), 291-298.

Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and least squares

solutions. Numerische mathematik, 14(5), 403-420.

Granger, C. W. (1989). Invited review combining forecasts—twenty years later. Journal of

Forecasting, 8(3), 167-173.

Géron, A. (2017). Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems.

Giacinto, G., & Roli, F. (2001). Design of effective neural network ensembles for image

classification processes.Image Vision and Computing Journal, 19:9/10, 699–707.

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Society, 1,

521.

H2O (2016) Stacked Ensembles, retrieved from http://docs.h2o.ai/h2o/latest-stable/h2o-

docs/data-science/stacked-ensembles.html

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I. H. (2009). The

WEKA data mining software: an update. ACM SIGKDD explorations newsletter, 11(1),

10-18.

Han J., Kamber M. (2006) Data Mining: Concepts and Techniques, Second Edition,

University of Illinois at Urbana-Champaign

Hand, D. J., & Yu, K. (2001). Idiot's Bayes—not so stupid after all? International statistical

review, 69(3), 385-398.

Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver

operating characteristic (ROC) curve. Radiology, 143(1), 29-36.

Hansen, L., & Salamon, P. (1990). Neural network ensembles.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 12:10, 993–1001.

Hao, F., & Blair, R. H. (2016). A comparative study: classification vs. user-based

collaborative filtering for clinical prediction. BMC medical research methodology, 16(1),

172.

http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/data-science/stacked-ensembles.html

226

Henk van Veen (2015) KAGGLE ENSEMBLING GUIDE, Retrieved from:

https://mlwave.com/kaggle-ensembling-guide/

Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T. (2004). Evaluating

collaborative filtering recommender systems. ACM Transactions on Information Systems

(TOIS), 22(1), 5-53.

Hinton, G. E. (2002). Training products of experts by minimizing contrastive

divergence. Neural computation, 14(8), 1771-1800.

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with

neural networks. Science, 313(5786), 504-507.

Ho, T. (1998). The random space method for constructing decision forests. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 20:8, 832–844

Hsieh, N. C., & Hung, L. P. (2010). A data driven ensemble classifier for credit scoring

analysis. Expert systems with Applications, 37(1), 534-545.

Hu, R., & Lu, Y. (2006, November). A hybrid user and item-based collaborative filtering

with smoothing on sparse data. In Artificial Reality and Telexistence--Workshops, 2006.

ICAT'06. 16th International Conference on (pp. 184-189). IEEE.

Iskold, A. (2007). The art, science and business of recommendation engines. Retrieved

April, 5, 2012.

Jean Francois Puget (2016), The Most Popular Language For Machine Learning Is…

retrieved from

https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Be

st_For_Machine_Learning_And_Data_Science?lang=en

Jia Li (nd), Logistic Regression, Department of Statistics, The Pennsylvania State

University, retrieved from sites.stat.psu.edu/~jiali/course/stat597e/notes2/logit.pdf

Jin, H., & Lu, Y. (2009). The optimal linear combination of multiple predictors under the

generalized linear models. Statistics & probability letters, 79(22), 2321-2327.

Juan, Y., Chin, W. S., & Zhuang, Y. (2015). Libffm: A library for field-aware factorization

machines.

https://mlwave.com/kaggle-ensembling-guide/
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/What_Language_Is_Best_For_Machine_Learning_And_Data_Science?lang=en

227

Karatzoglou, A., Amatriain, X., Baltrunas, L., & Oliver, N. (2010, September). Multiverse

recommendation: n-dimensional tensor factorization for context-aware collaborative

filtering. In Proceedings of the fourth ACM conference on Recommender systems (pp. 79-

86). ACM.

Kass, G. V. (1980). An exploratory technique for investigating large quantities of

categorical data. Applied statistics, 119-127.

Kearns, M. (1988). Thoughts on hypothesis boosting. Unpublished manuscript, 45, 105.

Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy

estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss

functions. In L. Saitta (Ed.), Machine Learning: Proc. 13th International Conference (pp.

275–283). Morgan Kaufmann.

Koren, Y. (2009). The bellkor solution to the netflix grand prize. Netflix prize

documentation, 81, 1-10.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for

recommender systems. Computer, 42(8), 30-37.

Küchler, M. (1983). Die Schätzung von Wählerwanderungen: Neue Lösungsversuche.

In Wahlen und politisches System (pp. 632-651). VS Verlag für Sozialwissenschaften.

Kuhn, M., Wing, J., Weston, S., Williams, A., Keefer, C., Engelhardt, A. & Lescarbeau, R.

(2014). Caret: classification and regression training. R package version 6.0-24.

Kuncheva, L. I., & Whitaker, C. J. (2003). Measures of diversity in classifier ensembles

and their relationship with the ensemble accuracy. Machine learning, 51(2), 181-207.

Kyrola, A., Blelloch, G. E., & Guestrin, C. (2012, October). GraphChi: Large-Scale Graph

Computation on Just a PC. In OSDI (Vol. 12, pp. 31-46).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444.

LeDell, E. E. (2015). Scalable Ensemble Learning and Computationally Efficient Variance

Estimation (Doctoral dissertation, University of California, Berkeley).

Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization.

In Advances in neural information processing systems (pp. 556-562).

228

Lee D., & Drabas T. (2017). Learning PySpark: Build data-intensive applications locally

and deploy at scale using the combined powers of Python and spark 2.0. Packt Publishing

Ltd.

Lewis, M. (2004). The influence of loyalty programs and short-term promotions on

customer retention. Journal of marketing research, 41(3), 281-292.

Lichman, M. (2013). UCI Machine Learning Repository, CA: University of California,

Irvine,School of Information and Computer Science, retrieved from

http://archive.ics.uci.edu/ml

Lika, B., Kolomvatsos, K., & Hadjiefthymiades, S. (2014). Facing the cold start problem

in recommender systems. Expert Systems with Applications, 41(4), 2065-2073.

Linden, G. D., Jacobi, J. A., & Benson, E. A. (2001). U.S. Patent No. 6,266,649.

Washington, DC: U.S. Patent and Trademark Office.

Li, W., Liu, H., Yang, P., & Xie, W. (2016). Supporting regularized logistic regression

privately and efficiently. PloS one, 11(6), e0156479.

Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item

collaborative filtering. IEEE Internet computing, 7(1), 76-80.

Louppe, G., & Geurts, P. (2012, September). Ensembles on random patches. In Joint

European Conference on Machine Learning and Knowledge Discovery in Databases (pp.

346-361). Springer, Berlin, Heidelberg.

Lucas, A. (2001). Statistical challenges in credit card issuing. Applied Stochastic Models

in Business and Industry, 17(1), 83-92.

Luchman, J. N. (2015). Chaid: Stata module to conduct chi-square automated interaction

detection. Statistical Software Components.

Lutz, Mark. Programming python. “O’Reilly Media, Inc.", 2010.

Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009, June). Identifying suspicious

URLs: an application of large-scale online learning. In Proceedings of the 26th annual

international conference on machine learning (pp. 681-688). ACM.

Marcus, C. (1998). A practical yet meaningful approach to customer segmentation. Journal

of consumer marketing, 15(5), 494-504.

http://archive.ics.uci.edu/ml

229

McMahan, B. (2011). Follow-the-regularized-leader and mirror descent: Equivalence

theorems and l1 regularization. In Proceedings of the Fourteenth International Conference

on Artificial Intelligence and Statistics (pp. 525-533).

MacQueen, J. (1967). Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability (Vol. 1, No. 14, pp. 281-297).

Melville, P., & Mooney, R. J. (2003, August). Constructing diverse classifier ensembles

using artificial training examples. In IJCAI (Vol. 3, pp. 505-510).

Melville, P., & Mooney, R. J. (2005). Creating diversity in ensembles using artificial data.

Information Fusion, 6(1), 99-111.

Meyer-Waarden, L. (2008). The influence of loyalty programme membership on customer

purchase behaviour. European Journal of Marketing, 42(1/2), 87-114.

Mims C. (2012). Why CPUs Aren't Getting Any Faster. MIT Technology Review, retrieved

from https://www.technologyreview.com/s/421186/why-cpus-arent-getting-any-faster/

Minka, T. P. (2003). A comparison of numerical optimizers for logistic

regression. Unpublished draft.

Mohri, M., Rostamizadeh, A., & Talwalkar, A. (2012). Foundations of machine learning.

MIT press.

Mjolsness, E., & DeCoste, D. (2001). Machine learning for science: state of the art and

future prospects. Science, 293(5537), 2051-2055.

Montgomery, J. M., & Nyhan, B. (2010). Bayesian model averaging: Theoretical

developments and practical applications. Political Analysis, 18(2), 245-270.

Mukaka, M. M. (2012). A guide to appropriate use of correlation coefficient in medical

research. Malawi Medical Journal, 24(3), 69-71.

Murtagh, F. (2005). Correspondence analysis and data coding with Java and R. CRC Press.

Netflix Prize Competition (2009), retrieved from http://www.netflixprize.com/index

Neural Networks (nd), retrieved from

http://docs.opencv.org/modules/ml/doc/neural_networks.html

https://www.technologyreview.com/s/421186/why-cpus-arent-getting-any-faster/
http://www.netflixprize.com/index
http://docs.opencv.org/modules/ml/doc/neural_networks.html

230

O'brien, M. R., Off, G. W., & Cherney, T. L. (2001). U.S. Patent No. 6,321,210.

Washington, DC: U.S. Patent and Trademark Office.

Opitz, D., & Maclin, R. (1999). Popular ensemble methods: An empirical study. Journal of

Artificial Intelligence Research, 11, 169-198.

Partridge, D., & Krzanowski, W. J. (1997). Software diversity: Practical statistics for its

measurement and exploitation.Information & Software Technology, 39, 707–717.

Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(11),

559-572.

Karl Pearson, F. R. S. (1904). Mathematical contributions to the theory of evolution. Dulau

and Co., London.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... &

Vanderplas, J. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12(Oct), 2825-2830.

Poirier, D., Fessant, F., & Tellier, I. (2010, August). Reducing the cold-start problem in

content recommendation through opinion classification. In Web Intelligence and Intelligent

Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference on (Vol. 1,

pp. 204-207). IEEE.

Powers, D. M. (2011). Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation.

Prechelt, L. (2000). An empirical comparison of C, C++, Java, Perl, Python, Rexx and

Tcl. IEEE Computer, 33(10), 23-29.

Quinlan, J. R. (1986). Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986), 81–106

Quinlan, J. R. (1993). C4. 5: Programming for machine learning. Morgan Kauffmann, 38.

Rao, C. R., Rao, C. R., Statistiker, M., Rao, C. R., & Rao, C. R. (1973). Linear statistical

inference and its applications (Vol. 2, pp. 263-270). New York: Wiley.

Ravi, V. T., & Agrawal, G. (2009, May). Performance issues in parallelizing data-intensive

applications on a multi-core cluster. In Proceedings of the 2009 9th IEEE/ACM

231

International Symposium on Cluster Computing and the Grid (pp. 308-315). IEEE

Computer Society.

Rendle, S. (2012). Factorization machines with libfm. ACM Transactions on Intelligent

Systems and Technology (TIST), 3(3), 57.

Rendle, S., Gantner, Z., Freudenthaler, C., & Schmidt-Thieme, L. (2011, July). Fast

context-aware recommendations with factorization machines. In Proceedings of the 34th

international ACM SIGIR conference on Research and development in Information

Retrieval (pp. 635-644). ACM.

Reyes, A., Sucar, L. E., & Morales, E. F. (2009). AsistO: A qualitative MDP-based

recommender system for power plant operation. Computación y Sistemas, 13(1).

Ricci, F., Rokach, L., & Shapira, B. (2011). Introduction to recommender systems

handbook (pp. 1-35). Springer US.

Rosasco, L., De Vito, E., Caponnetto, A., Piana, M., & Verri, A. (2004). Are loss functions

all the same? Neural Computation, 16(5), 1063-1076.

Rogova, G. (1994). Combining the results of several neural network classifiers. Neural

networks, 7(5), 777-781.

Rojas, R. (1996). The backpropagation algorithm. In Neural networks (pp. 149-182).

Springer Berlin Heidelberg.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6), 386.

Ruel, E. E., Wagner III, W. E., & Gillespie, B. J. (2015). The Practice of Survey Research.

Sage.

Rubrecht M (2014). Coupon history helps you understand changes, retrieved from

m.savannahnow.com/savvy-shopper/2014-02-02/coupon-history-helps-you-understand-

changes#gsc.tab=0

Ruslan Salakhutdinov (2007) ,Restricted Boltzmann Machines for Collaborative Filtering

University of Toronto, 6 King's College Rd., Toronto, Ontario M5S 3G4, Canada

232

Said, A. (2010, September). Identifying and utilizing contextual data in hybrid

recommender systems. In Proceedings of the fourth ACM conference on Recommender

systems (pp. 365-368). ACM.

Salakhutdinov, R., Mnih, A., & Hinton, G. (2007, June). Restricted Boltzmann machines

for collaborative filtering. In Proceedings of the 24th international conference on Machine

learning (pp. 791-798). ACM.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001, April). Item-based collaborative

filtering recommendation algorithms. In Proceedings of the 10th international conference

on World Wide Web (pp. 285-295). ACM.

Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural

Networks, 61, 85-117.

Sharkey, A. J. C. (1996). On combining artificial neural nets. Connection Science, 8(3-4),

299-314.

Sharkey, A., & Sharkey, N. (1997). Diversity, selection, and ensembles of artificial neural

nets. Neural Networks and their Applications (NEURAP’97), 205-212.

Siami, M., & Hajimohammadi, Z. (2013). Credit scoring in banks and financial institutions

via data mining techniques: A literature review. Journal of AI and Data Mining, 1(2), 119-

129.

Smolensky, Paul (1986). Chapter 6: Information Processing in Dynamical Systems:

Foundations of Harmony Theory. In Rumelhart, David E.; McLelland, James L. Parallel

Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1:

Foundations. MIT Press. pp. 194–281.

Smyth, P., & Wolpert, D. (1999). Linearly combining density estimators via

stacking. Machine Learning, 36(1-2), 59-83.

Sneath, P., & Sokal, R. (1973). Numerical Taxonomy. W.H. Freeman & Co.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine

Learning Research, 15(1), 1929-1958.

233

Stanford University (2013), Introduction to Information Retrieval – Evaluation, retrieved

from http://web.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf

Sutter, H. (2005). The free lunch is over: A fundamental turn toward concurrency in

software. Dr. Dobb’s journal, 30(3), 202-210.

Tan, A. C., & Gilbert, D. (2003). Ensemble machine learning on gene expression data for

cancer classification.

Team, T. T. D., Al-Rfou, R., Alain, G., Almahairi, A., Angermueller, C., Bahdanau, D., ...

& Belopolsky, A. (2016). Theano: A Python framework for fast computation of

mathematical expressions. arXiv preprint arXiv:1605.02688.

The Echo Nest Analyze (nd), API, retrieved from http://developer.echonest.com

Thomas, L. C., Edelman, D. B., & Crook, J. N. (2002). Credit scoring and its applications.

Siam.

Tikhonov, A. N., & Arsenin, V. Y. (1977). Solutions of ill-posed problems.

Tikhonov, A. N. (1963). Regularization of incorrectly posed problems. SOVIET

MATHEMATICS DOKLADY.

TIOBE (2017), TIOBE Index for May 2017, retrieved from https://www.tiobe.com/tiobe-

index/

Tripsas, M. (2008). Customer preference discontinuities: A trigger for radical technological

change. Managerial and decision economics, 29(2‐3), 79-97.

Tsoumakas, G., Dimou, A., Spyromitros, E., Mezaris, V., Kompatsiaris, I., & Vlahavas, I.

(2009). Correlation-based pruning of stacked binary relevance models for multi-label

learning. In Proceedings of the 1st international workshop on learning from multi-label data

(pp. 101-116).

University of Auckland notes on additive trees and gradient boosting (nd), retrieved from

https://www.stat.auckland.ac.nz/~yee/784/files/ch10BoostingAdditiveTrees.pdf

Van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super learner. Statistical

applications in genetics and molecular biology, 6(1).

Van Setten, M., Pokraev, S., & Koolwaaij, J. (2004, August). Context-aware

recommendations in the mobile tourist application COMPASS. In International Conference

http://web.stanford.edu/class/cs276/handouts/EvaluationNew-handout-6-per.pdf
http://developer.echonest.com/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://www.stat.auckland.ac.nz/~yee/784/files/ch10BoostingAdditiveTrees.pdf

234

on Adaptive Hypermedia and Adaptive Web-Based Systems (pp. 235-244). Springer Berlin

Heidelberg.

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of

the American statistical association, 58(301), 236-244.

Weinberger, K. Q., Blitzer, J., & Saul, L. K. (2005). Distance metric learning for large

margin nearest neighbor classification. In Advances in neural information processing

systems (pp. 1473-1480).

Weng, S. S., & Liu, M. J. (2004). Feature-based recommendations for one-to-one

marketing. Expert Systems with Applications, 26(4), 493-508.

Weston, J., Yee, H., & Weiss, R. J. (2013, October). Learning to rank recommendations

with the k-order statistic loss. In Proceedings of the 7th ACM conference on Recommender

systems (pp. 245-248). ACM.

Weston, J., Yee, H., & Weiss, R. J. (2013, October). Learning to rank recommendations

with the k-order statistic loss. In Proceedings of the 7th ACM conference on Recommender

systems (pp. 245-248). ACM.

Williams, G. (2011). Data mining with rattle and R: the art of excavating data for

knowledge discovery. Springer Science & Business Media.

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann.

Witten, I. H., Frank, E., Trigg, L. E., Hall, M. A., Holmes, G., & Cunningham, S. J. (1999).

Weka: Practical machine learning tools and techniques with Java implementations.

Wold, S., Ruhe, A., Wold, H., & Dunn, III, W. J. (1984). The collinearity problem in linear

regression. The partial least squares (PLS) approach to generalized inverses. SIAM Journal

on Scientific and Statistical Computing, 5(3), 735-743.

Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5(2), 241-259.

Xi' an (2006). Advanced Data Mining and Applications, Second International Conference,

ADMA 2006, China, August 14-16, Proceedings

Zhang, H. (2004). The optimality of naive Bayes. AA, 1(2), 3.

235

Yang, X., Steck, H., Guo, Y., & Liu, Y. (2012). On top-k recommendation using social

networks. In Proceedings of the sixth ACM conference on Recommender systems (pp. 67-

74). ACM.

Yule, G. (1900). On the association of attributes in statistics. Phil. Trans., A, 194, 257–319.

Zeng, G. (2014). A necessary condition for a good binning algorithm in credit scoring.

Applied Mathematical Sciences, 8(65), 3229-3242.

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradient

descent algorithms. In Proceedings of the twenty-first international conference on Machine

learning (p. 116). ACM.

Zhao, L., Hu, N. J., & Zhang, S. Z. (2002). Algorithm design for personalization

recommendation systems. Journal of computer research and development, 39(8), 986-991.

Zhou, Z. H., Wu, J., & Tang, W. (2002). Ensembling neural networks: many could be better

than all. Artificial intelligence, 137(1-2), 239-263.

Zhou, Z. H., & Feng, J. (2017). Deep forest: Towards an alternative to deep neural

networks. arXiv preprint arXiv:1702.08835.

