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In neuroimaging data analysis, Gaussian graphical models are often used
to model statistical dependencies across spatially remote brain regions known
as functional connectivity. Typically, data is collected across a cohort of
subjects and the scientific objectives consist of estimating population and
subject-specific connectivity networks. A third objective that is often over-
looked involves quantifying inter-subject variability, and thus identifying re-
gions or subnetworks that demonstrate heterogeneity across subjects. Such
information is crucial to thoroughly understand the human connectome. We
propose Mixed Neighborhood Selection to simultaneously address the three
aforementioned objectives. By recasting covariance selection as a neighbor-
hood selection problem, we are able to efficiently learn the topology of each
node. We introduce an additional mixed effect component to neighborhood
selection to simultaneously estimate a graphical model for the population of
subjects as well as for each individual subject. The proposed method is vali-
dated empirically through a series of simulations and applied to resting state
data for healthy subjects taken from the ABIDE consortium.

1. Introduction. In this work we consider the estimation of multiple related
Gaussian graphical models (GGMs) in the context of high-dimensional data. This
topic has received considerable attention in recent years; however, an aspect which
has been overlooked is that of understanding uncertainty across estimated GGMs.
In many applications this is fundamental, yet it has received limited attention. To
address this issue, we propose a novel model through which to estimate multiple
GGMs which directly allows for variability to be identified on an edge-by-edge
basis.

This work is motivated by the study of neuroimaging data where GGMs are
often used to model statistical dependencies across spatially remote brain regions
known as functional connectivity [Friston (2011)]. While traditional neuroimag-
ing studies focused on the roles of specific brain regions, there has recently been
a significant shift towards understanding the connectivity across regions [Smith
(2012)]. This shift has been catalyzed by recent advances in the understanding

Received December 2015; revised January 2017.
Key words and phrases. Functional connectivity, neuroimaging, graphical models, inter-subject

variability.

2142

http://www.imstat.org/aoas/
https://doi.org/10.1214/17-AOAS1067
http://www.imstat.org


MIXED NEIGHBORHOOD SELECTION 2143

of brain connectivity and its intimate relationship with diverse aspects of neu-
roscience, ranging from cognitive ability [Greicius et al. (2003), Gusnard and
Raichle (2001)] to neurodegenerative and psychiatric diseases [Fox and Greicius
(2010)]. As a result, the study of functional connectivity is of paramount impor-
tance and provides a fundamental tool through which to understand the organiza-
tion of the human brain [Van Den Heuvel and Pol (2010)]. It follows that quan-
tifying heterogeneity across multiple subjects in order to relate such variability to
physiological or genetic traits is an important problem in neuroscience [Dubois
and Adolphs (2016)].

One of the hallmarks of neuroimaging data is its reproducible nature. Observed
patterns in connectivity have been shown to demonstrate reproducible properties
across subjects [Damoiseaux et al. (2006), Zuo et al. (2010)]. The reproducible na-
ture of functional connectivity networks motivates the need for novel methodolo-
gies with two overriding objectives. First, there is a need to exploit the presence of
shared connectivity structure in order to yield more accurate network estimates for
each subject. Second, there is also a critical need to understand and quantify inter-
subject variability in the context of functional connectivity [Kelly et al. (2012),
Mueller et al. (2013)]. By quantifying variability across a cohort of subjects, such
methods are able to untangle the characteristics which define a population from
subject-specific idiosyncrasies. Such methods therefore open the door to a more
intimate understanding of the properties of brain networks [Fallani et al. (2014)].

Within the neuroimaging literature there are two main avenues of research
which aim to address the aforementioned challenges. The first involves learning
a separate GGM for each subject. While methods such as the graphical lasso
[Friedman, Hastie and Tibshirani (2008)] are often employed to address the high-
dimensional nature of the data, more sophisticated techniques are able to exploit
the reproducible nature of connectivity via the introduction of novel regularization
schemes [Danaher, Wang and Witten (2014), Varoquaux et al. (2010)]. Such meth-
ods propose to jointly estimate networks across subjects under some constraints
over edges. In this manner, the edge structure of each subject is informed by the
estimated structure of all remaining subjects.

The second approach is to learn a single GGM that is representative of the en-
tire population of brain networks. Such a strategy is able to alleviate issues caused
by the high-dimensional nature of the data by combining observations across sub-
jects (albeit in a potentially naïve manner). However, the question of understanding
variability across the population is often sidelined [Fallani et al. (2014)].

The objective of this work is to reconcile the two popular approaches presented
above, thus allowing for accurate network estimation at subject-specific and popu-
lation levels while also quantifying variability present across a cohort. The pro-
posed method, named Mixed Neighborhood Selection (MNS), is based on the
neighborhood selection method introduced by Meinshausen and Bühlmann (2006).
By recasting covariance selection as a series of linear regression problems, neigh-
borhood selection methods are able to learn the local network topology of each
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FIG. 1. Toy motivating example to illustrate the capabilities of the proposed method. Networks
were simulated with p = 5 nodes and with n = 8 observations per subject for N = 4 subjects. The
networks for two of the subjects are shown in (a), while the networks for the remaining subjects are
shown in (b). Solid and dashed edges indicate positive and negative partial correlations, respectively.
A significant proportion of the edges are shared across subjects with a single variable edge. The
results for our proposed method are shown in (c): thin black lines indicate edges shared by the entire
population, while thick gray edges indicate highly variable edges. Estimated edge coefficients for
edges A and B are shown as obtained by the MNS algorithm as well as by applying the graphical
lasso to each dataset independently in (d): Dashed lines indicate the estimated population edge value,
while the solid line is the estimated probability density function of that edge based on the random
effects. Triangular points indicate edge values as estimated by the graphical lasso, while circular
points indicate subject-specific MNS estimates.

region. MNS extends neighborhood selection by incorporating an additional ran-
dom effect component. This corresponds to learning a novel model for covariance
structure across a cohort of subjects. In the proposed model the conditional inde-
pendence structure for each subject is decomposed as the union of a population
covariance structure together with subject-specific idiosyncrasies. Decomposing
the edge structure in this manner serves to directly model inter-subject variability
and provides a much richer model of functional connectivity. In particular, the pro-
posed method is able to partition edges according to their reproducibility across
the cohort. In doing so, MNS provides an additional layer of information which
can be exploited to further understand functional connectivity. Moreover, by effec-
tively differentiating between reproducible edges present across the entire cohort
and highly variable edges, the proposed method is able to share information across
subjects in a discriminative manner, leading to more reliable network estimates.

To illustrate the capabilities of the proposed method, we present a brief moti-
vating example, shown in Figure 1. We consider a scenario where the population
consists of four individuals whose functional connectivity networks share a com-
mon structure but also demonstrate some variability. In particular, one edge varies
across subjects such that two subjects exhibit the functional connectivity shown in
Figure 1(a) and the remaining two Figure 1(b); the edge in question (edge A) is
shown to vary from positive to negative across groups. In such a scenario, it is of
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scientific interest both to uncover the correct functional connectivity networks as
well as to correctly identify edges which are variable within the population. MNS
is designed to achieve both these goals. The results are shown in Figure 1(c) where
the black lines indicate edges shared across the entire population. The thick gray
edges indicate random effect edges that demonstrate high variability. Figure 1(d)
shows the estimated edge coefficients for two edges of interest when estimated
using the proposed method and the graphical lasso. Figure 1(d) demonstrates that
the proposed method is able to correctly recover covariance structure as well as
discriminate edges according to their reproducibility over the cohort. This is in
contrast to traditional methods such as the graphical lasso.1 As a result, it follows
that identifying variable edges is challenging even in low dimensions.

The proposed method is detailed in Section 2. We present an extensive simu-
lation study in Section 3. The proposed method is applied to resting-state fMRI
data from the ABIDE consortium in Section 4. We conclude with a discussion in
Section 5.

2. Methods. To set notation, we assume we have access to fMRI time series
across a cohort of N subjects. For the ith subject, it is assumed we observe an
n-dimensional fMRI time series across p fixed regions of interest. We write V =
{1, . . . , p} to denote the set of regions or nodes, and refer to the dataset for the ith
subject by X(i) ∈ R

n×p . Further, we write X
(i)
v ∈ R

n×1 to denote the time series for
any node v ∈ V . Similarly, we let X

(i)
\v ∈ R

n×(p−1) denote the times series across
all remaining nodes.

Throughout this work it is assumed that the data of each subject follows a sta-
tionary multivariate Gaussian distribution. Since our primary interest is the esti-
mation of functional connectivity networks, summarized in the inverse covariance
matrix, we assume without loss of generality that each X(i) corresponds to n sam-
ples from a multivariate Gaussian distribution with zero mean and covariance given
by �(i).

2.1. Modeling connectivity through GGMs. Functional connectivity can be
measured through a myriad of techniques, the simplest of which involves estimat-
ing the correlation between the time series of any pair of nodes [Smith (2012)].
An alternative approach taken in this work is the use of partial correlations, where
pairwise correlations between nodes are studied once the effects of all other nodes
have been removed [Varoquaux and Craddock (2013)]. Such methods have been
employed extensively within the neuroimaging literature [Smith et al. (2011)].

Under the assumption of Gaussianity, estimating functional connectivity net-
works based on partial correlations is equivalent to learning the conditional inde-
pendence structure for each subject. The conditional independence structure can be

1The graphical lasso was run independently for each subject. The regularization parameter for each
subject was selected using cross-validation.
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succinctly represented as a graphical model, G(i) = (V ,E(i)), where the edge set,
E(i), encodes conditional dependencies across a fixed set of nodes, V . Formally,
the edge set summarizes the nonzero entries in the precision matrix, thus

(2.1) E(i) = supp
((

�(i))−1) = {
(j, k) : (

�(i))−1
j,k �= 0

}
.

The resulting edges are taken to be indicative of functional relationships between
spatially remote regions of the brain, allowing the estimated graphical model to be
interpreted as a functional connectivity network.

Learning conditional independence graphs is a challenging problem that is fur-
ther exacerbated by the high-dimensional nature of fMRI data. As a result, reg-
ularization is often introduced [Smith et al. (2011), Varoquaux and Craddock
(2013)]. In particular, the use of neighborhood selection methods introduced by
Meinshausen and Bühlmann (2006) have been widely adopted within the neu-
roimaging community [Belilovsky, Varoquaux and Blaschko (2016), Chung et al.
(2015), Lee et al. (2011)]. As these methods will form the backbone for the pro-
posed method, we formally discuss neighborhood selection below.

2.1.1. Neighborhood selection. The intuition behind neighborhood selection
stems from the fact that we may learn the conditional independence structure
across all nodes by iteratively learning the conditional independence structure of
each node. The latter is referred to as the neighborhood for each node v ∈ V . We
write n̂e(i)(v) to denote the estimated neighborhood of node v at the ith subject.

Meinshausen and Bühlmann (2006) propose to learn the neighborhood of each
node v ∈ V by considering the optimal prediction of X

(i)
v given the time series of

the remaining nodes. This results in the formulation of the following linear model
for node v:

(2.2) X(i)
v = X

(i)
\v β(i),v + ε(i),v,

where ε(i),v ∼N (0, σ 2I ) is white noise. In such a regression model it follows that
nodes that are not in the neighborhood of v will be omitted from the set of optimal
predictors. Thus neighborhood selection can be reformulated as subset selection in
a linear model. The latter problem has received considerable attention, one notable
solution being that of the lasso [Tibshirani (1996)]. Briefly, the lasso imposes a
constraint on the �1 norm of the regression coefficients, leading to parsimonious
solutions while remaining convex.

The neighborhood selection approach described in Meinshausen and Bühlmann
(2006) proceeds by solving the following convex optimization problem for each
node v:

(2.3) β̂(i),v = argmin
β(i),v∈Rp−1

{
1

2

∥∥X(i)
v − X

(i)
\v β(i),v

∥∥2
2 + λ

∥∥β(i),v
∥∥

1

}
.
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Due to the parsimony property of the lasso, some elements of β̂(i),v ∈ R
p−1 will

be shrunk to zero, effectively removing these nodes from the optimal prediction
set. An estimate for the neighborhood of v is subsequently defined as

(2.4) n̂e(i)(v) = {
u ∈ V \ {v} : β̂(i),v

u �= 0
}
.

That is to say, the neighborhood of v is the set of all nodes included in the lasso
solution. Given an estimate of the neighborhood of all nodes, the edge structure
for a graphical model can then be obtained using one of the following rules:

(2.5)
E

(i)
OR = {

(v, u) : u ∈ β̂(i),v or v ∈ β̂(i),u}
or

E
(i)
AND = {

(v, u) : u ∈ β̂(i),v and v ∈ β̂(i),u}
.

Throughout this work the AND rule was employed. This decision was based on the
conservative nature of this rule, where edges are only reported if they are present
in the neighborhoods of both of the relevant nodes.

2.2. Mixed neighborhood selection. In this section we formally detail the pro-
posed methodology. We begin by describing a novel model for the covariance
structure across a cohort of subjects in Section 2.2.1. The associated estimation
framework and algorithm are detailed in Sections 2.2.2 and 2.2.3, respectively.
Finally, parameter tuning is discussed in Section 2.2.4.

2.2.1. A novel covariance model. We propose to model the covariance struc-
ture for each subject as the union of a shared covariance structure together with
subject-specific idiosyncrasies. The proposed model is based on the assumption
that there exists a shared covariance structure which manifests itself across all
subjects together with subject-specific deviations from this structure. The latter al-
lows our model to accommodate inter-subject variability which cannot be ignored.
As a result, we model the conditional independence structure of each subject as
the union of the support of a sparse population network and a subject-specific net-
work. Formally, the support for each subject’s conditional independence structure,
originally defined in equation (2.1), is modeled as

(2.6) E(i) = Epop ∪ Ẽ(i).

Here we interpret Epop as the population edges which encode the conditional in-
dependence structure shared across the entire population. Under the assumption
of Gaussianity, it follows that Epop is associated with a population precision ma-
trix, �pop ∈ R

p×p . From the perspective of covariance structure, Epop encodes the
maximal conditional dependence structure shared across all subjects. On the other
hand, it is Ẽ(i) which encodes subject-specific deviations from the population co-
variance structure. We define Ẽ = ⋃N

i=1 Ẽ(i) as the set of edges demonstrating
variability across the entire population of N subjects. This variability may either
be attributed to the nature of the edge (i.e., positive or negative partial correlations
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as in the motivating example described in Figure 1) or partial presence of the edge
(i.e., the edge is only present in some subjects).

The objective of the proposed method therefore corresponds to accurately iden-
tifying both Epop and Ẽ(i). Given Epop and Ẽ(i), one can infer E(i) and Ẽ. How-
ever, by focusing on Epop and Ẽ(i), as opposed to directly considering subject-
specific edges, a far richer description of functional architecture is obtained. In
the case of the motivating example presented in Section 1, Ẽ = Ẽ(i) = {A}, while
the remaining edges are captured in Epop. From the perspective of neuroimag-
ing, partitioning edges in this manner is fundamental to further understanding the
functional architecture of the brain [Kanai and Rees (2011)].

It is useful to note that the model described in equation (2.6) generalizes two
typical approaches in the study of functional connectivity. The traditional method
of estimating a single population network, �pop, by concatenating data across all
subjects is equivalent to the assumption that Ẽ = ∅. Such an approach is burdened
by the sizable assumption that observations across all subjects share an identi-
cal conditional independence structure. Conversely, the approach of estimating a
functional connectivity network for each subject independently corresponds to the
assumption that Epop = ∅. In such a scenario, there is no advantage to be gained
by sharing information across subjects. Typically, we would expect the true un-
derlying network structure across subjects to lie somewhere along the spectrum
between these two extremes, thus justifying the proposed model.

2.2.2. Estimation framework. The covariance model described in Section
2.2.1 provides a rich framework through which to understand connectivity across
a cohort of subjects. In order to learn the associated parameters, we look to ex-
tend neighborhood selection. As a result, we consider learning the neighborhood
of node v ∈ V over a cohort of N subjects by studying the following linear mixed
effect model:

(2.7) X(i)
v = X

(i)
\v βv + X

(i)
\v b̃(i),v + ε(i),v for i = 1, . . . ,N.

Recall that X
(i)
v denotes the time series at node v for subject i. The model de-

scribed in equation (2.7) directly extends the traditional neighborhood selection
model by introducing random effect terms, b̃(i),v , for each subject. We note that
βv corresponds to the shared population neighborhood.

The random effects are assumed to follow a multivariate Gaussian distribution,
b̃(i),v ∼ N (0,	v), independently of ε(i),v . The choice of covariance structure for
random effects is crucial to both estimating the model as well as to its interpretabil-
ity. While it is possible to motivate many choices for 	v ∈ R

p−1×p−1, in this work
we limit ourselves to the scenario where 	v = σ 2 diag(σ v2). Here σv ∈R

p−1 is a
vector describing the standard deviation of the neighborhood of v across the cohort
of N subjects. A large value of σv

u would be indicative of heterogeneity in the edge
between nodes v and u.
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For any node v ∈ V , the model described in equations (2.7) is easily inter-
pretable. The population, or fixed effects, neighborhood is captured in βv . These
are the effects that are shared across the entire cohort of subjects and correspond
to the set of edges in Epop. Meanwhile, the random effects are able to capture
subject-specific deviations from the population neighborhood and can thereby be
employed to obtain a network for each subject. Formally, the random effects cap-
tured in σv correspond to the set of highly variable edges, Ẽ. Finally, we are also
able to obtain estimates of b̃(i),v , which can be employed to obtain subject-specific
networks. These values correspond to the subject-specific idiosyncrasies, Ẽ(i).

2.2.3. Estimation algorithm. The model described in Section 2.2.2 contains
the following parameters, φv = (βv, σ v, σ 2) ∈ R

2(p−1)+1, which must be esti-
mated for each node v ∈ V . Given φv , we can subsequently obtain the best lin-
ear unbiased predictions (BLUPs) for each of the random effects, b̃(i),v , across
subjects [Pinheiro and Bates (2000)]. In this work φv is estimated in a maximum
likelihood framework, where the negative log-likelihood for node v is proportional
to

(2.8) L
(
φv) =

N∑
i=1

1

2
log detV (i)

v + 1

2

(
X(i)

v − X
(i)
\v βv)T

V (i)
v

−1(
X(i)

v − X
(i)
\v βv)

,

where we define V
(i)
v to be the variance structure for node v at subject i,

(2.9) V (i)
v = σ 2(

X
(i)
\v diag

(
σv2)(

X
(i)
\v

)T + I
)
,

where we write I to denote the identity matrix.
In order to simplify future discussion, we reparameterize the random effects

component of the mixed effect model, described in equation (2.7), as follows:

(2.10) b̃(i),v = diag
(
σv)

b(i),v,

where b(i),v ∼N (0, σ 2I ).
In this work random effects are treated as latent variables and an EM algorithm

is employed [McLachlan and Krishnan (2007)]. Fitting linear mixed effects models
in this manner is a popular approach first posited by Dempster, Laird and Rubin
(1977) and for which many efficient algorithms have been proposed [Meng and
van Dyk (1998)]. In the context of this work, such an approach will prove benefi-
cial when regularization constraints are introduced. Assuming the random effects,
b(i),v , are observed, the complete data log-likelihood is proportional to

Lc

(
φv) =

N∑
i=1

n + p

2
logσ 2

+ 1

2σ 2

(∥∥X(i)
v − X

(i)
\v βv − X

(i)
\v diag

(
σv)

b(i),v
∥∥2

2 + b(i),vT
b(i),v)

.

(2.11)
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Regularization is introduced for two reasons. First, sparse solutions remain fea-
sible when only a reduced number of observations or subjects are available. Sec-
ond, parsimonious solutions remain easily interpretable even in the presence of
many nodes. As a result, we impose an �1 penalty on both the fixed as well as
random effects. In terms of the random effects, we penalize the variance terms,
σv . Should a variance be shrunk to zero, the resulting random effect is effectively
removed from the model. The introduction of sparsity inducing penalties yields
the following penalized complete-data log-likelihood:

(2.12) Lλ1,λ2
c

(
φv) = Lc

(
φv) + λ1

∥∥βv
∥∥

1 + λ2
∥∥σv

∥∥
1,

where λ1 and λ2 are regularization parameters. Sparsity at the population level is
enforced by λ1, while λ2 encourages sparsity in the random effects by shrinking
the standard deviation terms, σv .

The proposed EM algorithm involves iteratively computing the conditional ex-
pectation of latent variables, Q(φ;φv), in our case the random effects, and mini-
mizing the expected conditional log-likelihood with respect to parameters φv . The
expectation step (E-step) can be computed in closed form as follows:

(2.13)
b(i),v = (

diag
(
σv)

X
(i)
\v

T
X

(i)
\v diag

(
σv) + I

)−1

× X
(i)
\v

T
diag

(
σv)(

X(i)
v − X

(i)
\v βv)

independently for each subject i = 1, . . . ,N . It is clear from equation (2.13) that if
σv

u is shrunk to zero, then the uth entry of b(i),v will also be zero for all subjects.
In the minimization step (M-step) the latent variables, b(i),v , are assumed to be

observed. We therefore learn (βv, σ v) by solving the following convex problem:

(2.14)

(
βv, σ v) = argmin

(βv∈Rp,σ v∈Rp
+)

{∥∥X(i)
v − X

(i)
\v βv − X

(i)
\v diag

(
b(i),v)

σv
∥∥2

2

+ λ1
∥∥βv

∥∥
1 + λ2

∥∥σv
∥∥

1

}
.

We note that equation (2.14) is a lasso problem with distinct regularization pa-
rameters applied to the fixed and random effects components, respectively. A vast
range of efficient algorithms can be employed to solve equation (2.14). In this
work gradient descent algorithms [Friedman et al. (2007)] were employed. The
motivation behind this choice was that, due to the iterative nature of the EM algo-
rithm employed, a lasso problem must be solved at each iteration. It follows that
while solutions from one iteration to the next will typically not be identical, they
will be similar. As a result, computational gains may be obtained by using past
solutions as good initializations for the lasso problem at each iteration. Gradient
descent algorithms are particularly well suited for such tasks. The MNS procedure
is described in Algorithm 1.

2.2.4. Parameter tuning. The proposed method requires the tuning of two reg-
ularization parameters which govern the nature of the estimated population and
subject-specific networks, respectively. Large values of λ1 will lead to sparse net-
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Algorithm 1: Mixed neighborhood selection

Input: Data across N subjects, {X(i) : i = 1, . . . ,N}, regularization
parameters, λ1, λ2.

1 begin
2 for v ∈ {1, . . . , V } do
3 Define initial estimates: βv = 0, σv = 1, σ = 1 and b(i),v = 0
4 while not converged do
5 Update (βv, σ v) by solving equation (2.14) // M-step
6 Estimate latent variables using equation (2.13) for i ∈ {1, . . . ,N}

// E-step

7 Store βv , σv and {b(i),v}Ni=1

8 Epop = {(u, v) : βv
u �= 0 and βu

v �= 0}
9 Ẽ = {(u, v) : σv

u �= 0 and σu
v �= 0}

10 Ẽ(i) = {(u, v) : b(i),v
u �= 0 and b

(i),u
v �= 0}

11 return Epop, Ẽ and Ẽ(i) for i = 1, . . . ,N

works at the population level. Conversely, selecting large λ2 will penalize the vari-
ance of the random effects, leading to sparse subject-specific contributions to co-
variance structure.

Moreover, in the class of models considered in this work each covariate may
contribute to the fixed as well as random effect structure. Such a parameteriza-
tion may lead to problems regarding the interpretability of estimated models. For
example, overpenalizing the fixed effects may lead to overestimation of the ran-
dom effect variances as compensation [Schelldorfer, Bühlmann and van de Geer
(2011)]. The choice of regularization parameters is therefore a delicate issue which
must be handled with care.

While information theoretic methods such as the Bayesian Information Crite-
rion may be employed for the purpose of tuning regularization parameters, in this
work we employ cross-validation. We note that such an approach is frequently
employed within neuroimaging applications [Varoquaux and Craddock (2013),
Varoquaux et al. (2010)]. Formally, the data across all subjects is divided into K

folds. For each fold, the data from the remaining K − 1 folds is employed to fit
the penalized linear mixed model described in Section 2.2.2. The resulting model
is then used to predict the unseen data, and the mean square error is noted. This
procedure is repeated over all nodes and across all subjects, with the parameters
minimizing total mean square error selected.

3. Simulation study. In this section we evaluate the performance of the pro-
posed method using simulated data that is representative of functional imaging
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data. We assess the empirical performance of the MNS algorithm in three distinct
settings which correspond to correctly reporting the edge structure of the popu-
lation, subject-specific and highly variable network edges, respectively. The first
task corresponds to correctly recovering Epop, while the second requires learning
subject-specific edge structure, E(i), defined in equation (2.1). Finally, the task of
recovering variable edges is equivalent to learning the set of variable edges, Ẽ.

3.1. Network simulation. In order to perform such a study we require a
method through which to simulate population and subject-specific networks. While
numerous algorithms have been proposed to generate random individual networks,
there has been limited work on algorithms to simulate multiple clustered networks.
Notably, there is no documented method through which to generate networks from
a cohort of related subjects that demonstrate the characteristics observed in real
fMRI data, namely, a shared core structure which is reproducible across all subjects
together with significant inter-subject variability in the remaining edges [Bullmore
and Sporns (2009)].

To address this issue, we propose a novel method of simulating networks. The
proposed algorithm is motivated by an exploratory data analysis of resting state
fMRI data. We briefly outline the proposed algorithm in this section with further
details provided in Supplement A, part B [Monti, Anagnostopoulos and Montana
(2017)].

The underlying idea behind the proposed network simulation method is that key
properties observed in fMRI data should be present. As such, the proposed method
consists of a set of population edges Epop which are sampled according to the pref-
erential attachment model of Barabási and Albert (1999). These edges constitute
the core, reproducible connectivity structure which will be present across all sub-
jects. Thereafter, a set of variable edges, Ẽ, is selected uniformly at random across
all edges. For each subject, edges in Ẽ are included in the subject-specific network,
Ẽ(i), with some fixed probability τ , yielding clustered networks where there is a
clear shared structure together with diverse subject-specific idiosyncrasies.

The proposed method was employed to simulate synthetic data for a cohort of
N = 10 subjects. The number of nodes was fixed at p = 50. For each subject, data
consisted of n samples from a multivariate Gaussian with zero mean and covari-
ance specified by Ẽ(i). Data was simulated with a varying number of observations
per subject, n ∈ {50,100,200}.

3.2. Alternative models. Throughout this simulation the performance of the
MNS algorithm was benchmarked against the current state of the art in each of
the three settings described above. In the case of estimating the population net-
work, the Graphical Lasso (Glasso) [Friedman, Hastie and Tibshirani (2008)] was
employed. Such an approach has been used extensively in the neuroimaging com-
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munity to learn functional connectivity networks across populations [Smith et al.
(2011)]. An approach based on resampling and randomization was also employed.
This approach, which we refer to as the Stability approach, is outlined in Supple-
ment A, part A [Monti, Anagnostopoulos and Montana (2017)]. We note that while
this approach is inspired by the recently proposed R3 method of Narayan, Allen
and Tomson (2015), the objective here is different.

The problem of estimating subject-specific functional connectivity networks has
received considerable attention. In this simulation study we compare the perfor-
mance of the proposed method with the two penalized likelihood methods pre-
sented in Varoquaux et al. (2010) and Danaher, Wang and Witten (2014). Each
of these methods can be seen as a special case of the Joint Graphical Lasso (JGL)
framework proposed by Danaher, Wang and Witten (2014), and as a result we refer
to each as the JGL-Group or the JGL-Fused algorithms, respectively. The glasso
algorithm is also employed in this context.

As far as we are aware, there are no alternative methods available which address
the problem of recovering highly variable edges. The aforementioned Stability ap-
proach was therefore employed as a benchmark.

3.3. Performance measures. Throughout this simulation the task of recover-
ing covariance structure is treated as a binary classification task. Thus performance
is measured according to the proportion of edges which are correctly reported as
being either present or absent. To compare performance across various algorithms,
we employ receiver operating characteristic (ROC) curves, which illustrate the
performance of a binary classifier by plotting the true positive rate against false
positive rate across a range of regularization parameters [Krzanowski and Hand
(2009)].

The use of ROC curves requires a single, sparsity-inducing parameter to be
varied across a range of possible values. In the case of the MNS algorithm, both
the population and subject-specific parameters can affect sparsity. As a result, we
look to reparameterize the MNS penalty as follows:

λ1 = αλ,(3.1)

λ2 = √
2(1 − α)λ,(3.2)

where α controls the ratio of sparsity between the population and subject-specific
contributions and λ the overall sparsity. Thus α is fixed allowing λ to vary. While
no such adjustments are needed in the case of the JGL-Fused algorithm, we follow
the same parameterization described in equations (3.1) and (3.2) in the case of the
JGL-Group algorithm.2

2Note this same parameterization was employed in Danaher, Wang and Witten (2014).
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3.4. Simulation results. In this section we present the results to the simulation
study described above. We begin by first considering performance in the context of
recovering the set of variable edges in Section 3.4.1. This problem is fundamental
within many neuroscientific applications, however, it has received limited attention
to date [Kelly et al. (2012)]. Results for the more frequently studied problems of re-
covering population and subject covariance structure are presented in Section 3.4.2
and 3.4.3, respectively.

Throughout this simulation the MNS algorithm was run with α = 0.25, while
the sparsity parameter λ varied as described in equations (3.1) and (3.2). The same
parameterization was employed for the JGL-Group algorithm with α = 0.15 se-
lected. In the case of the JGL-Fused algorithm, λ2 = 0.2 was employed. Finally,
the Stability algorithm was run with B = 10,000 bootstrap iterations per subject
and c = 0.25.

3.4.1. Variable network recovery. Understanding variability in covariance
structure across a cohort of subjects is a fundamental problem in neuroscience.
In particular, understanding whether this variation can be attributed to phenotypic
characteristics or other sources of noise is crucial in further understanding the hu-
man connectome.

The results shown in the top panel of Figure 2 demonstrate that the proposed
MNS algorithm is able to accurately identify edges which demonstrate variability
across a cohort of subjects in contrast to the Stability method. Briefly, the Stabil-
ity method (described in Supplement A, part A) treats the presence or absence of
edges at a subject level as a Bernoulli random variable. A hierarchical random ef-
fects model is then proposed to model the presence or absence of an edge across
all subjects. The resulting estimate of the edge variability is then employed to dis-
criminate between variable and nonvariable edges. The Stability method therefore
corresponds to a two-step procedure where variability is only studied after net-
works have been estimated for subjects independently. Conversely, the proposed
method simultaneously learns subject-specific, population and variable networks,
resulting in significant improvements in performance. Further results are given in
Table 1, where the true positive rate (TPR) and false positive rate (FPR) are re-
ported for selected regularization parameters.

3.4.2. Population network recovery. Obtaining an accurate understanding of
a population-level covariance structure is a challenging problem due to the high
inter-subject variability. As mentioned previously, it is imperative to differentiate
between subject-specific idiosyncrasies and behavior which is reproducible across
the entire cohort. A popular approach often taken in neuroimaging studies is to es-
timate a single network using data from all subjects, thus effectively concatenating
all data. Such an approach corresponds to the sizable assumption that Ẽ = ∅. This
approach is included in this simulation together with the aforementioned Stability
approach.
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FIG. 2. Simulation results for all five algorithms across all tasks. Recovery of variable edges is
considered in the top panel, population network recovery in shown in the middle panel, and finally the
bottom panel shows subject-specific network recovery. This simulation was performed with p = 50
nodes and n ∈ {50,100,200} observations.

Results are shown in the middle panel of Figure 2. It is interesting to note that
for small sample sizes (i.e., n = 50 or n = 100) the Stability approach is out-
performed by the Glasso. As mentioned in Section 3.4.1, we attribute this drop in
performance to the two-step design of the Stability method where information is
only shared across subjects after networks have been estimated. It is only when
the number of observations increases that reliable estimates of uncertainty can be
obtained. Conversely, the difference in performance between the Glasso algorithm
and the MNS algorithm is due to the presence of heterogeneous edges, implying
Ẽ �=∅. Thus, by providing a more sophisticated model for inter-subject variability,
the MNS algorithm is able to obtain more reliable population network estimates.

3.4.3. Subject-specific network recovery. Finally, we consider the recovery of
subject-specific networks. This problem has received considerable attention in re-
cent years, and a range of methods have been proposed. The underlying theme in
these methods revolves around effectively sharing information across subjects. In
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TABLE 1
Performance of all five algorithms. The true positive rate (TPR) and false positive rate (FPR) are

reported for each of the three tasks: recovering population, subject and variance networks

Population Subject Variance

Algorithm n TPR FPR TPR FPR TPR FPR

MNS 50 0.76 0.12 0.75 0.33 0.54 0.06
100 0.77 0.11 0.80 0.32 0.70 0.03
200 0.75 0.11 0.82 0.30 0.79 0.02

Glasso 50 0.69 0.27 0.88 0.83
NA100 0.70 0.27 0.83 0.66

200 0.68 0.27 0.85 0.58

Stability 50 0.56 0.20
NA

0.54 0.24
100 0.59 0.20 0.64 0.18
200 0.78 0.35 0.71 0.15

JGL group 50
NA

0.86 0.71
NA100 0.83 0.62

200 0.82 0.57

JGL fused 50
NA

0.78 0.51
NA100 0.79 0.51

200 0.79 0.50

the case of the methods proposed by Varoquaux et al. (2010) and Danaher, Wang
and Witten (2014), information is shared across subjects via the introduction of
regularization penalties over the edge structure. In this manner, the covariance
structure of an individual subject is informed by the estimated covariance struc-
ture across all remaining subjects. However, a shortcoming of the aforementioned
methods is that regularization is applied in an indiscriminate manner. By enforc-
ing either a group or fused lasso penalty on all entries of precision matrices, such
methods effectively encourage information to be shared homogeneously across all
edges. We envisage a scenario where edges may be ordered according to their
variability. For example, within the context of functional connectivity networks
there is evidence to suggest that variability in connectivity is directly modulated
by factors such as the distance between regions [Power et al. (2012)]. The pro-
posed MNS algorithm is able to address precisely this issue. By discriminating
between subject-specific and population edges, it is able to effectively vary how
extensively information is shared across subjects on an edge-by-edge basis. As a
result, the MNS algorithm is able to more reliably recover subject-specific covari-
ance structure.

3.5. Further experiments. One of the assumptions of the proposed method
is that data follow a multivariate Gaussian distribution. While this assumption is
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commonplace in the analysis of fMRI data [Lindquist (2008)], we also consider
the performance of the MNS algorithm in the context of non-Gaussian data. To
study the robustness of the MNS algorithm, the simulation study presented above
was repeated with data generated according to a multivariate t-distribution. De-
tailed results are reported in Supplement A, part C. The results indicate that, in
comparison to alternative methods, the MNS algorithm is robust in the presence of
non-Gaussian data. We attribute this behavior to the fact that the covariance model
underlying the MNS algorithm explicitly models heterogeneity over subjects, thus
allowing the MNS algorithm to better tolerate contaminated data.

Furthermore, simulating networks as described in Section 3.1 is one of many
possible methods which could be employed. To provide a thorough and fair com-
parison, an additional simulation was also performed where networks were sim-
ulated as described in Danaher, Wang and Witten (2014). This simulation was
proposed with the objective of providing empirical evidence regarding how accu-
rately subject-specific networks could be reported. It is therefore not well suited
for examining how reliably the population or variance networks can be reported.
The results are presented in Supplement A, part C.

4. Application. In this section the proposed MNS algorithm is applied to
resting-state fMRI data from the ABIDE consortium [Di Martino et al. (2014)].
While the ABIDE dataset contains data corresponding to healthy subjects and
Autism Spectrum Disorder (ASD) subjects, we chose only to study healthy con-
trols here, as the focus of this work consisted in fully understanding uncertainty
across a single population of subjects. The decision to study the ABIDE dataset in
this manner was motivated by the fact that it is an open-source dataset which has
been previously studied in the context of functional connectivity. Data from the
University of Utah School of Medicine (USM) site was considered here, a choice
motivated by results suggesting the USM site contained high-quality data [Nielsen
et al. (2013)]. The data therefore consisted of 43 healthy subjects with ages ranging
from 8 to 40 years old.

4.1. Data acquisition and processing. Data was downloaded from the Autism
Brain Imaging Data Exchange (ABIDE) [Di Martino et al. (2014)]. Data were
preprocessed via a CPAC3 pipeline from the ABIDE repository. Preprocessing in-
volved slice time correction, motion correction and intensity normalization fol-
lowed by regression of motion parameters. Linear and quadratic trends were re-
moved from frequency drifts. Mean time courses were then extracted from 116
regions defined by the Automated Anatomical Labeling (AAL) atlas, yielding 200
observations over 116 nodes for each subject.

3See http://fcp-indi.github.com for further details.

http://fcp-indi.github.com
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4.2. Results. The MNS algorithm requires the specification of two regulariza-
tion parameters, each of which controls the population and subject-specific topol-
ogy of each node. As discussed in Section 2.2.4, parameters were selected on the
basis of a 10-fold cross-validation framework.

One of the advantages of the proposed MNS algorithm is that it is able to simul-
taneously estimate both a population network, corresponding to reproducible edges
which are present across the entire cohort of subjects, as well as a network quanti-
fying variability on an edge-by-edge basis. The latter network is able to succinctly
summarize variability across a cohort of subjects. Finally, the MNS algorithm also
yields estimates of subject-specific connectivity networks, allowing connectivity
to be studied in three distinct yet complimentary approaches which we discuss
below.

The top panel of Figure 3 shows the estimated population network, indicating
the edges which were identified as being consistently present across the entire co-
hort. The network has an estimated edge density of around 10%, indicating that
approximately 90% of edges are not present across all subjects. We also note there

FIG. 3. Estimated population network (top) and variable edge network (bottom). Edge thickness
is proportional to the magnitude of the partial correlation across edges (or variance in the case of
variance network). The left panel displays the coronal view, showing the strong inter-hemispheric
connectivity. The Saggital view is shown in the middle panel. We note there is strong connectivity
centered around the frontal cortex (located to the right) as well as high variability in the cerebel-
lum (located to the bottom left). Finally, the axial view is provided in the right panel where strong
inter-hemispheric connectivity is again visible across the frontal gyrus (located towards the top) as
well as the postcentral gyrus (located midway down the brain). Further details regarding the brain
regions shown are provided in Supplement A, part D.
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is strong inter-hemispheric coupling as would be expected in resting-state con-
nectivity. More importantly, the bottom panel of Figure 3 shows the estimated
variability network, corresponding to the collection of edges that were identified
as demonstrating variability across the cohort of subjects. In the case of the vari-
ability network, the edge thickness is proportional to the estimated variance of the
random effect. We note that there is strong inter-hemispheric variability, in par-
ticular between the left and frontal gyrus as well as between the left and right
postcentral gyrus. There also appears to be a region of variability centered around
the cerebellum. We note that the aforementioned regions are in brain areas with
relatively high susceptibility to artifact and sensitivity to changes in brain shape,
such as the medial prefrontal cortex [Nielsen et al. (2013)].

One of the strengths of the MNS algorithm is that this variability can be further
studied to obtain a deeper understanding regarding the characteristics that define
differences in connectivity over a cohort. In Figure 4 the variability of two edges is
studied in detail. The edges correspond to inter-hemispheric connectivity between
the left and right frontal gyrus and postcentral gyrus, respectively. The histograms
capture the distribution of estimated edges across the cohort of subjects. As these
edges are estimated to be variable across subjects, the proposed method learns
a distinct partial correlation for each subject. The color of histograms visualizes
the mean age of subjects within each bin, indicating that bilateral connectivity
across the frontal gyrus and postcentral gyrus increases significantly with age.4 At
a higher level, these results are consistent with previous literature which suggests
that connectivity increases across distant brain regions during development [Fair
et al. (2009)], and serve to highlight the maturation of a dual-control system within
brain networks [Fair et al. (2007)].

Finally, the MNS algorithm also provides estimates of subject-specific func-
tional connectivity networks. As a result, the proposed method can be used to

FIG. 4. The two histograms show the estimated partial correlations across two edges highlighted
on the left. Each of the histograms shows the distribution over estimated partial correlations between
the left and right frontal gyrus and postcentral gyrus, respectively. The color of bins is indicative of
mean age of subjects within that bin.

4Significant at the α = 1% level using Spearman’s rank correlation coefficient.
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FIG. 5. Multiple network properties are plotted as a function of the subject ages. Estimated
p-values, obtained using Spearman’s rank-order measure of correlation, are shown in the bottom
right corner of each plot. Left: the anatomical distance between functionally connected regions.
Middle: the mean betweenness centrality of nodes. Right: the transitivity (i.e., clustering coefficient).

study connectivity on a subject-by-subject basis. Here we study various properties
associated with the estimated functional connectivity network for each subject, in
particular we look to study potential changes in connectivity that are associated
with the age of subjects.

It has been suggested that the structure of functional connectivity networks in
children is driven by anatomical proximity, with a high connectivity between spa-
tially adjacent regions, while the corresponding structure in adults reflects the inte-
gration of remote brain regions. To study this hypothesis, the average distance be-
tween functionally connected brain regions was estimated on a subject-by-subject
basis (i.e., using the subject-specific estimates of functional connectivity). The left
panel of Figure 5 shows the average distance between functionally connected brain
regions as a function of the subject’s age. We note there is a significant positive cor-
relation at the α = 1% level using Spearman’s rank-order correlation, placing the
results in line with other results in the literature [Fair et al. (2007, 2009)].

To obtain a more detailed understanding of changes occurring in the functional
connectivity, two further network statistics are studied: the mean betweenness cen-
trality of nodes and the transitivity of estimated networks. The betweenness cen-
trality of a node is a measure of its centrality or importance within a network
[Rubinov and Sporns (2010)] and is defined as the fraction of all shortest paths
passing through a node. Nodes with high betweenness centrality are seen to be
bridge connections across many nodes, thereby making their presence in a net-
work important. The mean betweenness centrality across all nodes can be inter-
preted as a measure of the efficiency in a network. On the other hand, transitivity
is a measure of network segregation which quantifies the presence of clusters in
the network. In the context of functional connectivity networks, high transitivity
suggests an organization of statistical dependencies indicative of segregated neural
processing [Rubinov and Sporns (2010)].
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The middle and right panels of Figure 5 show the mean betweenness centrality
and the transitivity of estimated networks as a function of age. These results would
indicate an increase in network segregation and specialization during development,
a finding that is consistent with previous literature [Fair et al. (2007, 2009)].

5. Discussion. We have considered the task of estimating multiple related
GGMs. In particular, we have focused on three closely related challenges: recover-
ing population and subject-specific covariance structure as well as identifying the
set of edges demonstrating heterogeneity across networks. The latter is fundamen-
tal in the context of many applications, yet it has received limited attention. The
proposed methodology is able to simultaneously address all three aforementioned
challenges by considering a novel model for covariance structure across a cohort of
subjects. Formally, the proposed model looks to decompose covariance structure
as the union of population effects, which are reproducible across subjects, with
subject-specific idiosyncrasies.

The underlying covariance model results in several important benefits, principal
among which is the ability of the MNS algorithm to accurately identify heteroge-
neous edges. As a result, the MNS algorithm is able to borrow information across
subjects in a discriminative manner. This is in contrast to many of the current
methodologies which share information in an indiscriminate fashion (e.g., via the
use of regularization penalties whose parameterization is fixed across edges).

The capabilities of the proposed MNS algorithm have been demonstrated us-
ing both simulated as well as resting-state data taken from the ABIDE consortium
[Di Martino et al. (2014)]. Throughout the simulation study, care was taken to
ensure that the underlying covariance structure closely resembled the frequently
reported properties of fMRI data as well as to consider the robustness of the pro-
posed algorithm.

The MNS algorithm requires the specification of two regularization parame-
ters, λ1 and λ2, each of which has a natural interpretation. The first parameter
controls the sparsity in the population node topologies, while the second controls
the sparsity of the subject-specific edges. We employ a cross-validation to tune
both parameters, as is frequently the case in the context neuroimaging data analy-
sis [Varoquaux and Craddock (2013)]. The MNS algorithm together with network
simulation methods described in this work has been implemented as an R pack-
age named MNS, which can be downloaded from the Comprehensive R Archive
Network (CRAN).

In conclusion, the MNS algorithm provides a novel methodology through which
to understand variability across multiple related GGMs. Furthermore, by providing
a refined model for the covariance structure, the proposed method is also able
to accurately recover both population and subject-specific functional connectivity
networks.
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SUPPLEMENTARY MATERIAL

Supplement A (DOI: 10.1214/17-AOAS1067SUPPA; .pdf). A pdf document
consisting of parts A, B, C and D. This supplement contains further details of the
various simulation settings employed throughout the manuscript together with an
extensive sensitivity analysis of the proposed method. A brief discussion of brain
regions studied in the application is also provided

Supplement B (DOI: 10.1214/17-AOAS1067SUPPB; .zip). A .zip file consist-
ing of R code implementing the proposed Mixed Neighbourhood Selection al-
gorithm. This code may also be freely downloaded from the Comprehensive R
Archive Network (CRAN).
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