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Abstract 
This paper presents the initial developments of a method to train an adaptive robotic 
system for subtractive manufacturing with timber, based on sensor feedback, machine 
learning procedures and material explorations. The methods were evaluated in a series of 
tests where the trained networks were successfully used to predict fabrication parameters 
for simple cutting operations with chisels and gouges. The results suggest potential for 
non-standard fabrication and more effective use of material affordances. 
 

1 Introduction 
In contemporary practice, designers are required to encapsulate in a digital notational 
form, such as a CAD/CAM model, all the information necessary for a project. The entire 
fabrication process is calculated in advance before moving to the production. As a 
consequence, the range of possible materials that could be used for construction is 
restricted to homogenous materials with standard shapes and well-known properties. For 
instance, many CNC operations require homogeneous materials that can be 
systematically carved, while the overall process is driven by tolerances measured against 
the initial digital notation, leaving no room for any material agency (Fure 2011). Many 
materials, like timber, are heterogeneous in nature and undergo heavy industrial 
processing before becoming suitable for a standard fabrication environment. This is 
inefficient and results in material waste. 
This research investigates an alternative approach. If materials are not conceived as inert 
receptacles of an imposed form but as active participants in its genesis, it follows that 
fabrication strategies cannot be routinized or pre-calculated (DeLanda 2004). Therefore, 
the initial digital model, rather than mere notational mean, is required to act as a flexible 
framework for design exploration, finding its completion in the fabrication stage and 
directly informed, through sensor feedback, by tools, materials and design affordances. 
The proposition is that digital processes can more closely resemble traditional 
craftsmanship and human making, in the sense that design intent “evolves concurrent 
with [...] production” (Sharif and Gentry, 2014), or what Ingold (2013) terms “thinking 
through making”. While digital software regularly encapsulates explicit knowledge such 
as calculus-based mathematics (Witt 2010), the important tacit dimension of making and 
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materials that is typically acquired through participation rather than formal inquiry (Eraut 
2000) is difficult to capture, formalize and share (Polanyi 1967).  

 

 

Figure 1.  The training methods for an adaptive framework for subtractive 
fabrication processes are structured and evaluated in three main stages: Recording, 
Learning, Fabricating. 
The central question of this paper is whether is possible to encapsulate, at least partially, 
this instrumental knowledge in the technological means for fabrication currently 
available. An adaptive framework for subtractive robotic timber fabrication, using a set of 
traditional carving tools (chisel and gouges), is used to investigate whether this 
knowledge can be captured, and transferred from the domain of human craftmanship to 
robotic manufacturing. Sensor feedback and machine learning are tested as methods to 
train the robot to replicate the actions of the skilled human. (Figure 1). 

A number of related precedents attest to the relevance of the approach in more 
conventional industrial manufacturing, such as the use of Artificial Neural Networks 
(ANNs) to optimize e.g. cutting force or tool wear (Al-Zubaidi et al, 2011), and the use of 
supervised learning and scanning to improve accuracy in incremental sheet forming 
(Nicholas et al, 2017). The specific emphasis on human action follows recent work such 
as the analysis of stonemasons’ mallet strike (Steinhagen et al. 2016), and the robotic 
reconstruction of ancient hide-scraping gestures to investigate the link between tools and 
cognitive functions (Pfleging et al. 2015).  

 

2 Methods 

The first stage of the training methods for an adaptive robotic process for subtractive 
manufacturing is focused on capturing, with different types of sensors, series of carving 
operations with a set of chisels and gouges performed by skilled human experts on a 
series of wooden boards. 

 



Adaptive Robotic Training Methods for Subtractive Manufacturing 3 

 

Figure 2.  The gouges are mounted on a reciprocating electric tool and tracked with 
3d printed MOCAP markers. 
A system of motion-capture cameras (Optitrack MOCAP) is arranged around the 
workpiece and used to track with high-degree of precision (~0.2 mm) the position of 
spherical reflective markers in the recording space. Within this setup, a series of 3d-
printed custom markers have been designed and applied directly on the carving tools 
themselves to reconstruct at any moment their orientation as rigid bodies and stream it in 
real-time into the digital design environment (Rhino3D /Grasshopper). 
The chisels and gouges, integrated with the MOCAP markers, are mounted on a 
reciprocating electric tool used daily by professional craftsmen as an augmenting device 
which allows them to be more efficient and reduce the fatigue, without altering the way 
they use traditional carving tools (Figure 2). The reciprocating mechanism works 
proportionally to the material resistance and the force that the craftsman applies to 
overcome it. In this way, not only it allows to perform efficiently subtractive operations 
but, within this research context, it becomes a sensor device acting as a “probe” during 
the fabrication and returning a continuous feedback about the relation between the tool 
and the material is cutting. Through a loadcell is then possible to create a conversion 
scale between the electric power feedback and its respective force amount in Newtons 
(Figure 3). 
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Figure 3.  The fabrication parameters are recorded with different type of sensors 
and collected into an ongoing dataset. 

The combination of these sensing strategies allows the collection of information 
simultaneously with the performing of the carving operation, which is compiled into an 
ongoing dataset for that recording session (Figure 4). The recorded parameters could be 
divided in two categories: on one hand, those about the interaction of the tool with the 
material, such as its angle orientation in relation to the wooden surface and grain 
direction, the feed rate or the force used to cut through it, while on the other hand, the 
effects that these parameters have on the material itself, measured through the length and 
depth of the cut or the removal volume. The recorded information is also used to generate 
a geometric reconstruction of the cut in the digital design environment through a 
sequence of oriented planes embedding the respective recorded parameters values. 

In the following stage, a supervised machine learning procedure is used to extract 
relevant correlations within the recorded dataset and use these to inform the robotic 
manufacturing process.  
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Figure 4.  During a recording session, several training boards are carved to capture 
the combination of parameters involved and extract relevant correlations among 
them. 
Before the training process, different features of the dataset are plotted against each other 
to check visually for possible correlations between them. Considering the sequential 
arrangement of recorded data along individual cut sequences, it’s possible to observe, for 
instance, that the tool angle tends to decrease along the progression of the cut or that the 
highest amount of force is required when the tool is deeper into the wood board (Figure 
5). The importance of these trends is that they are not only qualitative evaluations but 
they could be quantified and therefore processed to be used in a further stage. 
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Figure 5.  Before the training process, the recorded features are analyzed against 
each other to visually check for possible correlations. 

The prediction of fabrication parameters combinations, which constitutes a non-linear 
regression problem, is performed through the training of an Artificial Neural Network 
(ANN) with backpropagation-based learning. 
The network topology not only determines the performance of the system but its 
configuration of inputs and outputs also needs to be arranged considering the intended 
use of the trained network in the fabrication stage. For instance, given an arbitrary 
toolpath and a desired force graph profile, the network should be able to predict the 
variation of the tool angle and depth along the path itself. 

The evaluation of the training process is performed with train/test split validation method 
(80/20 %), where part of the recorded dataset is used to train the network, while another 
smaller portion is used to test its prediction rate (Figure 6).  

Figure 6.  Train/test split validation plots for prediction of individual features (tool 
angle, force and cut depth) with ANN (5-30-1). While these plots are a 
demonstration of the prediction abilities of the networks, in a real application the 
network topology strictly depends on its specific use in the fabrication context.  
The final stage of the training is articulated as robotic explorations directly interacting 
with tools and materials affordances without human intervention. While learning only 
through robotic self-exploration would be both dangerous and inefficient given the large 
dimension of the parameters space considered, the trained network based on human 
expert is used to provide guidance, narrowing down the search. This allows exploring 
more thoroughly, in an interpolated series of cuts, the combinations of parameters that 
have been derived from the human expert, mapping the narrowed-down search space 
more in detail to build better parameters correlations (Figure 7). 
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Figure 7.  Based on the network trained with the information gathered by the 
human craftsman, robotic explorations of the narrowed-down parameter space are 
performed to increase the prediction abilities of the system. 
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Figure 8.  The trained networks are evaluated in the fabrication stage where they 
are required to provide the prediction of relevant fabrication parameters such as 
the tool angle variation or depth prediction of the cut itself. 

3 Results 
The first full iteration of the training methods has been evaluated through the design and 
realization of a series of design probes in the shape of different circular design patterns, 
aiming to showcase the potentials and limits of the current developments (Figure 8). 

In the initial stage, a series of lime wood boards (30x30x4 cm) were carved with carving 
gouges (Stubai 9/20 and 9/30) by a novice craftsman. The carving operations were 
devised as linear sequences of cuts of different lengths and orientations in respect to the 
wood grain. In each session, simultaneously with the craftsman’s action, a dataset (avg. 
of 1500 entries) was compiled with the following recorded parameters for each frame 
composing a cut sequence: Tool/Surface Angle, Tool/Grain Angle, Force Feedback, Feed 
rate, Cut Length, Cut Depth. Given a series of desired toolpaths with predetermined 
length describing the circular patterns, the network topology was configured to output the 
prediction of (1) the tool angle variation and (2) cut depth profile along the cut itself for 
each pass of the carving process. 

The first stage of the training based on human expert has been used to set up a second 
stage where the gradual interpolation of the parameters of tool angle and depth has been 
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tested by the robot itself, collecting force feedback data for each cutting operation. This 
allowed to train again the network with the same topological configuration of the first 
stage but integrated with more in-depth data about the narrowed down search space 
extracted from the skilled human’s actions. 

The trained network, applied to the specific task of the circular patterns (Figure 9), has 
been used successfully to generate the sequence of robotic target frames composing the 
individual cut sequences carved into lime wood boards, as the one used for the training, 
using a small industrial robot (KUKA KR6) equipped with the same reciprocating 
carving tool. As first complete iteration of the training cycle, the carving operations, a 
series of short cuts (4 to 10 cm) radially arranged, were quite simple and similar to each 
other, nevertheless they offered a good opportunity to test the system throughout the 
different stages.  

 

 

Figure 9.  The initial fabrication outcomes are in the shape of circular design 
patterns carved by the robotic arm. 

Overall, the carved circular shapes showed, to different extent, local deviations measured 
through photogrammetric reconstruction, in respect of the ideal digital models, due to the 
local interaction between the carving tool and wood material behavior with its grain 
arrangement (Figure 10).  
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Figure 10.  The carved circular patterns showed local deviations from the initial 
digital model due to the interaction between the cutting tool and local material 
properties such as the wood grain structure. 

4 Conclusion 

 
The trained networks successfully predicted fabrication parameters for simple cutting 
operations, demonstrating the feasibility of encapsulating tacit, instrumental knowledge 
of specific tools and materials in the robotic system. These results suggest two main 
potential roles for the use of machine learning strategies for design applications with 
subtractive robotic fabrication:    

1) Encapsulate knowledge and use it as part of a predictive strategy to train the 
fabrication process and optimize it to operate with a specific set of carving tools 
and wood type. 

2) Capturing and manipulate instrumental knowledge across distinctly operating 
domains such as human making and industrial robotic manufacturing. 
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The application to carved circular patterns was effective, however measurements of 
geometric deviations suggest that further work is needed to increase the predictive 
abilities and accuracy in relation to shape generation. The next steps in the research will 
(a) use the system in more challenging design tasks, focusing on the variation occurring 
throughout diverse types of wood and carving tools, and (b) extend the capturing of 
instrumental knowledge to a wider range of craftsmen with different expertise levels and 
measure how it affects the training process.  

References 

Al-Zubaidi, Salah, Jaharah A. Ghani, and Che Hassan Che Haron. 2011. “Application of 
ANN in Milling Process: A Review.” In Modelling and Simulation in Engineering 
2011.  

DeLanda, Manuel. 2004. “Material Complexity.” In Digital Tectonics: 14–21. 

Eraut, Michael. 2000. “Non-Formal Learning and Tacit Knowledge in Professional 
Work.” In The British Journal of Educational Psychology 70 (September): 113–36. 

Fure, Adam. 2011. “Digital Materiallurgy on the Productive Force of Deep Codes and 
Vital Matter”. In ACADIA 11: Integration through Computation, Proceedings of the 
31st Annual Conference of the Association for Computer Aided Design in 
Architecture (ACADIA). Banff (Alberta): 90–97. 

Ingold, Tim. 2013. Making: anthropology, archaeology, art and architecture. London: 
Routledge. 

Nicholas, Paul, Zwierzycki, Mateusz, Nørgaard, Esben Clausen, Stasiuk, David, 
Hutchinson Christopher and Mette Thomsen. 2017. “Adaptive Robotic Fabrication 
for Conditions of Material Inconsistency: Increasing the Geometric Accuracy of 
Incrementally Formed Metal Panels”. In Fabricate 2017. London: UCL Press: 114-
121. 

Pfleging, Johannes, Marius Stucheli, Radu Iovita, and Jonas Buchli. 2015. “Dynamic 
Monitoring Reveals Motor Task Characteristics in Prehistoric Technical Gestures.” 
In PLoS ONE 10 (8): 1–20.  

Sharif, Shani and T. Russell Gentry. 2015. “Design Cognition Shift from Craftsman to 
Digital Maker”. In Emerging Experience in Past, Present and Future of Digital 
Architecture, Proceedings of the 20th International Conference of the Association 
for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015). 
Daegu. 683–692. 

Steinhagen, Gregor, Braumann, Johannes, Brüninghaus, Jan, Neuhaus, Matthias, Brell-
Çokcan, Sigrid, Kuhlenkötter, Bernd. 2016. “Path planning for Robotic Artistic 
Stone Surface Production”. In Robotic Fabrication in Architecture, Art and Design 
2016. Springer:  122-135. 



Adaptive Robotic Training Methods for Subtractive Manufacturing 12 

Witt, Andrew J. 2010. “A Machine Epistemology in Architecture. Encapsulated 
Knowledge and the Instrumentation of Design.” In Candide. Journal for 
Architectural Knowledge 3 (3): 37–88 


