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The construction of topological error correction codes requires the ability to fabricate a lattice of physical
qubits embedded on a manifold with a nontrivial topology such that the quantum information is encoded in
the global degrees of freedom (i.e., the topology) of the manifold. However, the manufacturing of large-scale
topological devices will undoubtedly suffer from fabrication errors—permanent faulty components such as
missing physical qubits or failed entangling gates—introducing permanent defects into the topology of the lattice
and hence significantly reducing the distance of the code and the quality of the encoded logical qubits. In this
work we investigate how fabrication errors affect the performance of topological codes, using the surface code
as the test bed. A known approach to mitigate defective lattices involves the use of primitive SWAP gates in a
long sequence of syndrome extraction circuits. Instead, we show that in the presence of fabrication errors the
syndrome can be determined using the supercheck operator approach and the outcome of the defective gauge
stabilizer generators without any additional computational overhead or use of SWAP gates. We report numerical
fault-tolerance thresholds in the presence of both qubit fabrication and gate fabrication errors using a circuit-based
noise model and the minimum-weight perfect-matching decoder. Our numerical analysis is most applicable to
two-dimensional chip-based technologies, but the techniques presented here can be readily extended to other
topological architectures. We find that in the presence of 8% qubit fabrication errors, the surface code can still

tolerate a computational error rate of up to 0.1%.
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I. OVERVIEW

Implementing topological quantum error correction codes
has become the focus of many current experiments, with
recent advances made in building small codes consisting
of a small number of physical qubits with fine-tuned local
interactions [1-6], hence paving the way for scalability in
the coming years. However, it is expected that a universal
topological fault-tolerant architecture will have a very large
number of physical components, and for such a large-scale
machine the manufacturing and fine-tuning of each individual
component will undoubtedly suffer from permanent faults
resulting from imperfect manufacturing processes—we refer
to such faults as fabrication errors. As an example, the latest
nonuniversal D-Wave 2X machine has qubit manufacturing
defects (typically fewer than 5%) [7]. Therefore, it is important
that the performance of current schemes is studied against such
a static error.

Surface codes are a family of stabilizer quantum error
correction codes defined on a two-dimensional manifold
with local vertex and plaquette stabilizer generators; the
prototypical example is the toric code, introduced originally
by Kitaev [8] [see Fig. 1(a)]. This work focuses on using
the square planar surface code [9] as a memory for a single
logical qubit, but the close similarity between different types
of stabilizer topological codes means that the results and
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techniques presented here are applicable to other families of
codes, such as color codes [10].

The construction of topological codes relies on utilizing the
nontrivial topology of a lattice to encode a logical state, such
that the encoded state can only be corrupted by global errors.
Such a construction is vulnerable to the effects of fabrication
errors by design, as fabrication errors directly damage the
topology and introduce new degrees of freedom as well as
lowering the code distance for the encoded logical states
[see Fig. 1(b)].

The threshold performance of the surface code has been
extensively studied against many types of noise models, such
as for Pauli errors [11-13], stochastic qubit loss [14-16],
leakage [17-21], and general non-Pauli local noise for small
codes [22,23], but much less focus has been given to errors re-
sulting from imperfect manufacturing processes. In this paper
we investigate the threshold performance of the surface code in
the presence of fabrication errors, and we show that the ability
to disable a qubit or an entangling gate (a link) is sufficient to
map any fabrication error into disabled qubits, hence allowing
us to always form larger defected stabilizer operators, the
so-called supercheck operators [14]. The scheme we present
does not require anything that is not already necessary to
perform computation by code deformation [24,25] or lattice
surgery [26]. We will not discuss specific specific experimental
implementations, but the techniques presented here could be
directly applied to chip-based topological schemes.

Two recent approaches have been proposed to mitigate
the effect of fabrication errors; the first is to construct a
robust topology that tolerates sparse fabrication errors using
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FIG. 1. (a) The construction of topological codes (depicted here
using the toy example of the toric code) relies on the fabrication of a
perfect topology in order for the encoded logical state to be globally
protected. (b) Fabrication errors have the drastic effect of damaging
the topology and shortening the distance of the code.

additional sacrificial qubits [27], and the second is to use
primitive SWAP gates in the construction of the syndrome
readout circuit [28]. Our approach differs from these by
keeping the construction of the surface code unaltered without
attempting to mitigate the missing components or performing
an adaptive procedure. We show that by directly measuring
the (defective) gauge operators [29,30], the outcome of the
supercheck operators can be obtained deterministically (see
Sec. III). Our main result is summarized in Fig. 13, which
shows Pauli error thresholds obtained by simulations of the
surface code in the presence of fabrication errors.

This paper is structured as follows. In Sec. II we introduce
the components of the surface code and the syndrome extrac-
tion circuits. In Sec. III we define the types of fabrication errors
and show how to perform the syndrome extraction circuits on
a defective lattice by constructing the outcome of supercheck
operators from the gauge qubit operators. We outline our noise
model and Monte Carlo simulation parameters in Sec. IV, and
present the fault-tolerant thresholds we obtained in Sec. V. In
the final two sections we discuss our approach in comparison
to other schemes and conclude.

II. THE SURFACE CODE

We define the surface code on an L xL square lattice
with open boundaries as shown in Fig. 2 such that each
edge represents a physical data qubit. The stabilizers of the
code are generated by X- and Z-type four-body operators
associated with each star (or vertex) and each plaquette of the
lattice, denoted here by A and B, respectively. Collectively,
the star and the plaquette operators are referred to as the
check operators. The logical Pauli X; and Z operators of
the code are global anticommuting stringlike operators that
span the lattice and commute with all the stabilizer generators;
examples are shown on the primal lattice in Fig. 2. In other
words, the logical Z; (X) operators have support over
noncontractible loops on the primal (dual) lattice.

The action of a logical operator on a logical state of the
surface code is invariant under a multiplication by a stabilizer
generator; therefore many equivalent logical operators can be
defined. The distance of the code corresponds to the weight
of the shortest possible logical operator. Therefore a perfectly
fabricated surface code will have a code distance L. Increasing
the lattice size would offer better protection against errors, as
the number of individual errors required to cause a logical
error is greater.
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FIG. 2. An example of a primal lattice of a distance-5 surface
code. Each star s and plaquette p of the lattice is associated with a
four-body X-type (A,) and Z-type (B,,) stabilizer generator, respec-
tively. The logical operators X and Z; correspond to anticommuting
strings that span the lattice, but each commutes with all the stabilizer
generators. The left and right edges are the rough edges, and the top
and bottom edges are the smooth edges.

Error detection proceeds by measuring all the stabilizer
generators [31] such that when there are no errors, the outcome
of all measurements is +1. Measuring all stabilizer generators
collapses arbitrary qubit errors into Pauli X and Z errors on the
data qubits [31,32]; if an error anticommutes with a stabilizer
generator then the outcome of that stabilizer generator is
flipped to —1. If a string of a single type of Pauli error occurs,
only the ends of the string are detectable, and different error
strings may lead to the same detection pattern. The set of
outcomes of stabilizer generator measurements is called the
syndrome.

An error does not have to be corrected by exactly inverting
the Pauli errors that caused it. Any string of errors and
corrections that is a product of stabilizer generators is harmless
(forming a contractible loop); however, a string of errors and
corrections that is equivalent to a logical operation leads to
a failure. After obtaining the syndrome measurements, their
values are passed to a decoder—a classical algorithm that finds
the correction that is least-likely to result in a logical error (or at
least a good approximation to this correction). In our analysis,
we use the well-studied minimum-weight perfect-matching
(MWPM) algorithm for our decoder [31].

The stabilizer generators are multiqubit operators, which
can be difficult to implement experimentally. To assist in
measuring each stabilizer generator, an ancilla qubit, often
called the syndrome qubit, is associated with each star and
each plaquette operator in a local syndrome-extraction circuit,
as shown in Fig. 3. The syndrome qubit is entangled to the
qubits that support the stabilizer generator by an ordered
sequence of two-qubit gates. Once this entangling procedure is
executed, the outcome of the stabilizer generator is determined
by measuring the ancilla qubit in the Pauli basis. By performing
the two-qubit gates in a z-shaped order, as shown in Fig. 3, all
the stabilizer generators can be measured simultaneously in a
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FIG. 3. Syndrome extraction circuits for X-type (left) and Z-
type (right) stabilizer generators. Each syndrome extraction circuit
involves six temporal steps: preparation of the syndrome qubit, four
controlled-NOT (CNOT) gates, and syndrome qubit measurement. The
data qubits are idle during the preparation and measurement steps.
The CNOT gates are always applied in a specific order, in this case
north (n), west (w), east (e), then south (s) (forming a zigzag
shape), in order to ensure all stabilizer generators commute when
measured.

total of six time steps: one for syndrome qubit preparation, four
for two-qubit gates, and one for syndrome qubit measurement.
(It may be possible to combine measurement and initialization
for some implementations, but we consider them to be separate
processes in our simulations.) These six time steps constitute
one round of syndrome measurement.

The components of the syndrome extraction circuit are
themselves prone to the same type of errors as the data
qubits of the code, which could lead to an incorrect (false)
error detection event. Therefore, multiple rounds of syndrome
measurements, of order O(L), are needed to improve the
confidence in the syndrome outcomes. The repeated rounds of
syndrome measurements create a three-dimensional syndrome
history which can be processed by the decoder to return a
correction operator on the physical lattice.

III. FABRICATION ERRORS

We define fabrication errors as permanent faulty compo-
nents caused during the initial chip-manufacturing process of
the surface code, or due to failed components arising during
the lifetime of the chip. It is important to emphasize that the
location of the fabrication errors is known before the surface
code is used in the computation (i.e., the fabrication errors
are known deterministic missing components). In addition,
we assume that the user of the surface code chip is able
to turn-off (or stop) any of the components. We consider
two types of fabrication error: qubit fabrication errors and
link fabrication errors. A qubit fabrication error is considered
to be a qubit (either a data qubit or syndrome qubit) that
is permanently faulty and cannot be used to store quantum
information reliably. A link fabrication error is considered to
be an error that prevents two qubits from interacting, i.e., it
prevents a CNOT or controlled-PHASE (CPHASE) gate from being
performed.
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Before proceeding, it is useful to introduce some additional
terminology to describe the different types of failed compo-
nents we will encounter in our analysis. We use the term faulty
to strictly refer to a component with a permanent fabrication
error, and the term disabled to refer to a component that we
have chosen to disable. Moreover, we call a check operator
damaged if at least one of its four links suffers a fabrication
error.

Fabrication errors are detrimental for the surface code
construction; left unchecked, they can introduce new degrees
of freedom (i.e., extra logical qubits). For example, if a
syndrome qubit is faulty, one might be tempted to simply
disable the associated stabilizer generator. But a disabled star
or plaquette creates a new logical qubit that can interact with
our desired logical qubit, therefore reducing the code distance.
A reduction in code distance alone may not be a problem in
itself, but if we assume fabrication errors are randomly spaced
throughout the code, then code distance will start to shrink
with increasing L, leading to only a pseudothreshold behavior
for smaller lattice sizes that disappears for larger lattices.

We will now show how the detrimental effect of qubit
and link fabrication errors can be mitigated at no additional
hardware cost by disabling data qubits.

A. Measuring supercheck operators and gauge qubits

The idea of using supercheck operators was first introduced
to combat lost data qubits in the toric code [14]. This approach
works on the basis that the product of two stabilizer generators
is also in the code stabilizer, so when a data qubit is lost (i.e.,
an edge is removed from the lattice) the two adjacent damaged
stabilizer generators can be jointly measured—forming a
larger supercheck operator—to avoid the lost data qubit, hence
preserving the stabilizer structure of the code.

In the context of fabrication errors, the same approach can
be used for data qubit fabrication errors. However, measuring
a supercheck operator directly is often a nontrivial task,
as it may require interaction between arbitrarily separated
qubits or involve many SWAP gates, as was shown in [28],
which can affect measurement of nearby stabilizer generators.
Our approach for handling fabrication errors uses the same
supercheck operator approach but makes use of the concept of
gauge qubits. Instead of measuring the supercheck operators
themselves, we use the gauge qubits to construct the outcome
of the supercheck operator from the direct outcome of damaged
stabilizer generators measurement, such that all interactions
remain as nearest-neighbor qubit interactions and no SWAP
gates are required; any additional processing required is
performed classically.

Consider the simple case of disabling a data qubit as shown
in Fig. 4; the adjacent damaged generators will anticommute,
but their supercheck operator product remains deterministic.
Each disabled data qubit in the surface code (except data
qubits on the edge of the lattice, see Sec. III D) introduces
one degree of freedom, or gauge qubit (also called a “junk
qubit” in [14,15]), similar to when a stabilizer is turned off to
perform computation [25]. The logical Pauli X and Z operators
of these gauge qubits are the damaged star and plaquette
stabilizers—we will refer to them as the gauge operators.
When these anticommuting gauge operators are measured, the
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FIG. 4. When a data qubit is disabled or faulty (shown in red with
a dashed border), the associated links are disabled (a), resulting in
four adjacent damaged check operators. The product of two stabilizer
generators is used to form a supercheck operator, effectively removing
this qubit from the code. This process occurs in both the primal (b)
and dual (c) lattices; the CNOT gates shown in this figure are those

used when measuring the supercheck operators as products of gauge
operators.

logical state of the gauge qubit is randomized, but the state of
the gauge qubit is unimportant, so this randomization is not
a problem. Importantly, strings of X or Z operators cannot
terminate undetectably in this region, unlike when a stabilizer
generator is turned off—these gauge operators reduce the code
distance slightly, but code distance still scales with physical
lattice size.

The supercheck operator product of damaged stabilizer
generators commutes with every damaged stabilizer generator,
so the supercheck operators remain in the stabilizer group and
can be used for error correction during the classical processing
stage by treating the products of the damaged star and plaquette
as supercheck operators.

B. Mapping fabrication errors to faulty data qubits

We saw in the previous section how in the presence faulty
(or disabled) data qubits the outcome of a supercheck operator
can still be obtained deterministically by taking the product
of the outcomes of the damaged (gauge) operators. We will
exploit this fact to map both link fabrication errors and
syndrome qubit fabrication errors to data qubit fabrication
errors such that supercheck operators can always be formed.

The mapping works as follows: (1) if a link fabrication error
occurs, itis mapped to a qubit fabrication error on the data qubit
to which it connects, so that the data qubit is disabled along
with its associated links, as shown in Fig. 5. (2) If a syndrome
qubit fabrication error occurs, it is mapped to qubit fabrication
errors on all of the surrounding data qubits, so that all these
data qubits along with their associated links are disabled, as
shown in Fig. 6.
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FIG. 5. Mapping link fabrication errors to disabled data qubits;
faulty and disabled components are shown in red with a dashed border.
When a link fabrication error occurs (left), the data qubit associated

with the link is disabled (middle) and superstars and superplaquettes
are formed on the primal and dual lattices, respectively (right).

As aresult we see that, in our approach, the syndrome qubit
fabrication errors have the most destructive effect on the the
lattice, which highlights an important bias between data and
syndrome qubits.

C. Percolation thresholds and the effective code distance

The use of supercheck operators is limited by percolation—
if a string of faulty or disabled data qubits percolates the
lattice, a logical qubit cannot be encoded as it is impossible to
form consistent spanning logical operators and supercheck
operators. Note that it would be possible to use part of
the lattice as a smaller code, but we consider percolating
fabrication defects to be a manufacturing failure as the intended
distance of the code cannot be achieved by making a larger
lattice, and hence the surface code is discarded.

The square lattice structure of the surface code implies
that the qubit percolation threshold for the surface code is
equivalent to the bond percolation threshold for the square
lattice, which is a known analytic value of 50%. By using
our mapping to data qubit fabrication errors, we can derive an
approximate analytic percolation threshold in the presence of
qubit and link fabrication errors using the following argument.
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FIG. 6. Mapping syndrome fabrication errors to disabled data
qubits; faulty and disabled components are shown in red with a dashed
border. When a syndrome qubit fabrication error occurs, all the data
qubits involved in the associated stabilizer generator are disabled (a).
Large superstars (b) and superplaquettes (c) are formed around these
disabled data qubits.
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FIG. 7. Percolation rates for link fabrication errors only. The
crossing point gives a threshold of just under 16%.

In the bulk of the lattice, each data qubit has four links. With
a link fabrication error rate of pjink, the probability of each data
qubit being disabled due to faulty linksis 1 — (1 — piin)?, 1.e.,
one minus the probability of no faulty links occurring. This
implies that 50% of data qubits will be disabled when 1 —
(1 — pim)* = 0.5, or equivalently, when pjinc = 1 — +/0.5 ~
0.159. This analysis does not account for qubits at the edges
having fewer than four links, but the percolation threshold is
an asymptotic behavior in the thermodynamic limit, so this
effect can be neglected for large lattices.

An analogous argument can be used to calculate an
approximate threshold for qubit fabrication errors. A data qubit
will be disabled when it is either faulty or one or more of the
four syndrome qubits it is linked to are faulty. The probability
that a particular qubit is disabled when the qubit fabrication
error rate is paupic 15 1 — (1 — pqubit)s. Therefore, the qubit
fabrication error percolation threshold occurs approximately
when 1 — (1 — paupi)’ = 0.5, or pausic = 1 — /0.5 ~ 0.129.
This analysis is less accurate than that for link fabrication
errors, as it does not take into account the possible correlations
between disabled data qubits due to disabled syndrome qubits.
However, localized clusters of disabled qubits are generally
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FIG. 8. Percolation rates for qubit fabrication errors only. The
crossing point gives a threshold of around 14.5%.
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FIG. 9. Average effective code distance for link fabrication errors
only.

less likely to percolate than data qubits that are disabled at
random, so we expect the actual threshold to be slightly higher.

Our numerical simulations for percolation, shown in Figs. 7
and 8 for link and qubit fabrication errors, respectively, are in
strong agreement with our above approximations. We find the
link fabrication threshold, Fig. 7, to be just under 16% and
the qubit fabrication threshold, Fig. 8, to be between 14% and
15% (higher than 12.9% due to data qubit loss occurring in
localized clusters).

Forming supercheck operators leads to a reduction in the ef-
fective code distance compared to the intended code distance,
as itreduces the length of the shortest logical operator. We have
analyzed how the average effective code distance varies with
link and qubit fabrication errors, as shown in Figs. 9 and 10,
respectively. These graphs were produced by simulating the
fabrication of many planar code lattices with each type of
fabrication error and then finding the effective code distance of
each lattice by identifying the lowest-weight logical operator;
the effective code distance was then averaged over all runs.

D. Complications

There are two complications that occur when using gauge
operators to measure supercheck operators. The first is that
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FIG. 10. Average effective code distance for qubit fabrication
errors only.

042316-5



AUGER, ANWAR, GIMENO-SEGOVIA, STACE, AND BROWNE

rrprrT

0@ 000—@—900—@——0
g
v

5. 0c—@ o0
Ic
FIG. 11. Effective order of gauge operator measurement. If the
normal z-shaped measurement pattern is used, the effective order in
which the gauge operators are measured is ¢, y & f,a & b, «. The
anticommutation randomizes the supercheck operator products, so

X- and Z-type gauge operators are instead measured in alternating
rounds to ensure the supercheck operator outcome is deterministic.

supercheck operators can only be measured during alternating
rounds of syndrome measurement, and the second involves
faulty data qubits at the edge of the lattice.

The interleaved z-shaped measurement pattern that allows
all stabilizer generators to be measured simultaneously on
a perfect lattice can no longer be used for supercheck
operators. Ensuring that the product of damaged stabilizers
is deterministic requires that no anticommuting operations
are performed while the constituent gauge operators of the
supercheck operators are being measured; this is not possible
with the normal measurement pattern, as the example in Fig. 11
shows. This problem is mitigated by measuring X-type and
Z-type supercheck operators during alternating rounds. All
undamaged stabilizer generators are measured every round as
normal; this means that supercheck operators are measured
half as frequently as undamaged stabilizer generators, and
these measurements have a higher effective error rate than
undamaged stabilizer generator measurements.

The second issue occurs when data qubits are faulty at
the edges of the lattice. If there is a data qubit fault such as
that shown in Fig. 12, then there is no corresponding stabilizer
generator to pair it with. Therefore, the edge of the lattice must
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FIG. 12. Dealing with fabrication errors at the edge of the lattice;
faulty and disabled components are shown in red with a dashed border.
When data qubits at the edge of the lattice are disabled (left, middle),
the product of gauge operators is not in the stabilizer, so such stabilizer

generators must be disabled rather than forming supercheck operators
(right).
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be redefined by completely disabling the damaged stabilizer
generator. This process must then be repeated if any of the
qubits in this new edge are faulty—the process effectively
results in a supercheck operator being disabled.

IV. SIMULATION METHODS
A. Error model

Every gate is modeled to experience computational Pauli
errors with a probability denoted here by the parameter pcomp.
Each two-qubit gate is assumed to act perfectly followed by
depolarizing Pauli noise with probability pcomp. Single-qubit
gates (only the identity gate in our simulations) are assumed to
act perfectly, followed by depolarizing noise with probability
4 pcomp/3. The justification for this follows that of [33]: 4p/5
is the marginal error rate on each qubit involved in a two-qubit
gate experiencing depolarizing noise with probability p. If we
were to choose a single-qubit error rate of peomp, this would
imply that single-qubit gates are more prone to errors than
two-qubit gates, which is unlikely to be the case. Preparation
is considered to have probability pcomp Of preparing the state in
an orthonormal basis, and measurement is considered to have
a probability pcomp of giving the incorrect outcome.

All fabrication errors are considered to occur independently
before error correction is initiated, and the locations of all
fabrication errors are assumed to be known. A qubit fabrication
error occurs with probability pguwi for each qubit (syndrome
and data qubits), and link fabrication errors occur with
probability pjin for each link. The parameters pcomp, Pqubits
and pyin are varied independently.

B. Simulations

Each simulation starts by generating a lattice of qubits
and links with the appropriate fabrication error rates. The
fabrication errors are then mapped to data qubit fabrication
errors using the mapping in Sec. IIIB. Suitable logical
operators are found by using a path-finding routine on the
primal and dual lattices. If a logical operator cannot be found,
then the lattice is percolated by faulty (or disabled) data qubits
and the simulation is aborted.

When a logical operator is found, 2 x L rounds of syndrome
measurement are performed. Each round consists of syndrome
qubit initialization, four stages of two-qubit gates, and then
syndrome qubit measurement. Each of these is considered
to take one unit of time, and any qubit that is not involved
in a two-qubit gate, measurement, or preparation during a
particular time step undergoes an identity gate.

The code is initialized with a round of perfect star and
plaquette measurements to get the error-free outcomes for
each star and plaquette measurement, and the simulations are
capped with a final round of perfect measurement. All other
rounds of stabilizer measurement use the Pauli error model
given above.

We use the CNOT-Hadamard-Phase (CHP) [34] stabilizer
algorithm to simulate the quantum state of the lattice during
all gates and measurements to ensure that the gauge operators
give the correct outcomes. Once all measurements have been
obtained, a MWPM routine involving Blossom V [35] is
used to find a correction based on the obtained syndrome.
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FIG. 13. Pauli error thresholds for link, pjak, and qubit, paupi,
fabrication errors. An exponential is fit applied to each data set:
0.71e20Pink for link fabrication errors and 0.70e~2?Pawit for qubit
fabrication errors. Individual thresholds plots are available in the
Supplemental Material [37].

Edge weights for the perfect-matching routine are set using
the same methods as [17,36] to optimize the matching.
Syndrome measurement is simulated on both the primal and
dual lattices, but error correction is only performed on one
lattice to reduce computation time. (The symmetry between
primal and dual lattices means that logical error rates are
almost identical.) Once the correction has been applied, we
test for the occurrence of a logical X error by checking if
the combined error and correction string commutes with the
logical Z operator.

Pauli error rates are varied from peomp = 0.05% t0 peomp =
1.00% in steps of 0.05%, with additional values of 0.001% <
DPeomp < 0.010% used when the Pauli error threshold becomes
small. Each fabrication error rate is separately varied from
from 0% to 10% in steps of 2%, with an additional simulation
performed at 5% fabrication error rate to allow for a direct
comparison with [28]. Each combination of error rates and
code distances is simulated for a minimum of 5 x 10* runs.

V. THRESHOLD RESULTS

Our main result is summarized in Fig. 13, which shows
how the planar code Pauli error threshold varies with each
type of fabrication error. Thresholds for each fabrication error
rate are obtained by finding the crossing point of logical error
rates when results for each code distance are plotted on the
same graph [11]; these plots are available in the Supplemental
Material [37]. Instances in which faulty or disabled data
qubits percolate the lattice, such that a logical qubit cannot
be encoded, are ignored, i.e., the logical error rate is given
by the number of logical errors divided by the number of
nonpercolating runs. The percolation graphs in Figs. 7 and 8
give an indication of the frequency of such percolation errors.

As expected, qubit fabrication errors have a slightly more
damaging effect on the threshold than link fabrication errors.
With no fabrication errors, the chosen error model results in
a Pauli error threshold of peomp &~ 0.71%. As pguvit and piink
increase, the thresholds of pcomp decrease, with the respective
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FIG. 14. Logical error rates for codes with fabrication errors with
intended distance L = 13 and actual distance L’ =9 compared to
native distance 9 codes with no fabrication errors. The native codes
have lower logical error rates.

thresholds dropping below 0.1% when pgubic 2 8% and piink 2
10%. It has not been possible to find clean thresholds to
determine the behavior of the thresholds beyond pjj,x = 10.6%
and pgubic = 8.4%. This is due to effective code distances
converging as the fabrication error rates increase—finding
thresholds requires a range of code distances, but as shown
in Figs. 9 and 10, the average effective code distances for link
fabrication error rates of 12% and qubit fabrication error rates
of 10% are all <2 for the lattice sizes considered.

An exponential fit of the form « exp(8 prap) to each data set
resultsin fits of « = 0.70, B = —22 for qubit fabrication errors
and o = 0.71, B = —20 for link fabrication errors. These fits
fail close to the percolation threshold but are in good agreement
with the simulation results for pguic < 0.08 and pyin < 0.1.

VI. DISCUSSION

The logical error rate pj,, depends on both the intended
code distance L and the actual distance L’, such that Dlog =
Piog(L,L"). Fabrication errors mean that L’ < L. We find that
Piog(L',L") < piog(L,L"), i.e., fabrication errors degrade the
code performance beyond simply reducing the code distance,
as shown in Fig. 14. The larger codes perform worse because
the higher-weight supercheck operators are more prone to error
and give less-specific information about the location of an error
compared to a native code. This suggests that building a larger
surface code is generally only beneficial if the fabrication error
rate does not increase.

Our thresholds for qubit fabrication errors are slightly lower
than those of [28]. This is because a faulty syndrome qubit
is more damaging in our scheme, as each syndrome qubit
fabrication error is mapped to multiple disabled data qubits;
this results in lower percolation error thresholds and lower
effective code distances for qubit fabrication errors. However,
the gauge operator approach we present may be better for
handling data qubit fabrication errors as it requires fewer logic
gates. It is also worth noting that from the point of view of the
implementation, our code does not require the performance
of any extra gates, as the approach presented in [28] does;
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FIG. 15. Rate at which highest-weight supercheck operators
occur for link fabrication error rate pj,c = 10%. The weight of the
highest-weight supercheck operator appears to increase logarithmi-
cally with code distance, as expected [38].

all the adaptations required by our scheme involve a change in
the measurement order and disabling particular measurements.
We believe this will be a more amenable adaptation for some
physical systems. Moreover, link fabrication errors were not
considered in [28].

Additional simulations were performed to investigate
the scaling of the weight of the largest supercheck operator
as code distance increases; Fig. 15 shows this scaling for
Piink = 10% and demonstrates that larger lattice sizes have
higher-weight supercheck operators. This phenomenon can be
understood by considering the similarity between clustering in
subcritical percolation [38] and forming supercheck operators
on a surface code.

Higher-weight supercheck operators are more prone to
error, so this effect means that the thresholds observed for
smaller lattice sizes are not stable. This instability will lead
to pseudothreshold behavior, where the threshold disappears
with increasing lattice size.

This problem is not unique to our approach; it is a
feature of any surface code or topological cluster state code
based around the supercheck operators introduced in [14],
including [39] and [28]. Finding a way to overcome this
problem, or proposing an alternative to supercheck operators,
remains an open problem.

VII. CONCLUSION

We have presented a full analysis for the threshold per-
formance of the surface code in the presence of fabrication
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errors. We showed that the ability to disable qubits or links
(two-qubit gates) is sufficient to map the fabrication errors into
lost qubits, such that the syndrome extraction can be performed
without the need of any additional hardware components. Our
method combines the supercheck operator approach and the
concept of gauge qubit operators to deterministically obtain the
outcome of supercheck operators. Interestingly, our approach
shows that syndrome qubit fabrication errors have a more
drastic damaging effect on the lattice in comparison to data
qubit fabrication errors, showing that more care is required to
fabricate high-quality syndrome qubits.

One advantage of the the scheme presented here is that
it should be applicable to non-gate-based implementations
where SWAP gates may not be feasible, such as [40]. However,
in schemes where the SWAP gate is readily available, the gauge
operator scheme presented in this work and the SWAP gate
scheme of [28] can be complementary schemes. For data
qubit fabrication errors, the scheme presented here requires
fewer quantum operations to obtain syndrome data and so
would be preferable. However, the scheme in [28] would be
preferable to deal with syndrome qubit fabrication errors, as
it still allows for the measurement of stabilizer generators
associated with faulty syndrome qubits. Therefore, a hybrid of
both approaches could lead to an improvement in the overall
performance.

The fabrication error model presented here can be expanded
to include cases where the fabrication process results in
components of different quality, such that some components
are fabricated with a higher chance of being prone to
computational Pauli errors. Such an asymmetry in the quality
of fabricated components is to be expected for large-scale
systems, but we leave such analysis for future investigations.
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