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SUMMARY

Confidence and actions are normally tightly inter-
woven—if I am sure that it is going to rain, I will
take an umbrella—therefore, it is difficult to under-
stand their interplay. Stimulated by the ego-
dystonic nature of obsessive-compulsive disorder
(OCD), where compulsive actions are recognized
as disproportionate, we hypothesized that action
and confidence might be independently updated
during learning. Participants completed a predic-
tive-inference task designed to identify how action
and confidence evolve in response to surprising
changes in the environment. While OCD patients
(like controls) correctly updated their confidence
according to changes in the environment, their ac-
tions (unlike those of controls) mostly disregarded
this knowledge. Therefore, OCD patients develop
an accurate, internal model of the environment but
fail to use it to guide behavior. Results demon-
strated a novel dissociation between confidence
and action, suggesting a cognitive architecture
whereby confidence estimates can accurately track
the statistic of the environment independently from
performance.

INTRODUCTION

Intelligent agents have to act on incomplete and fragmented

information. Typically, incoming information is processed to

reduce uncertainty so as to make more accurate inferences

about the causal structure of the environment (Knill and Pou-

get, 2004; O’Reilly et al., 2012). Subjects are generally able

to learn from experience, and often actions are dictated by

subjects’ beliefs acquired flexibly through this inference pro-

cess. The strength of belief (or ‘‘confidence’’) is generally

tightly coupled to behavior—I will study more for an exam if
348 Neuron 96, 348–354, October 11, 2017 ª 2017 The Author(s). Pu
This is an open access article under the CC BY license (http://creative
I am in doubt about my level of knowledge. Bayesian accounts

of learning suggest that current levels of uncertainty in the

estimate of the action’s value influence behavior (Behrens

et al., 2007; Nassar et al., 2010). In particular, the impact of in-

formation on behavior depends on the level of epistemic un-

certainty (i.e., confidence) held by the agent. In other words,

information is mostly influential when the agent is more uncer-

tain about the environment. In contrast, when an agent has lit-

tle uncertainty, it is less influenced by upcoming new evidence

(Behrens et al., 2007; Nassar et al., 2010; Yu and Dayan,

2005). However, because of a tight link between behavior

and confidence, it has been difficult to study how confidence

and action evolve and interact during learning. In turn, obses-

sive-compulsive disorder (OCD) provides a paradigmatic

example whereby the link between strength of beliefs and

action can be disrupted. Compulsive rituals, such as hand

washing, are called ego-dystonic, since patients recognize

them as disproportionate and excessive but nevertheless

cannot stop performing them (Kozak and Foa, 1994). There-

fore, we capitalized on this distinctive feature of the disorder

to test opposing views about how subjective beliefs are ac-

cessed for metacognitive reports of confidence and action

control: specifically, are they accessed in parallel or is confi-

dence necessarily informed by action monitoring?

At the same time, we sought to provide a novel computational

insight in the etiology of this debilitating psychiatric condition.
RESULTS

Experimental Design
We studied 24 OCD patients and 25 matched controls

(Table S1) on a modified predictive-inference task (McGuire

et al., 2014; Nassar et al., 2010) (Figures 1A and 1B; STAR

Methods). In each trial, participants were required to position

a bucket on a circular ring to catch particles flying from the mid-

dle of the ring. After positioning the bucket (and before seeing

where the particle would land), participants reported their de-

gree of confidence in their prediction. During the task, subjects

were required to gauge the value of a new piece of information
blished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Diagram of the Predictive-Infer-

ence Task and Model Parameters

(A) On each trial, participants chose a position for

the bucket (orange segment) and scored their

confidence for their prediction on a bar appearing

thereafter. One particle was then fired from the

center of the big circle. Throughout each experi-

mental block, particlesweredrawn fromaGaussian

distribution. Mean of the distribution could change

on any trial with a probability of 0.125 (H, hazard

rate) determining a change in action-outcome

contingencies in the environment (change-point).

(B) Top:exampleofasequenceof trials.Pointsmark

the position at which particles landed on the big

circle (0�–360�). The dotted line identifies the pre-

dictions of the quasi-optimal Bayesian model. Bot-

tom: two theoretical factors, change-point proba-

bility (CPP) and model confidence (MC), jointly

influence learning rate. When unexpected obser-

vations occur, CPP is high and MC attenuated.
and differentiate periods of time in which unexpected outcomes

should be ignored as noise and those in which abrupt changes

were likely to require updating of action and beliefs. In such un-

stable, dynamic environments, recent events are only informa-

tive in the presence of abrupt changes; meanwhile, during a

stable period, most recent events are less informative, and de-

cisions should be driven by averaging over the outcomes of

many previous actions, i.e., historical information should be

taken into account.

Behavioral Analyses
To investigate how new evidence collected in a noisy environ-

ment influences behavior (action) and confidence reports, we

computed for each trial in each participant a spatial learning

rate ðLR; baÞ expressed as the magnitude of change in the pre-

diction (chosen bucket position from one trial to the next) as a

fraction of the error made on the previous prediction (differ-

ence between chosen bucket position and position of new

evidence). We then considered the same sequence of obser-

vations experienced by each participant and computed the

behavior of a quasi-optimal Bayesian learning model (STAR

Methods for the model specification; Nassar et al., 2010,

2012; McGuire et al., 2014). This model has no free parame-

ters since it is not fitted to the participant behavior and pro-

vides a benchmark Bayesian model against which to compare

participants’ behavior. Following a procedure used previously

(McGuire et al., 2014) and commonly used in model-based

fMRI (O’Doherty et al., 2007), we then constructed regression

models to test how participants’ behavioral measures relate to

different parameters of the benchmark Bayesian model with

the aim to identify and quantify statistical differences between

the two groups.

Learning Rate
In our task, participants’ LRs (ba; Equation 1) were estimated on

each trial by taking the ratio of bucket displacement and the

spatial prediction error (McGuire et al., 2014; Nassar et al.,

2010), measuring the extent to which each new outcome influ-

enced subsequent prediction.
bat =
bt + 1 � bt

bdt

Equation 1

bdt =Xt � bt Equation 2

In Equations 1 and 2, bt and bt+1 are the chosen bucket posi-

tion (i.e., where participant positioned the bucket) for one trial

and the next one. bdt is the spatial prediction error, which is the

difference between the location of particle at trial t (Xt) and cho-

sen bucket position at trial t (bt).

OCD patients were strongly influenced by recent outcomes as

shown by their LR ðbaÞ being significantly higher than the controls’

(OCD, 0.52 ± 0.05; CTL, 0.31 ± 0.03; Welch two-tailed t test

t34 = �3.587, p = 0.001) (Figure 2A). To investigate the effect of

error magnitude (Figure 2B) on LR ðbaÞ, we divided the range of

the spatial prediction error into quantiles and extracted data for

controls and patients separately (Table S2; STAR Methods).

Results suggested that LRs ðbaÞ were highest after subjects

made larger errors (effect of error magnitude, F2,94 = 190.604,

p<0.001), showing thatboth groupscorrectlymonitored their ac-

tions, thus adapting their learning (Figure 2B). However, indepen-

dently of error magnitude, LRs ðbaÞ were systematically higher in

patients than controls (effect of group, F1,47 = 13.388, p <

0.001) (Figure 2B), reflecting a more marked influence of a new

outcome on subsequent prediction in theOCD group, regardless

of the magnitude of error (groups pairwise comparisons low,

t26.627 = �3.267, p = 0.003; medium, t34.811 = �2.874, p =

0.007; high, t47 = �3.758, p = 0.0005, Bonferroni corrected).

Increased LRs ðbaÞ in OCDpatients did not correlate withmedica-

tion dosage tested via Spearman correlation (OCD, n = 24,

r = �0.173, p = 0.418). In addition, we tested the presence of

an effect of medication by treating dosage as a categorical vari-

able and testing the association with LRs ðbaÞ divided into evenly

spaced quantiles. Absence of an association was confirmed for

multiple discretization of the LRs ðbaÞ (all p values > 0.116). In

the patient group,moremarked updating of the bucket’s position

indexedby increasedLRs ðbaÞwasnot associatedwith impulsivity

as measured with the Barratt Impulsiveness Scale (Patton et al.,
Neuron 96, 348–354, October 11, 2017 349



Figure 2. Learning Rates in OCD and

Controls

(A) Learning rate (LR) for participants ðbaÞ (Equa-

tion 1). Patients showed significantly higher LRs

ðbaÞ compared with controls. Dots represent indi-

vidual subjects. Mean ± SEMare displayed in blue.

(B) LR for participants ðbaÞ (Equation 1) plotted as a

function of the error magnitude (Equation 2). The

distribution of the values of the spatial prediction

error was divided in 20 quantiles (Table S2 for

mean and SEM for each quantile). For visualization

purposes, data from 18 quantiles are shown.

Mean ± SEM are shown. Subjects tended to use

variable LRs ðbaÞ spanning the entire allowed

range, with higher LRs for higher spatial prediction

error. However, LR ðbaÞ was higher in OCD pa-

tients, regardless of error magnitude. ***p < 0.001.
1995) (OCD, n = 24, Pearson’s correlation, r = 0.162, p = 0.449).

Therefore, increased LR ðbaÞ is likely driven by processes other

than impulsiveness in OCD patients.

Dynamics of Learning and Confidence Update
To determine how participants’ beliefs evolved over time, we

compared the performance of our human participants to that

of a quasi-optimal Bayesian learner carrying out the same task

(Equation 3). The quasi-optimal Bayesian learner is a computa-

tionally parsimonious algorithmic implementation of an optimal

Bayesian learner (Nassar et al., 2010 and McGuire et al., 2014

for a full comparison). In such simple tasks, it can achieve perfor-

mance that is comparable to that of the optimal Bayesian learner

at a fraction of the cost through a delta-rule type of learning in

belief space.

Bt + 1 =Bt +at 3 dt Equation 3

at =Ut + ð1� UtÞð1� ytÞ Equation 4

dt =Xt � Bt Equation 5

In Equation 3, Bt and Bt+1 are the model’s belief estimate

about the mean of the distribution at trial t and t+1. The LR

of the model (a) (Equation 4) is jointly influenced by the

change-point probability (CPP, U) (Equation 6) and the model

confidence (MC, y) (Equation 8) (Figure 1B). d (Equation 5) is

the prediction error (PE), which is the discrepancy between

the model belief estimate (Bt) and the location of the new sam-

ple (Xt). Note that unlike a full Bayesian model, in this Bayesian

delta-rule model, beliefs are not represented by probability

density but are point-like estimates that are iteratively updated

like values in classic reinforcement learning models (McGuire

et al., 2014; Nassar et al., 2010). Another feature of this algo-

rithmic implementation is that there is a direct mapping be-

tween beliefs and action, which are not linked through a soft-

max function that converts values (or belief distributions) into

action probabilities.

In response to change-points in the environment, when the in-

formation about the previous average position becomes irrele-

vant, the quasi-optimal Bayesian learner reacted by increasing

its LR (a); subsequent to a change-point, as more evidence is
350 Neuron 96, 348–354, October 11, 2017
accumulated from the same generative distribution, LR (a)

steadily decreases, relying on integration of previous observa-

tions (Figure 3A). Our human participants followed a similar tem-

poral dynamic in adjusting their LRs ðbaÞ (Figure 3B and Figure S1

for a close overlap at the trial-by-trial level between subject’s

bucket position computed in Equation 1 and model term Bt

computed with Equation 3). However, in OCD patients, accumu-

lation of more knowledge about the environment was unable to

reduce LRs ðbaÞ sufficiently. In the extreme cases (patients with

mean LR ðbaÞ = 1) behavior was exclusively driven by the last

observed sample, ignoring all previously observed evidence.

Therefore, LRs ðbaÞ were driven predominantly by the most

recent outcomes disregarding previously experienced ones.

Strikingly, and unlike action, the way in which confidence

changed over time in OCD patients was indistinguishable from

that of controls (Figure 3E) and closely resembled the quasi-

optimal Bayesian learner’s confidence (MC), which is bound to

increase as more evidence is accumulated after a change-point

(Figure 3D). This dissociation between action and confidence

suggests that, in the OCD group, reports of confidence accu-

rately reflected the increase in strength of beliefs following the

accumulation of more evidence even when this evidence was

underutilized for behavioral control.

To quantify and compare between-group differences in trial-

wise adjustment in LRs ðbaÞ, we performed linear regression anal-

ysis using the different parameters of the quasi-optimal Bayesian

learner as predictors. Compared with controls, patients showed

a stronger influence of PEs, indexing the tendency to update the

bucket toward the most recent particle, in driving trial-wise

adjustment in LRs ðbaÞ and reduced responses to abrupt changes

in the environment indexed by CPP (PE: OCD, 0.57 ± 0.07;

CTL, 0.26 ± 0.08; Wilcoxon rank-sum test, p = 0.018; CPP:

OCD, 0.31 ± 0.07; CTL, 0.57 ± 0.06; Wilcoxon rank-sum test,

p = 0.011) (Figure 3C; Table S3). There were no between-group

differences for MC and for a categorical predictor indexing

whether the previous trial resulted in a hit or miss (this was

included in the regression since it has been proposed that

OCD patients might exhibit differential sensitivity to reward and

punishment; Endrass et al., 2011) (Table S3).

Using the same approach described above for action, we

performed regression analysis to predict participants’ confidence

(Figure 3F). In contrast to the regression predicting participants’



Figure 3. Regression-Based Analysis for Learning Rates and Confidence

(A and B) (A) Model learning rate (LR) (a) and (B) human LR ðbaÞ aligned to change-points (vertical dashed line). LRs were highest after change-point trials and

decayed thereafter. OCD patients showed increased LRs ðbaÞ on trials before and after change-points.

(C) Regression analysis of behavioral data for human action, constructed similar to the update formula of the quasi-optimal Bayesianmodel, multiplying the LR ðbaÞ
by the absolute spatial prediction error ð�� bdt

�� Þ.
(D and E) (D) Model confidence (y) and (E) human confidence (Z-scored) aligned to change-points. The effects of confidence on LRs are greatest on the trials

immediately after a change-point when confidence drops. Confidence recovers over several trials thereafter, with no between-group differences.

(F) Regression analysis of behavioral data for human confidence (Z-scored). Error bars represent SEM. Plotted predictors for action and confidence regressions

correspond to absolute prediction error (jdj), change-point probability ðUÞ, model confidence (y), and hit/miss categorical predictor. (A) (model learning rate) and

(D) (model confidence) represent value of the first change-point. For (B) (human learning rate) and (E) (human confidence), all epochs were identified per subject

where a change-point was preceded by five data points and followed by four. Group-level mean and SEM were calculated separately for controls and OCD

patients. See also Table S3. *p < 0.05.
action (Figure 3C), there were no between-group differences for

confidence in any predictor (Figure 3F; Table S3). Therefore,

OCD patients made full use of accumulated knowledge about

the position of the particle to infer the underlying statistics of the

environment and built accurate confidence estimates. This belief

was nevertheless underutilized to control action, resulting in

excessive reactivity to the most recent evidence and therefore

elevated LRs ðbaÞ.
Such mismatching was formally tested by a new regression

model in which action updating was predicted by confidence up-

dating. In OCD patients, there was a weakened relationship be-

tween action control and metacognitive reports of confidence

(OCD, 0.05 ± 0.01; CTL, 0.12 ± 0.02; Wilcoxon rank-sum test,

z = 2.690, p = 0.007) (Figure 4A). Reduced coupling between ac-

tion and belief was most prominent in more severely ill patients

(OCD, n = 24, Pearson’s correlation, r = �0.426, p = 0.038) (Fig-

ure 4B), thus relating inter-individual patient variability to symp-

tom severity and suggesting that this computational deficit is a
core feature of the multifaceted OCD psychiatric manifestation

(Robbins et al., 2012; Stephan and Mathys, 2014).

DISCUSSION

In this study, we investigated how confidence interplays with ac-

tion. We showed that both controls and OCD patients integrated

historical information to update their confidence flexibly in keep-

ing with the non-stationary features of the environment. More

specifically, when the environment abruptly changed (i.e.,

change-point probability or CPP) confidence first decreased

and then gradually increased again on subsequent trials when

more evidence was accumulated as shown previously in healthy

controls (Nassar et al., 2010, 2012). The dynamic by which

confidence evolved over time closely matched that of a

quasi-optimal Bayesian learner (McGuire et al., 2014; Nassar

et al., 2010). Critically, we showed that while the estimation of

confidence was intact in OCD patients, their actions largely
Neuron 96, 348–354, October 11, 2017 351



Figure 4. Uncoupling between Confidence

and Action in OCD and Relationship with

Symptom Severity

(A) Regression model whereby action updating

(i.e., the absolute difference between where par-

ticipants positioned bucket on trial t and t-1) is

predicted by confidence updating (i.e., the abso-

lute difference between Z-scored confidence re-

ports on trial t and t-1). Dots represent individual

subjects. Mean ± SEM are displayed in blue.

(B) Association between self-reported symptom

severity and coupling confidence-action updating

in patients. OCI-R, obsessive-compulsive in-

ventory revised. Shaded gray area represents

95% confidence interval. **p < 0.01.
disregarded this accumulated information. In other words, OCD

patients constantly updated the position of the bucket in favor of

themost recent outcomes rather than the average of the preced-

ing trials. In extreme cases (participants with a LR ðbaÞ close to

one), this behavior thus reflected abandonment of historical in-

formation acquired on previous trials, and as a consequence,

the behavior was driven only by the last observation.

Hyperactive error signals have been linked to OCD and have

been associated to the ‘‘not-just-right’’ experience, which forces

these patients to monitor their behavior more carefully (Pitman,

1987). Here, however, higher LRs ðbaÞ in OCD were found even

in the absence of an error and independently of its magnitude

(Figure 2B), suggesting that elevated action update was not sim-

ply driven by response feedback. Instead, our computational an-

alyses showed that, when updating their actions, OCD patients

were more driven by prediction errors compared with controls.

More prominent action updating based on most recent out-

comes in OCD is possibly due to an inability to take into account

the broader context (i.e., history of outcomes during the experi-

mental task) in order to build an internal map of the external

world. These functions are generally attributed to model-based

strategies exploited to generate goal-directed choices and

held to produce cognitive predictions of future values based

on representations of the environment, expectations, and pro-

spective calculations (Daw et al., 2005). A weakness of this sys-

tem in OCDmight leave room for producing automatic stimulus-

response habits. Development of action-outcome predictions

and PE is heavily dependent on dopamine in the ventral striatum

(VS) (O’Doherty et al., 2004). Blunted VS reactivity in response to

reward has been shown several times in OCD (Figee et al., 2013;

Marsh et al., 2015).

In addition, the anterior cingulate cortex (ACC) might underpin

the behavioral adjustments required to perform our task. ACChas

been shown to be critically involved in updating learning rates

when circumstance in the environment are changing (Behrens

et al., 2007; Kennerley et al., 2006; McGuire et al., 2014). There-

fore, an intriguing possibility is that the exaggerated behavioral

updating in OCD patients shown here might implicate a dysfunc-

tion in a frontostriatal loop involving the VS and the ACC (Haber

and Behrens, 2014) and might possibly explain how deep brain

stimulation successfully targets this frontostriatal circuit (Denys

et al., 2010; Figee et al., 2013) in the treatment of OCD.
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Furthermore, our work shows that the degree of uncoupling

between confidence and action is correlated with the severity

of the OCD symptomatology, showing that this uncoupling

(that we report here, we believe, for the first time) might be at

the core of the computational deficit that characterizes OCD.

Previous work has proposed that OCD patients might suffer

from a metacognitive deficit (Hauser et al., 2017; Hermans

et al., 2008). Our results are consistent with a metacognitive

deficit in OCD (i.e., patients’ confidence reports were not

tracking their actions) but suggest that OCD metacognitive

deficits might not be triggered by an abnormal confidence

response but by the uncoupling between action and subjective

confidence ratings that we have isolated.

These findings might also help to distinguish between

competing accounts of human cognition by clarifying the link be-

tween confidence and behavioral control. A prevailing view is

that confidence is built from internal cues related to object-level

processes and through monitoring one’s own actions (Metcalfe

and Shimamura, 1994) to support error detection (Yeung and

Summerfield, 2012). In the context of signal-detection theory, it

has been proposed that confidence is built from a subjective in-

ternal state (decision variable) that is influenced by sensory evi-

dence. Confidence is then construed as the absolute distance

between a decision variable and a criterion (Kepecs et al.,

2008; Vickers, 1979). A similar logic underpins sequential sam-

plingmodels with optional stopping (e.g., racemodels, drift diffu-

sion models) in which confidence is computed from the state of

the decision variable when the choice is emitted (De Martino

et al., 2013; Fetsch et al., 2014; Kiani and Shadlen, 2009; Vickers,

1979). An exciting recent development of this approach sug-

gests that confidence is also informed by parameters relating

to the subject’s own actions such as response latency (Fetsch

et al., 2014; Kiani et al., 2014). Our findings nuance this view

by showing that OCD patients can build accurate confidence es-

timates based on information that correctly reflects the statistics

of their environment, even when their actions are not guided by

this information. This finding has broader implications that go

beyond OCD. Notably, the simple fact that this population is

able to build accurate confidence estimates (integrating informa-

tion over time) even if actions are not driven by this information

(but only by the most recent samples) speaks against a general

view in which actions must be monitored in order to build



accurate confidence reports. Based on these results, we there-

fore suggest a parallel coding scheme in which ‘‘beliefs’’ can

independently control actions and give rise to a metacognitive

sense of confidence.

The notion that confidence and performance can be dissoci-

ated is not entirely new. Recent studies have proposed that con-

fidence, in order to become available for self-report, needs to be

‘‘read out’’ by an anatomically distinct network in the prefrontal

cortex; during this process, information can be corrupted by

further noise that does not affect action (De Martino et al.,

2013; Fleming et al., 2012; Insabato et al., 2010; Maniscalco

and Lau, 2012). Moreover, confidence estimates might be modi-

fied by further information processed in the time elapsing be-

tween when an action is performed and when a confidence rat-

ing is reported (Fleming, 2016; Moran et al., 2015; Navajas et al.,

2016; Resulaj et al., 2009) (for a comprehensive review, see

Fleming and Daw, 2017). However, all these accounts suggest

that such a dissociation is driven by the fact that actions

correctly reflect the information available when the choice is eli-

cited, possibly incorporating extra information that is inacces-

sible to metacognitive reports of confidence (Meyniel et al.,

2015). In this contribution, inspired by the distinctive ego-dys-

tonic nature of OCD, we were able to demonstrate a novel

dissociation in which actions can underutilize (or fail to access)

information about the environment that is fully available to the

decision maker and accessible to reports of confidence. We

further suggest that a correct coupling between actions and con-

fidence might be critical for fully functional behavior. In conclu-

sion, we hope that this novel dissociation might help to constrain

models of how beliefs are used to control behavior in the healthy

brain while at the same time informing our understanding of the

mechanisms underpinning OCD.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Behavioral data This paper https://github.com/BDMLab/Vaghi_Luyckx_et_al_2017

and https://doi.org/10.17863/CAM.13236 for raw,

unprocessed behavioral data

Software and Algorithms

MATLAB MathWorks Matlab_R2015b

R R Development Core Team (2008) http://www.R-project.org.

Custom code (experiment, model, analyses) This paper https://github.com/BDMLab/Vaghi_Luyckx_et_al_2017
CONTACT FOR REAGENT AND RESOURCE SHARING

All resources, including data and codes used for the analyses on this paper, are publicly available (see Data Software Availability and

Key Resource Table). Further information and requests for resource sharing should be directed to and will be fulfilled by the Lead

Contact, Matilde M. Vaghi (matilde.vaghi@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects
The study included 49 participants, consisting of 24 patients with Obsessive-Compulsive Disorder (OCD) and 25 healthy volunteers

matched for gender, age, and estimated verbal IQ using the National Adult Reading Test (data from one participant were not included

being Spanish mother tongue) (Table S1). Control subjects were recruited from the community; none of them were on psychiatric

medication and they never suffered from a psychiatric disorder. Patients were recruited through clinical referral from local psychiatric

and psychological services or local advertisement. We ensured that patients met criteria for OCD diagnosis and did not suffer from

any current comorbidity. When recruitment was conducted through advertisement, a consultant psychiatrist (N.A.F. or A.S.) made

DSM-5 diagnoses using an extended clinical interview, supplemented by the Mini International Neuropsychiatric Interview (Sheehan

et al., 1998). Exclusion criteria for all participants were current substance dependence, head injury and current depression, indexed

by Montgomery-Åsberg Depression Rating Scale (MADRS) (Montgomery and Asberg, 1979) exceeding 16 during screening. OCD

patients were not enrolled in the study if they scored less than 12 on the Yale-Brown Obsessive-Compulsive Scale (Y-BOCS)

(Goodman et al., 1989) and if they reported hoarding symptomatology. Self-reported measures of anxiety were collected using

the State-Trait Anxiety Inventory (STAI) (Spielberger, 1983); and, in addition to Y-BOCS scores, self-reported measures of OCD

symptomatology were collected using the Obsessive-Compulsive Inventory-Revised (OCI-R) (Foa et al., 2002). OCD patients re-

ported higher levels of depressive symptoms and anxiety, though well below clinical threshold (Table S1). Sixteen of the 24 patients

were taking a stable dose of serotonin reuptake inhibitors (SSRIs) medication for a minimum of 8 weeks prior to taking part in the

study. Eight unmedicated patients were included in the study, being either drug-naive or off medication for at least 8 weeks prior

taking part of the study. Due to insufficient power, we were limited in the possibility of making direct comparison between medicated

and unmedicated patients for the relevant behavioral measures. However, to test for a potential role of medication on behavioral

measures of interest, and to overcome this limitation, we divided patients into 4 categories according tomedication dosages consid-

ered to represent clinical equivalents. The study was approved by the NHS East of England, Cambridge Central Research Ethics

Committee. Participants were reimbursed for their time and informed consent was obtained prior to participation. Participants

completed two other behavioral tasks, unrelated to the present study. No statistical methods were used to pre-determine sample

size but our sample sizes are similar to those generally employed in the field.

METHOD DETAILS

Behavioral Task
The task consisted of a particle released from the center of a large circle, which participants were asked to catch with a bucket

(orange segment in Figure 1A) placed at the edge of the circle. After they positioned the bucket, participants gave a score between

1 and 100 on how confident they were the particle would land in their bucket. The particle’s location was determined on each trial by
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sampling a Gaussian distribution; thus particles usually landed in the same location with small variations only determined by noise.

This procedure introduced uncertainty into the estimation. The mean of this distribution usually remained stable over a block of trials

but changed at random intervals (change-points) when it was resampled from a uniform distribution, thus requiring the participant to

form a new belief about the mean of the new generative Gaussian distribution (Figures 1A and 1B).

A trial started with participants choosing a location for the bucket. The bucket could be moved around with the rotary controller.

When a location was chosen, they confirmed by pressing the spacebar. After 150 ms a confidence bar would appear below the big

circle, where participants could indicate how confident they were the particle would land in the bucket. The confidence pointer would

always start on a random score between 25 and 75, so participants were forced to move the pointer even when their bucket position

had not changed. The confidence pointer could bemoved aroundwith the rotary controller and a decision was confirmed by pressing

the spacebar. A particle was released 150 ms after a reporting of confidence. If the particle landed within the boundaries of the

bucket, the bucket would turn white for 1 frame, creating a short flash. Subsequently the center dot would turn green for 800 ms

and a consonant tonewas played simultaneously for 400ms. Alternatively, when the particlemissed the bucket, the center dot turned

red and a dissonant tone was played for 400ms. Catching the particle resulted in a gain of 10 points, while missing a particle resulted

in a loss of 10 points, thus payment was fixed throughout the task and we did not incentivize confidence. Each block started with

0 points and their total score was the sum of points gathered by the end of each block. Payment was performance contingent:

the more points participants gathered, the more money they earned at the end up, to a maximum of £ 5.

Before the start of the experiment, participants were shown the layout of the experiment while being instructed on the purpose of

the experiment. Participants then completed 20 practice trials that were excluded from any analysis and did not count for their final

score. The actual experiment lasted for 4 blocks of 75 particles, thus each block consisted of 75 trials (Figures 1A and 1B). There was

no time limit during a trial, but participants were instructed to act as quickly and accurately as possible. In total, the full experiment

lasted around 18 min.

Procedure
The experiment was programmed in MATLAB (MathWorks) using Psychtoolbox 3. Input was given through the Griffin PowerMate

USB rotary controller - to comply with our circular design - and a spacebar was pressed for confirmation responses.

For each participant, particles were drawn from a normal Gaussian distribution with a low fixed standard deviation of 12. Themean

of the distribution could change on any trial with a probability of 0.125 (hazard rate, change-point, Figure 1A), drawn from a uniform

distribution U(1,360).

A white circle (ø = 500 px) with a dot (ø = 16 px) in the center was displayed permanently in the middle of the screen on a gray

background. The so-called ‘bucket’ was designed as a portion of the circle displaced outwardly, moving along the outside border

of the big circle. The bucket spanned 3 times the SD of the generative distribution, covering an area of 36 possible locations. Particles

were represented by a yellow dot with a diameter of 16 pixels that flew from the center of the big circle to the edge at a speed of 30

frames per second (approx. 500ms). A white confidence bar (w = 500px, h = 20px) appeared below the big circle, with a black pointer

(w = 5 px) starting at a random location between a score of 25 and 75. The numbers 1 and 100 below the left and right corner respec-

tively of the confidence bar indicated the range of possible scores. The points accumulated during the running blockwas presented in

the top right corner, so participants could keep track of their performance. After each block, the total score was also displayed. Data

collection and analysis were not performed blind to the conditions of the experiment. See quantification and statistical analysis for

inclusion and exclusion criteria of any data.

Computational Model
Our model was an implementation of the reduced quasi-optimal Bayesian observer from McGuire et al. (2014), with slight adjust-

ments to work with our circular data. The model, originally proposed by Nassar et al. (2010), attempts to approximate the behavior

of a full Bayesian model, without the computational complexity of having to search through the full state space. It employs a simple

delta rule to estimate a new belief estimate about the environment on every trial.

In our case, the model’s belief estimate Bt about the environment is equal to a point estimation of the mean of the current normal

Gaussian distribution from which samples are drawn (Equation 3). The learning rate (a) (Equation 4) determines how much the new

sample will influence the model’s belief estimate. If at = 0, the model will not alter its current belief estimate at all, but when at = 1, the

most recent outcome will determine the updated belief estimate entirely.

In contrast to common reinforcement learning models where learning rate is fixed, the model employs a dynamic learning rate

that can change on any trial (Equation 4). This allows the model to take into account large changes in the environment - indi-

cating a change of location - and disregard outliers when beliefs estimates about the mean are well established. Learning

rate (a) thus consists of two components that are also updated on each trial. The first component is the change-point probability

(CPP) Ut (Equation 6), which indicates the model’s suspicion that a change in location has occurred, and the second is the model

confidence (MC) yt (Equation 8), which takes into account the uncertainty arising from the imprecise estimation of the mean. In

other words, learning rate (a) will be high when the model assumes a change in location has occurred or when the model is un-

certain about the mean.
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CPP in Equation 6 is constructed as the relative likelihood that a new sample is drawn from the same Gaussian distribution (N),

centeredaround thecurrent belief estimateBt of themodel, or alternatively fromauniformdistribution (U) over all 360possible locations.

Ut =
UðXt j 1; 360ÞH

UðXt j 1;360ÞH+NðXt jBt;s
2
t Þð1� HÞ Equation 6

H is the hazard rate, the probability that the mean of the distribution has changed. When comparing behavior to the quasi-optimal

model, we set H equal to the hazard rate of the experiment (H = 0.125, but see Figures S3 and S4). CPP will be close to 1 when the

probability of the sample coming from the uniform distribution is greater than the probability of it coming from the normal distribution

(i.e., a surprising outcome). s2
t is the estimated variance of the predictive distribution (not to be confused with s2

N, the variance of the

generative Gaussian distribution).

s2
t = s2

N +
ð1� ytÞs2

N

yt
Equation 7

This formula (Equation 7) has been validated in a previous paper (Nassar et al., 2012). It consists of two terms: the variance of the

generative Gaussian distribution s2
N and the same variance but modulated by model confidence yt. Because s2

t is modulated by yt,

the variance on trials immediately after a change-point will be larger than the generative variance, but will slowly decay toward the

generative variance again. As a result, new samples drawn shortly after a change-point will be interpreted more conservatively, i.e.,

the model will be less inclined to assume a new change-point under the conditional distribution.

In contrast to the other model variables, MC in Equation 8 is computed for the subsequent trial. It takes into account the uncertainty

arising from the imprecise estimation of the mean, opposed to uncertainty arising from noise (i.e., s2
N).

yt +1 =
Uts

2
N + ð1� UtÞð1� ytÞs2

N +Utð1� UtÞðdtytÞ2
Uts

2
N + ð1� UtÞð1� ytÞs2

N +Utð1� UtÞðdtytÞ2 + s2
N

Equation 8

Analytically model confidence is (1-RU), the additive inverse of relative uncertainty (RU), fromMcGuire et al. (2014). For comparison

purposes with humans’ reported confidence we chose to represent this parameter as a confidence measure. The two models are

mathematically identical. The first term of the nominator computes the variance when a change-point is assumed to have occurred

(yt = 0.5), while the second term is conditional on no change-point (slowly decaying uncertainty). The third term of the nominator re-

flects a rise in uncertainty when themodel is not surewhether a change-point has in fact occurred. The same three terms are repeated

in the denominator, with an added variance term reflecting the uncertainty arising from noise.

QUANTIFICATION AND STATISTICAL ANALYSIS

Learning Rate Computation: Humans and Model
For each participant, on each trial, LR ðbatÞ was computed according to the formula in Equation 1. Namely, LR ðbatÞ corresponded to

the ratio of difference between chosen bucket position (i.e., where participant positioned the bucket) from one trial to the next and the

spatial prediction error (i.e., the difference between the location of particle at trial t and chosen bucket position at trial t). Therefore, LR

ðbaÞ was empirically derived for each individual subject on each trial based on the experimental data. For the quasi-optimal Bayesian

model, learning rate on each trial (at) was computed according to the formula in Equation 4. Computation of CPP was construed as

the relative likelihood that a new sample is drawn from the same Gaussian distribution as shown in Equations 6 and 7. Therefore, the

position of the new sample at a given trial Xt corresponded to the empirical data (i.e., where the particle landed). The belief estimate of

the model for the first trial (Bt, t = 1) was initialized as 0. MC was implemented according to Equation 8 and initialized for the first

trial (yt, t = 1) as 0.5 (i.e., the same value assigned for when a change-point was assumed to have occurred). Values of the hazard

rate (H = 0.125) and variance of the generative Gaussian distribution (s2
N = 12) were fixed as described in previous section.

Behavioral Analysis
All analyses were conducted in MATLAB (MathWorks) with used in-house scripts and functions and R version 3.3.1 via RStudio

version 0.99.878 (https://www.r-project.org/). All statistical tests were two-sided, and parametric or nonparametric tests applied

as needed according to assumptions of the specific statistical test chosen.

We excluded trials from the analysis where the estimated LR ðbaÞ exceeded the 99th percentile (calculated separately for control and

patient group) or where the spatial prediction error (i.e., bdt = Xt-bt, Equation 2) was equal to 0. Those were respectively thought to be

due to processes other than error-driven learning or provided no information about error-driven learning (Nassar et al., 2016). Conse-

quently, we omitted 3.1% of all trials. All participants (OCD, n = 24; CTL, n = 25) were included for the statistical analyses if not re-

ported otherwise.

All confidence measures were z-scored within subjects to make comparison between groups possible. Additional analyses

were performed in order to ensure that there were no differences between the groups that may have arisen by chance. First, we

computed the number of change-points occurring for each subject and compared between groups. There were no differences in

the total number of change-points occurring (OCD, 42.70 ± 1.16; Controls, 41.56 ± 1.98; t47 = 0.760, p = 0.451). Second, because
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change-points might have occurred at any point, we identified periods of stability (periods in between change-points). There were

no groups differences in number of trials occurring between consecutive change-points (OCD, 6.95 ± 0.20; Controls, 7.07 ± 0.16;

t47 = 0.491, p = 0.625). Third, because position of change-points was re-drawn from a Gaussian distribution, particles at change-

points might have landed on any location of the circumference. The distance between the position of the particle preceding a

change-point and the position of the particle at a change-point was not different between groups (OCD, 83.39 ± 1.20; Controls,

80.41 ± 2.08; t47 = 1.228, p = 0.226). Fourth, because of the jittering during periods of stability (periods in between change-points)

particles might have landed in the proximities of the mean. As expected, given the fixed standard deviation of the Gaussian distri-

bution, there were no significant differences in the position of the particles during periods of stability (OCD, 13.64 ± 0.13; Controls,

13.74 ± 0.18; t47 = 0.406, p = 0.686).

LR ðbaÞ was compared across groups (Figure 2A) using Welch’s two-tailed t test adjusting degrees of freedom to account for un-

equal variances.

For data in Figure 2B we computed, for each participant, for each trial, the error magnitude (i.e., bdt = Xt-bt, Equation 2 corresponding

to the difference between the location of particle at trial t and chosenbucket position at trial t). The distribution of the values of the spatial

prediction error was divided into 20 quantiles. TheMATLAB function quantile was used dividing the frequency distribution of the spatial

prediction error into 20 groups (see Table S2 formean andSEM for each quantile). As a result, the quantileswere not equally spacedbut

contained the same fraction of the total data distribution. For each quantile, we computed the mean LR ðbaÞ separately in controls and

patients. Only for visualization purposes, data from the first 18 quantiles are shown in Figure 2B (but see Table S2 for mean and SEM of

each quantile). For statistical analysis, the distribution of the values of the spatial prediction error was divided in 3 quantiles (i.e., low,

medium, and high error magnitude), data extracted for controls and OCD for each of the three quantiles, and statistical analysis

performed. A mixed two factor within subject design was used to analyze the data having group as the between subject factor and

magnitude of error as thewithin subject. ‘‘Ez’’ R package yielding ANOVA results and assumptions check (Mauchly’s test for sphericity,

sphericity corrections and Levene’s test for homogeneity of variance) was employed. Sphericity violations were corrected using the

Greenhouse-Geisser procedure. Pairwise between-groups comparisons were performed and Bonferroni correction applied.

Regression Model
For all regression models, we additionally excluded the last trial of each block, as no learning rate could be estimated for these trials.

All regression models were run at the participant level and reported statistics were calculated on group level averages.

In order to estimate how much participants updated their action according to the benchmark Bayesian model, we ran a linear

regression model with four regressors: (a) absolute prediction error (jdj), (b) change-point probability ðUÞ, (c) model confidence (y)

and (d) hit/missed as categorical predictor. Model confidence was inserted as (1-CPP)*(1-MC) to reflect the second component

of the learning rate in Equation 4. The second and third regressors should be positive (and close to 1) if participant behavior approx-

imates the benchmark Bayesian model. Since both components were linearly predictive of learning rate in the benchmark Bayesian

model, all regressors – except PE – were implemented as interaction terms with PE. The last regressor coded whether the particle

was caught or could alternatively be seen as positive feedback. This information was unavailable to the benchmark Bayesian model

and thus the model would not predict any influence of this term. The dependent variable ‘action’ was constructed similar to the up-

date formula of the quasi-optimal model, by multiplying the LR ðbaÞ by the absolute spatial prediction error ðbat3
�� bdt

�� Þ.
For reported confidence we ran a linear regression model with similar predictors, now without the interaction term with PE. All pre-

dictors were z-scored at the subject level. The dependent variable ‘confidence’ was the z-scored reported confidence provided by

the participants. As confidence increases when uncertainty decreases, we expect negative beta weights for the parameters of CPP

and model confidence.

Regression fits were as follows: action controls, median r2 = 0.814; action patients, median r2 = 0.846; confidence controls, median

r2 = 0.152; confidence patients, median r2 = 0.110. The posterior model probability was used for Bayesian model selection (Stephan

et al., 2009) among a finite set of models (Table S4; Figure S2). Wilcoxon rank-sum test was used for between-group comparisons on

values of the predictors of the selected regression models (Figures 3C, 3F, and 4A).

Finally, to bring together the results of the previous two regressionmodels, wewanted to investigate whether the link between con-

fidence- and action-updating was in fact weakened in the patient group (Figure 4A). We therefore constructed a new regression

model with the absolute confidence-update (i.e., the absolute difference between z-scored confidence reports on trial t and t-1)

as the independent variable and absolute action-update (i.e., the absolute difference between where participants positioned bucket

on trial t and t-1) as the dependent variable. We reasoned that if confidence and action were linked, then on trials where the partic-

ipant had to adjust the position of the bucket more, confidence reports would also have to be adjusted more, irrespective of direc-

tionality (hence the absolute). Pearson’s correlation was also used to measure the association between symptom severity and

strength of coupling between action control and metacognitive report of confidence (Figure 4B).

DATA SOFTWARE AVAILABILITY

Data and Code Availability
The data and the analysis scripts are available on https://github.com/BDMLab and https://doi.org/10.17863/CAM.13236 for raw,

unprocessed behavioral data.
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