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ABSTRACT.  I begin with some general remarks concerning the co-evolution of 

representational forms and mathematical meanings. I then discuss the changed roles 

of mathematics and novel representations that emerge from the ubiquity of 

computational models, and briefly consider the implications for learning 

mathematics. I contend that a central component of knowledge required in modern 

societies involves the development of a meta-epistemological stance – i.e. developing 

a sense of mechanism for the models that underpin social and professional discourses. 

I illustrate this point in relation to recent research in which I am investigating the 

mathematical epistemology of engineering practice. Finally, I map out one 

implication for the design of future mathematical learning environments with 

reference to some data from the "Playground Project".  

KEY WORDS:  Representations, mathematical epistemology, culture, computers,  

meta-epistemological stance, situated abstraction 

 

INTRODUCTION 

I would like to begin by thanking my hosts for inviting me to present this opening 

lecture. I have for some time looked at CIEAEM from afar, as a place where both 

cognitive and social questions of mathematics education are elaborated, and I am 

glad, finally, to have first-hand experience of its particular attractions: as an aside, I 

believe that synthesising cognitive, epistemological and socio-cultural analyses is a 

pressing need of current research in our field. This belief will form a backdrop for 

much of what I have to say, but I will not be able to do justice to the assertion here.  

It is a particular pleasure to be present at a meeting of CIEAEM, as fifty or so 

years ago, one of its founding members, Caleb Gattegno, was a professor of 
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mathematics and teacher training at my own institution. I was recently interested to 

learn that one of his colleagues remembers that he was "always experimenting with 

the latest gadgetry from coloured blocks to electrical devices". (Dixon, 1986, p.73).  

Apart from expressing the affinity that I feel with Gattegno's obsession – I 

confess a similar affliction – I believe there is a  deeper point here, that concerns 

educational matters in general, and mathematics education in particular. What would 

Gattegno have made of the modern computer, which can deliver in a 2 kg laptop 

more computational power than a roomful of machinery of his time, while connected 

wirelessly to 3 billion web pages? It goes without saying that he would probably have 

fallen in love with this new gadgetry, at least as much as I have, and that it would not 

be too difficult for him to see how it might be exploited in the service of mathematics 

education. But there are two issues which I think would have been interesting to 

explore with him and which, in his absence, I will explore with you. 

The first concerns an essential difference between the computer and all other 

gadgets with which Gattegno might have played. I do not want to argue at all that 

"the computer" (an empty phrase) has this or that inescapable impact on learning. Far 

from it. But I do want to emphasise that it can, and that its potential for such 

transformative change stems in no small part from its ability to be reconstructed by 

teachers and learners themselves. This is what Seymour Papert referred to as the 

"protean" quality of the computer: like Proteus, it can be changed (even change itself) 

into any number of forms. 

The second issue concerns the difficulty of exploiting this protean quality. 

Gattegno's (Cuisenaire) rods are easy to translate into a computer version – I would 

be fairly sure that a rudimentary search on the web would reveal more than one 

version. But what would such a version add? From a didactical point of view, this is 

an important question. A deeper question concerns the ways in which the knowledge 

which is modelled by the rods may be transformed by the change of medium from 

wood to pixel? What, in any case, does it mean to talk of knowledge "modelled" by a 

technology: Are we justified in assuming that the knowledge survives intact across 

technological transitions? Such epistemological questions return us to didactical ones: 

how might the novel epistemologies, and the  manipulable and dynamic 

representational form of a model lead to transformative learning from both a 

cognitive and social perspective?   
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These questions take us to a range of issues that cannot be explored in any 

depth within this lecture, but they emphasise the complexity of understanding our 

societies' cultural encounter with computational power. They can, perhaps, be seen as 

generalisations of the recognition of representational form as a key component of 

mathematical expression, and as a contribution to our collective quest to understand 

better how students make sense of mathematical ideas. Kaput & Shaffer (in press) 

have recently drawn our attention to the socio-genetic basis for representational 

systems for mathematics, and illustrated how representations and notational systems 

have evolved over time and shaped our ways of reading and writing the world – 

including the mathematical world. They have also illustrated how mathematical 

notations developed over millennia, how they consistently served only an intellectual 

élite, and how their evolution with static media institutionalised the relationship 

between knowledge and its privileged representations. (See also Kaput, Noss & 

Hoyles, in press).   

I would like to offer a first illustration of this point by reference to a non-

mathematical example. Consider one of the most famous paintings in the world: 

Vermeer's View of Delft (a monochrome version is illustrated in Figure 1). It is, as 

everyone knows, a view of the city – "just" a view. I say "just" because it represents, 

as faithfully as possible, what the city actually looked like. Of course it would be 

more accurate to say "what Vermeer actually saw", but this is not the place for a 

philosophical debate on the mediation of the observer in the description of reality. It 

is just a view, and a faithful one at that. 

 

Figure 1: Vermeer's View of Delft 



 

  4 

 

What do we see? Water, clouds, shadows, buildings (some still standing today), 

people walking, perhaps just standing. It seems almost an impertinent question: we 

see what we see. But the question seems facile because we are looking back in time. 

In his book, "The World on Paper", David Olson (1994) shows how Dutch art of the 

seventeenth century came to challenge the hitherto hegemonic role of text as a central 

way of understanding the world and demonstrates how, by exchanging narrative 

depth for surface description, Vermeer's school changed the meanings associated with 

the medium of paint. As one of Vermeer's contemporaries commented, he came to   

"see clouds as clouds and not as symbols of the heavens!".    

Neither has text always been a medium for representing the world: It was partly 

the advent of printing that had allowed text to be seen as representation, the novel 

technology providing a common representational format for its production and 

interpretation. This technical and social change gave voice to the descriptive power of 

text, which in turn loosened its dependence on authorship; meaning gained autonomy 

from the author.  Now Vermeer came to challenge textual description as a way of 

representing how things are, a change which startled his contemporaries and into 

whose interpretation his contemporaries had to be acculturated
2
.  How hard it is for 

us, looking at this beautiful painting, to understand what a significant change it 

represented; it is  difficult to appreciate the extent to which we have learned what 

appears to us to be natural. It is, moreover, a salutary reminder that representational 

systems play a crucial role in making sense and that they enable individuals and 

communities to communicate and construct meanings in ways which would be 

(literally) unthinkable without them. 

The ways that meanings and representations become intertwined, and more 

fundamentally, how transparent the representational medium becomes over time, is 

illustrated by the following example (see Tufte, 1983 p. 28). 
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Figure 2: A tenth century time series. Tufte, 1983: p. 28 

 

Figure 2 shows a tenth century time series graph showing the inclination of 

planetary orbits. According to Tufte, this is the first example of a time series graph 

which still exists, and it is one thousand years old. It is not uninteresting that it exists 

in an educational text for monastery schools, suggesting perhaps that the explicit 

desire to communicate is an important factor shaping the ecology of representations. 

But what is fascinating is that the next extant time series was 800 years later. Not 

only did it take nearly a millennium for this representational form to become 

accepted, but also, once accepted, it became the  representational form of choice for 

communicating certain kinds of information: to the extent that between 1974 and 

1980, 75% of all published graphics are – according to Tufte – time series graphs. 

I have no way of checking whether Tufte is correct in the details, but we can 

assume that he is right in essentials. The key implication for mathematical meaning is 

that once a  representational form has entered our culture, we are hard-pressed to 

consider it as other than the essential mathematical notion itself. (A good test for 

assessing the invisibility of a representation is to make an unusual but apparently 

trivial change: for example, re-express the equation y= mx + c so that m and c are the 

variables, and x and y are the constants. We will see below, that "arbitrary" changes 

of this kind are not so trivial when computational technologies are involved). 

As a final comment on the power of representation, I want now to prefigure an 

issue which will constitute one of the key themes of this lecture; namely, the ways in 
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which mathematical knowledge enters into professional discourses. Here is a quote 

from a practicing engineer … (I will describe this work in more detail below, together 

with an appropriate attribution). 

"…engineering knowledge encapsulates a lot of past history, getting to the point where you 

generalise all behaviour of all beams in one equation that you could almost teach to a ten year 

old, is an astonishing condensation of millions of man [sic] years of effort. That 10 year old 

today can do things that Newton couldn’t do".  

This is an astute observation, and one which has been made by others (see, for 

example, diSessa's discussion of the ways in which Galileo's elaboration of the 

physics of motion is transformed by algebra, which was unavailable to Galileo, 

almost to the point of triviality (diSessa, 2000). It applies equally at a cultural and 

social level, as much as at an individual one. The engineer who made this statement 

played a key role in the building of the new roof in the British Museum in London 

(see Figure 3) a structure with more than 3000 tiles, no two of which are the same, 

consisting of some 3 kilometres of steel beams claimed accurate to within 3mm. The 

design – let alone the construction – of such an edifice would, of course, have been 

impossible without a computer. But the key point is not only that the computer 

enabled a particular design: it is that the very design was shaped by the computer, the 

computer gave its designers a new way to think, not just a tool for calculating the 

details of what they had already thought. The novelty of the computer's contribution 

lies at the intersection of cognitive and social, assisting individual engineers and 

architects to turn their imagined structure into reality, while simultaneously affording 

the means for the broader community to imagine what had hitherto been 

unimaginable. 

This structure is an example of the way in which computational representations 

are reshaping cultures, and mathematical epistemologies – not simply changing the 

ways things are calculated. This representational transformation is at the heart of 

modern "post-industrial" societies but it is, in my opinion, insufficiently theorized in 

our field. I would like now to turn to the questions it raises. 
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Figure 3: The roof of the Great Court at the British Museum, London.  

 

 

MATHEMATICS IN THE KNOWLEDGE ECONOMIES 

Modern societies in the developed world – the so-called knowledge economies – are 

mathematised to an unprecedented degree. The systems which control our social and 

professional lives are essentially mathematical, algorithms are ubiquitous. In such a 

world, the coordination of personal and mathematical models is increasingly 

necessary: that is, in order for the individual to make sense of her community and her 

world, it is increasingly necessary for her to think about the relations between the 

elements of the models that underpin it, and these are mathematical relations. That 

does not mean, of course, that each individual has to be a mathematician: but it does 

mean that without some way of accessing the mathematical bases of the models 

which drive the systems, at best a partial and at worst a misleading view of those 

systems, and their impact on the lives of individuals and communities, can be formed. 

Elsewhere (see Noss, 1997) I have discussed the economic and social implications of 

this situation, but I do not want to dwell on them here. 

I do, instead, want to think about the implications for learning mathematics. 

Consider just one simple example, which I have schematically laid out in Figure 4. If 

the time series graph is the most favoured graphic of our time, then surely the table of 

numerical data must rank a close second. The generation of such tables with a 

spreadsheet is so commonplace that spreadsheet proficiency may have some 
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justifiable claim to having become part of a new component of literacy, a medium of 

expression of relationships between – not just numbers – but between whole columns 

of numbers. 

 

(Insert Figure 4 about here) 

Figure 4: Some representational forms for the function f. 

It is not unreasonable, in this situation, to suggest that the new and shared 

cultural form may well change the balance of what it is 'natural' to express and how. 

For example, the traditionally favoured representation of the function (one of the 

functions) which is 'represented' by the table in the form f(x) = 3x + 4 is different 

from the recursive definition with which the spreadsheet was constructed  

f(0) = 4 

f(N) = f(N-1) + 3 

This recursive definition is usually seen as more complex in pedagogical terms, 

and in the UK at least, does not figure in the compulsory curriculum at all. This is 

despite the undoubted fact that many, perhaps most, learners of mathematics tend to 

see – at least until they are encouraged to do otherwise –  the relationships between 

the numbers in a vertical manner (add 3), rather than the familiar closed form 

representation (see Cuoco, 1995, for the implications of employing computational 

media to support the thinking of functions). 

The graphical representations which can be constructed at the touch of a button 

include not only the traditional one (shown bottom left in Figure 4) but some bizarre 

ones – no less accessible to the unsuspecting spreadsheet user: the bottom right one is 

thought-provoking but, as far as I can see, somewhat useless! Whatever else graphical 

representations such as this illustrate, they suggest that the ability to critique novel 

representations is at least as important as the interpretation of conventional ones. 

(Insert figures 5a, 5b and 5c about here) 
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While I am about it, it is worth representing the graph of the equation y=3x+4 

in the graphing calculator program which comes free with my computer (Avitzur et 

al.  2000). Or z=3x+4: Note here that this time, an "arbitrary" change of the name of 

the variable y has much more than arbitrary consequences! Or z=3xy+4. This last is 

not, of course the same function, and neither is it two-dimensional (see Figure 5). In a 

dynamic medium, watching the surface spin around and exploring what kind of a 

thing  it is, one is encouraged to think the unthinkable: are three dimensions 

necessarily harder to understand than two? Should we just continue to take for 

granted that an orderly procession from two dimensions to (for some) three is 

somehow "natural"? What is natural anyway, now that it is more natural to visualise 

on a computer screen than any other way? Surely there is a case for believing that we 

have at least as rich a set of intuitions derived from running our hands over surfaces, 

than those derived from the thought experiment of travelling along a one-dimensional 

line (set of points) representing a function
3
? There is surprisingly little research that 

challenges existing epistemological and didactical assumptions in this way (for one 

exception, see Papert, 1996). Nevertheless, there are at least some clear directions in 

which research might proceed, and I will discuss them in the concluding section. 

The changes in representational forms which computational technologies make 

available challenge us to rethink the kinds of didactical sequences and hierarchies of 

knowledge that are appropriate in learning environments. Similarly, on a social level, 

there are equal challenges to confront. I will start by explaining what I mean when I 

say that the individual needs to understand something of the models which underpin 

social and professional practices.  

Let me take a recent example. One of the striking aspects of the discussion 

which surrounded the US presidential election, was the extent to which media reports 

– at least in the UK – based their assessment of who "really" won on statistical data. 

The news media were awash with information concerning the numbers of votes, the 

percentages of the votes in each county, information regarding poll data, exit polls, 

and so on. 
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Figure 6: Presidential Results for Florida by County: Bush versus Buchanan. (Adams, G. and Fastnow, C). 

 

Among all this, I found some interesting examples of something more than just 

information: Figure 6 illustrates one of a number of plots I found on the web, 

produced by two statisticians (one from Carnegie Mellon and one from Chatham 

College). The example shown is a plot of Bush votes versus Buchanan votes, by 

county in the state of Florida. As you can see, with the exception of one outlier – a 

rather important one given that it corresponds to the vote in the disputed territory of 

Palm Beach –  there is a high correlation between Bush and Buchanan votes. The 

model is based on the following hypothesis: the more conservative the county (and 

therefore the more Bush was likely to score compared to Gore) the more likely that 

the Buchanan vote – though much smaller – would be correspondingly higher, given 

that Buchanan was an extreme conservative. And so, as Figure 6 shows, it turns out. 

This graph, however, does not only convey information. Inscribed within the 

conventional and omnipresent scatter graph representational form, it provides us with 

knowledge (not, alas, certainty): about the unlikeliness of the result in Palm Beach, 

about the uniqueness of that result, and about the truth of the underlying model 

concerning Bush and Buchanan votes.  

This example takes me to a second key theme of my lecture which exists at the 

intersection of the social and individual realms: that the ability to understand this kind 

of transformation of information into knowledge – of critiquing representations and 
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developing a feel for models – will be a crucial facet of what it means to be a 

functioning person in the twenty-first century. The difficulty is that the election 

example is one in which, like so many others, the mathematics is not immediately 

evident; mathematical work has to be done in order to throw light on the variables 

and relationships involved. Of course, the US election was about much more than just 

a mathematical analysis, but as we have seen, mathematical modelling certainly helps 

to make sense of it.  In fact, the  invisibility of mathematics has been a developing 

characteristic of the later part of the old century: as mathematics plays a more and 

more significant role in running systems of all kinds, it becomes simultaneously less 

and less visible. A recent report from the Society for Industrial and Applied 

Mathematics, in describing the role that mathematics plays in work, puts it thus:  

Mathematics is alive and well, but living under different names…. Mathematics is often 

invisible outside the technical work group because its role in a successful project is not 

highlighted or publicised, especially to higher management… 

Mathematics in Industry (1998)  

 

The workplace serves as a suitable exemplar for more general concerns about 

the roles that mathematics plays in individuals' and communities' lives, and how it 

seems to disappear into activities while becoming increasingly ubiquitous below the 

surface. It is therefore to the workplace that I now turn. 

 

INTO THE WORKPLACE 

In a series of studies beginning in the mid nineteen-nineties, Celia Hoyles, Stefano 

Pozzi and myself have been studying the mathematical components of professional 

expertise, in an attempt to throw light on a number of topics related to the ways in 

which mathematical meanings are constructed, how we might characterise the nature 

of mathematical knowledge, and how we may find some mechanism to replace 

"transfer" as a primary metaphor for the ways that mathematical knowledge is used in 

general. Specifically, we have asked how the discourse of work is shaped by 

mathematics, and reciprocally, how mathematical knowledge is shaped and applied 

by the discourse of work. These studies are reported in Noss and Hoyles (1996a); 

Pozzi, Noss and Hoyles (1998); Noss, Pozzi and Hoyles, (1999); Noss, Hoyles and 

Pozzi (2000); Hoyles, Noss and Pozzi (2001); Noss, Hoyles and Pozzi (in press). 
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Our studies have involved investment bank employees, nurses and commercial 

pilots. Most recently, Phillip Kent and myself have undertaken a study with structural 

engineers, and it is this study from which I tore out of context the comment from the 

British Museum engineer concerning Newton. I am going to focus on this most recent 

study, but before I do so, I want to summarise what we found in our earlier studies, 

particularly with the nurses.  

First, there is a disjunction between visible mathematics and what happens in 

practice. That is, while routine practice seems at first sight to involve little more than 

the "visible" mathematics of school, largely consisting of simple arithmetic, in 

practice the strategies employed owe little to taught procedures. In fact, the numerical 

strategies employed – for example in drug administration – are intimately tied into 

the artifacts of the practice, the particular drug, its package labelling, or the kind of 

units in which it is administered. In our nursing study, for example, the nurses had a 

strong sense of the relationships involved in drug administration, but they almost 

never used school taught algorithms, and they were sometimes surprised that the 

correct knowledge they mobilised could be expressed in general terms. 

The second striking finding was that numerical routines were overlaid by 

implicit models, in which the professionals had to elaborate – in a more or less 

articulated way – which quantities determined the behaviour of the system (e.g., how 

drug concentration varies over time in the body) and the qualitative and quantitative 

relationships between them. This became evident in "breakdown" incidents we 

witnessed, situations in which the normal routines of the practice were somehow 

ruptured by a non-standard set of circumstances. In such an event, the elements of the 

situation – including the mathematical elements – were laid bare by the participants, 

and the artefacts and discourse of the setting became a territory on which we, as 

observers, were able to get a clearer view.  

Finally, we found that where numerical manipulation is involved, numbers are 

a part of quantitative relationships but do not enter as "pure'"entities. That is, while it 

seems at first sight that numerical relationships enter professional practice as numbers 

and operations per se, the reality is that these are often seen as one property of an 

artefact, along with others which are at least as salient for the professional involved.  
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To summarise, the findings of these earlier studies left us trying not only to 

elaborate how mathematics gets used in practice, but also to characterise  just what 

kinds of mathematical knowledge professionals have. In order to look more closely at 

this question, we turned to structural engineering, a profession in which mathematics 

appears to play a much greater role, and in which those involved have a relatively 

high level of mathematical preparation. 

Our studies have taken us into a large London-based firm of engineers, and into 

a variety of specialisms. We have interviewed about 20 engineers, followed email 

trails, attended some project meetings, and reviewed a considerable number of 

documents, including mathematical textbooks for engineers. Mathematical 

knowledge is distributed in the firm –  there are, for example, a few "analysts" whose 

specialism is to employ mathematical analysis (sometimes instantiated in computer 

programs), computer programmers as well as engineers whose engagement with 

mathematics is – according to them – only superficial. We will meet one or two of 

these in a moment. Before we do, I should state that a particularly fruitful line of 

enquiry that Kent and I are pursuing, is to look more closely at the interfaces between 

these different sub-communities of engineers, and to try to understand what kind of 

epistemological and cognitive transformations of mathematical objects and 

relationships occur across them. This will be the subject of further study, and I will 

not pay much attention to it here. 

Instead, as my focus here is on the social rather than the individual, I will look 

at a broader aspect of this distributed knowledge, not as it applies to an individual 

engineer in a particular moment, but how it applies in a particular setting, in terms of 

the broad community of engineers. I will start by introducing you to an engineer, who 

told us:  

"We only use 5% of the mathematics that was in our college courses" 

and another who asserted: 

"Once you’ve left university you don’t use that maths, ‘squared’ or ‘cubed’ is the most 

complex thing you do. For the vast majority of the engineers here, an awful lot of the 

mathematics they were taught, I won’t say learnt, doesn’t surface again. There are a few 

specialists, less than 2% of the engineers in this company, who spend their lives doing the 

mathematics which we struggled through at university". 

We viewed these assertions with a critical eye, as our earlier work with other 

professionals, together with a very wide range of other studies by workers in the 
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field, reports that most professionals in most occupations flatly deny that 

mathematics plays any part in their activities
4
. This is, we believe, related to the 

transitions across interfaces between and within practices; as the mathematical 

knowledge of individuals and communities travels across these boundaries, the 

balance between what is routine and novel, what is pragmatic and theoretical changes 

and shifts, tending to fade into transparency parts of mathematical practice. This 

point is related to Artigue's (in press) distinction between the pragmatic and 

epistemological values of techniques. 

In our earlier studies, we characterised breakdowns as local, at least in a 

temporal sense; that is, they tended to occur as a short-term rupture in the routine of 

the practice, a "hiccup" that was usually remedied (or worked around) in a short time, 

involving either the person to whom the breakdown had originally happened, or her 

immediate colleagues. In engineering as I have explained, the system is more 

distributed –  in the sense that there is a wide division of mathematical labour
5
– and 

we will take the opportunity to look more closely at a breakdown within the broader 

system.  

 

 

 

 

 

Figure 7: The Millennium Bridge wobbled alarmingly when it was opened, due to the large number of 

pedestrians crossing it. 

 

Figure 7 depicts the Millennium Bridge in the centre of London, a beautiful 

new footbridge across the river Thames that was due to open in the Millennium year. 

Unfortunately, on opening day, a huge number of pedestrians began to walk across 

the bridge, and it started to sway alarmingly; two days later it was closed. As part of 

our project, we have interviewed some of the engineers responsible for its design, and 

for applying the remedy to its wobble. But, thanks to the openness of the engineering 

company involved, much of the information is available on their website (see 

www.arup.com/MillenniumBridge/). 



 

  15 

Since the bridge began its wobble, there has arisen a mythology concerning 

what went wrong and why. Most pervasively, the design engineers involved stand 

accused of being "unable" to calculate how the bridge would behave. At its most ill-

informed, this takes on a striking implication for mathematical education, as in this 

extract from the Times Educational Supplement, in a recent review of a Royal 

Society report on geometry by the Joint Mathematical Council, UK:  

… many teenagers are struggling to understand shapes, even after gaining A-levels, because 

of a lack of specialist maths teachers. As a consequence, students taking up science and 

engineering courses at university are floundering, we are told. This is serious stuff. A 

thorough grounding in geometry is essential if Britain is to maintain its cutting-edge in areas 

such as genetics, drug design and architecture. We may have led the world with Dolly the 

sheep and the human genome project, but the fiasco over the wobbly millennium bridge over 

the Thames suggests we should not be complacent.  

Times Educational Supplement: 10/08/01 

 

I do not for one moment want to offer consolation for the disappearance of 

geometry in the curriculum in the UK. On the contrary, my sympathies are entirely 

with the writers of the report, and the sentiments expressed in the TES article: the 

lack of geometry in the UK curriculum is perhaps one of the most lamentable aspects 

of its current sorry state
6
 But this was emphatically not the problem with the 

Millennium Bridge.   

In fact, the problem lay not in the mathematical calculations, but in the 

modelling of the bridge’s behaviour. Engineering is dominated by codes of practice, 

precise codifications of engineering design knowledge, which specify in detail all the 

main elements of a structure, the tolerances involved, rules for calculation and so on. 

They typically contain formulae, into which the engineer is expected to insert the 

relevant values, based on the specifics of the project. Bridge design, not surprisingly, 

is the subject of similarly detailed codes, and footbridges form a well-documented 

subset of these.  In all these, and here lies the source of the difficulty, not a single one 

tackles the question of  lateral vibration. All footbridge design is predicated on the 

following assumption: that the design of a footbridge must take careful account of 

vertical vibrations but that horizontal or lateral vibrations will tend to cancel each 

other out and can safely be ignored.  

As it happened, this assumption proved false in the case of the new bridge, on 

which many thousands tried to cross at once. The small lateral forces exerted by 
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people as they walked set up a corresponding lateral vibration in the bridge. And once 

that vibration started, instead of cancelling each other out, people started to 

compensate for their unsteadiness by applying countervailing lateral forces in 

synchrony with the bridge. This in turn made the vibration of the bridge more 

pronounced. The difficulty was not that the mathematicians had failed to calculate: it 

was that the building codes on which the design was based failed to take any account 

of what turned out to be the crucial variable
7
. As a senior engineer working on the 

bridge remarked, "Conventional wisdom is so strong that walking input is vertical 

and 2 hertz that it blinds you to the fact that there's also a 1-hertz horizontal force." 

And the result was that none of the extensive computational modelling which 

preceded the building of the bridge took any account of  lateral vibrations. 

I would like to draw attention to one particular aspect of this story. The 

mathematical labour within the community of engineers is, like that within the single 

company we studied, highly distributed; there is mathematical knowledge locked 

within the codes and there is mathematical knowledge encapsulated within the 

computational models. There is, too, mathematical knowledge employed by the 

engineers who put the bridge together, in the sense that they had the task of making 

sense of the codes, applying them in the special case of the bridge, and interpreting 

what they meant. Each of these mathematical practices has its own epistemology, and 

each differs substantially, and in different ways, from mathematical knowledge as it 

is taught in university engineering or mathematics departments. Thus the division of 

mathematical labour within the community, and the transformation of mathematical 

knowledge across the boundaries of these divisions, obscures the models that 

underpin the practice, no less than the examples I spoke of at the outset. Models are 

ubiquitous, and they are universally obscured. 

I want to conclude this part of my talk by stressing what is and what is not 

important about this example in relation to learning and teaching mathematics. What 

is less important is just how many individuals need constantly to access the precise 

details of the models that underpin social and professional existence. There are not 

many, certainly not a majority, although I am convinced there are more than is 

evident at first sight. On the other hand, models are genuinely pervasive; everybody – 

I mean everybody – needs to know what a model is even if they cannot build one; all 

individuals are required to interpret the idea of a model even if they cannot calculate 
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the implications of a particular example; anybody who uses a spreadsheet needs to 

have some feel for how the numbers get there, why the macros work, and what 

activates the buttons. (This last example is motivated by an episode regarding a bank 

employee's cavalier use of a spreadsheet, reported in Noss and Hoyles, 1996a). 

What kind of knowledge is this? The example of the Millennium Bridge, 

though only illustrative, provides a clue. It is knowing that  things work in 

programmed ways rather than (necessarily) how. It is knowing that there are 

assumptions instantiated in the choice of variables, and that there are relationships 

between them. It is representational knowledge about connections between variables, 

rather than calculation knowledge about their detailed interrelationships. It concerns 

the interpretation of models which others have built, and sharing and critiquing of 

them, together with the different representational forms in which they may be 

expressed. And finally, it involves knowing something about how knowledge is 

communicated to others who interact with other parts of the same system, or other, 

linked systems. I will call this knowledge about knowledge, a meta-epistemological 

stance. 

There is much more that might be said about the cognitive and epistemological 

aspects of these kinds of situated understanding, but I will resist dealing with them 

here for reasons of time and space (see Noss, in preparation, for a discussion of these 

and related questions). Instead, I want now to consider some of the implications of all 

this for the design of learning systems. 

 

DEVELOPING A META-EPISTEMOLOGICAL STANCE:  

BUILDING A SENSE OF MECHANISM 

A key implication for the development of a meta-epistemological stance, is the need 

to design mathematical learning environments that make mechanisms manipulable 

and visible. I will illustrate this approach by describing something of a project based 

in London which has engaged us for nearly three years. In the Playground Project,  

Celia Hoyles and myself are directing a project that involves a group of researchers 

based in several European countries to develop a system with which young children, 

aged less than 8 years old, can play, share, construct and rebuild computer games
8
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Our goal is to put children in the role of game designers and game producers, rather 

than merely consumers of games produced and designed by adults. 

We have chosen the domain of computer games for two main reasons: The first 

is cultural, the second mathematical. From a cultural point of view, videogames and 

their associated cultural artefacts (such as animated film, and interactive video) are 

the most pervasive feature of children's culture in the late twentieth and early twenty-

first century. Like them or loathe them, they speak to millions of children and 

represent a vehicle for huge waves of popular culture (at the time of writing, the 

Pokémon craze has come and gone; another is surely on its way).  

Tapping into children's culture is a necessary (but certainly not sufficient) 

element of trying to develop the kind of meta-epistemological stance we require. The 

challenge is considerable, for one effect of the digital revolution is precisely that few 

things invite inspection: one cannot know how a digital watch works by opening it, 

what makes the washing machine start and stop, how a speedometer works – all these 

mechanisms, which once may have offered at least some children a chance to 

investigate how things work, are closed; no user serviceable parts, no learnable 

mechanisms. 

As I said, cultural resonance is not sufficient. The second reason for our choice 

of video games is that they represent an arena for exploration of interesting 

mathematical and scientific phenomena. Videogames represent a closed formal 

system of rules. When this touches that, make this happen. If the speed is greater than 

x, set y to something. Whenever the joystick button is pressed, make this object 

change colour. Games in general represent most children's first brush with what it 

means to operate within a formal system (if you pass go, collect 200 pounds); 

videogames are a mathematical instantiation of a formal system. We aim to go one 

step further, in affording children an opportunity to explore the world of formal 

systems, build and rebuild them for themselves, in accessing and bringing to life the 

mathematical instantiation hidden beneath a typical videogame. 

In formally expressing what she wants to happen, a child can – we hope – 

become engaged in expressing mathematically interesting phenomena. Until now, 

this expression has meant interacting with strings of text in the form of computer 

programming languages. Without doubt, this has provided a considerable opportunity 
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for exploration of and with quasi-algebraic systems; children's engagement with Logo 

has been well-documented and there is a substantial corpus of encouraging work in 

this respect (for one view of this, see, for example, diSessa, Hoyles and Noss, 1995; 

Noss and Hoyles, 1996b).  

The problem is that many of the children with whom we were working could 

not read or write with any sophistication. So we based our design and implementation 

of a system on a new programming system, called ToonTalk, a  Turing equivalent 

programming language whose source code is animated
9.

 What this means is that the 

language is a real language – not just a simplified toy with strict upper limits of what 

can be expressed. And it means that the source code actually is what you see on the 

screen: animated robots who are "trained" to do tasks (programmed); arithmetic 

operations are performed by a mouse (an animated cartoon mouse, not the thing we 

hold in our hands!); even cutting and pasting is done by cartoon characters such as an 

animated vacuum cleaner.  

It is extremely difficult to give a flavour of ToonTalk: one needs to see the 

animated system in order to gain a sense of its power and its affordances. Actually, 

this prefigures a subtle difficulty with the system, in that "reading" a program actually 

involves "observing" a robot carrying out its tasks. The insertion of a temporal 

dimension into the process of reading and editing programs is a fundamental re-

representation of what a program actually is, what kind of knowledge a program 

represents – as well as a substantial difference in what it means to write a program. 

There is no guarantee that new representational forms are better than old ones; only 

that we need to consider them. 

Two further difficulties emerged as soon as we started working with the 

ToonTalk system. First, like all its predecessors, including Logo, it emerged that 

while it was very straightforward to build simple programs, the construction of more 

interesting and complex ones was considerably more difficult. Our solution was to 

build a new layer of "behaviours", transparent and functional game elements whose 

construction and effect was more or less self evident, and which could be combined 

to build more complex functionalities. These program elements or behaviours 

functioned like components, except that they were completely open for inspection 

and reconstruction by the child. 
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Second, we found that ToonTalk was not tuned for the task we had in mind. It 

was a relatively new system that had not been built with the demanding role of video-

game construction in mind. This presented us with both a challenge and an 

opportunity. A challenge, because so many functionalities we required just had to be 

built from scratch. An opportunity, because it gave us the chance to help to build a 

programming system that offered what we needed – a learnable new set of 

representations for programming.  

I cannot go into details here: for some background and results of the project, 

see Noss, Hoyles, Gurtner, Adamson and Lowe (in press); Hoyles, Noss, and 

Adamson (in press); Kaput, Hoyles, and Noss, (in press). Instead, I will try to 

illustrate our approach, and how it might answer at least some of the requirements for 

developing a meta-epistemological stance. In so doing, I will outline the system in a 

little more detail, while recognising that it is very difficult to appreciate in a static 

medium (streamed video will shortly be available at www.ioe.ac.uk/playground). 

An illustrative episode. 

Mitchell is an eight year-old boy in an inner-city school. He has been helping the 

researchers to design and debug the Playground system for about a year. He has 

participated in several experimental sessions, and is a member of his school's 

computer club, in which all Playground sessions take place. He is playing a game 

where he controls a character called ‘dusty’, the creature with two legs on the right 

side of Figure 8.  Dusty shoots out flowers every time the force joystick trigger is 

pressed (it jumps in the hand as the button is depressed), and the player collects 

points by hitting an animated target moving vertically up the left-hand edge of the 

screen. Whenever it is hit by a flower, the target changes shape into another animated 

character. Mitchell finds it very easy to play and achieve high scores since he can 

move his character as close to the target as he pleases. He is having fun, but it is hard 

to know what he might be learning — tempting even to dismiss this as just another 

arcade game.  



 

  21 

 

Figure 8:. A screenshot of the game. Dusty is shooting flowers from right to left.  A 'target' is moving up 

the left-hand edge of the screen. The target changes shape as it is hit by a flower. 

 

Mitchell decides that the game would be more fun if it was competitive. So, at 

his request, the researcher adds another player character, this one controlled by the 

mouse. Although she talks through what she is doing, the programming is done by 

her, with Mitchell watching as she copies the original Dusty and replaces its joystick 

behaviours with mouse behaviours.  Making these modifications is facilitated by the 

modularity of the behaviours or components – we call them "animagadgets'", as they 

are represented by animated pictures – and is essentially achieved by replacing one 

component, "I move with joystick" with another "I move with mouse". Any object 

has its program on its back – there is a direct connection between a thing and what 

the thing does, accessible merely by "flipping" it over. Although Mitchell can read 

these descriptions, he can, if he wishes, listen to the behaviours say what they do (a 

choice of voices is available) and there is, in addition, an animated representation of 

what the behaviour does (visible in static form in the top right-hand corner of Figure 

9). 
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Figure 9: The ‘I move with mouse’ gadget, and the two sub-gadgets moving the mouse horizontally and 

vertically.  

 

One last aspect of the "I move with mouse" behaviour, is that it actually 

consists of two sub-gadgets, "I move left and right with mouse", and "I move up and 

down with mouse" (the same applied, of course, to the joystick gadgets). Both of 

these sub-gadgets are visible at the bottom of Figure 9. As it turned out, the way that 

we had designed the gadget had unexpected consequences.    

Mitchell plays the two-player game with the researcher. Suddenly, he tells 

everyone in the room to close their eyes – "no peeping!". He deftly removes the "I 

move left and right with mouse" component of the "I move with mouse" behaviour 

from the back of his opponent’s character – effectively disabling her mouse by 

restricting it only to vertical movements, while he has two-dimensional control and 

can get as close as he likes to the target! (see Figure 10). 

 

 

 

Figure 10: The reverse of the opponent’s player character. Mitchell removed the horizontal component of 

the "I move with mouse" gadget. 

 

When we are all allowed to open our eyes, Mitchell triumphantly demands a 

rematch which, unsurprisingly –  now that his opponent's motion is restricted to 

vertical movements – he wins conclusively, much to his satisfaction. 

Mitchell removed this piece to restrict his 

opponent’s mouse movement to the vertical 

direction. 
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What can we learn from this episode? First, it is important to acknowledge the 

level of engagement that Mitchell displayed. We began with a desire to tap into 

children's culture, and we did so not only in the name of "motivation", but with a 

desire to engage children in personally meaningful projects, projects which they cared 

about enough to immerse themselves in the quasi-formal world in which we put 

them.  

Second, I would like to raise a methodological issue. The kind of event 

characterised by Mitchell's trick was relatively rare. In terms of school curricula, 

teacher take-up, assessment procedures and so on, designing a system which fails to 

produce regular, measurable, and straightforward effects of use may not be much use. 

I suggest that this is a short-sighted view; indeed, there is a case to be made that in 

exploring the potential of digital technologies, and moreover, in studying the 

interplay between design and learning outcomes, we should precisely – as diSessa 

puts it – "design for rare events" (diSessa et al, 1995). Designing software that elicits 

the same response from all who use it may be attractive but it more or less guarantees 

that little will change. In the mathematical realm, we have more than our share of 

tried and tested routines that are supposed to elicit just this kind of homogenous 

response – although they mostly fail to do so. The design of systems that encourage 

heterogeneous responses carries risks, but it increases the possibility of real change. 

We cannot know how Mitchell came to the realisation that the two-dimensional 

movement of the mouse was built from vertical and horizontal components; how he 

hit on the idea of the trick; or what, exactly, he learned while he was watching the 

researcher redesign the game (an interesting question, as constructivist orthodoxy – at 

least as widely misconceived – might suggest that he would not learn much "just" by 

watching).  In mathematical language (which, of course, he did not use), we might 

say that he had realised that two-dimensional motion could be decomposed into the 

vector sum of two simpler motions; and even more, that removing one of these, 

would still result in a movable system, but one which was constrained only to move 

in a single dimension.  

What was Mitchell doing when he removed that behaviour and how did our 

design facilitate that? He could see a direct link between a goal (disabling an 

opponent's player or even further, winning!) and a programming action. In other 

words his knowledge about the game, his goals and intentions (and the possibilities 
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for disrupting these for another player) were built into the environment by designing 

programming code as manipulable, decomposable objects. It is reasonably certain 

that the modularity of the code, and the easily-visible description of its function (a 

description which does not, of course, play any functional role in its execution) must 

have been important factors. 

I would like to draw attention to one final point concerning the way in which 

Mitchell expressed his knowledge. He didn't speak it, at least not until we quizzed 

him. He expressed it in action, manipulating the screen objects with his mouse. By 

definition, therefore, he was constrained in his expression by the specificities of the 

tools he had at his disposal, or more properly, by his relationship in activity to the 

tools. He did not express a mathematical abstraction in a recognisable form, but he 

expressed an abstraction nonetheless, one that was situated within the tools and 

activity structures of the setting. This issue is essentially tangential to the theme of 

this paper, and I will not explore it further (for more on situated abstraction, see, for 

example, Noss, Hoyles and Pozzi, in press); but I would like to flag the point as 

Hoyles and myself are beginning to think that this kind of situated abstraction is 

characteristic of many, though not all, work settings.  

CONCLUDING REMARKS 

In this lecture, I have tried to elaborate some of the mathematical demands that 

characterise the social and cultural life of the twenty-first century, and to map out one 

implication for the design of future mathematical learning environments. There is not 

a great deal of research that challenges existing epistemological and didactical 

assumptions of curricula, even though almost all mathematical curricula were 

designed in a pre-computational era. Discussion of these questions is, however, an 

emerging theme within the literature (see, for example, Papert, 1995). A key 

component of this and future work has been the forging of organic links between 

cognitive and sociocultural approaches, and the critical examination of privileged 

representation systems in favour of alternative, more accessible ones.  

At the heart of digital technology is an irony for education. While 

computational power is increasingly used to render mathematical knowledge less 

visible and less apparent, it is digital technology that allows the best hope for the 

design of mathematical learning environments that convey a sense of a meta-
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epistemological stance. Moreover, it is computational technologies that make it 

feasible to design new representational systems and to introduce dynamic forms into 

hitherto static inscriptions, as well as offering new windows onto the kinds of 

thinking that could develop. The study of these new forms, and their potential for 

epistemological transformation, remains a major priority for research. 
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NOTES 

1. This paper is adapted from the plenary talk delivered at the 53
rd

 International 

Conference of the "Commission Internationale pour l'Etude et l'Amélioration de 

l'Enseignement des Mathématiques", Verbania, Italy, July 21-27, 2001. 

2. Of course in the nineteenth and twentieth centuries, the relationship between 

meaning and depiction changed again fundamentally. 

3. This observation should be read in the context of a recent Royal Society (2001) 

report of the Joint Mathematical Council UK on Teaching and Learning Geometry 

11-19,  which recommends a greater emphasis on work in 3-dimensions. 

4. I recognise, of course, that many occupations involve virtually no mathematical 

activity, and that even when it might, computational technology is often used to 

remove it from the individual's focus (the usual example is checkout clerks in 

supermarkets). But there are many who do use mathematics in various ways and 

these are our focus here. 

5. Kent and myself are preparing a paper which will focus on this aspect. 
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6. Furthermore, it is interesting that when we find engineers willing to admit that 

mathematics is important for their tasks, they identify geometry as the most important 

mathematical topic. 

7. There are many incidental aspects. One is that the behaviour of the bridge had been 

well documented in a somewhat obscure Japanese journal some years before, but had 

not been brought to the attention of the designers. Similarly, since the Millennium 

Bridge's wobble emerged, it has become evident that there are several – perhaps 

many – bridges that have displayed similar behaviour, and many more that would do 

so if they were subjected to the same volume of pedestrian traffic. 

8. The Playground Project is funded by the European Union, Grant No. 29329. The 

other partners are in Cambridge, Porto, Bratislava and Stockholm. See 

http://www.ioe.ac.uk/playground/. I acknowledge the collaboration of all the partners, 

and in particular our London-based colleagues Ross Adamson, Miki Grahame and 

Sarah Lowe. 

9. See www.toontalk.com for information about ToonTalk. ToonTalk's creator is Ken 

Kahn, a consultant to the Playground Project. 
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