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Abstract

Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the

nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from

large biases and spurious contacts, making it difficult to identify true interactions. Existing

methods use complex models to account for biases and do not provide a significance thresh-

old for detecting interactions. Here we introduce a simple binomial probabilistic model that

resolves complex biases and distinguishes between true and false interactions. The model

corrects biases of known and unknown origin and yields a p-value for each interaction, pro-

viding a reliable threshold based on significance. We demonstrate this experimentally by test-

ing the method against a random ligation dataset. Our method outperforms previous

methods and provides a statistical framework for further data analysis, such as comparisons

of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor

package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).

Introduction

Hi-C is a high-throughput technique based on chromosome conformation capture to detect

the spatial proximity between pairs of genomic loci [1,2]. It is now routinely used to study the

three-dimensional folding of genomes [3–7]. In theory, a sequenced Hi-C read-pair should

directly represent an interaction between two loci, with the number of mapped read-pairs cor-

responding to the frequency of interactions in the sample cell population. However, two chal-

lenges must be resolved in order to extract the true signal from Hi-C data.

The first is to identify and resolve systematic biases. Hi-C datasets present many effects

common to high-throughput sequencing experiments, for instance amplification biases due to
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differences in sequence composition across the genome. There are also biases that are specific

to Hi-C. For example, variations in the density of restriction sites cause large differences in

genomic fragment sizes; since very long or very short fragments are difficult to ligate, both

tend to be under-represented in the sequencing library [8]. The complex combination of

known and unknown biases cause over- and under-representation of chromosomal regions

when a Hi-C dataset is mapped to the reference genome. Thus, the number of observed read-

pairs do not directly reflect the frequency of interactions between two genomic loci.

The second challenge is to distinguish between real and artefactual interactions. As depicted

in Fig 1, a Hi-C library contains three types of read-pairs. (i) The first represents real interac-

tions in which the ligation reaction occurs between the ends of a pair of crosslinked DNA frag-

ments. (ii) The second corresponds to spurious self-ligations in which the ends of the same

DNA fragment are ligated together; as the two ends of read-pairs map to the same DNA frag-

ment, they are easily filtered. (iii) The third represents spurious ligations between two non-

crosslinked DNA fragments; read-pairs from these reactions are problematic as they are indis-

tinguishable from those arising through real interactions. The proportions of read-pairs repre-

senting real and spurious interactions can vary widely depending on the quality of the sample

and library preparations.

There are two main approaches to deal with biases. One approach is to identify the known

sources of biases affecting observed read counts a priori, and model these biases. One such

algorithm is hicpipe, which applies a multiplicative model to estimate the probabilities of inter-

actions between two genomic regions as a function of mappability, fragment length and GC

content; the numbers of mapped read-pairs are then normalised according to these estimates

[8]. Another method, HiCNorm, models biases at lower resolution and uses Poisson regression

for normalisation [9]. The other approach, used by most recent methods as well as us, is to

assume that all biases are reflected in the observed read counts. An early example is hiclib,

which proposes that the total bias is represented in the sequence coverage as the product of

individual biases for each pair of genomic regions. Starting with the assumption that every

genomic region should have identical coverages, hiclib iteratively normalises the original cov-

erage until it becomes uniform along the whole genome [10]. This method has been imple-

mented in a faster algorithm, Hi-Corrector [11]. ChromoR, also only uses the information

encaptured in observed read counts. For normalisation of Hi-C data it uses Haar-Fisz Trans-

formation to decompose the Poisson distributed read counts into Gaussian coefficients that

are subsequently de-noised by wavelet shrinkage methods [12].

Although both approaches have been frequently used, these methods exhibit several practi-

cal limitations. First, the assumptions behind the methods are untested against experimental

control data and so their success in eliminating biases is unclear. Second, the software imple-

mentation of some of these methods have either several dependencies that make them techni-

cally demanding to install and operate [8,10], require extensive pre-processing [10,11], or

cannot be applied at higher resolution [12].

Finally, the issue of distinguishing between real and random interactions remains

unresolved.

There are a few studies that assign false discovery rate estimates to Hi-C contacts in order

to identify real interactions. One early study uses a binomial model to achieve statistical confi-

dence [13], but it assumes an equal probability of all possible interactions, and therefore does

not account for the aforementioned biases. A recent improvement of this method is imple-

mented in Fit-Hi-C[14]. Fit-Hi-C uses the bias vector learned by ICE (iterative correction and

eigenvector) introduced by Imakaev et al. [10] to correct for the experimental biases. Addition-

ally, for interactions spanning 50kb-10MB, it adjusts the probabilities using a double spline fit-

ting procedure to estimate the probability of observing a contact at a given distance. The
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reason for this adjustment is the assumption that functional interactions are stronger at a

given genomic distance than structural interactions. However, it is not clear to what extent

this assumption is valid and it penalises short range interactions, which are potentially func-

tionally important. Furthermore, adjusting for genomic distance using spline or other cor-

rection methods can lead to miscalling or missing interactions, because the adjustment

factor is derieved from the whole dataset and applied equally to all loci, but the contact pro-

files are different around individual loci due to reasons such as differences in local chroma-

tin compaction.

Fig 1. Schematic overview of the binomial model. After crosslinking and digesting the chromatin, the DNA

is ligated resulting in three types of ligation products. In order to detect real interactions, we first filter out self-

ligations. With the remaining paired-reads, we then calculate the relative coverage across the genome in

order to estimate the random interaction probability. We finally apply the binomial test to distinguish between

random and real interactions.

https://doi.org/10.1371/journal.pone.0174744.g001
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Here, we introduce a binomial model that corrects the complex combination of known and

unknown biases in Hi-C data by assuming that all biases are captured in the total number of

reads mapping to the interacting loci (Fig 1). The model calculates the probabilities that the

observed number of read-pairs are due to random ligations, and yields a list of statistically sig-

nificant interactions between pairs of genomic loci irrespective of genomic distance. We chal-

lenged the model using random ligation controls, demonstrating that the method gives high

levels of specificity. GOTHiC, the accompanying BioConductor package, is fast, accurate and

easy to use.

Results

A binomial model based on coverage for Hi-C data

For a given pair of genomic loci, GOTHiC calculates: (i) the probability of observing a given

number of read-pairs between two loci through random ligations; and (ii) the effect size,

"strength” or “frequency", of interaction measured as the ratio of observed-over-expected

numbers of interactions. GOTHiC assumes that the observed sequence coverage varies as a

function of multiple known and unknown biases, including the density of restriction sites,

cleavage efficiency, ligation efficiency, amplification and sequencing biases, and mappability.

It assumes that the biases affect each end of read-pairs independently; thus the probability of

observing a randomly occuring read-pair between two loci is modelled as the product of the

relative coverages of the interacting loci. This is a reasonable assumption given our under-

standing of known biases[8,10]; the advantage of modelling the combined effect of biases is

that it incorporates unknown sources and that it is robust against future variants of Hi-C

methods, such as capture Hi-C.

First, self-ligations, dangling ends, re-ligations and incomplete digestion products are

removed by filtering read-pairs mapping to the same fragment and within a specified distance

of each other on the genome (default = 10kb). Given the relative coverage of two genomic loci,

j and h, the probability of a spurious read-pair linking the two loci can be calculated as:

pj;h ¼ 2rjrhfrandom ð1Þ

rj, the relative coverage of a locus, is calculated as:

rj ¼
readsj

2N
ð2Þ

where readsj is the mapped read count for genomic locus j, and N is the total number of read-

pairs in the filtered dataset. frandom is the fraction of read-pairs in the Hi-C library arising from

spurious ligations. Although frandom could be estimated experimentally or computationally, in

practice this may often be difficult and a conservative upperbound for pj,h can be obtained by

excluding this term, and is applied in GOTHiC (frandom = 1).

Given the probability of a read linking the two loci, the probability of observing nj,h or more

read-pairs between them by chance in a dataset of N reads, is given by the binomial cumulative

density:

pvalj;h ¼ P x � nj;h

� �
¼ 1 �

Pnj;h� 1

i¼0

N
i

� �

ðpj;hÞ
i
ð1 � pj;hÞ

N� i
ð3Þ

This yields a p-value for each interaction as a function of the coverage of both loci and the

total number of reads in the experiment. Using the Benjamini-Hochberg multiple-testing cor-

rection (with L�(L-1)/2 tests, where L is the number of loci investigated), we obtain an FDR
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adjusted p-value (q-value) that can be used directly to identify statistically significant interac-

tions at a pre-defined false discovery rate.

The log of the observed-over-expected ratio (R) can be used as a measure of effect size or as

a normalised measure of interaction frequency.

Rj;h ¼ log2

nj;h

pj;hN
ð4Þ

How well does GOTHiC perform?

Assessing performance using a Hi-C dataset and random ligation control. To assess

performance, we applied GOTHiC at 1Mb resolution to two datasets generated from the same

mouse fetal liver cell sample: (i) one produced using the standard Hi-C protocol and (ii)

another containing only randomly ligated read-pairs with HindIII. The latter was produced by

reversing the cross-links before the ligation step and it is analogous to an "input" control that is

commonly used for background correction in ChIP-seq studies. As expected in a random con-

trol, 93–95% of read-pairs occur between loci on different chromosomes, in contrast to 20–

40% of read-pairs in Hi-C datasets.

Read coverage is highly variable across the genome (Fig 2A): it correlates well with previ-

ously reported effects of GC content, mappability and restriction-site density, though not all

variation is captured by these factors. The raw contact maps in Fig 2B emphasise how varia-

tions in sequence coverage affect the interpretation of unnormalised Hi-C data, in which

regions of higher coverage ostensibly show stronger interactions and vice versa. Strikingly, the

trend is apparent even in the random ligation control (blue arrow, right panel), which does

not contain any true interactions. The high correlation in coverages between the real and ran-

dom datasets (Pearson’s r = 0.99) indicates that virtually all of the variation in coverage

observed in a Hi-C sample is explained by experimental biases.

The processed contact maps in Fig 2C show how effectively GOTHiC deals with these

biases, as the patterns influenced by underlying variations in coverage are removed (left

panel). GOTHiC also identifies statistically significant interactions with high specificity (red

squares, left panel). There is good separation in log (observed/expected) values between real

and random interactions (Fig 2D, top). GOTHiC identified ~80,000 statistically significant

interactions in the Hi-C dataset (FDR<5%). In contrast, GOTHiC calls only 4 out of more

than 3 million tested interactions in the random ligation experiment (Fig 2C, right panel), and

no significant interactions in a simulated random data set. In order to test the validity of the

binomial model, we plotted the p-value distribution from the random ligation sample (Fig 2D,

red) and a simulated random sample (Fig 2D, grey) on a qq plot. Due to the large number of

tests with 0 reads (p-value = 1) the observed–log10(p-values) are below those expected from a

uniform p-value distribution for most of the tests. The observed p-values from the random

ligation are marginally above of those obtained from a simulated random data set, which indi-

cates a slight inflation of p-values. This is probably due to incomplete de-crosslinking in the

random ligation experiment. Together, the random ligation and simulated random datasets

confirm the validity of the binomial model and the specificity of FDR estimates. For such

medium sized Hi-C experiments (~35M reads), the p-values reflect the probability of observ-

ing a given number of reads between any two loci as a result of experimental biases at higher

resolutions as well (500kb and 100kb bins) as shown in S1 Fig and S1 Table.

In addition to calling statistically significant interactions, GOTHiC removes much of the

underlying bias. Fig 2E demonstrates that the detection of significant interactions as well as
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Fig 2. GOTHiC applied to mouse fetal liver Hi-C experiments. (A) On the left, distributions of the relative

coverage and the GC content percentage, on the right the mappability score and the number of fragments per

1Mb (y-axis) across mouse Chromosome 10 (x-axis in Mb) (GC content and mappability scores are as in [8]).

Pearson correlation is calculated relative to the relative coverage. (B-C) Contact maps of mouse Chromosome

10 containing raw read counts (interactions with at least 3 reads) and binomial significances respectively

resulting from classic Hi-C experiment (left panel) and random ligation experiment (right panel) in fetal liver

cells. The intensity of the signal is summarized by the gradient above each contact map. Significant interactions

are colored with a red gradient in C. Arrows pinpoint a region of high coverage and its impact on the observed

GOTHiC, a model to identify real interactions in Hi-C data
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the general ranking of interactions by their q-value is largely independent of coverage, as the

proportion of significant interactions is stable across different coverage bins, and in each cov-

erage bin the proportion of interactions falling into the different quartiles is near a quarter.

Alternatively to the q-value, the log-ratio (R), between the observed number of reads and

the expected number of reads (log observed/expected) may be used as a normalised measure

of interaction frequency. This value is similar to the log fold-change measure in differential

expression analyses, and it would tend to show a high variance in regions of low coverage due

to the low expected values, and the integer read counts, similarly to log fold-change of lowly

expressed genes. However, the R value can be used for a dual cut-off to identify significant

interactions above a desired effect size (as in volcano plots).

The output from GOTHiC can also be used to flag poor quality Hi-C libraries. We have

observed that inadequate dilution or cross-linking can yield libraries with a high fraction of

spurious read-pairs (i.e., ligations between non-interacting fragments). This will lead to a more

uniform distribution of p-values, closer to what is expected by chance, and GOTHiC will suc-

cessfully control the false discovery rate, yielding a small number of significant interactions.

Reproducibility between replicates using different restriction enzymes. It has been

shown that treating the same biological sample with different restriction enzymes can cause

large differences in coverage along the genome[3]. To evaluate the performance of GOTHiC

in these conditions, we applied it at 1Mb resolution to previously published Hi-C datasets pro-

duced using HindIII and NcoI on a human lymphoblastoid cell line. These enzymes target dis-

tinct restriction motifs that are distributed differently along the genome; this results in

different fragment densities, GC contents and mappability biases. Fig 3A highlights their

remarkable impact on the coverage profiles and the raw contact maps (left and right panels,

yellow highlighted boxes).

Despite these strong biases, GOTHiC produces very consistent contact maps and statistically

significant interactions (Fig 3B), even in regions where raw read counts appear very discrepant

(Fig 3A and 3B, highlighted regions). We find 80,067 and 90,527 significant interactions in Hin-

dIII and NcoI experiments respectively, of which 69,505 overlap (Fig 3C), and the interaction

rankings obtained from the two experiments show high correlation (Spearman’s r = 0.76) (Fig

3D). The high overlap was maintained at higher resolutions (500kb, 100kb bins) (S2 Fig, S1

Table). In contrast, if we take the same number of interactions from both experiments based on

the ranking of raw read counts, we find only 58,971 overlapping interactions (Fig 3C) and a

lower rank correlation (Spearman’s r = 0.60).

Comparison with existing methods. Finally, in order to benchmark GOTHiC’s perfor-

mance, we applied hicpipe and hiclib, which represent different normalisation approaches, to

the mouse fetal liver and human lymphoblastoid Hi-C datasets (Fig 4 and S3 Fig).

As previously observed from the contact maps, the number of reads between two loci is

strongly affected by the coverage of these loci (Fig 4C, boxplots in the top panel). Although the

normalised interaction strength values from hicpipe and hiclib do not appear to show obvious

biases in the contact maps (Fig 4A and 4B, S3A and S3B Fig), more detailed assessment reveals

that the outputs from both methods continue to suffer from coverage-dependent biases (Fig

number of interactions (B, right panel). The coverage is represented at the left side of each contact map. (D)

The top panel represents the distribution of observed/expected log ratio of significant (red) and non-significant

(blue) interactions in the fetal liver cell sample. The bottom panel shows a qqplot of the observed and expected

p-values in the random ligation data set (red) and a simulated random data set (grey). (E) Influence of the

relative coverage on the distribution of interaction significance. GOTHiC interaction ranking in the Hi-C (upper

panel) and random ligation (lower panel) samples. The ranked lists were divided into quartiles, the first quartiles

correspond to the top ranked interactions. Significant interactions are shown in red.

https://doi.org/10.1371/journal.pone.0174744.g002
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Fig 3. GOTHiC applied to human lymphoblastoid Hi-C experiments. (A-B) Contact maps of human

Chromosome 3 containing raw read counts (interactions with at least 3 reads) and binomial significances

respectively resulting from HindIII Hi-C experiment (left panel) and NcoI Hi-C experiment (right panel). The

intensity of the signal is summarized by the gradient above each contact map. Significant interactions are

colored with a red gradient in B. The coverage is represented at the left side of each contact map. (C) Venn

diagrams representing the overlap between interactions with highest raw read counts and significant inter-

actions detected in HindIII (orange percentage) and NcoI (blue percentage) samples. (D) Correlation between

the HindIII (x-axis)/NcoI (y-axis) common significant interactions (69,505 interactions) according to their rank.

Spearman’s correlations are indicated above the plot.

https://doi.org/10.1371/journal.pone.0174744.g003
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Fig 4. Comparison of mouse the fetal liver Hi-C data after processing by hiclib, hicpipe and GOTHiC.

(A-B) Contact maps of mouse Chromosome 10 containing relative probability computed by hiclib and observed/

expected log ratio obtained with hicpipe respectively resulting from Hi-C experiment (left panel) and random

ligation experiment (right panel) in fetal liver. The intensity of the signal is summarized by the gradient above

each contact map. (C) Influence of the relative coverage on the distribution of number of observed interactions

(top panel), hiclib and hicpipe interaction ranking (middle and bottom panels), in the HiC (left) and random ligation

(right) samples. The ranked lists were divided into quartiles, the first quartiles correspond to the top ranked

interactions. The distribution of the number of reads per interaction is represented in the top panel with green

GOTHiC, a model to identify real interactions in Hi-C data
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4C, middle and bottom panels). The interaction strength measures are inversely correlated

with coverage, suggesting overcorrection of the raw data–in other words, interactions in the 1st

and 2nd quartiles for strength are enriched in the low coverage bins. In contrast, for GOTHiC

both the significant interactions and the interactions ranked by q-values appear less affected

by coverage (Fig 2E, S3B and S3C Fig).

When comparing the overlap of significant or top-ranked interactions as detected by the

three methods on both datasets, GOTHIC yielded the highest overlap and rank correlation,

indicating a better removal of technical biases (Fig 3C and 3D, S3D and S3E Fig). The overlap

of interactions between the two datasets is consistently high. Up to ~10,000 of the highest

ranked interactions hiclib has a slightly higher overlap between the two enzymes, however, for

interactions ranking 10,000 to 100,000 the overlap by GOTHiC is highest (S3F Fig).

Finally, we examined the overlap of interaction scores between the three methods. Interac-

tions identified as significant by GOTHiC tend to be highly ranked by hiclib and hicpipe.

Using the number of significant interactions returned by the binomial test of GOTHiC as a

cut-off to select the top-ranked interactions returned by the other methods, revealed a high

overlap between all three methods (S4A Fig). In contrast, a large proportion of the highest

ranked interactions by hicpipe are low ranked by GOTHiC (Fig 4D). Furthermore, when com-

paring the coverage of interactions that were top-ranked by either of hiclib or hicpipe but were

not among the significant interactions by GOTHiC to those that were also called significant,

we found that non-significant interactions had significantly lower coverage (two-tailed t test:

p-value < 2.2e-16 for both hicpipe and hiclib), pointing to slight overcorrection by the other

methods (S4B Fig). Thus, GOTHiC is at least as successful as existing methods in removing

biases, but also provides significance values and a statistical framework for further analyses.

Discussion

Sequencing libraries produced by Hi-C experiments are noisy because of technical artifacts

(self-ligations and random ligations) and complex biases caused by the intrinsic characteristics

of the genome sequence (GC content, unequal distribution of restriction sites, uniqueness and

mappability of the sequences). Here, we have proposed a simple solution to analyze Hi-C data

using a binomial test, which successfully removes artifacts and sequencing biases to detect real

genomic interactions even in the noisiest Hi-C datasets.

GOTHiC’s approach is conceptually and computationally simpler than existing methods,

which require the identification and separate modeling of individual biases [8,9], an iterative

correction of biases [10,11], or variance stabilisation [12]. It yields similar rankings to previous

methods, with comparable or even slightly improved bias removal and reproducibility between

replicates. Most importantly, similarly to Fit-Hi-C [14], GOTHiC calculates p-values that allow

the identification of real genomic interactions and the removal of artefactual interactions with

a well-controlled false discovery rate. In contrast to Fit-Hi-C, GOTHIC deliberately does this

without applying distance correction for the reasons outlined below.

GOTHiC is implemented as an R package, which requires a mapped read file as input and

returns a list of significant interactions. This implementation can analyze a whole-genome Hi-

C dataset of 30 million uniquely mapped reads at 1Mb resolution in ~2 hours using a single

core machine with ~200Mb memory, and can be several fold faster if run with the parallel

option on more cores.

box plots (corresponding y-axis is placed on the right of the plot). (D) Recovery of 80,085 highest ranked

intearctions in hicpipe and hiclib by GOTHiC.

https://doi.org/10.1371/journal.pone.0174744.g004
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The sensitivity of the method could be further improved by estimating the fraction of inter-

molecular ligations (frandom). Our use of an upperbound (frandom = 1) provides a conservative

estimate, ensures high specificity and should be preferred unless accurate information on the

noise fraction across the genome is available.

Hi-C, as all 3C-type assays, captures both ‘regulatory/functional’ interactions (such as pro-

moter-enhancer interactions) and ‘structural’ interactions, which are a consequence of overall

higher-order folding of the chromatin fibre. Owing to structural reasons, neighbouring DNA

regions are known to interact often, and HiC datasets typically show a near power-law

decrease in interaction frequencies with increasing genomic distance. It is still a major chal-

lenge in chromatin biology to disentangle functional, structural, and functionally redundant

interactions. One approach is to correct interaction frequencies by the expected frequency for

a given genomic distance. This distance-correction assumes that functional interactions are

stronger than other interactions at a given distance; however, the generality of this assumption

is unclear. For example, it is likely that the strong structural interactions at close genomic dis-

tances ‘saturate’ the possible ligation-products in 3C-based assays, which would hinder the

detection of regulatory interactions at short distances. Importantly, many enhancer-promoter

interactions have been shown to act at relatively short distances [15]. To avoid relying on

strong assumptions, GOTHiC does not perform a distance-correction, instead yielding a com-

prehensive list of biological interactions not explained by experimental noise. However,

GOTHiC’s statistical framework could be modified such that the expected interaction frequen-

cies are corrected for genomic distance, as implemented by other methods [14], or alterna-

tively q and R values could be adjusted for the distance effect after the identification of non-

random interactions.

Finally, we envisage that the probabilistic framework introduced here could be further

expanded to other applications in Hi-C, such as combining replicates, or identifying interac-

tion changes between conditions. Significance levels and observed/exptected ratios obtained

from GOTHiC can be used as the basis for algorithms predicting the 3D structure of genome

[16] or those finding topologically associated domains [17].

Materials and methods

Tissue isolation

Fetal livers were dissected from wild type C57BL/6 mouse embryos at day 14.5 (E14.5) of

development. Fetal liver cells were filtered through a cell strainer (70 μm) and directly fixed in

formaldehyde.

Animal tissues were acquired under the auspices of UK Home Office Establishment Licence

PEL80/4804 at the Babraham Research Campus, Cambridge. Methods used complied with UK

and EU legislation and were approved by the Babraham Institute Animal Welfare and Ethical

Review Body.

In practice, since it involved humane killing of non-genetically modified animals, the study

did not require specific approval from the local ethical review body but was nevertheless con-

ducted under the umbrella of the HO Establishment Licence.

Hi-C

Hi-C was performed essentially as described in Lieberman-Aiden et al.[3], with some modifi-

cations. 30 to 50 million cells were fixed in 2% formaldehyde for 10 min, quenched with 0.125

M glycine, spun down (400 x g, 5 min) and washed once with PBS. The cells were incubated in

50 ml permeabilisation buffer (10 mM Tris–HCl pH 8, 10 mM NaCl, 0.2% Igepal CA- 630,

Complete EDTA-free protease inhibitor cocktail [Roche]) for 30 min on ice with occasional
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agitation, spun down (650 x g, 5 min, 4˚C), and the cell pellets were resuspended in 358 μl of

1.25 x NEBuffer2 (NEB) per 5 million cell aliquot. Eleven μl of 10% SDS was added to each ali-

quot, followed by an incubation at 37˚C for 60 min with continuous agitation (950 rpm). To

quench the SDS, 75 μl of 10% Triton X-100 was then added per aliquot, followed by an incuba-

tion at 37˚C for 60 min with continuous agitation (950 rpm). To digest chromatin, 1500 U of

Hind III (NEB) was added per aliquot and incubated at 37˚C overnight with continuous agita-

tion (950 rpm). After digestion, restriction sites were filled in with Klenow (NEB) in the pres-

ence of biotin-14-dATP (Life Technologies), dCTP, dGTP and dTTP (all 30 μM) for 60 min at

37˚C. 86 μl of 10% SDS was added per aliquot and incubated at 65˚C for 30 min with continu-

ous agitation (950 rpm), followed by addition of 7.61 ml of ligation mix (745 μl of 10% Triton

X-100, 820 μl of 10 x T4 DNA ligase reaction buffer [NEB], 82 μl of 10 mg/ml BSA [NEB] and

5.965 ml water) per aliquot and incubation at 37˚C for 60 min with occasional agitation. For

the ligation reaction 50 μl of 1 U/μl T4 DNA ligase (Life Technologies) was added per aliquot,

followed by incubation at 16˚C for 4 h. The cross-links were reversed by adding 60 μl of 10

mg/ml proteinase K (Roche) per aliquot and incubating at 65˚C overnight. After overnight

incubation, another 60 μl of proteinase K per aliquot was added, followed by incubation at

65˚C for an additional two hours. RNA was removed by adding 12.5 μl of 10 mg/ml RNase A

(Roche) per aliquot and incubating at 37˚C for 60 min. DNA was isolated by a phenol (Sigma)

extraction, followed by a phenol/chloroform/isoamylalcohol (Sigma) extraction and standard

ethanol precipitation. The precipitated DNA was washed three times with 70% ethanol, and

dissolved in 25 μl TE per aliquot. Subsequently all aliquots were pooled and the Hi-C DNA

was quantified (Quant-iT Pico Green, Life Technologies). Biotin was removed from non-

ligated restriction fragment ends by incubating 30 to 40 μg of Hi-C library DNA with T4 DNA

polymerase (NEB) for 4 h at 20˚C in the presence of dATP. After DNA purification (QIAquick

PCR purification kit [Qiagen]) and sonication (Covaris E220), the sonicated DNA was end-

repaired with T4 DNA polymerase, T4 DNA polynucleotide kinase, Klenow (all NEB) and

dNTPs in 1 x T4 DNA ligase reaction buffer (NEB). Double size selection of DNA was per-

formed using AMPure XP beads (Beckman Coulter), before dATP-addition with Klenow exo-

(NEB). Biotin- marked ligation products were isolated with MyOne Streptavidin C1 Dyna-

beads (Life Technologies) in binding buffer (5 mM Tris pH8, 0.5 mM EDTA, 1 M NaCl) for

30 min at room temperature, followed by two washes in binding buffer, and one wash in 1 x

T4 DNA ligase reaction buffer (NEB). PE adapters (Illumina) were ligated onto Hi-C ligation

products bound to streptavidin beads for 2 h at room temperature (T4 DNA ligase in 1 x T4

DNA ligase reaction buffer [NEB], slowly rotating). After washes in wash buffer (5 mM Tris,

0.5 mM EDTA, 1 M NaCl, 0.05% Tween-20) and binding buffer, the DNA-bound beads were

resuspended in NEBuffer 2. Bead-bound Hi-C DNA was amplified with 12 PCR amplification

cycles using PE PCR 1.0 and PE PCR 2.0 primers (Illumina). The concentration and size distri-

bution of Hi-C library DNA after PCR amplification was determined by Bioanalyzer profiles

(Agilent Technologies) and quantitative PCR, and the Hi-C libraries were paired-end sequenced

on Illumina Genome Analyzer IIx.

Analysis

Datasets were analysed using GOTHiC, hicpipe and hiclib with default settings. Interactions

between adjacent bins were removed for comparisons across methods, because they are

removed in hiclib.

Publicly available data

Mouse random ligation sample: GSM1718028.
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Human HindIII and NcoI lymphoblastoid Hi-C: GSE18199.

Data access

Raw data have been submitted to the EBI ArrayExpress (https://www.ebi.ac.uk/arrayexpress/)

under accession number E-MTAB-3891.

Supporting information

S1 Fig. GOTHiC applied to mouse fetal liver Hi-C experiments at 500kb and 100kb resolu-

tions. Contact maps of mouse Chromosome 10 representing binomial significances resulting

from Hi-C experiment (upper panels) and random ligation experiment (lower panels) in fetal

liver cells. Significant interactions are colored with a red gradient as on top.

(PDF)

S2 Fig. GOTHiC applied to human lymphoblastoid Hi-C experiments at 500kb and 100kb

resolutions. Contact maps of human Chromosome 3 containing raw read counts representing

binomial significances resulting from HindIII Hi-C experiment (left panels) and NcoI Hi-C

experiment (right panels) at 500kb resolution (upper panels), 100kb resolution (middle and

lower panels). The lower panels show a zoom in to chr3 1-10Mb. Significant interactions are

colored with a red gradient as on top.

(PDF)

S3 Fig. Comparison of human lymphoblastoid Hi-C data after processing by hiclib, hicpipe
and the GOTHiC. (A-B) Contact maps of human Chromosome 3 containing relative proba-

bility computed by hiclib and observed/expected log ratio obtained with hicpipe respectively

resulting from HindIII experiment (left panel) and NcoI experiment (right panel). The inten-

sity of the signal is summarized by the gradient above each contact map. (C) Influence of the

relative coverage on the distribution of (a) number of observed interactions, (b) GOTHiC, (c)

hiclib and (d) hicpipe interaction ranking in the HindIII (left) and NcoI (right) samples. The

ranked lists were divided into quartiles, the first quartiles correspond to the top ranked interac-

tions. The distribution of the number of reads per interaction is represented in the top panel

with green box plots (corresponding y-axis is placed on the right of the plot). 80,067and 90,527

interactions were called significant using GOTHiC in the HindIII and NcoI samples respec-

tively. In order to compare with the predictions of (D) hiclib and (E) hicpipe, we selected the

80,067 and 90,527 top ranked interactions of these methods and computed the overlap (top)

and correlation (bottom) between the two samples. (F) Proportion of overlap between HindIII

and NcoI samples by ranking of interactions according to raw read counts (black), relative

probability computed by hiclib (green), observed/expected log ratio obtained with hicpipe
(blue), siqnificance by GOTHiC (red).

(PDF)

S4 Fig. Overlap of top-ranked interactions from hiclib and hicpipe with significant interac-

tions from GOTHiC. GOTHiC identified 80,085 significant interactions in the mouse fetal

liver cell Hi-C dataset. (A) Venn diagram showing the overlap between the significant interac-

tions identified by GOTHiC and the top 80,085 interactions from the hiclib and hicpipe out-

puts. (B) There were 69505 significant interactions detected by GOTHiC that overlapped

between the HindIII and NcoI experiments in the human lymphoblastoid cell line, 57,273 by

hicpipe and 66,621 by hiclib. The Venn diagram shows the overlap between the GOTHiC, hiclib
and hicpipe overlapping interactions.

(PDF)
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S1 Table. Number of significant interactions in mouse fetal liver and human lymphoblas-

toid cells identified by GOTHiC at higher resolutions.

(XLSX)
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