
Implicit Active Constraints for Concentric Tube Robots Based on
Analysis of the Safe and Dexterous Workspace

Konrad Leibrandt, Christos Bergeles, Member, IEEE, and Guang-Zhong Yang, Fellow, IEEE

Abstract— The use of concentric tube robots has recognized
advantages for accessing target lesions while conforming to cer-
tain anatomical constraints. However, their complex kinematics
makes their safe telemanipulation in convoluted anatomy a
challenging task. Collaborative control schemes, which guide
the operator through haptic and visual feedback, can simplify
this task and reduce the cognitive burden of the operator.
Guaranteeing stable, collision-free robot configurations during
manipulation, however, is computationally demanding and,
until now, either required long periods of pre-computation time
or distributed computing clusters. Furthermore, the operator
is often presented with guidance paths which have to be
followed approximately. This paper presents a heterogeneous
(CPU/GPU) computing approach to enable rapid workspace
analysis on a single computer. The method is used in a new
navigation scheme that guides the robot operator towards
locations of high dexterity or manipulability of the robot. Under
this guidance scheme, the user can make informed decisions and
maintain full control of the path planning and manipulation
processes, with intuitive visual feedback on when the robot’s
limitations are being reached.

I. INTRODUCTION

Navigating through convoluted pathways to access deep-
seated pathologies through natural orifices or single-access
ports is a challenging task in minimally invasive surgery
(MIS). Continuum robots are ideally suited for these in-
terventions as their shape can be controlled to conform to
anatomical constraints [?], [?]. A representative continuum
robot is the concentric tube robot (CTR). The manipulation
of CTRs encompasses rotation and translation of concen-
trically arranged, pre-curved super-elastic tubes [?]. The
elastic tubes interact with each other creating curved robot
shapes and allowing full tip-pose control. The degrees-of-
freedom (DoF) of the CTR increase with its number of tubes,
making it possible to construct redundant robots wherein the
additional DoFs allow for the optimization of the robot shape
without compromising tip manipulation.

CTRs have been designed using optimization techniques
[?], [?], [?] for several surgical applications such as haemor-
rhage evacuation [?], tissue approximation for heart surgery
[?], bronchoscopic biopsy [?], and transurethral prostatec-
tomy [?].

Analysis of the workspace to describe the reachability
of CTRs was presented in [?], while the manipulability of

K. Leibrandt and G.-Z. Yang are with the Hamlyn Centre for Robotic
Surgery, Imperial College London, United Kingdom. C. Bergeles is with the
Translational Imaging Group, Centre for Medical Image Computing, Univer-
sity College London, United Kingdom. K. Leibrandt was supported by the
President’s PhD Scholarship of Imperial College London and EPSRC UK.
C. Bergeles was supported by an EPSRC-funded UCL Future Leaders Grant.
Corresponding author: k.leibrandt12@imperial.ac.uk.

Pathway of highest dexterity

Coronal view of brain ventricles

x
z

Dexterity: none low medium high

Fig. 1. Preoperative analysis of the safe and dexterous workspace of an
intraventricular concentric tube robot.

continuum robots was investigated in [?], [?]. Methods to
efficiently calculate the Jacobian along the robot body were
presented in [?], [?]. The forward and inverse kinematic of
CTRs can be solved by accounting for the torsional wind-up
along the length of each tube, while enabling computation
of metrics describing the stability of configurations. These
instabilities arise from torsion itself [?], [?], [?]. Through
the torsional wind-up of the tubes, energy accumulates and
may rapidly release in fast, uncontrolled changes of the robot
shape [?], [?]. Hence, safe manipulation requires the real-
time detection of unstable configurations and their evasion
by the robot operator [?].

Different methods have been presented to achieve real-
time manipulation of CTRs, including look-up tables [?],
Jacobian-based approximation [?], sparse path-plans using
rapidly-exploring random trees [?], dense path-plans [?], [?],
and multi-node parallel kinematics optimizers [?]. First, these
approaches either required long pre-computation times, or
used inverse kinematics without path-planning and risked
non-convergence due to local minima. Second, the existing
guidance schemes required the user to approximately follow
the provided safe path-plans with limited capacity to react
in urgent circumstances, and could not capitalise on the
operator’s intuition and surgical experience.

It was demonstrated in [?], [?] that rapid calculation of

the robot workspace to create off-line dense path-plans for
intra-operative use can be achieved in minutes when using a
distributed multi-node computation approach. Subsequently,
it was shown that multi-threaded optimization on a single
computer allows on-line inverse-kinematics for stable and
collision-free paths. Nevertheless, multi-node cloud com-
puting resources accessed through an internet connection
cannot guarantee to be free of malicious software, or fully
resilient to attacks (e.g distributed denial of service (DDoS)
attack), which can compromise patient safety in a hospital
environment. Therefore, local computation with dedicated
computer hardware embedded in the hospital or operating
theatre is more practical for the clinical translation of the
developed methodologies.

Motivated by the challenges of local computation and
transparent guidance this paper presents:

• A computing architecture with optimized memory man-
agement to perform pre-operative and intra-operative
computations on a single device by exploiting the
capabilities and power efficiency of Graphic Processing
Units (GPUs)1.

• A methodology to penalise the columns of the CTR
Jacobian that lead to the robot dangerously close to the
anatomy, unstable configurations, or joint limits.

• An implicit active constraint guidance scheme, which
is based on the analysis of the safe and dexterous
workspace of the CTR, see Fig. 1.

All contributions are evaluated via computing benchmarks
and a simulated surgical intervention that compares existing
guidance techniques with the presented approach.

II. WORKSPACE ANALYSIS — DEXTERITY MEASURE

Manipulability or dexterity analysis are standard tech-
niques that quantify a robot’s capabilities within its
workspace. Operating a robot in high-dexterity regions is
often critical for the successful execution of a task [?]. The
analysis of the robot’s workspace can be used to:

• Plan manoeuvres in the task-space to manipulate within
regions of high dexterity.

• Optimize the joint configuration to maximize robot
dexterity or steer an inverse kinematic solver towards
high-dexterity configurations.

Both aspects affect autonomous robot manipulation and
telemanipulation. In the latter, the dexterity analysis informs
the decision-making of the robot operator.

Two common measures for dexterity are the manipulability
(M) [?] and the inverse condition number (C̄):

M =

√
|Je JeT | , (1)

C̄ =
smin

smax
, (2)

where Je is the end-effector Jacobian, and smax, smin are
the largest, and smallest, singular values of Je, respectively.

1There are also other types of energy efficient computing accelerators
e.g. many core processors (MIC), field-programmable gate arrays (FPGA),
which my be used in lieu of a GPU.

To obtain a more accurate analysis of the manoeuvrability
of a robot configuration, additional approaches have been
used, e.g. penalization by Pq for joint values (q ∈ Rnq ,
nq: number of joint values) that are close to their limits
(qmax, qmin) [?]:

Pq = 1− exp

{
−κq

nq∏
i=1

(qi − qi,min)(qi,max − qi)

(qi,max − qi,min)2

}
, (3)

D = Pq M, (4)

where κq is a scaling parameter, and D the joint-limit
penalized dexterity measure.

This approach, however, does not account for redundant
robots. For example, if a single joint is at its limit, then Pq

becomes zero even if a redundant robot would continue to be
manoeuvrable as the joints-space DoF (nq) remain larger or
equal to the task-space DoF (nt). Therefore, there is a need
for a measure which acts directly on the Jacobian to represent
joints that are free to move. Further, the measure should
be able to cope with additional programmatically imposed
constraints.

This problem is addressed in [?] by investigating a multi-
tude (2nt) of local Jacobians representing the possible direc-
tions of motion. The Jacobians are evaluated by computing
the inverse condition number (C̄) for all nt · 2nt singular
values. Singular-value-decompositions (SVDs), however, are
computationally expensive, and an alternative approach is
required for real-time intraoperative use in redundant flexible
robots.

Therefore, a penalization methodology is proposed in
which the Jacobian is column-wise modified to account
for joint and obstacle constraints. Instability of the CTR
can also be considered based on the metrics developed in
[?]. Viewing the Jacobian-column (jei) as a measure of the
influence that a joint (qi) has on the end-effector pose (Te),
each column is penalized to individually account for joint-
limit constraints. This leads to the formalization of the joint-
limit specific penalization term (Pq

i) as:

Pq
i =

1− exp
{

4κq (qi−qi,min)(qi,max−qi)
(qi,max−qi,min)2

}
1− exp {κq}

(5)

The factor «4» and the denominator «1− exp{κq}» in (5)
are needed to normalize the penalization term such that Pq

i

spans the interval [0, 1]. Pq
i evaluates to zero at the limits of

qi and evaluates to one in the neutral position. The scaling
coefficient κq dictates the shape of Pq

i between these points.
A complementary measure penalizes joints that are re-

sponsible for collisions with the anatomy. Let |dc| be the
minimum distance between robot and anatomy, such that
point pc

r on the robot and point pc
a on the anatomy define

dc as dc = pc
a − pc

r. Let the Jacobian at pc
r be Jc. These

variables are used to compute the joint-specific penalization

term accounting for collision constraints (Pc
i) as:

j3,crel,i := j3,ci � j3,ei , (6)

dcrel,i :=


0 , if‖dc‖ < dmin

1 , if‖dc‖ > dmax
‖dc‖−dc

min

dc
max−dc

min

/∣∣∣〈d̂c, j3,crel,i

〉∣∣∣, else (7)

Pc
i =

1− exp {κc d
c
rel}

1− exp {κc}
(8)

In (6) j3,ei , and j3,ci , denote the first three elements of the ith

column of Jacobian Je, and Jc, respectively. The Operator
� performs component-wise division. The resulting variable
jcrel,i represents the relative motion of pc

r based on the end-
effector motion, which is dictated by the user2. For distances
less than dcmin, and greater than dcmax, the relative collision
distance dcrel,i becomes zero, and one, respectively. The
scalar product in the denominator of (7) represents how the
ith joint is affecting the approach of the robot body to the
obstacle. The nominator depends on how close the robot is
to the obstacle.

The columns of the intermediate constrained Jacobian Jq,c

are calculated as:
jq,ci = Pc

i P
q
i j

e
i (9)

Therefore (9) imposes constraints arising both from joint-
limits and the potential of causing a collision with the
anatomy.

The final penalization term quantifies the possibility of
the robot becoming unstable. The degree of stability ds

of the CTR, which describes the angular distance to an
unstable configuration [?], is augmented as the non-joint-
specific stability penalization term Ps:

dsrel := max

{
min

{
ds − dsmin

dsmax − dsmin

, 1

}
, 0

}
(10)

Ps =
1− exp {κs d

s
rel}

1− exp {κs}
, (11)

where dsmin is the minimum acceptable degree of stability
and ds > dsmax leads to no penalization. The final constrained
Jacobian J? is calculated as:

J? = Ps Jq,c (12)

It is worth noting that a joint-specific stability penalization is
also possible. However, due to the increased computational
cost to determine the joint-specific influence on the stabil-
ity, global penalization was chosen. The resulting dexterity
measure is calculated in accordance to (1) as:

D =

√
|J? J?T | , (13)

and will be used to generate implicit dexterity guidance.
To compute all necessary metrics for D, GPUs were

used in the effort to create a safe inverse kinematic and
guidance scheme that runs on commodity computers. The
computation-architecture specifics are described next.

2The contribution of q1 to the velocity of pc
r e.g. in the x-direction is

calculated according to: {je1,1 =
∂ẋe

1
∂q1

, jc1,1 =
∂ẋc

1
∂q1

} ⇔ ∂ẋc
1 = ∂ẋe

1

jc1,1
je1,1

⇔ ∂ẋc
1 = ∂ẋe

1 j
c
rel,1,1

III. CONCENTRIC TUBE ROBOT KINEMATICS ON GPUS

The developed architecture uses the GPU to pre-
operatively calculate the dexterity maps. Subsequently, in-
traoperatively, the multi-threaded optimisation from [?] is
used to solve for the inverse kinematics of the robot. The
optimizers are steered towards highly dexterous configura-
tions by providing initial configurations extracted from the
computed dexterity map DV,Q, introduced in Sec. IV. This
pruned dexterity map DV,Q is then used to visualise relevant
maneuverability information.

Solving robotic kinematic and optimization problems on
the GPU is non-trivial. Even though, similar to the CPU,
the GPU has multiple levels of memory types, akin to
RAM, Cache, Register with different access speeds, in GPU
programming there is no automated way to optimize the
use of the memory. The software architecture must provide
details on the usage and layout of different types of memory.
Furthermore, the GPU is not suitable for conditional state-
ments, and random or non-coalescence memory access that
reduces performance. Therefore, a dedicated memory layout
for CTR kinematics computations was developed, and an
heterogeneous computing approach that takes advantage of
the complementary strengths of CPU and GPU.

A. GPU Memory Layout

The two main low-level programming languages for par-
allel computation are CUDATM, and OpenCLTM. OpenCL
terms are used in this paper, since OpenCL is not exclusive
to GPU computing. There are equivalent terms in the CUDA
framework.

The different types of memory on the GPU are: private,
local, constant, and global memory. The usage of
private, local, and constant memory has particular
speed advantages. However, the memory size is limited and
constant memory is read-only. Furthermore, even if there
is no clear limit for private memory, it is advisable to
ensure that the registers of the GPU-compute-elements can
hold all private memory. Slow scratch registers are used
otherwise, affecting performance.

To calculate the CTR shape, stability measure, and Jaco-
bian matrices the memory layout was chosen as:

• private: helper variables, temporaries of very fre-
quent use. Only arrays of a few elements.

• local: state variables of the CTR which are frequently
used. Short arrays based on CTR tube and section count.

• constant: design parameters of the CTR that do not
vary during the kinematic calculations.

• global: input, output variables and buffer for infre-
quently used CTR state variables. Large buffers storing
data of each discretisation/sample point.

The memory layout in Table I details the proposed con-
cepts. Although local memory can be used as a locally
shared memory resource, in the proposed structure every
compute element is working on independent memory areas,
which are accessed coalesced. The constant memory
stores the CTR design parameters and it allows adaptation

TABLE I
MEMORY LAYOUT ON ACCELERATOR DEVICE

Variable Type Size Variable Type Size
Local Memory Constant Memory
Robot Robot
Base Rotation Real 1 Max Number Sample uint 1

Per Tube Per Section
Sample Curvature Real 3 Number Tubes uint 1
Sample Alpha Real 1 Length Real 1

Per Section Tube Stiffness Real 2
Joint Values Real 3 Tube Curvature Real 2
Curved Interval Real 2 Tube Radius Real 2

Tube Poission Ratio Real 2

Global Memory - Input1 Global Memory - Results1

Joint Values Real 1+Nsec Calculation of Robot Shape
+Ntube Per Sample Point2

Jacobian Sample uint 1 Transform Real 12
Index Robot Outer Radius Real 1

Global Memory - Temporary1 Calculation of Robot End-effector
Per Sample Point2 Transform Real 12
Alpha of Real 1 Calculation of Robot Stability
Innermost Tube Degree of stability Real 1
Curvature of Real 3 Calculation of Robot Jacobian
Innermost Tube Per Jointvalue

End-effector Real 3/6
At Sample Index Real 3/6

Real: float (4byte) or double (8byte), uint: uint32 or uint64, to match size of Real.
Ntube: number of CTR tubes, Nsec: number of CTR sections.
1Memory needs to be reserved for each workitem (global_work_size).
2Memory needs to be reserved for the maximal number of samples.

from the host device. The memory space requirements in
bytes (B), based on Table I, are:

Blocal = Nlocal_size (1 + 4Ntube + 5Nsec) sizeof(Real), (14)
Bconstant = sizeof(uint) +Nsec (9 sizeof(Real) + sizeof(uint)), (15)
Bglobal_tmp = 4Nglobal_size Nmax_sample sizeof(Real), (16)

where Real is the floating point type (float, double), Blocal is
the local memory size, Bconstant the constant memory
size and Bglobal_tmp the global memory size for the tem-
porary variables. The sizeof-function provides the byte size
of the respective data type. Ntube is the number of tubes,
and Nsec the number of sections the CTR comprises. Nlocal_size

is the work-group size, Nglobal_size the global work size, and
Nmax_sample the maximum number of sample/discretization
points along the robot centreline.

B. Heterogeneous Computing for CTR Kinematics

For the workspace analysis presented in Sec. II the hetero-
geneous computing approach as outlined in Fig. 2 is used.
The use of the host (CPU) in step I.), and II.) is motivated
by step II.) which requires the robot shape for the collision
detection and proximity calculation. It is particularly efficient
for proximity queries to use data structures like k-d trees.
However, these data structures perform poorly on GPUs since
they require fast non-coalesced random access to memory,
which performs better on CPUs. Since the shape calculation
in step I.) requires transfer of large amounts of memory from
the device to the host, performing those calculations on the
host is more efficient (as verified by experiments). Step V.)

I. Robot Shape Calculation
Hostrandom joint values: q

discretization step size: εarc

II. Collision Detection
Hostminimum distance to anatomy: dc

thres

k-d tree of dense points representing the anatomy

Buffer | Storage of Host
Collision-free configuration: • joint values: q

• proximity metrics: dc,pc
a,p

c
r, n

c
samp, n

e
samp

III. Stability Analysis
Devicejoint angles, collision-free: q

discretization step/angle size: εarc, εα
Buffer | Storage of Host
Stable configuration: • stabilty measure: ds

IV. Jacobian Computation
Devicejoint angles, stable and collision-free: q

number of discretization samples: ne
samp

index of closest sample to anatomy: nc
samp

Buffer | Storage of Host
Jacobians: • end-effector: Je, closest point to anatomy: Jc

V. Dexterity Measure
Hostparameter: q,dc,pc

a,p
c
r, d

s,Je,Jc

scaling factors: κq,qmin,qmax, κc, d
c
min, d

c
max,

κs, d
s
min, d

s
max

Buffer | Storage of Host
Dexterity: D

Fig. 2. Heterogeneous computing approach running different computation
tasks on the host (CPP) and accelerator devices (OCL). Inputs for each
task/algorithm are indicated with: . Outputs are stored in buffers, which
are listed below the respective algorithm.

is performed on the host since it requires a singular-value-
decomposition (SVD), which was not implemented on the
device. Steps II.) and III.) were performed on the GPU. The
memory transfer for these two steps is marginal in compar-
ison to the computational cost. Furthermore, asynchronous
write, compute, read, was used to fully utilize the GPU.

All dexterity metrics for a given configuration are calcu-
lated as described in Fig. 2 and stored to be used as implicit
constraints.

IV. IMPLICIT CONSTRAINTS

To use the calculated Dexterity (D) in task-space, a
discretized workspace bounding box V , comprised of voxels
(v ∈ R3), is generated. D depends on the robot configuration,
which is defined by the joint values (q). Different sets of joint
values can map to the same end-effector position in task-
space (x). Therefore, considering a discretized/voxelized
workspace, each configuration (q) with dexterity (D) and
position (x) maps to a voxel (v), with i, j, k denoting the
indices of the voxel, which also includes position x:

q → {D(q),x(q)} → v(i, j, k) (17)

To provide visual cues to the operator on how to plan the
robot manipulation to a certain target point, the maximum
dexterity value in a voxel (DV) is calculated as:

DV(i, j, k) = max
qm

{D(qm) | x(qm) ∈ v(i, j, k)} (18)

This voxel dexterity (DV) is provided to a volume rendering
engine that visualizes the regions of the workspace with
highest manoeuvrability. These should be considered in the
user’s path planning to safely reach the target, see Fig. 1.
Hence, the user is provided with an implicit description of
the robot’s capabilities, which can be combined with other
factors such as experience or task-specific considerations that

a

DV

x
z

b

DV,Q

x
z

c

DV,Q

x
z

d

DV,Q

x
z

Dexterity: none low medium high

Fig. 3. Visualization of CTR dexterity, a: maximal dexterity based on tip
position, b, c, d: maximal dexterity considers also current joint values.

are difficult to be formalized and might be operator- and
patient-specific.

Furthermore, during task execution, a current-
configuration-specific dexterity map DV,Q based on
current joint values (q) and voxel (v) is generated and
updated:

DV,Q(q, v) =max
qm

{D(qm) |x(qm) ∈ v ∧ τq(q,qm)} (19)

where τq is a threshold function:

τq(q
′,q′′) :=

{
1, if |q′i − q′′i |<qthresi ∀i ∈ {1 . . . nq}
0, else

, (20)

where q′,q′′ are two sets of joint values, and qthres is
the upper threshold of acceptable joint-value differences.
Therefore, dexterity values stemming from configurations
highly different to the current configuration are filtered out.
A visualisation of DV is depicted in Fig. 3 (pre-operative
view), and Fig. 3b, c, d shows the configuration specific voxel
dexterity DV,Q updated during robot manipulation (intra-
operative view).

To support the user to manipulate the CTR with high ma-
neuverability, haptic guidance forces attract the operator to
regions of high dexterity. The guidance forces are calculated
as:

F (q, v) = κf

∑
i

x(vi)− x(v)

‖x(vi)− x(v)‖2
(
DV,Q(q, vi)

−DV,Q(q, v)
)∣∣∣‖x(vi)− x(v)‖ < xthres

F , (21)

where x(v) provides the position of a workspace vertex v,
xthres
F is distance threshold for considering voxel dexterity,

and κf is a force scaling factor.

V. EXPERIMENTS

To verify the efficiency of the presented heterogeneous
computing approach and the effectiveness of the dexterity-
based guidance, two experiments were conducted. The first
assesses the computational speed improvements using GPUs,
and the second assesses the visual and haptic guidance
scheme proposed.

A. Benchmarking Experiment

The implementation was tested using a CTR with 3 sec-
tions and 4 tubes. The robot parameters are listed in Ta-
ble II. An AMD FireProTM W9100 GPU was used as
OpenCL device. It features 32 kB local memory and

TABLE II
ROBOT PARAMETERS (3 SECTIONS, 4 TUBES)

Robot Section Curvature Straight/Curved Stiffness Tube
Type [mm−1] Length [mm] Ratio Index
variable curvature 0.0522 0.00/66.47 5:1 1, 2
fixed curvature 0.0526 66.47/66.70 1:1 3
fixed curvature 0.0 113.17/12.65 0.05:1 4

64 kB constant memory. The preferred work-group size
(Nlocal_size) is a multiple of 64. Using double-precision
with a size of 8 B allows to have a work-group size of
128 consuming Blocal = 32 kB of local memory and
Bconstant = 248B of constant memory. Furthermore,
the maximal number of sample (Nmax_sample) was set to 256,
which provides a sufficiently large number of samples for the
targeted discretization step of εarc = 1mm. The number of
work-groups (Nlocal_size) was set to 88, which corresponds
to twice the number of compute units of the GPU. Therefore,
temporary global memory of Bglobal_tmp = 88MB had
to be reserved. With single-precision a work-group size
of 256 was used, which also results in 32 kB of local
memory. The constant memory reduced to 124 B and
maintaining the number of work-groups the requirements,
for the temporary global memory of 88 MB was also
maintained. Code optimization with regards to private
memory and temporary variables resulted in the avoidance
of scratch registered, which was verified through runtime
profiling.

Benchmarking experiments where conducted using:
• CPU: 2x Intel R©Xeon R©E5-2637v3 with a combined

thermal design power (TDP) of 270 W, and
• GPU: AMD FireProTM W9100 GPU with a similar TDP

of 275 W.
Table III shows the benchmarking results using the heteroge-
neous computing (HetC) with CPU and GPU (TDP=545 W)
and the homogeneous computing approach (HomC) using
only the CPU (TDP=270 W). To fully utilize the GPU the
random numbers for the translational joint-values were cho-
sen in intervals (i.e. generate random configurations which
result in [a, b]% extended CTRs). This translation interval
approach (TIA) ensures that one work-group on the GPU
processes CTR of similar lengths and with similar numbers
of discretisation points, which results in similar instruction
paths for all work-items in a work-group. The intervals are
shifted during the Monte Carlo sampling such that the CTR
lengths of all joint-configurations are uniformly distributed.

It was found that the bottleneck in the conducted experi-
ment was the CPU. Even with a single GPU, the CPU was
not able to generate collision free-configurations fast enough
to be then tested by the GPU for stability and Jacobian
calculation. In order to show the advantage the GPU has
over the CPU regarding stability and Jacobian computation,
the workload was shifted to step III.) and IV.) (stability,
Jacobian) by choosing only short robots (TIA ∈ [10, 20]%,
likely collision-free) and reducing the discretization step size
εarc by a factor of 10. With this parameterization, a dual GPU

configuration was tested (TDP=820 W).
1) Results: The results of the benchmark experiment are

listed in Table III. Using only the CPU the duration of
generating a dense dexterity map is 116-1070 % longer. With
the TIA approach the heterogeneous approach shows an
increased performance of 54 %. The two top benchmarks
depicted in Table III report results of a non-fully utilized
GPU. The reduction of the discretization step size increased
the workload of steps III.) and IV.) and led to the doubling of
the CPU computation time. In contrast, the GPU’s compu-
tation time increased only by 40%. In a dual GPU setup the
overall computation time using the heterogeneous approach
is reduced by a factor of approximately 11 in comparison
to the CPU. Furthermore, the overall energy consumption
decreased in all benchmarks, when switching from CPU only
to heterogeneous computation. Utilizing a single GPU fully
leads to energy consumption improvements of up to 268 %.

2) Discussion: The experimental results show that using
a GPU for the kinematics of CTRs within the pre-operative
workspace analysis can result in significant computational
speed up on a single computer. For random sampling an
interval based scaling of the CTR length, which ensures
similar execution paths on the accelerator proved to increase
efficiency. Furthermore, it has potential to reduce the overall
energy consumption since accelerators are often more power
efficient. A good thermal energy efficiency is important since
it affects how dense the computing performance can be
packaged based on cooling constraints. The results lead to the
conclusion that the computational performance of the CPU
and GPU have to be tailored with regards to the workload
of the individual computation steps. For this experiment, for
example, a less powerful GPU would be sufficient.

B. Dexterity Guidance

The clinically relevant scenario is simulated based on
a challenging procedure that involves cauterisation of the
choroid plexus in hydrocephalic ventricles. During the in-
tervention an elongated CTR needs to access the horns of
the ventricles and cauterise them to reduce the production
of cerebrospinal fluid and to consequently decrease ven-

TABLE III
BENCHMARK HETEROGENEOUS/ HOMOGENEOUS

DEXTERITY COMPUTATION

Real Duration Duration Energy Energy CPU Energy
Type HetC [s] HomC [s] HetC [kWs] HomC [kWS] Surplus
4.19 · 106 Random Samples, 1×GPU, without TIA, εarc= 1 mm

float 261.4 566.9 142.5 153.1 7.4%
double 262.0 599.8 142.8 162.0 13.4%
4.19 · 106 Random Samples, 1×GPU, with TIA, εarc= 1 mm

float 169.7 565.6 92.5 152.7 65.1%
double 170.9 624.1 93.1 168.5 80.9%
4.19 · 106 Random Samples, 1×GPU, TIA ∈ [10, 20]%, εarc= 0.1 mm

float 242.2 1798.9 132.0 485.7 267.9%
double 546.6 2098.0 297.9 566.5 90.1%
4.19 · 106 Random Samples, 2×GPU, TIA ∈ [10, 20]%, εarc= 0.1 mm

float 154.2 1804.2 126.4 487.1 285.2%
double 294.7 2095.5 241.7 565.8 134.2%

a

DV

y
z

−x

b

DV,Q

y
z

c

DV,Q

y
z

d

DV,Q

y
z

: suggested point to manipulated to
: suggested direction of motion out of image plane
: suggested direction of motion in image plane

Dexterity
none
middle

low
high

Fig. 4. Visual guidance based on dexterity analysis. Information of the
robot’s dexterity is provided to the user to enable him/her in combination
with experience to plan a stable path way. a.) pre-operative view, b, c, d.)
intra-operative view.

tricle pressure. The procedure is anticipated to be safer
than cerebral shunts and an alternative to endoscopic third
ventriculostomy [?]. It requires a curved CTR that tends to
become unstable and is likely to collide with the anatomy.

Eleven user experiments were conducted in which the
participants were asked to manoeuvre the CTR to 13 cau-
terization locations within the ventricle anatomy. In each
experiment the user was asked to complete the task in three
different modes:

• «no planning»: solely using on-line inverse kinematics,
no provision of haptic or visual cues, described in [?].

• «path planning»: provision of assists to the user with
a guidance path ensuring stable configurations when
followed, described in [?].

• «dexterity planning»: guiding the user through visual
and haptic feedback to manipulate within regions of
high dexterity, presented in Sec. IV.

An example view of the visual guidance provided by the
«dexterity planning» mode is depicted in Fig. 4. The visual
guidance scheme provided the users with dexterity infor-
mation, which helped to plan a path based on anatomical
constraints and robot capabilities. This approach does not
explicitly generate a guidance path. The order of execution
of the three modes are alternated between users to eliminate
learning effects.

1) Results: The quantitative evaluation criteria is the task
duration, depicted in Fig. 5. It shows that the modes using
path-, and dexterity planning, enable the user to finish the
task faster. The results show no statistically significant differ-
ence between the task duration when using «path planning»
or «dexterity planning». However, both planning methods
show a statistically significant difference in the duration to
the «no planning» mode (based on a significance-level of 5%,

0

200

400

600

800

1,000

No
Planning

T̄ : 421 s

Path
Planning

T̄ : 232 s

Dexterity
Planning

T̄ : 271 s

Ti
m

e
[s

]

p = 1.0%

p = 3.0%

p = 59.9%

Fig. 5. Statistical analysis of experiment task durations. T̄ : interquartile
mean duration [s], p: p-value of two-sided Wilcoxon rank sum test [%].

using the two-sided Wilcoxon rank sum test). Calculating the
interquartile mean using the «no planning» mode the users
were 81% and 55% slower compared to «path planning» and
«dexterity planning», respectively.

The qualitative assessment was performed by users rating
their perception of the three modes on a seven-level Lik-
ert scale regarding: i.) overall performance, ii.) frustration,
iii.) haptic guidance, and iv.) visual guidance. A negative
value encodes a undesired perception, and a positive rating a
favoured characteristic, see Fig. 6. The qualitative assessment
shows that the «no planning» mode was perceived worse in
all regards. The visual guidance was perceived best in the
«dexterity planning» mode and in the remaining categories
the «path planning» mode was favoured.

2) Discussion: The user experiment showed that guidance
approaches are effective for CTR manipulation and help
with unintuitive manipulation of CTRs. The «path plan-
ning» implementation from [?] performs a little better than
the presented «dexterity planning» approach. In particular
the haptic feedback was criticized as only partially useful,
and increased user frustration. The haptic feedback in the
implementation of this paper always pulls towards high
dexterity regions, although it might be necessary to enter
lower dexterity regions to reach the target. An additional
processing step based on F (q, v) and motion redirection as
presented in [?], might overcome this static force problem.
Nevertheless, the presented dexterity based approach has
multiple advantages. The user can better account for:

• non-modelled factors (e.g. additional safety margins
within the anatomy),

Visual Guidance

Haptic Guidance

Frustration

Performance

Perception
-3

very
negative

-2 -1 0 1 2 3
very

positive

No Planning | Path Planning | Dexterity Planning

Fig. 6. User perceptional assessment of the different modes of operation,
marker represent mean value. Positive values represent favored perception.

• calibration and registration errors,
• surgical experience,
• unexpected situations.

Furthermore, it could be used in addition to the «path plan-
ning» approach or as preceding step to provide the operator
with an initial understanding of the robot capabilities within
the respective intervention.

VI. CONCLUSION

This paper presented the use of implicit active con-
straints for concentric tube robots based on the analysis
of the safe and dexterous workspace to rapidly inform
the operator with visual and haptic cues about the global
and configuration-specific manoeuvrability of the robot. A
heterogeneous computing architecture was presented, which
reduced computation time and increased energy efficiency.
This computing approach was further used to generate a
dexterity guidance map, which proved to perform equally
well to path guidance approaches, and thereby provided the
user with more freedom on their robot manipulation. Further,
improvements in the visual display and haptic rendering will
provide more transparent guidance and are anticipated to
result in a more intuitive user experience.

VII. ACKNOWLEDGEMENT

The authors gratefully acknowledge Prof. Pierre Dupont
from the Paediatric Cardiac Bioengineering Lab of Boston
Children’s Hospital, Harvard Medical School for providing
the anatomy used in this paper.

