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a b s t r a c t 

We are interested in the numerical simulations of the Euler system with variable congestion encoded by 

a singular pressure (Degond et al., 2016). This model describes for instance the macroscopic motion of a 

crowd with individual congestion preferences. We propose an asymptotic preserving (AP) scheme based 

on a conservative formulation of the system in terms of density, momentum and density fraction. A sec- 

ond order accuracy version of the scheme is also presented. We validate the scheme on one-dimensionnal 

test-cases and compare it with a scheme previously proposed in Degond et al. (2016) and extended here 

to higher order accuracy. We finally carry out two dimensional numerical simulations and show that the 

model exhibit typical crowd dynamics. 
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. Introduction 

In this work we study two phase compressible/incompressible

uler system with variable congestion: 

 t � + ∇ · (� v ) = 0 , (1a) 

 t (� v ) + ∇ · (� v � v ) + ∇π + ∇p 

(
� 

� 

∗

)
= 0 , (1b) 

 t � 

∗ + v · ∇� 

∗ = 0 , (1c) 

 ≤ � ≤ � 

∗, (1d) 

(� 

∗ − �) = 0 , π ≥ 0 , (1e) 

ith the initial data 

(0 , x ) = � 0 (x ) ≥ 0 , v (0 , x ) = v 0 (x ) , � 

∗(0 , x ) = � 

∗
0 (x ) , � 0 < � 

∗
0 , 

(2) 

here the unknowns are: � = �(t, x ) – the mass density, v =
 (t, x ) – the velocity, � 

∗ = � 

∗(t, x ) – the congestion density, and π
∗ Corresponding author. 

E-mail address: pdegond@imperial.ac.uk (P. Degond). 
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the congestion pressure. The barotropic pressure p is an explicit

unction of the density fraction 

� 
� ∗

p 

(
� 

� 

∗

)
= 

(
� 

� 

∗

)γ

, γ > 1 , (3) 

nd plays the role of the background pressure. 

The congestion pressure π appears only when the density ϱ sat-

sfying (1d) achieves its maximal value, the congestion density ϱ∗.

herefore ϱ∗ can be referred to as the barrier or the threshold den-

ity. It was observed in [25] , and then generalized in [15] , that the

estriction on the density (1d) is equivalent with the condition 

 · v = 0 in { � = � 

∗} , (4) 

f only ϱ, v , ϱ∗ are sufficiently regular solutions of the continuity

quation (1a) and the transport equation (1c) . For that reason, sys-

em (1) can be seen as a free boundary problem for the interface

etween the compressible (uncongested) regime { ϱ< ϱ∗} and the

ncompressible (congested) regime { � = � 

∗} . 
The main purpose of this work is to analyze (1) numerically, i.e.

o propose the numerical scheme capturing the phase transition.

o this end we use the fact that (1) can be obtained as a limit

hen ε → 0 of the compressible Euler system: 

 t � + ∇ · (� v ) = 0 , (5a) 
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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∂ t (� v ) + ∇ · (� v � v ) + ∇πε + ∇p 

(
� 

� 

∗

)
= 0 , (5b)

∂ t � 

∗ + v · ∇� 

∗ = 0 , (5c)

with the singular approximation πε of the congestion pressure: 

πε 

(
� 

� 

∗

)
= ε 

( � 
� ∗

1 − � 
� ∗

)α

, α > 0 . (6)

The singularity of the pressure πε implies that for every ε > 0 fixed

ϱε ≤ ϱ∗. Note that for fixed ε > 0, πε → ∞ when ϱ→ ϱ∗. Therefore,

at least formally, for ε → 0, πε converges to a measure supported

on the set of singularity, i.e. { (x, t) ∈ � × (0 , T ) : �(x, t) = � 

∗(x, t) } .
The rigorous proof of this fact is an open problem, at least for

the Euler type of systems. There have been, however, several re-

sults for a viscous version of the model, see [10] for the one-

dimensional case, [31] for multi-dimensional domains and space-

dependent congestion ϱ∗( x ) and [15] for the case of congestion

density satisfying the transport equation (1c) . The last of men-

tioned results requires a technical assumption α > 5/2 for the 3-

dimensional domain. Intuitively, the value of parameter α indicates

the strength of singularity of the pressure close to � = � 

∗. How-

ever, since taking the limit ε → 0 magnifies this singularity, the

value of α > 0 might be arbitrary small for sufficiently small ε.

An alternative approximation leading to a similar two-phase sys-

tem was considered first by Lions and Masmoudi [25] , and more

recently for the model of tumour growth [32] . The advantage of

approximation (6) considered here lies in the fact that for each ε
fixed, the solutions to the approximate system stay in the physi-

cal regime, i.e. ϱ≤ ϱ∗. This feature is especially important for the

numerical purposes, see for example [27] for further discussion on

this subject. 

System (1) is a generalization of the pressureless Euler system

with the maximal density constraint 

∂ t � + ∇ · (� v ) = 0 , (7a)

∂ t (� v ) + ∇ · (� v � v ) + ∇π = 0 , (7b)

0 ≤ � ≤ 1 (7c)

π(� − 1) = 0 , π ≥ 0 . (7d)

introduced originally by Bouchut et al. [8] , who also proposed the

first numerical scheme based on an approach developed earlier for

the pressureless systems, see for example [9] , and the projection

argument. The model was studied later on by Berthelin [3,4] by

passing to the limit in the so-called sticky-blocks dynamics, see

also [35] , and a very interesting recent paper [30] using the La-

grangian approach for the monotone rearrangement of the solution

to prove the existence of solutions to (7) with additional memory

effects. 

The pressureless Euler equations with the density constraint

were originally introduced in order to describe the motion of parti-

cles of finite size. Our model extends this concept by including the

variance of the size of particles. In system (1) ϱ∗ is given initially

and is transported along with the flow. 

One can also think of ϱ∗ as a congestion preference of individ-

uals moving in the crowd (cars, pedestrians), which is one of the

factors determining their final trajectory and the speed of motion.

The macroscopic modeling of crowd is one of possible approaches

and it allows to determine the averaged quantities such as the den-

sity and the mean velocity rather than the precise position of an

individual. One of the first models of this kind based on classical

mechanics was introduced by Henderson [22] . More sophisticated

model was introduced by Hughes [23] where the author considers
he continuity equation equipped with a phenomenological consti-

utive relation between the velocity and the density. For a survey

f the crowd models we refer the reader to [1,11,24,28,33] and to

he review paper [2] . 

As far as the numerical methods are concerned, the macro-

copic models of pedestrian flow with condition preventing the

vercrowding were studied, for example in [34] . The influence of

he maximal density constraint was investigated also in the con-

ext of vehicular traffic in [5,7] . The strategy that we want to adapt

n this paper, i.e. to use the singularities of the pressure similar to

6) has been developed in the past for a number of Euler-like sys-

ems for the traffic models [5–7] , collective dynamics [13,14] , or

ranular flow [26,29] . In our previous work [15] , we have drafted

he numerical scheme for system (1) in the one-dimensional case.

e used a splitting algorithm at each time step that consists of

hree sub-steps. At first, the hyperbolic part is solved with the AP-

reserving method presented in [14] . Next the diffusion is solved

y means of cell-centered finite volume scheme, and the transport

f the congested density is resolved with the upwind scheme. 

The extension of this method to two-dimensions is one of the

ain results of the present paper. We also propose an alternative

cheme using different formulation in terms of the conservative

ariables : the density ϱ, the momentum q = � v , and the density

raction Z = 

� 
� ∗ : 

 t � + ∇ · q = 0 , (8a)

 t q + ∇ ·
(

q � q 

� 

+ πε (Z) I + p(Z) I 

)
= 0 , (8b)

 t Z + ∇ ·
(

Z 
q 

� 

)
= 0 , (8c)

ith the initial data 

(0 , x ) = � 0 (x ) , q (0 , x ) = q 0 (x ) , Z(0 , x ) = Z 0 (x ) , (8d)

here Z 0 = 

� 0 
� ∗

0 
, and q 0 = � 0 v 0 . I denotes the identity tensor. This is

 stricly hyperbolic system whose wave speeds in the x 1 -direction

re given by: 

ε 
1 (�, q 1 , Z ) = 

q 1 
� 

−
√ 

Z 

� 

p ′ ε (Z ) , 

ε 
2 (�, q 1 , Z) = 

q 1 
� 

, 

ε 
3 (�, q 1 , Z ) = 

q 1 
� 

+ 

√ 

Z 

� 

p ′ ε (Z ) , 

(9)

here p ε = p + πε , and q 1 denotes the component of q in the x 1 
irection. Consequently, in region where the density ϱ is closely

ongested, i.e. Z is close to 1, the characteristic speeds of the sys-

em are extremely large. This corresponds to the nearly incom-

ressible dynamics. 

The paper is organized as follows. In Section 2 we present our

umerical schemes using the two formulations (1) and (8). They

re referred to as ( ϱ, q )-method/SL and ( ϱ, q , Z )-method, respec-

ively. In Section 2.1 we describe the first-order semi-discretization

n time and the full discretization for the ( ϱ, q , Z )-method. Then,

n Section 2.2 , we discuss the second order scheme for the ( ϱ, q ,

 )-method. At last, in Section 2.3 we present the ( ϱ, q )-method/SL

or the system written in terms of the physical variables (1).

ection 3 is devoted to validation of the schemes on the Riemann

roblem whose solutions are described in Appendix A . Finally, in

ection 4 we discuss the two-dimensional numerical results: in

ection 4.1 we present how these schemes work for three different

nitial congestion densities, and in Section 4.2 we present an appli-

ation of ( ϱ, q )-method/SL to model crowd behavior in the evacua-

ion scenario. 
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. Numerical schemes 

In this section, we first introduce a numerical scheme based on

ystem (8) using the conservative variables. In order to use large

ime steps not restricted by too drastic CFL condition, implicit–

xplicit (IMEX) type methods need to be designed. The scheme can

e solved through the following steps: first an elliptic equation on

he density fraction Z is solved, and then we update q and ϱ, re-

pectively. 

Such scheme is compared with an extension of the method in-

roduced in [15] , where the congestion density is advected sepa-

ately from the update of ϱ and q . For the sake of completeness, a

escription of the scheme is given in Section 2.3 . 

Note that the scheme is unable to deal with vacuum. In what

ollows we require that ϱ0 > 0 (vacuum is not allowed in the ini-

ial data). However, the effect of the background pressure (3) is to

mear out the vacuum regions. 

.1. The first order ( ϱ, q , Z )-method 

iscretization in time. We adopt the previous work [14] to intro-

uce a method treating implicitly the stiff congestion pressure

ε( Z ). We consider a constant time step 
t > 0 and ϱn , q n , Z n ,
∗ n denote the approximate solution at time t n = n 
t, ∀ n ∈ N . We

hus consider the following semi-implicit time discretization: 

� 

n +1 − � 

n 


t 
+ ∇ x · q 

n +1 = 0 , (10a) 

q 

n +1 − q 

n 


t 
+ ∇ x ·

(
q 

n 
� q 

n 

� 

n 
+ p(Z n ) I 

)
+ ∇ x (πε (Z n +1 )) = 0 , 

(10b) 

Z n +1 − Z n 


t 
+ ∇ x ·

(
Z n 

q 

n +1 

� 

n 

)
= 0 . (10c) 

Note that in the flux term in Eq. (10c) , the momentum is taken

mplicitly. Inserting (10b) into (10c) , we obtain: 

Z n +1 − Z n 


t 
+ ∇ x ·

(
Z n 

q 

n 

� 

n 

)
− 
t ∇ x ·

(
Z n 

� 

n 
∇ x ·

(
q 

n 
� q 

n 

� 

n 
+ p(Z n ) I 

)
+ 

Z n 

� 

n 
∇ x (πε (Z n +1 )) 

)
= 0

his is an elliptic equation on the unknown Z n +1 , that can be writ-

en as: 

 

n +1 − 
t 2 ∇ x ·
(

Z n 

� 

n 
∇ x 

(
πε (Z n +1 ) 

))
= φ(� 

n , q n , Z n ) , (11)

here 

(� 

n , q n , Z n ) 

= Z n + 
t 2 ∇ x ·
(

Z n 

� 

n 
∇ x ·

(
q 

n 
� q 

n 

� 

n 
+ p(Z n ) I 

))
−
t ∇ x ·

(
Z n 

q 

n 

� 

n 

)
he n -th time step of the scheme is decomposed into three

arts: first get Z n +1 when solving (11) , then compute q n +1 using

10b) and then � 

n +1 from (10a) . 

iscretization in space. We only derive the fully discrete scheme in

he one-dimensional case; the two-dimensional formula are given

n Appendix B . We consider the computational domain [0, 1] and

 spatial space step 
x = 1 /N x > 0 , with N x ∈ N : the mesh points

re thus x i = i 
x, ∀ i ∈ { 0 , . . . , N x } . Let � 

n 
i 
, q n 

i 
, Z n 

i 
, � 

∗ n 
i 

denote the

pproximate solution at time t n on mesh cell [ x i , x i +1 ] . The spatial

iscretization have to capture correctly the entropic solutions of

he hyperbolic system. To derive the fully discrete scheme, we thus

ake the same algebra on the following fully discrete system: 
� 

n +1 
i 

− � 

n 
i 


t 
+ 

1 


x 
(F n +1 

i + 1 2 

− F n +1 

i − 1 
2 

) = 0 , (12a) 

q n +1 
i 

− q n 
i 


t 
+ 

1 


x 
(G 

n 
i + 1 2 

− G 

n 
i − 1 

2 

) + 

πε (Z n +1 
i +1 

) − πε (Z n +1 
i −1 

) 

2
x 
= 0 , (12b) 

Z n +1 
i 

− Z n 
i 


t 
+ 

1 


x 
(H 

n +1 

i + 1 2 

− H 

n +1 

i − 1 
2 

) = 0 . (12c) 

here the stiff pressure is discretized by the centered finite differ-

nce and the numerical fluxes F n +1 , G 

n , H 

n +1 (we denote implicit–

xplicit fluxes by current timestep n + 1 and fully explicit fluxes

y previous timestep n ) are splitted into centered part and the up-

inded part: 

 

n +1 

i + 1 2 

= 

1 

2 

(
q n +1 

i +1 
+ q n +1 

i 

)
− (D � ) 

n 
i + 1 2 

, (13) 

 

n 
i + 1 2 

= 

1 

2 

( (q n 
i +1 

) 2 

� 

n 
i +1 

+ 

(q n 
i 
) 2 

� 

n 
i 

+ p(Z n i +1 ) + p(Z n i ) 
)

− (D q ) 
n 
i + 1 2 

, (14) 

 

n +1 

i + 1 2 

= 

1 

2 

( Z n 
i +1 

� 

n 
i +1 

q n +1 
i +1 

+ 

Z n 
i 

� 

n 
i 

q n +1 
i 

)
− (D Z ) 

n 
i + 1 2 

. (15) 

he upwinded parts are given explicitly. They can be given by the

iagonal Rusanov (or local Lax–Friedrichs) upwindings: 

(D w 

) n 
i + 1 2 

= 

1 

2 

c n 
i + 1 2 

(
w 

n 
i +1 − w 

n 
i 

)
, (16)

or any conserved quantities w , where c n 
i + 1 

2 

is the maximal charac-

eristic speed (in absolute value): 

 

n 
i + 1 2 

= max 
{∣∣λ0 

k 

(
� 

n 
i +1 , q 

n 
i +1 , Z 

n 
i +1 

)∣∣, ∣∣λ0 
k 

(
� 

n 
i , q 

n 
i , Z 

n 
i 

)∣∣, k = 1 , 2 , 3 

}
, 

(17) 

here λ0 
k 

are given by Eq. (9) with ε = 0 (no congestion pres-

ure). These correspond to the eigenvalues of the hyperbolic sys-

em taken explicitly in (10). One could also consider less diffusive

umerical fluxes like the Polynomial upwind scheme [17] . 

Like in the semi-discrete case, we now obtain the fully discrete

lliptic equation on Z by replacing the implicit momentum terms

ppearing in the flux H (15) by their expressions given by the mo-

entum equation (12b) . We get: 

 

n +1 
i 

− Z n i + 


t 


x 

(
H̄ 

n 
i +1 / 2 − H̄ 

n 
i −1 / 2 

)
− 
t 2 


x 2 
1 

2 

(
Z n 

i +1 

� 

n 
i +1 

(
G 

n 
i + 3 2 

− G 

n 
i + 1 2 

)
− Z n 

i −1 

� 

n 
i −1 

(
G 

n 
i − 1 

2 

− G 

n 
i − 3 

2 

))
− 
t 2 


x 2 
1 

2 

(
Z n 

i +1 

� 

n 
i +1 

(
πε 

(
Z n +1 

i +2 

)
− πε 

(
Z n +1 

i 

))
− Z n 

i −1 

� 

n 
i −1 

(
πε 

(
Z n +1 

i 

)
− πε 

(
Z n +1 

i −2 

)))
= 0 , 

here H̄ 

n denotes the same expression as (15) where all quantities

re taken explicitly: 

¯
 

n 
i + 1 2 

= 

1 

2 

(
Z n 

i +1 

� 

n 
i +1 

q n i +1 + 

Z n 
i 

� 

n 
i 

q n i 

)
− (D Z ) 

n 
i + 1 2 

. 

s explained in the introduction the main advantage of approxi-

ating the system (1) by (5) with the singular pressure (6) is that

t allows to keep the physical constraint Z ≤ 1 on each level of ap-

roximation. In fact, for ε > 0 fixed, our numerical scheme provides

hat Z < 1 in the whole domain. For this to hold, we solve first this

lliptic equation with respect to the congestion pressure variable

ε: 
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Fig. 1. Approximate solution to Riemann problem (25) at time t = 0 . 1 . Numerical parameters: 
x = 1 × 10 −3 , 
t = 0 . 1 
x, α = 2 , γ = 2 , ε = 10 −2 . 
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Z n +1 
i 

((πε ) 
n +1 
i 

) − 
t 2 


x 2 
1 

2 

( Z n 
i +1 

� 

n 
i +1 

[
(πε ) 

n +1 
i +2 

− (πε ) 
n +1 
i 

]
− Z n 

i −1 

� 

n 
i −1 

[
(πε ) 

n +1 
i 

− (πε ) 
n +1 
i −2 

])
= φ(� 

n , q n , Z n ) i , (18)

where the right-hand side is given by: 

φ( � 

n , q n , Z n ) i = Z n i − 
t 


x 

(
H̄ 

n 
i +1 / 2 − H̄ 

n 
i −1 / 2 

)
+ 


t 2 


x 2 
1 

2 

(
Z n 

i +1 

� 

n 
i +1 

(
G 

n 
i + 3 2 

− G 

n 
i + 1 2 

)
− Z n 

i −1 

� 

n 
i −1 

(
G 

n 
i − 1 

2 

− G 

n 
i − 3 

2 

))
. (19)

This equation is supplemented by periodic or Dirichlet boundary

conditions. After solving the equation for πε , we take Z(πε ) =
(πε /ε) 1 /α

1+(πε /ε) 1 /α
as the inverse function of πε( Z ), the non-linear equa-

tion is solved using the Newton iterations. 

The (n + 1) -th time step of the algorithm thus consists in get-

ting Z n +1 by solving (18) and (19) and then obtaining q n +1 from

(12b) and � 

n +1 from (12a) . 

Stability. Since the singular pressure πε is treated implicitly, the

scheme remains stable even for small ε. The stability condition

only depends on the wave speeds of the explicit part of the

scheme, that is under the Courant–Friedrichs–Levy (CFL) condition:
t � 


x 

max 
j=1 , 2 , 3 ; x ∈ [0 , 1] ,t∈ [0 ,T ] 

{| λ0 
j 
(x, t) | } , (20)

here λ0 
j 
, given by Eq. (9) , denotes the eigenvalues of the hyper-

olic system with no congestion pressure ( ε = 0 ). The scheme is

symptotically stable with respect to ε. 

iscrete energy. Like in the viscous version of system ((5) and (6))

see [15] ), an energy is conserved in time. Due to the numerical

issipation, our scheme does not preserve the energy at the dis-

rete level even for smooth solutions. However, we can point out

hat, on discontinuous solutions, the local Lax–Friedrichs scheme

elects a viscosity solution of the system with a decreasing energy.

.2. The second order ( ϱ, q , Z )-method 

iscretization in time. The second-order discretization in time is

ased on the combined Runge–Kutta 2/Crank–Nicolson (RK2CN)

ethod as described in [12] : it consists of replacing Euler explicit

y Runge–Kutta 2 solver and Euler Implicit by Crank–Nicolson

olver in semi-discretization (10). Note that the second order con-

ergence in time follows from the theory of partitioned Runge–

utta methods. Both methods are of second order and so called
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Fig. 2. Approximate momentum q to Riemann problem (25) at time t = 0 . 1 and comparison with the exact solution. Numerical parameters: 
x = 1 × 10 −3 , 
t = 0 . 1 
x, 

α = 2 , γ = 2 , ε = 10 −2 . 
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2 
oupling conditions are satisfied. We here only detail the semi-

iscretized scheme. However, to be unambiguous, we will denote

y D � , D q , and D Z the numerical diffusion terms resulting from

he upwinding terms and the divergence operators will be replaced

y centered fluxes. We thus consider the following scheme: 

First step (half time step): get � 

n +1 / 2 , q n +1 / 2 and Z n +1 / 2 from 

� 

n +1 / 2 − � 

n 


t/ 2 

+ ∇ x · q 

n +1 / 2 − D 

n 
� = 0 , (21a) 

q 

n +1 / 2 − q 

n 


t/ 2 

+ ∇ x ·
(

q 

n 
� q 

n 

� 

n 
+ p(Z n ) I 

)
−D 

n 
q + ∇ x (πε (Z n +1 / 2 )) = 0 , 

(21b) 

Z n +1 / 2 − Z n 


t/ 2 

+ ∇ x ·
(

Z n 

� 

n 
q 

n +1 / 2 

)
− D 

n 
Z = 0 . (21c) 

Second step (full time step): get � 

n +1 , q n +1 and Z n +1 from 

� 

n +1 − � 

n 


t 
+ ∇ x ·

(
q 

n +1 + q 

n 

2 

)
− D 

n 
� = 0 , (22a) 

q 

n +1 − q 

n 


t 
+ ∇ x ·

(
q 

n +1 / 2 
� q 

n +1 / 2 

� 

n +1 / 2 
+ p(Z n +1 / 2 ) I 

)
− D 

n +1 / 2 
q 
+ ∇ x 

(
πε (Z n ) + πε (Z n +1 ) 

2 

)
= 0 , (22b) 

Z n +1 − Z n 


t 
+ ∇ x ·

(
Z n +1 / 2 

� 

n +1 / 2 

q 

n +1 + q 

n 

2 

)
− D 

n 
Z = 0 . (22c) 

Like in the first-oder scheme, Eqs. (21b) –(21c) and (22b) –(22c)

esult in elliptic equations for πε . Solving this equation and invert-

ng the function πε = πε (Z) allows to find Z satisfying the restric-

ion Z < 1. In practice, the scheme may fail capturing discontinu-

ties, in particular when small values of ε are concerned. Indeed,

he semi-implicit pressure 
(
πε (Z n ) + πε (Z n +1 ) 

)
/ 2 in (22b) is con-

trained to be larger than πε( Z n )/2 preventing from having large

iscontinuities in pressure. One way to overcome this difficulty is

o dynamically replace this semi-implicit pressure by an implicit

ressure πε (Z n +1 ) as soon as the non-linear solver of the elliptic

quation detects a pressure lower than half the explicit one. 

iscretization in space. To get second order accuracy in space, we

onsider a MUSCL strategy. For any conserved quantity w , it con-

ists in introducing at each mesh interface left and right values w L 

nd w R : 

 i,L = w i + 

1 

minmod ( w i − w i −1 , w i +1 − w i ) , 
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Fig. 3. Approximate solution to Riemann problem (25) at time t = 0 . 1 . Numerical parameters: 
x = 1 × 10 −3 , 
t = 0 . 1 
x, α = 2 , γ = 2 , ε = 10 −4 . 
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1 

2 

minmod ( w i − w i −1 , w i +1 − w i ) , 

where the minmod function is defined as: 

minmod (a, b) = 0 . 5 ( sgn (a ) + sgn (b)) min (| a | , | b| ) . 
Then all explicit terms in fluxes (13) –(15) depend on

(� 

n 
i,R 

, q n 
i,R 

, Z n 
i,R 

) and (� 

n 
i +1 ,L 

, q n 
i +1 ,L 

, Z n 
i +1 ,L 

) instead of (� 

n 
i 
, q n 

i 
, Z n 

i 
)

and (� 

n 
i +1 

, q n 
i +1 

, Z n 
i +1 

) . Implicit terms are unchanged in order to be

able to get the elliptic equation. 

2.3. Congested Euler/semi-Lagrangian scheme (( ϱ, q )-method/SL) 

Discretization in time. We consider a scheme based on the non-

conservative form (1) of the congestion transport. This idea was

proposed in [14] in the context of constant congestion and in

[15] in the context of variable congestion. The time-discretization

reads: 

� 

n +1 − � 

n 


t 
+ ∇ x · q 

n +1 = 0 , (23a)

q 

n +1 − q 

n 


t 
+ ∇ x ·

(
q 

n 
� q 

n 

� 

n 
+ p 

(
� 

n 

� 

∗n 

)
I 

)
+ ∇ x πε 

(
� 

n +1 

� 

∗n 

)
= 0 , 

(23b)
 t  
� 

∗n +1 − � 

∗n 


t 
+ 

q 

n +1 

� 

n +1 
· ∇ x � 

∗n = 0 . (23c)

Inserting (23b) into (23a) results in 

 

n +1 − 
t 2 
x 

(
πε (� 

n +1 /� 

∗ n ) 
)

= � 

n − 
t∇ x · q 

n + 
t 2 ∇ x · ∇ x ·
(

q 

n 
� q 

n 

� 

n 
+ p(� 

n /� 

∗ n ) I 

)
. 

(24)

his is an elliptic equation on the density � 

n +1 . The n -th time step

f the scheme is decomposed into three parts: first get � 

n +1 when

olving (24) , then compute q n +1 using (23b) and then � 

∗n +1 from

23c) . 

iscretization in space. Like for the previous schemes, we re-

trict the description to the one-dimensional case. Finite volume

iscretization is used for the spatial discretization of (23a) and

23b) as in Section 2.1 , see also [14] . A semi-Lagrangian method

s used to solve (23c) and thus update the congestion density ϱ∗.

he congestion density � 

∗n +1 
i 

at node x i and time t n +1 is computed

s follows: first we integrate back the characteristic line over one

ime step and then we interpolate the maximal density ϱ∗n at that
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Fig. 4. Reference solution at initial time (left) and time t = 0 . 05 (right). Numerical parameters: 
x = 5 × 10 −5 , 
t = 0 . 1 
x, γ = 2 , ε = 10 −2 . 

Fig. 5. L 1 errors for ϱ, q, Z and ϱ∗ as function of 
x . Numerical parameters: 
t = 5 × 10 −6 for first order scheme and 
t = 0 . 1 
x for second order scheme, γ = 2 , ε = 10 −2 . 

( ϱ, q , Z )-method: ( k -xt) k -th order in space and time. ( ϱ, q )-method/SL: ( k -xt)( m -x/ n -t) k -th order in space and time for the ( ϱ, q )-method and m -th order in space and n -th 

order in time for the advection of ϱ∗ by the semi-Lagrangian scheme. In dashed lines: first and second order curves. 
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oint. Using Euler scheme for the first step, we obtain: 

 

∗n +1 
i 

= [ �� 

∗n ] (x i − q i /� i 
t) 

here �ϱ∗n is an interpolation function built from the points

(x i , � 

∗n 
i 

) . We here perform a Lagrange interpolation on the 2 r + 2

eighboring points: 

�� 

∗] | [ x i ,x i +1 ] 
= �Lagrange 

(
(x j , � 

∗
j ) , i − r + 1 ≤ j ≤ i + r 

)
. 

esulting in 2 r + 1 -th spatial accuracy. First (r = 0) and third (r =
) order in space semi-Lagrangian scheme will be used. For more

etails, we refer to [18] . 

he second order scheme. Extension of the full scheme to second

rder accuracy in space is made using the MUSCL strategy for the

nite volume fluxes. Extension to second order accuracy in time

equires a Crank–Nicolson/Runge Kutta 2 method for ( ϱ, q ) and

 second order in time integration of the characteric line for the

emi-Lagrangian scheme (with for instance Taylor expansion) com-

ined to a Strang splitting, see Appendix C . 
. One dimensional validation of the schemes 

.1. Riemann test-case 

We compare the numerical schemes on one-dimensional Rie-

ann test-cases: the initial data is a discontinuity between two

onstant states and the solutions are given by the superposition of

aves separating constant states. In Appendix A , we give the form

f these solutions with respect to the relative position of left and

ight states in the phase space. In the case of colliding states, ex-

licit solutions can be numerically obtained. We thus consider the

ollowing Riemann test-case: 

(� 0 (x ) , q 0 (x ) , � 

∗
0 (x )) = 

{
(�  , q  , � 

∗
 ) = (0 . 7 , 0 . 8 , 1 . 2) , if x � 0 . 5 ,

(� r , q r , � 

∗
r ) = (0 . 7 , −0 . 8 , 1) , if x > 0 . 5 .

(25) 

n the domain [0, 1]. The solution is made of two shock waves and

n intermediate contact wave, see (A.5) . The CFL condition (20) can
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Fig. 6. Case 1: the comparison of ( ϱ, q , Z )-method (top) and ( ϱ, q )-method/SL (bottom) at time 0.025 (left), and 0.150 (right). 
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be estimated by: 


t � 


x 

max 
x ∈ [0 , 1] ,t∈ [0 ,T ] 

| v (x, t) | + 

√ 

γ / min � 

∗(x, t) 
. 

For the current Riemann test-case with γ = 2 and α = 2 , the time

step should satisfy 
t ≤ 0.4 
x . 

Comparison of the schemes ( ε = 10 −2 ). In Fig. 1 , we represent the

solution at time t = 0 . 1 with the different schemes using 
t =
0 . 1
x . The ( ϱ, q , Z )-method refers to the method introduced in

Section 2.1 for the first order and in Section 2.2 for the second or-

der scheme. The ( ϱ, q )-method/SL refers to the method described

in Section 2.3 . For the latter scheme, we use the third order semi-

Lagrangian scheme for the transport of the congestion density ϱ∗. 

We observe that all the methods correctly capture the exact so-

lution. The ( ϱ, q )-method/SL better captures the contact disconti-

nuity at x ≈ 0.487 since we use a third order accurate scheme for

the transport of ϱ∗. Limiters could be used to avoid overshoot and

undershoot at this location. 

Oscillations in momentum are brought forth at the discontinu-

ity interface of the shock waves. These oscillations are larger for
econd order schemes due to dispersion effects. In Fig. 2 , we pro-

ide a zoom on these oscillations and compare the approximate

olution to the exact one. The amplitudes of the oscillations are

arger for the ( ϱ, q )-method/SL method. This may be the counter-

art of the decoupling of the variables ( ϱ, q ) and ϱ∗: in the com-

utation of the implicit pressure (see Eq. (24) , left-hand side), ϱ
nd ϱ∗ are not taken at the same time. We finally note that, when

unning the simulation on large time, these oscillations do not in-

rease in magnitude nor in support: this is related to some L 2 sta-

ility of the scheme. 

tiff pressure ( ε = 10 −4 ). With this value of ε, the intermedi-

te congested state has maximal wave speed equal to λmax ≈ 22.

ence, taking time step 
t equal to 0.1 
x does not ensure the

esolution of the fast waves. 

Fig. 3 shows the solution at time t = 0 . 1 using the ( ϱ, q , Z )-

ethod with second order in space accuracy. In the full second or-

er scheme, the scheme switches automatically to a first order in

ime version of the scheme due to the large discontinuities in pres-

ure, see Section 2.2 . We observe that the waves are well captured.

s previously, oscillations in momentum develop at schock discon-
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Fig. 7. Case 2: the comparison of ( ϱ, q , Z )-method (top) and ( ϱ, q )-method/SL (bottom) at time 0.025 (left), and 0.150 (right). 

Table 1 

L 1 error between the numerical solutions to Riemann problem (25) and exact solution at 

time t = 0 . 1 . Numercial solution computed using the ( ϱ, q , Z )-method. Numerical parame- 

ters: 
x = 1 × 10 −3 , 
t = 0 . 1 
x, α = 2 , γ = 2 . 

ϱ q Z ϱ∗

ε = 10 −2 Order 2 in x 8 . 66 × 10 −4 1 . 28 × 10 −3 3 . 03 × 10 −4 5 . 70 × 10 −4 

Order 2 1 . 17 × 10 −3 3 . 52 × 10 −3 5 . 89 × 10 −4 5 . 77 × 10 −4 

ε = 10 −4 Order 2 in x 9 . 75 × 10 −4 2 . 11 × 10 −3 3 . 70 × 10 −4 5 . 71 × 10 −4 

Order 2 9 . 89 × 10 −4 3 . 04 × 10 −3 3 . 84 × 10 −4 5 . 77 × 10 −4 

t  

t  

L  

t  

d  

t

3

�

�

o  

p  

d  




 

t  

g

inuities and we observe that the second order in time version of

he scheme leads to large uppershoots. In Table 1 , we report the

 1 error between numerical and exact solution: we point out that

he numerical errors are of the same order of magnitude indepen-

antly of the value of ε. Quite similar results are obtained using

he ( ϱ, q )-method/SL. 

.2. Numerical convergence test-case 

We here consider the following smooth initial data: 

 0 (x ) = 0 . 6 + 0 . 2 exp 

(
− (x − 0 . 5) 2 / 0 . 01 

)
, 
q 0 (x ) = exp 

(
− (x − 0 . 5) 2 / 0 . 01 

)
, 

 

∗
0 (x ) = 1 . 2 + 0 . 2 

(
1 − cos 

(
8 π(x − 0 . 5) 

))
, 

n the domain [0, 1] and perdiodic boundary conditions. We com-

ute a reference solution at time t = 0 . 05 using the second or-

er in space ( ϱ, q, Z )-method with small space and time steps

x = 5 × 10 −5 and 
t = 0 . 1 
x (see Fig. 4 ). 

Fig. 5 shows the L 1 errors between approximate solutions and

he reference solution at time t = 0 . 05 when the space step 
x

oes to 0. For first order scheme, time step is set to 
t = 5 × 10 −6 
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Fig. 8. Case 3: the comparison of ( ϱ, q , Z )-method (top) and ( ϱ, q )-method/SL (bottom) at time 0.025 (left), and 0.150 (right). 
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while for second order schemes, time and space steps satisfy the

relation 
t = 0 . 1 
x and both are varying. 

We observe that all the schemes exhibit their expected con-

vergence rates. We point out that ( ϱ, q , Z )-method and ( ϱ, q )-

method/SL have the same level of numerical errors except for vari-

able ϱ∗: ϱ∗ is better resolved with ( ϱ, q )-method/SL. This is all the

more the case when using the third order semi-Lagrangian scheme

(on the right two plots of Fig. 5 ). 

4. Two-dimensional numerical results 

In this section we present the results of the numerical simula-

tions in two-dimensions. As for domain we take the unit square

with the mesh size 
x = 10 −3 and the time-step 
t = 10 −4 . In

the following we choose singular pressure (6) with the parameters

ε = 10 −4 , α = 2 , and the background pressure (3) with the expo-

nent γ = 2 , if not stated differently. 

First part is devoted to comparison of ( ϱ, q , Z )-method and ( ϱ,

q )-method/SL described in Section 2 . Second is an application of
 ϱ, q )-method/SL to the evacuation scenario. Third order in space

emi-Lagrangian scheme is applied. 

.1. Collision of 4 groups with variable congestion 

In the unit square periodic domain we specify 4 squares, with

he centers in points (x c , y c ) = { (0 . 2 , 0 . 5) , (0 . 5 , 0 . 2) , (0 . 5 , 0 . 8) ,

(0 . 8 , 0 . 5) } . The length of the side l of each square equals 0.2 (for

very square we introduce the notation Square(( x c , y c ), l )). We pre-

cribe the initial momentum of 0.5 pointing into the center of the

omain provoking a collision. We consider three test cases varying

n the initial congestion density, namely: 

Case 1: � 

∗(x, 0) = 1 . 0 ; 

Case 2: � 

∗(x, 0) = 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

0 . 80 if x ∈ Square ((0 . 2 , 0 . 5) , 0 . 2) 

1 . 20 if x ∈ Square ((0 . 5 , 0 . 2) , 0 . 2) 

0 . 80 if x ∈ Square ((0 . 8 , 0 . 5) , 0 . 2) 

1 . 20 if x ∈ Square ((0 . 5 , 0 . 8) , 0 . 2) 

1 . 00 otherwise 

; 

Case 3: � 

∗(x, 0) = 1 + 0 . 05( cos (10 πx ) + cos (24 πx ))( cos

(6 πy ) + cos (34 πy )) . 
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Fig. 9. Stop-and-go behavior for the evacuation scenario, with � ∗0 being constant, with linear slope in y -direction (29) , step-function (28) , and a random function. The 

congestion density (upper) the density (middle) and the velocity amplitude (bottom) at times t = 0 (left column) t = 0 . 5 (middle column), and t = 1 . 0 (right column). 
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The results of our simulations for these three cases are pre-

ented in Figs. 6–8 , subsequently and in the Movies c1.mp4,

2.mp4, and c3.mp4. We see that in case of constant congestion

ensity (Case 1, Fig. 6 , Movie c1.mp4) the two schemes provide

lmost identical outcome. The essential difference appears when
 

∗
0 

varies. We see in Fig. 7 (see also Movie c2.mp4) that the ini-

ial discontinuities of ϱ∗ are significantly smoothened by the ( ϱ, q ,

 )-method, while the ( ϱ, q )-method/SL preserves the initial shape,

hich basically confirms our observations from Section 3.2 . This is
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Fig. 10. The evacuation scenario for � ∗0 being constant, with linear slope in y -direction (29) , step-function (28) , and a random function. The figures present the values of the 

density ϱ, the direction momentum | q | and the direction and values of the velocity v at time t = 1 . 0 for different test cases. 
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t  
ven more visible in Fig. 8 (Movie c3.mp4), where the initial oscil-

ations of ϱ∗ rapidly decay when simulated by the ( ϱ, q , Z )-method.

Another interesting observation following from Figs. 7 , and

 (Movies c2.mp4, c3.mp4) when compared to Fig. 6 (Movie

1.mp4) is that the preference of the individuals ϱ∗ is significant

actor to determine the density distribution even far away from the

ongestion zone. 

Moreover, comparing Fig. 7 (Movie c2.mp4) with Fig. 6 (Movie

1.mp4), we see a clear influence of the density constraint on the

elocity of the agents. Indeed, for the Case 2, there is a signifi-

ant disproportion between the velocities in the x and y directions

t time t = 0 . 150 (see Fig. 7 right). This corresponds to the fact

hat the agents moving toward the center along y axis have ‘more

pace’ to fill since ϱ∗ for those groups is higher than the one for

he groups moving in the x direction. This results in a certain de-

ay between collisions in two directions. 

.2. Application to crowd dynamics 

In this section we investigate an influence of the variable den-

ity ϱ∗ on a possible evacuation scenario. For this, we consider

n impenetrable room in the shape of unit square, initially filled

ith uniformly distributed agents. There is an exit located at x ∈
0 . 4 , 0 . 6] , y = 0 that allows for free outflow. The initial density

 0 = 0 . 6 and the initial momentum is equal to 0 . The desire of go-

ng to the exit is introduced in the system (5)-(6) by adding the

elaxation term in the momentum equation 

 t q + ∇ ·
(

q � q 

� 

+ πε 

(
� 

� 

∗

)
I + p 

(
� 

� 

∗

)
I 

)
= 

1 

β
( q − � w ) , (26) 

here w is the desired velocity, and β stands for the re-

axation parameter. The desired velocity is given by a unit

ector field, that points into the center of the exit, w =
−x/ ((x −0 . 5) 2 + y 2 ) , −y/ ((x − 0 . 5) 2 +y 2 ) 

)
. 

In the numerical scheme we apply splitting of the momentum

quation between the transport and pressure part, and the relax-

tion (source) part, with the intermediate momentum q ∗. After the

omentum is updated, we perform implicit relaxation step, for

iven density � 

n +1 , 

q 

∗ − q 

n 


t 
+ ∇ x ·

(
q 

n 
� q 

n 

� 

n 
+ p 

(
� 

n 

� 

∗n 

)
I 

)
+ ∇ x · πε 

(
� 

n +1 

� 

∗n 

)
= 0 , 

(27a) 

q 

n +1 − q 

∗


t 
= 

1 

β

(
q 

n +1 − � 

n +1 w 

)
. (27b) 

We use the ( ϱ, q )-method/SL, which requires to solve the trans-

ort equation for ϱ∗. This is especially problematic in the corners

f the domain, where the Dirichlet boundary condition is consid-

red. This leads to oscillations of ϱ and ϱ∗ close to these points.

evertheless, we may observe, see Figs. 9 and 10 (see also Movies

xit.mp4 and top.mp4), the so called stop-and-go behavior, namely

istinct high velocity regions in the domain, one in the vicinity of

he exit and the second one that propagates in the direction oppo-

ite to flow. 

This reflects an empirical observation that once a pedestrian ar-

ives to the space of high congestion, he or she slows down or even

tops until some space opens up in front. This kind of stop-and-go

aves have been described, for example, by Helbing and Johans-

on in [21] . For the description of the real evacuation experiments

e refer to [20] , see also [19] . In the last of the mentioned pa-

ers the authors provide an experimental demonstration of the so

alled faster goes slower effect. This means that an increase in the

ensity of pedestrians does not necessarily lead to a larger flow

ate. Our simulations show that when the parameter ϱ∗ is low, the

utflow of the individuals is slower. This is especially visible in the
hird row of Figs. 9 and 10 presenting the evacuation scenario for

he initial barrier density in the shape of the step function 

 

∗
0 (x, y ) = 

{
1 . 1 for 0 . 5 < x < 1 , 

0 . 9 for 0 < x < 0 . 5 . 
(28) 

his observation can be also confirmed in terms of speed of evac-

ation. Indeed, we performed analogous simulations for 3 cases of

onstant � 

∗
0 

equal to 0.9, 1.0. 1.1 show that the speed of emptying

he room is bigger the bigger value of � 

∗
0 . To see this, we have

easured the mass remaining in the room at time t = 1 and it

s equal to 0.51030, 0.048037, and 0.457123, respectively. We have

oreover observed that evacuation speed of the room with indi-

iduals of the average congestion preference equal to 1 initially

an be improved by placing the individuals with higher � 

∗
0 

closer

o the exit. This is illustrated in the Figs. 9 and 10 the second row,

or which, the initial congestion preference � 

∗
0 

equals 

 

∗
0 (x, y ) = 1 . 1 − 0 . 2 y. (29) 

he random distribution of preferences of the individuals with ex-

ected value equal to 1, on the other hand, corresponds to the in-

rease of the evacuation time (see Figs. 9 and 10 the bottom row). 

. Conclusion 

In this paper, we are interested in the numerical simulation of

he Euler system with a singular pressure modeling variable con-

estion. As the stiffness of the pressure increases ( ε tends to 0),

he model tends to a free boundary transition between compress-

ble (non-congested) and incompressible (congested) dynamics. 

To numerically simulate the asymptotic dynamics, we propose

n asymptotic preserving scheme based on a conservative formula-

ion of the system and the methodology presented in [14] . We also

ropose a second order accuracy extension of the scheme follow-

ng [12] . We then study the one-dimensional solutions to Riemann

est-cases, their asymptotic limits and validate the code. We com-

are the results with those obtained with the scheme proposed in

15] . This latter scheme enables to better approximate the conges-

ion density (at the contact wave) as soon as we use high accu-

acy in the advection of the congestion density. On the other hand,

he former scheme seems to better preserve maximum principle

n that variable. On two-dimensional simulations, we finally show

he influence of this variable congestion density on the dynamics

nd show that the model exhibit stop-and-go behavior. 

The two schemes generate oscillations in momentum variable

t discontinuities between congested and non-congested domain.

his feature was already mentioned in [14] . This is all the more

he case for the second order accuracy schemes. Specific method

hould be designed to cure this artefact. Another direction of im-

rovement, that will be addressed in the future work, concerns the

reatment of the vacuum regions by the numerical scheme. 
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Fig. A.11. Intersection of the 1-integral/Hugoniot curve issued from the left state (�  , v  , Z  ) = (0 . 8 , 1 , 0 . 2) and the 3-integral/Hugoniot curve issued from the right state for 

ε = 10 −3 . The rarefaction curves are in dashed line and the shock curve in solid line. Left: the right state is given by (� r , v r , Z r ) = (0 . 8 , 0 , 0 . 4) and the intermediate state 

(v 0 m , Z 
0 
m ) is not a congested state. Right: the right state is given by (� r , v r , Z r ) = (0 . 8 , −2 , 0 . 4) and the intersection point is very closed to the congested line Z = 1 . 
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Appendix A. Solution to the Riemann problem 

The one-dimensional Riemann problem for the system (8) is the

following initial-value problem: 

∂ t � + ∂ x q = 0 , (A.1a)

∂ t q + ∂ x 

(
q 2 

� 

+ p ε (Z) 

)
= 0 , (A.1b)

∂ t Z + ∂ x 

(
Z 

q 

� 

)
= 0 , (A.1c)

where p ε (Z) = πε (Z) + p(Z) , and 

(�, q, Z)(0 , x ) = 

{
(�  , q  , Z  ) for x < 0 , 

( � r , q r , Z r ) for x > 0 . 
(A.2)

The purpose of this section is to find possible weak solution to

(A .1) and (A .2) . We will also consider the limit of these solutions

as ε → 0. 

As already mentioned in the introduction, the system (A.1) is

strictly hyperbolic provided p ′ ε (Z) > 0 , see (9) . The associated char-

acteristic fields are given by: 

r ε 1 (�, q, Z) = 

⎡ ⎢ ⎣ 

1 

v −
√ 

Z 

� 

p ′ ε (Z) 

Z/� 

⎤ ⎥ ⎦ 

, 

r ε 2 (�, q, Z) = 

[ 

1 

v 
0 

] 

, r ε 3 (�, q, Z) = 

⎡ ⎢ ⎣ 

1 

v + 

√ 

Z 

� 

p ′ ε (Z) 

Z/� 

⎤ ⎥ ⎦ 

, 

where v = q/� is the velocity. The second characteristic field is lin-

early degenerate (since ∇λ2 · r 2 = 0 ). The two others characteristic

field are genuinely non-linear. 

We now present the elementary wave solutions of the Riemann

problem. 
1. Elementary waves 

hock discontinuities. A shock wave is a discontinuity between two

onstant states, ( ϱ, q, Z ) and ( ̂  � , ̂  q , ̂  Z ) , traveling at a constant speed

. We now fix the left (or right) state ( ̂  � , ̂  q , ̂  Z ) and look for all

riples ( ϱ, q, Z ) that can be connected to ( ̂  � , ̂  q , ̂  Z ) by the shock dis-

ontinuity. Across the shock, Rankine–Hugoniot conditions must be

atisfied meaning that: 

 q ] = σ [ �] , 

[
q 2 

� 

+ p ε (Z) 

]
= σ [ q ] , 

[
Z 

q 

� 

]
= σ [ Z] , 

here [ a ] := a − ˆ a denotes the jump of quantity a . Treating ϱ as a

arameter, we check that the two admissible states are of the form

 ϱ, q h , ± ( ϱ), Z ( ϱ)) with q h, ± = � v h, ±(� ) and 

 h, ±(�) = 

ˆ v ± sign (Z(�) − ˆ Z ) 
1 √ 

ˆ � � 

√ 

(� − ˆ � ) 

(
p ε 

(
ˆ Z � 

ˆ � 

)
− p ε ( ̂  Z ) 

)
(�) = 

ˆ Z 
� 

ˆ � 

. 

he shock speed therefore equals: 

± = 

ˆ v ± sign (Z − ˆ Z ) 

√ 

� 

ˆ � 

√ 

p ε ( ̂  Z �/ ̂  � ) − p ε ( ̂  Z ) 

( � − ˆ � ) 
. 

hese solutions can also be expressed as functions of Z : 

(Z) = Z 
ˆ � 

ˆ Z 
, 

 h, ±(Z) = 

ˆ v ± sign (Z − ˆ Z ) 
1 √ 

ˆ � 

√ (
1 −

ˆ Z 

Z 

)(
p ε (Z) − p ε ( ̂  Z ) 

)
. 

ote that the maximal density ( � 

∗ = �/Z) does not jump across a

hock discontinuity. Expanding ( ϱ( Z ), q h , ± ( Z ), Z ) around Z = 

ˆ Z , we

btain 

�(Z) − ˆ � = (Z − ˆ Z ) 
ˆ � 

ˆ Z 
, 

(Z) v h, ±(Z) − ˆ � ̂

 v = (Z − ˆ Z ) 
ˆ � 

ˆ Z 
ˆ v 

± Z 
ˆ � 

ˆ Z 
sign (Z − ˆ Z ) 

√ 

1 

ˆ � 

√ 

(1 − ˆ Z /Z)(p ε (Z) − p ε ( ̂Z

http://dx.doi.org/10.13039/501100004569
http://dx.doi.org/10.13039/501100000761
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(2  

proposition. 
≈ (Z − ˆ Z ) 
ˆ � 

ˆ Z 
ˆ v 

± Z 
ˆ � 

ˆ Z 
sign (Z − ˆ Z ) 

√ 

1 

ˆ � Z 

√ 

p ′ ε ( ̂  Z ) (Z − ˆ Z ) 
2 

≈ (Z − ˆ Z ) 
ˆ � 

ˆ Z 

( 

ˆ v ±
√ 

ˆ Z 

ˆ � 

√ 

p ′ ε ( ̂  Z ) 

) 

, 

Z − ˆ Z = (Z − ˆ Z ) 
ˆ � 

ˆ Z 

ˆ Z 

ˆ � 

. 

ote that (�(Z) , q h, −(Z) , Z) is tangent at ( ̂  � , ̂  q , ̂  Z ) to r 1 ( ̂  � , ̂  q , ̂  Z ) ,

herefore v h, − corresponds to the 1-characteristic field, analogously

 h, + corresponds to the 3-characteristic field. The graph of Z �→
 h, −(Z) (resp. Z �→ v h, + (Z) ) is called the 1-Hugoniot curve (resp. 3-

ugoniot curve) issued from ( ̂ v , ̂  Z ) . 

To check the admissibility of the discontinuity, we need to

heck the entropy condition. If ( ̂ v , ̂  Z ) is the left state, the right

tates that can be connected to it by an entropic shock wave are

hose located on the 1-shock curve 
{(

v h, −(Z ) , Z 
)

: Z > 

ˆ Z 
}

or the

-shock curve 
{
(v h, + (Z ) , Z ) : Z < 

ˆ Z 
}

. Indeed, on these curves the

ssociated eigenvalue is decreasing. If on the other hand, ( ̂ v , ̂  Z )

s the right state, the left states that can be connected to it by

n entropic shock wave are those located on the 1-shock curve

(v h, −(Z ) , Z ) : Z < 

ˆ Z 
}

or the 3-shock curve 
{
(v h, + (Z ) , Z ) : Z > 

ˆ Z 
}

. 

ndeed, on these curves the associated eigenvalue is increasing. 

arefaction waves. The rarefaction waves are continuous self-

imilar solutions, (�(t, x ) , q (t, x ) , Z(t, x )) = (�(x/t) , q (x/t) , Z(x/t)) ,

onnecting two constant states ( ϱ, q, Z ) and ( ̂  � , ̂  q , ̂  Z ) . They thus sat-

sfy the following differential equations: 

 

′ (s ) = 1 , q ′ (s ) = 

˜ v (s ) ±
√ 

Z(s ) 

�(s ) 
p ′ ε (Z(s )) , Z ′ (s ) = Z(s ) /�(s ) , 

(A.3) 

enoting q (s ) = �(s ) ̃ v i, ±(s ) and parametrizing by ϱ, we obtain: 

˜ 
 

′ 
i, ±(�) = ± 1 

� 

√ 

Z(�) 

� 

p ′ ε (Z(�)) , Z ′ (�) = Z(� ) /� . 

rom the first and third equation of (A.3) , we have (�/Z(�)) ′ = 0 ,

nd so, � /Z(� ) = ˆ � /Z( ̂  � ) . This means that as in the case of shock

iscontinuities the maximal density ϱ∗ does not jump. Denot-

ng � 

∗ = � /Z(� ) and making the change of coordinates v i, ±(Z) =
˜ 
 i, ±(�) with � = � 

∗Z, we thus have: 

 

′ 
i, ±(Z) = ±1 

Z 

√ 

1 

� 

∗ p ′ ε (Z) . 

ence, the states satisfy: 

 i, ±(Z) = 

ˆ v ±
(
F ε (Z) − F ε ( ̂  Z ) 

)
, (A.4)

here F ε is an antiderivative of Z �→ 

1 
Z 

√ 

1 
� ∗ p ′ ε (Z) . 

The graph of Z �→ v i, + (Z) (resp. Z �→ v i, −(Z) ) is called the 1-

ntegral curve (resp. 3-integral curve) issued from ( ̂ v , ̂  Z ) . If ( ̂ v , ̂  Z )

s a left state, the right states that can be connected to it by an

ntropic rarefaction wave are those located on the 1-integral curve

(v i, −(Z ) , Z ) : Z < 

ˆ Z 
}

or the 3-integral curve 
{
(v i, −(Z ) , Z ) : Z > 

ˆ Z 
}

. 

ndeed, on these curves the associated eigenvalue is increas-

ng. If ( ̂ v , ̂  Z ) is a right state, the left states that can be con-

ected to it by an entropic rarefaction wave are those located on

he 1-integral curve 
{
(v i, −(Z ) , Z ) : Z > 

ˆ Z 
}

or the 3-integral curve

(v i, −(Z ) , Z ) : Z < 

ˆ Z 
}

. Indeed, on these curves the associated eigen-

alue is decreasing. 
ontact discontinuities. Since the second characteristic field is lin-

arly degenerate, there are linear discontinuities that propagate at

elocity λ2 = ̂

 v . Let us write the Rankine–Hugoniot conditions: 

 q ] = 

ˆ v [ �] , 

[
q 2 

� 

+ p ε (Z) 

]
= 

ˆ v [ q ] , 
[

Z 
q 

� 

]
= 

ˆ v [ Z] . 

rom the first relation, we obtain v = ̂

 v and then the second rela-

ion states that the pressure jump is zero. By strict monotony of

he pressure, it implies that Z = 

ˆ Z and the third equation is sat-

sfied. Along this discontinuity, the velocity and the pressure are

hus conserved. Note that every density jump is possible. 

2. Solution to Riemann problem 

Let ( ϱ , q  , Z  ) and ( ϱr , q r , Z r ) be the left and right initial states

A.2) . The solutions to Riemann problems are determined as fol-

ows. First, in the ( v, Z ) plane, find out the intersection state ( v m 

,

 m 

) of the 1-st integral/Hugoniot curves issued from ( v  , Z  ) and

he 3-rd integral/Hugoniot curves issued from ( v r , Z r ). Then, com-

ute the two densities ϱm ,  and ϱm, r so that the congestion density

cross the two non-linear waves is conserved. Then we connect the

wo distinct intermediate states by a contact discontinuity. We fi-

ally end up with the following solution: 

(�  , q  , Z  ) 
shock/rare faction → (� m, , � m, v m 

, Z m 

) 

contact → (� m,r , � m,r v m 

, Z m 

) 

shock/rare faction → (� r , q r , Z r ) (A.5) 

here � m, = Z m 

�  /Z  and � m,r = Z m 

� r /Z r . The nature of the non-

inear waves (rarefaction or shock) depends on the relative position

f the states ( v  , Z  ), ( v r , Z r ) in the ( v, Z ) plane. 

3. Limit ε → 0 

We are now interested in the asymptotic behavior, when ε → 0

f the Hugoniot v ε 
h, ± and the integral curves v ε 

i, ± obtained in the

revious paragraph for the elementary waves. We have the follow-

ng result. 

roposition 1. The graph of the Hugoniot curve,

(Z, v ε 
h, ±(Z)) : Z ∈ [0 , 1) 

}
, tends to the union of the set

(Z, v 0 
h, ±(Z)) : Z ∈ [0 , 1) 

}
and the horizontal half straight line 

(1 , v ) : v ∈ [ v 0 
h, ±(1) , + ∞ ) 

}
. 

The graph of the integral curve, 
{
(Z, v ε 

i, ±(Z)) : Z ∈ [0 , 1) 
}
, tends to

he union of the set 
{
(Z, v 0 

i, ±(Z)) : Z ∈ [0 , 1) 
}

and t he horizontal half

traight line 
{
(1 , v ) : v ∈ [ v 0 

i, ±(1) , + ∞ ) 
}

. 

The proof of this proposition uses the convexity of the pressure

nd are similar to the one developed in [16] . 

Regarding the Riemann problem in the limit ε → 0, the intersec-

ion point of the 1-st integral/Hugoniot curves issued from ( v  , Z  )

nd the 3-rd integral/Hugoniot curves issued from ( v r , Z r ), denoted

y (v ε m 

, Z ε m 

) , has either a limit (v 0 m 

, Z 0 m 

) with 0 � Z 0 m 

< 1 or tends

o a congested state ( ̄v , 1) . Then finding a solution can be divided

nto the following steps: 

1) compute the intersection (v 0 m 

, Z 0 m 

) of the 1-st integral/Hugoniot

curves and 3-rd integral/Hugoniot curves; 

a) if Z 0 m 

< 1 , the solution is as described in the previous section,

it is a usual Riemann solution of the hyperbolic system with no

congestion pressure; 

b) if Z 0 m 

≥ 1 , then the congested state is given by the following
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Proposition 2 (Case Z 0 m 

≥ 1 ) . The solution consists in three waves: 

(�  , q  , Z  ) 
shock → (� 

∗
 , � 

∗
 ̄v , 1) 

contact → (� 

∗
r , � 

∗
r ̄v , 1) 

shock → (� r , q r , Z r ) 

where the intermediate velocity v̄ and pressure p̄ satisfy: 

v̄ = v  −
√ 

1 

�  

√ 

(1 − Z  )( ̄p − p 0 (Z  )) 

= v r + 

√ 

1 

� r 

√ 

(1 − Z r )( ̄p − p 0 (Z r )) , 

the intermediate densities are given by: 

ˆ �  = �  /Z  = � 

∗
 , ˆ � r = � r /Z r = � 

∗
r , 

and the shock speeds σ−, σ+ are given by: 

σ− = v  −
√ 

� 

∗
 

�  (� 

∗
 − �  ) 

√ 

p̄ − p 0 (Z  ) , 

σ+ = v r + 

√ 

� 

∗
r 

� r (� 

∗
r − � r ) 

√ 

p̄ − p 0 (Z r ) . 

This proposition can be proven using similar arguments as in

[16] . 

Below, on Fig. A.11 we present two different solutions to the

Riemann problem (A.1) and (A.2) . Depending on the initial location

of the left and right states, the intersection state ( v m 

, Z m 

) might be

a congested state or not. 

Appendix B. Fully discrete scheme in dimension 2 

We consider the computational domain [0, 1] × [0, 1] and

spatial space steps 
x = 1 /N x , 
y = 1 /N y > 0 , with N x , N y ∈ N :

the mesh points are thus x i, j = (i 
x, j
y ) , ∀ (i, j) ∈ { 0 , . . . , N x } ×
{ 0 , . . . , N y } . Let � 

n 
i, j 

, q n 
i, j 

, Z n 
i, j 

, � 

∗ n 
i, j 

denote the approximate solution

at time t n on mesh cell [ i 
x, (i + 1)
x ] × [ j
x, ( j + 1)
x ] . 

The two-dimensional version of (12) reads: 

� 

n +1 
i, j 

− � 

n 
i, j 


t 
+ 

1 


x 
(F n +1 

(i + 1 2 , j) 
− F n +1 

(i − 1 
2 , j) 

) + 

1 


y 
( ̃  F n +1 

(i, j+ 1 2 ) 
− ˜ F n +1 

1 , (i, j− 1 
2 ) 

) = 0

(B.1)

q 

n +1 
i, j 

− q 

n 
i, j 


t 
+ 

1 


x 
( G 

n 
(i + 1 2 , j) 

− G 

n 
(i − 1 

2 , j) 
) + 

1 


y 
( ̃  G 

n 

(i, j+ 1 2 ) 
−˜ G 

n 

(i, j− 1 
2 ) 

) 

+ (∇πε (Z n +1 )) i, j = 0 , (B.2)

Z n +1 
i, j 

−Z n 
i, j 


t 
+ 

1 


x 
(H 

n +1 

(i + 1 2 , j) 
− H 

n +1 

(i − 1 
2 , j) 

) + 

1 


y 
( ̃  H 

n +1 

(i, j+ 1 2 ) 
− ˜ H 

n +1 

3 , (i, j− 1 
2 ) 

) = 0

(B.3)

where fluxes F n +1 , G 

n , H 

n +1 (in the first spatial direction) are de-

fined: 

F n +1 

(i + 1 2 , j) 
= 

1 

2 

(
q n +1 

1 , (i +1 , j) 
+ q n +1 

1 , (i, j) 

)
− (D � ) 

n 
i + 1 2 , j 

, (B.4)

G 

n 
(i + 1 2 , j) 

= 

1 

2 

(
f 

n 
(i +1 , j) + f 

n 
(i, j) 

)
− ( D q ) 

n 
i + 1 2 , j 

, (B.5)

H 

n +1 

(i + 1 2 , j) 
= 

1 

2 

( Z n 
i +1 , j 

� 

n 
i +1 , j 

q n +1 
1 , (i +1 , j) 

+ 

Z n 
i, j 

� 

n 
i, j 

q n +1 
1 , (i, j) 

)
− (D Z ) 

n 
i + 1 2 , j 

, (B.6)

with 

f 
n = 

[
(q n 1 ) 

2 + p(Z n ) 
q n 1 q 

n 
2 

]
. 
luxes ˜ F n +1 , ˜ G 

n 
, ˜ H 

n +1 in the second spatial direction are defined

y: 

˜ 

 

n +1 

(i, j+ 1 2 ) 
= 

1 

2 

(
q n +1 

2 , (i, j+1) 
+ q n +1 

2 , (i, j) 

)
− (D � ) 

n 
i, j+ 1 2 

, (B.7)

 

 

n 

(i, j+ 1 2 ) 
= 

1 

2 

(˜ f 
n 

(i, j+1) + ̃

 f 
n 

(i, j) 

)
− ( D q ) 

n 
i, j+ 1 2 

, (B.8)

˜ 

 

n +1 

(i, j+ 1 2 ) 
= 

1 

2 

( Z n 
i, j+1 

� 

n 
i, j+1 

q n +1 
2 , (i, j+1) 

+ 

Z n 
i, j 

� 

n 
i, j 

q n +1 
2 , (i, j) 

)
− (D Z ) i, j+ 1 2 

, (B.9)

ith 

 f 
n = 

[
q n 1 q 

n 
2 

(q n 2 ) 
2 + p(Z n ) 

]
. 

he upwindings D ϱ, D q , D Z are defined similarly as for the one-

imensional case (sse (16) and (17) ). 

The implicit pressure in (B.2) is discretized by the centered dif-

erence: 

(∇πε (Z n +1 )) i, j = 

⎡ ⎢ ⎣ 

πε (Z n +1 
i +1 , j 

) − πε (Z n +1 
i −1 , j 

) 

2
x 
πε ( Z 

n +1 
i, j+1 

) − πε (Z n +1 
i, j−1 

) 

2
y 

⎤ ⎥ ⎦ 

. 

nserting Eq. (B.2) into (B.3) , we obtain: 

 

n +1 
i, j 

− Z n i, j + 


t 


x 

(
H̄ 

n 
(i + 1 2 , j) 

− H̄ 

n 
(i + 1 2 , j) 

)
+ 


t 


y 

( ¯̃
 H 

n 

(i + 1 2 , j) − ¯̃
 H 

n 

(i + 1 2 , j) 

)
− 
t 2 


x 2 
1 

2 

( Z n 
i +1 , j 

� 

n 
i +1 , j 

(
G 

n 
(i + 3 2 , j) , 1 

− G 

n 
(i + 1 2 , j) , 1 

)
−

Z n 
i −1 , j 

� 

n 
i −1 , j 

(
G 

n 
(i − 1 

2 , j) , 1 
− G 

n 
(i − 3 

2 , j) , 1 

))
− 
t 2 


x 
y 

1 

2 

( Z n 
i +1 , j 

� 

n 
i +1 , j 

(˜ G 

n 
(i +1 , j+ 1 2 ) , 1 

− ˜ G 

n 
(i +1 , j− 1 

2 ) , 1 

)
−

Z n 
i −1 , j 

� 

n 
i −1 , j 

(˜ G 

n 
(i −1 , j+ 1 2 ) , 1 

− ˜ G 

n 
(i −1 , j− 1 

2 ) , 1 

))
− 
t 2 


y 2 
1 

2 

( Z n 
i, j+1 

� 

n 
i, j+1 

(˜ G 

n 
(i, j+ 3 2 ) , 2 

− ˜ G 

n 
(i, j+ 1 2 ) , 2 

)
−

Z n 
i, j−1 

� 

n 
i, j−1 

(˜ G 

n 
(i, j− 1 

2 ) , 2 
− ˜ G 

n 
(i, j− 3 

2 ) , 2 

))
− 
t 2 


x 
y 

1 

2 

( Z n 
i, j+1 

� 

n 
i, j+1 

(
G 

n 
(i + 1 2 , j+1) , 2 

− G 

n 
(i − 1 

2 , j+1) , 2 

)
−

Z n 
i, j−1 

� 

n 
i, j−1 

(
G 

n 
(i + 1 2 , j−1) , 2 

− G 

n 
(i − 1 

2 , j−1) , 2 

))
− 
t 2 


x 2 
1 

4 

( Z n 
i +1 , j 

� 

n 
i +1 , j 

(
πε (Z n +1 

i +2 , j 
) − πε (Z n +1 

i, j 
) 
)

−
Z n 

i −1 , j 

� 

n 
i −1 , j 

(
πε (Z n +1 

i, j 
) − πε (Z n +1 

i −2 , j 
) 
))

− 
t 2 


y 2 
1 

4 

( Z n 
i, j+1 

� 

n 
i, j+1 

(
πε (Z n +1 

i, j+2 
) − πε (Z n +1 

i, j 
) 
)

−
Z n 

i, j−1 

� 

n 
i, j−1 

(
πε (Z n +1 

i, j 
) − πε (Z n +1 

i, j−2 
) 
))

= 0 , 

here terms H̄ 

n and 

¯̃
 H 

n 
have the same expressions as (B.6) –(B.9)

ut where all quantities are taken explicitly. 



P. Degond et al. / Computers and Fluids 169 (2018) 23–39 39 

A

 

b  

s

 

i

w

 

h  

i  

r

�

w  

a

v

S

 

f

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

[
[  

[  

[  

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  
ppendix C. Second order in time ( ϱ, q )-method/SL 

The second order accuracy scheme for the ( ϱ, q )-method/SL is

ased on a Strang splitting between advection of congestion den-

ity and advection of ( ϱ, q ). It consists in the following steps: 

1. Compute � 

∗ n +1 / 2 by solving the advection over 
t /2 

� 

∗n +1 / 2 − � 

∗n 


t/ 2 

+ 

q 

n 

� 

n 
· ∇ x � 

∗n = 0 . 

2. Compute (� 

n +1 , q n +1 ) with the RK2CN scheme as proposed

n [12] : First step (half time step): 

� 

n +1 / 2 − � 

n 


t/ 2 

+ ∇ x · q 

n +1 / 2 − D 

n 
� = 0 , 

q 

n +1 / 2 − q 

n 


t/ 2 

+ ∇ x ·
(

q 

n 
� q 

n 

� 

n 
+ p(Z n ) I 

)
− D 

n 
q + ∇ x (πε (� 

n +1 / 2 /� 

∗,n +1 / 2 )) = 0 . 

Second step (full time step): 

� 

n +1 − � 

n 


t 
+ ∇ x ·

(
q 

n +1 + q 

n 

2 

)
− D 

n 
� = 0 , 

q 

n +1 − q 

n 


t 
+ ∇ x ·

(
q 

n +1 / 2 
� q 

n +1 / 2 

� 

n +1 / 2 
+ p(Z n +1 / 2 ) I 

)
− D 

n +1 / 2 
q 

+ ∇ x 

(
πε (� 

n /� 

∗,n +1 / 2 ) + πε (� 

n +1 /� 

∗,n +1 / 2 ) 

2 

)
= 0 . 

here D � , D q denote the numerical diffusion coming from fluxes. 

3. Advection of ϱ∗ on 
t /2 time step 

� 

∗n +1 − � 

∗n +1 / 2 


t/ 2 

+ 

q 

n +1 

� 

n +1 
· ∇ x � 

∗n +1 / 2 = 0 . 

A second order in time version of the semi-Lagrangian scheme

as to be used. We here consider the second order Taylor approx-

mation of the caracteristic line whose one-dimensional version

eads: 

 

∗n +1 
i 

= [ �� 

∗n ] 

(
x i − v i 
t + a i v i 


t 2 

2 

)
. 

here v i = q i /� i for all i and a i is an upwind finite difference

pproximation of the first derivative of the velocity: a i = (v i −
 i −1 ) / 
x if v i > 0 and a i = (v i +1 − v i ) / 
x if v i ≤ 0. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at 10.1016/j.compfluid.2017.09.007 . 
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