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Abstract 15	

In this study we examine the behavior of stable Sr isotopes between strontianite [SrCO3] and 16	

reactive fluid during mineral dissolution, precipitation, and at chemical equilibrium. 17	

Experiments were performed in batch reactors at 25oC in 0.01 M NaCl solutions wherein the 18	

pH was adjusted by bubbling of a water saturated gas phase of pure CO2 or atmospheric air. 19	

The equilibrium Sr isotope fractionation between strontianite and fluid after dissolution of the 20	

solid under 1 atm CO2 atmosphere was estimated as Δ88/86SrSrCO3-fluid = δ88/86Sr SrCO3 - 21	

δ88/86Srfluid = -0.05±0.01‰. On the other hand, during strontianite precipitation, an enrichment 22	

of the fluid phase in 88Sr, the heavy isotopomer, was observed. The evolution of the 23	

δ88/86Srfluid during strontianite precipitation can be modeled using a Rayleigh distillation 24	

approach and the estimated, kinetically driven, fractionation factor αSrCO3-fluid between solid 25	

and fluid is calculated to be 0.99985±0.00003 corresponding to Δ88/86SrSrCO3-fluid = -0.15‰. 26	

The obtained results further support that under chemical equilibrium conditions between solid 27	

and fluid a continuous exchange of isotopes occurs until the system approaches isotopic 28	

equilibrium. This isotopic exchange is not limited to the outer surface layer of the strontianite 29	

crystal, but extends to ~7-8 unit cells below the crystal surface. The behavior of Sr isotopes in 30	

this study is in excellent agreement with the concept of dynamic equilibrium and it suggests 31	

that the time needed for achievement of chemical equilibrium is generally shorter compared to 32	

that for isotopic equilibrium. Thus it is suggested that in natural Sr-bearing carbonates an 33	

isotopic change may still occur close to thermodynamic equilibrium, despite no observable 34	

change in aqueous elemental concentrations. As such, a secondary and ongoing change of Sr 35	

isotope signals in carbonate minerals caused by isotopic re-equilibration with fluids has to be 36	

considered in order to use Sr isotopes as environmental proxies in aquatic environments. 37	

  38	
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1. Introduction  39	

The ability to routinely measure the isotopic composition of a plethora of elements in 40	

geological material with very high precision marked a new era for geochemistry. Today, 41	

stable isotopes of major and trace elements are used to reconstruct paleo-environmental 42	

conditions (e.g., Rollion-Bard et al., 2011; Böhm et al., 2012; Shirokova et al., 2013; Geske et 43	

al., 2015; Vigier et al., 2015; Noireaux et al., 2015), to understand weathering processes (e.g., 44	

Mavromatis et al., 2014; 2016a; Pokrovsky et al., 2011; Beinlich et al., 2014), to study 45	

diagenetic alteration (e.g., Riechelmann et al., 2016; Rollion-Bard et al., 2016), and to trace 46	

anthropogenic activity (e.g., Dietzel et al., 2016; Heuser and Eisenhauer, 2010). The use of 47	

stable isotope compositions of secondary minerals, however, demands knowledge of whether 48	

mineral formation occurred close to or far from chemical equilibrium. This is because at low 49	

temperatures kinetic isotope fractionation effects that usually occur during precipitation at far 50	

from equilibrium conditions, can generate isotopic compositions of carbonate minerals that 51	

differ significantly from isotope equilibrium compositions (Tang et al., 2008a; Mavromatis et 52	

al., 2017a). In contrast at higher temperatures kinetic isotope effects occurring during mineral 53	

growth would be erased as chemical and isotopic equilibrium between solid and fluid is 54	

achieved rather fast (Pearce et al., 2012; Beinlich et al., 2014). 55	

To date it has been well established in a large number of experimental studies that mineral 56	

growth rate is one of the parameters that strongly affects isotopic fractionation (e.g., Skulan et 57	

al., 2002; Tang et al., 2008a; Eisenhauer et al., 2009, Immenhauser et al., 2010). When it 58	

comes to carbonate minerals, that are regularly used by the scientific community to track 59	

environmental conditions in the geological past, the number of experimental studies mapping 60	

kinetic isotope effects are a minority in the isotope literature (Li et al., 2012; Tang et al., 61	

2008a, 2012; Böhm et al., 2012; Immenhauser et al., 2010; Fruchter et al., 2016). Even 62	

smaller is the number of experimental works studying isotope fractionation under near to 63	

thermodynamic equilibrium conditions in carbonates at low temperature (Mavromatis et al., 64	
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2013; 2017a; 2017b; Li et al., 2011; 2014; 2015). On the other hand, the improved capability 65	

of computational calculations in recent years, has allowed for an increase in the number of 66	

studies that estimate isotopic fractionation at equilibrium based on theoretical calculations 67	

(Schauble, 2011; Rustad et al., 2010; Meheut et al., 2007; Pinilla et al., 2015; Schott et al., 68	

2016). Comparison of these modelling results with the outcome of experimental studies, 69	

however, suggests that a significant discrepancy between measurements and theoretical 70	

calculations persists. A good example is the Mg isotopic fractionation between magnesite and 71	

fluid (Pearce et al., 2012; Schauble, 2011; Rustad et al., 2010), Mg-calcite and fluid 72	

(Mavromatis et al., 2013; Pinilla et al., 2015), and brucite and fluid (Li et al., 2014; Schott et 73	

al., 2016). For example the measured Mg isotope fractionation between magnesite and 74	

reactive fluid at 200oC reported by Pearce et al. (2012) to be -0.88‰, whereas that predicted  75	

by ab-initio calculations varies between -0.50‰ (Rustad et al., 2010) and -1.75‰ (Schauble, 76	

2011).   77	

Knowledge of both the isotopic equilibrium and the effect of mineral growth kinetics 78	

on isotope fractionation factors is essential in order to use the stable isotope composition of 79	

secondary minerals for (paleo)environmental or forensic tasks. This holds true not only for the 80	

stable isotopes of the constituting elements of readily forming Ca- and Mg-bearing carbonate 81	

minerals in Earth’s surface environments, but also for the stable isotopes of divalent metal 82	

cations (Me2+) that are commonly incorporated into the Ca-bearing carbonates. Such elements 83	

form individual carbonate minerals (e.g., BaCO3, SrCO3, ZnCO3) under specific ambient 84	

environmental conditions but are also common constituents of solid-solutions with CaCO3 85	

minerals. The experimental investigation of the isotopic fractionation behavior between these 86	

minerals and an aqueous fluid (i) provides the basis for further development and/or validation 87	

of theoretical calculations, (ii) gives insights into the isotope behavior during the formation of 88	

solid-solutions, and (iii) sheds light on the mechanisms controlling isotopic fractionation 89	

during both formation of endmember Me2+ carbonate minerals and incorporation of the Me2+ 90	
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in carbonate mineral solid-solutions (e.g. the strontianite-aragonite solid-solution series; 91	

Plummer and Busenberg, 1987; Plummer et al., 1992).   92	

In the present study we examine the fractionation of stable Sr isotopes between 93	

strontianite [SrCO3] and reactive fluid. Strontium is an impurity in calcite and usually present 94	

in natural aragonites at high concentrations, owing to the isostructural crystallization of 95	

aragonite and strontianite and the formation of an ideal solid-solution at the aragonite 96	

endpoint (Speer, 1983). Stable strontium isotope fractionation has been investigated during 97	

calcite (Böhm et al., 2012; AlKhatib and Eisenhauer, 2017a) and aragonite growth (Fruchter 98	

et al., 2016; AlKhatib and Eisenhauer, 2017b) in laboratory studies. Herein we focus on the 99	

formation of pure SrCO3 following the previous works on MgCO3 (Pearce et al., 2012) and 100	

BaCO3 (Mavromatis et al., 2016b) in an effort to expand the existing knowledge on the 101	

behavior of stable isotope fractionation of divalent cations of their pure Me-carbonate mineral 102	

phase during dissolution, precipitation, and at equilibrium. In this study, the Sr isotopic 103	

evolution of the reactive solution during strontianite dissolution and precipitation was 104	

measured, with particular attention paid to the isotopic evolution following attainment of 105	

chemical equilibrium of the reactive fluid with respect to strontianite. The experimental 106	

results are discussed in the context of isotope (dis-) equilibrium phenomena, the potential 107	

secondary resetting of the Sr isotope signal in the Sr-endmember carbonate mineral 108	

strontianite, and the utility of Sr isotopes as an environmental proxy. 109	

 110	

2. Materials and Methods 111	

2.1 Experimental materials 112	

The methodology followed for strontianite synthesis is similar to that reported 113	

previously by Mavromatis et al. (2016b) for synthesis of witherite (BaCO3). Briefly, pure 114	

strontianite seeds were produced by mixing equimolar SrCl2 and Na2CO3 solutions prepared 115	

from analytical grade chemicals (Sigma-Aldrich) in deionized water, and placing the slurry 116	
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into a stirred titanium Parr reactor (series 4560). The reactor was sealed and the temperature 117	

and pCO2 adjusted to 200oC and 15 bars, respectively. The solids were recovered after 30 118	

days of reaction time, rinsed in deionized water, and dried at room temperature. The synthesis 119	

of seed crystals with this technique provides chemical and isotopic homogeneity in the 120	

precipitated carbonate, as is evident from the amount of Sr remaining in the aqueous phase, at 121	

< 0.1 % of the total mass of Sr introduced initially. This is further supported by the δ88/86Sr 122	

isotopic composition of the bulk strontianite (i.e., δ88/86Sr = 0.145±0.003), which is identical 123	

to that of the initial SrCl2 solution (i.e., δ88/86Sr = 0.154±0.013) within analytical error (Table 124	

1). Note here that Skulan et al. (2002) postulated achievement of equilibrium in Fe isotopes 125	

between hematite and fluid at 98oC after ~40 days of incubation time, suggesting that the 126	

method followed for the formation of strontianite likely results to an isotopic homogeneous 127	

solid. 128	

The synthesized strontianite consisted of 0.1-2.0 µm euhedral crystals (Fig. 1). The 129	

mineralogy of these crystals was confirmed by X-ray diffraction (XRD) analysis. The specific 130	

surface area of the synthetic strontianite powder determined by multi-point krypton 131	

adsorption BET method (Brunauer et al., 1938) using a Quantachrome Autosorb-1MP, was 132	

1.1±0.1 m2/g. 133	

 134	

2.2 Dissolution/Precipitation experiments 135	

The experimental set up for strontianite dissolution and precipitation makes use of the 136	

pH dependent solubility of carbonate minerals to induce dissolution and precipitation in 137	

separate steps within the same reactor, and is described in detail by Mavromatis et al. (2016b). 138	

The pH of the aqueous fluid was controlled by continuous bubbling of a water-saturated gas 139	

phase through the reactors throughout the experimental runs. The experimental set up can be 140	

seen in Fig. 2. At the onset of the experimental run, approximately 5 g of synthetic 141	

strontianite were placed in a 1.2 L Nalgene batch reactor containing ~1.1 L of a 10-2 M NaCl 142	
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aqueous solution (refer to Electronic Supplementary Material-ESM Table 1). Within this 143	

study, two identical experiments were performed in order to control the reproducibility of the 144	

reaction mechanisms and kinetics of the experimental runs. Reactors were equipped with a 145	

floating stir bar rotating at 300 rpm (Fig. 2). The experimental setup was placed in a room 146	

with a constant temperature of 25±1 oC. Strontianite dissolution during phase I of the 147	

experimental runs was initiated by bubbling pure CO2 (1 atm) through the reactor. This kept 148	

the pH of the fluid at a quasi-constant value of about six. A subsequent change of the 149	

bubbling gas phase from pure CO2 to atmospheric air marked the onset of phase II and 150	

resulted in the fluid becoming oversaturated with respect to strontianite due to CO2 degassing 151	

and an increase in pH. This initiated strontianite precipitation until a second chemical 152	

equilibrium was attained according to the reaction: 153	

Sr2+ + CO3
2- ⇋  SrCO3      (Kstrontianite: 10-9.27; Busenberg et al., 1984)   (1) 154	

This new chemical equilibrium was achieved at a pH value of approximately 8 (Fig. 2). In 155	

order to minimize evaporation, gases were bubbled through a 10-2 M NaCl solution prior to 156	

their introduction in the reaction vessel (Fig. 2). Fluid samples of known quantity were taken 157	

at regular time intervals throughout the experiment using a syringe. Stirring of the fluid was 158	

stopped shortly prior to sampling to allow the strontianite to settle. In this way solid removal 159	

was minimized and the solid-to-solution ratio was precisely monitored during the course of 160	

each experiment. This protocol provided precise knowledge of Sr mass distribution (i.e., 161	

between fluid phase, solid phase and retrieved sample). At the end of phase I and prior to 162	

change of the gas phase, a few grains of the strontianite present in the reactors were removed 163	

for isotopic analysis. The removal of this material did not significantly alter the mass of solid 164	

present in the reactor and is not considered in the calculations presented hereafter. 165	

Immediately after sampling, the fluid was filtered through a 0.2 µm cellulose acetate 166	

membrane syringe filter and a sub-sample was acidified for Sr concentration and isotopic 167	

measurements. Reactive fluid carbonate alkalinity was determined in a second sub-sample, 168	
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and fluid pH was measured in situ in the reactors. At the end of the experimental run, the 169	

entire reactive fluid was vacuum filtered through a 0.2 µm membrane (Sartorius, cellulose 170	

acetate). The solids were rinsed with MilliQ water and dried at room temperature. 171	

 172	

2.3 Solid and fluid phase characterization 173	

Strontium concentrations were measured by inductively-coupled plasma optical 174	

emission spectrometry (ICP-OES) using a Perkin Elmer Optima ICP-OES 4300. The 175	

statistical uncertainty is reported as two standard deviations (2σ) in the concentration range of 176	

0.01 – 0.17 x10-3 M corresponding to ±3%. The total alkalinity of the reactive fluids was 177	

determined by a Schott TitroLine alpha plus titrator with an uncertainty of ±2% and a 178	

detection limit of 5 x10-6 M. Fluid pH was measured with a Schott Blueline 28 combined 179	

electrode, calibrated with NIST standard buffers at pH of 4.01, 7.00 and 10.00, and with an 180	

uncertainty of ± 0.03 pH units. The calibration of the pH-meter took place shortly prior to 181	

each sample collection and pH measurements performed in-situ.  182	

X-ray diffraction analyses of synthetic strontianite was performed using a PANalytical 183	

X`Pert PRO diffractometer equipped with a Scientific X’Celerator detector and a Co-target 184	

tube operated at 40 kV and 40 mA. The 2θ angle range was set to 4 to 85° using a step size of 185	

0.008° 2θ and a count time of 40 s/step. Scanning Electron Microscopy (SEM) observations 186	

of solids were performed after gold-coating using a ZEISS DSM 982 Gemini microscope 187	

operating at 5 kV accelerating voltage.    188	

Aqueous speciation and the saturation state (Ωstrontianite = IAP/Ksp,strontianite) of the 189	

reacting fluids with respect to strontianite were calculated using the PHREEQC software 190	

together with its MINTEQ V4 database (Parkhurst and Appelo, 1999). 191	

 192	

2.4 Strontium isotope analyses  193	
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Stable strontium isotope (δ88/86Sr) measurements of liquid and selected solid samples 194	

were measured on a Finnigan Triton Thermal Ionization Mass Spectrometer (TIMS) at 195	

GEOMAR mass-spectrometer facilities in Kiel using the 87Sr/84Sr double spike method 196	

(Krabbenhöft et al., 2009). Each sample was separated into two aliquots. The double spike 197	

was added to one aliquot (spiked) and the other aliquot was left unspiked. Sr was separated 198	

from the matrix solution of each aliquot using the strontium-selective chromatographic resin 199	

Eichrom Sr-spec (50–100 mesh) that is loaded in a 650 ll BIO-RAD column tube. The 200	

recovery for Sr separation was better than 90%. In each batch of carbonate sample 201	

measurements, the JCp-1 standard was also prepared and analyzed repeatedly (δ88/86Sr = 0.20 202	

± 0.02‰, 2SD, n = 10) using the same protocol as used for the unknown samples. The IAPSO 203	

Seawater Standard (batch ID. P152) was measured in batches of seawater sample 204	

measurements (δ88/86Sr = 0.39 ± 0.02‰, 2SD, n = 4). No blank correction was needed since 205	

the total procedural Sr blanks were about 0.04 ng, which is insignificant compared to the 206	

amount of Sr in the measured samples (300–700 ng). Sr isotopic values are presented in the 207	

standard δ-notation relative to SRM987 as the standard (at value of 88Sr/86Sr = 8.375209). 208	

        (2) 209	

The δ88/86Sr is presented with an uncertainty of two standard deviations (2σ), as 210	

obtained from the external long-term reproducibility of measurements of the JCp-1 coral 211	

standard, all seawater samples (of approximately constant 88Sr/86Sr composition), and the 212	

IAPSO standard. The measurements of both JCp-1and seawater (including the IAPSO 213	

seawater standard), yielded an identical external reproducibility of 0.02‰ (2SD). 214	

 215	

3. Results 216	

3.1 Strontianite dissolution and precipitation 217	
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The measured concentrations of Sr and alkalinity in the reactive fluid during the 218	

experimental runs are reported in Table 1 and ESM Table 2 for both replicate experiments. In 219	

Fig. 3 the temporal evolution of Sr concentration is plotted together with the evolution of 220	

aqueous pH. The observed behavior during phase I of the experimental runs is consistent with 221	

the initial dissolution of strontianite and the achievement of chemical equilibrium between 222	

strontianite and fluid. The achievement of chemical equilibrium at the onset of phase I, when 223	

pure CO2 was bubbled through the reactors, occurred before the first sample was removed at 224	

1500 min. During these first 1500 min ~16% of the strontianite initially introduced in the 225	

reactor was dissolved. The achievement of equilibrium was confirmed by the quasi-constant 226	

aqueous Sr and alkalinity concentrations in duplicate experiments during phase I (Table 1). 227	

Conversely, at the beginning of phase II, precipitation was induced via bubbling of 228	

atmospheric air, which drove an increase in fluid pH and thus the saturation state with respect 229	

to strontianite (Table 1). Strontianite precipitation rapidly removed Sr from solution and 230	

reduced alkalinity (Fig. 3). A second chemical equilibrium between strontianite and fluid was 231	

then achieved within ~420 min (Table 1), as evidenced by near constant pH and Sr 232	

concentrations (Fig. 3).  233	

The temporal evolution of strontianite growth rate, rp, during its precipitation can be 234	

assessed by aqueous Sr mass balance in the system and is described by:   235	

1

,, 1

--

-
= -

ii

tSrtSr
p tt

nn
r ii / S         (3) 236	

where  are the moles of Sr in the fluid at time ti, and S refers to the total surface area of 237	

strontianite in m2, which was calculated based on the mass of strontianite present in the 238	

reactor and the BET surface area of the strontianite. Thus, rp is expressed in mol/m2/s. Rates 239	

were calculated between sampling points. The total surface area, S, was corrected for the 240	

amount of strontianite dissolved or precipitated during the experimental runs and assuming 241	

surface area increased proportionally to the mass change and BET measured surface area. 242	

itSrn ,
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Details on Sr mass balance in the reactor and evolution of the reactive surface can be found in 243	

Table ESM 1. The strontianite growth rate during its precipitation exhibits an initial increase 244	

of ~3 orders of magnitude in the range of 10-11 < rp < 10-8 mol/m2/s (Table 1) which is 245	

followed by a decrease after 13020 min elapsed time as chemical equilibrium is approached. 246	

  247	

3.2 Sr isotopic composition of fluids and solids 248	

 The measured δ88/86Srfluid values are given in Table 1 and illustrated in Fig. 4. The 249	

strontianite seed crystals (δ88/86Srseed = 0.145±0.003 ‰), the SrCl2 solution from which the 250	

seed crystals were synthesized (δ88/86SrSrCl2 = 0.154 ± 0.013 ‰) and the strontianite collected 251	

at the end of the experimental run (δ88/86SrSrCO3-end = 0.154 ± 0.002 ‰) have the same isotopic 252	

composition within analytical error. The radiogenic (87Sr/86Sr) isotope composition of all 253	

material used in this study exhibit the same composition as shown in Table 1. The stable 254	

isotope composition of strontianite that remained in the reactor during phase I and collected at 255	

12540 min of reaction time exhibits an enrichment in 88Sr (δ88/86Srstrontianite-phI = 0.167 ± 256	

0.004 ‰). The isotopic composition of the reactive fluid during phase I of the experiment was 257	

constant within analytical uncertainty, and exhibited a value of δ88/86Srfluid=0.194 ± 0.006 ‰ 258	

(n=5), indicative of isotopic steady state in the strontianite-fluid system. After the end of 259	

phase I, strontianite precipitation occurred between 12660 and 13400 min, causing a 260	

significant increase in δ88/86Srfluid from 0.194 ‰ to 0.622 ‰ (Fig. 4). This is attributed to the 261	

preferential incorporation of 86Sr in the precipitating strontianite, which effectively enriches 262	

the fluid in 88Sr. After the pH-jump, both the pH of the reactive fluid and the aqueous Sr 263	

concentration are quasi-constant at ~8.0 and 0.18 mM, respectively within ~420 min (see Fig. 264	

3). Yet, the δ88/86Srfluid value is progressively evolving towards lower values up to ~22500 min 265	

of reaction time (Fig. 4). This continuing δ88/86Srfluid change in the fluid phase indicates that 266	

there is ongoing isotopic exchange between the solid and the aqueous phase, despite the 267	

achievement of chemical equilibrium.  268	
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 269	

4. Discussion 270	

4.1 Sr isotope fractionation during strontianite dissolution and precipitation 271	

4.1.1 Strontianite dissolution 272	

The δ88/86Srfluid values during the chemical equilibrium achieved in phase I are ~0.05 273	

‰ higher compared to that of the strontianite seed material (Fig. 4). The observed difference 274	

between δ88/86Srfluid and δ88/86Srstrontianite can be attributed to achievement of isotopic 275	

equilibrium in the strontianite-fluid system during phase I of the experimental run. The first 276	

measurement of the fluid occurred after chemical equilibrium was already achieved; therefore 277	

detailed information regarding Sr fractionation during strontianite dissolution cannot be 278	

extracted from this dataset. The rather fast achievement of isotopic equilibrium following 279	

dissolution, however, is consistent with the behaviour of Ba isotopes in the witherite-fluid 280	

system at 25oC (Mavromatis et al., 2016b). This is also expected due to the fast exchange of 281	

water molecules between the Sr hydration sphere and the bulk fluid (i.e., 109 s-1; Lincoln and 282	

Merbach, 1995), a parameter that is suggested to control isotopic fractionation between 283	

mineral and fluid (Gussone et al. 2003, Pearce et al., 2012; Mavromatis et al., 2013). The 284	

preferential enrichment of the fluid phase in 88Sr versus the solid that was observed during 285	

phase I of the experimental run is consistent with the shorter Sr-O bond length observed in 286	

strontianite (2.61 Å; O’Day et al., 2000) compared to that in the aqueous phase (i.e. 2.60 Å; 287	

D’Angelo et al., 2016). The small but measureable stable Sr isotope fractionation observed 288	

between strontianite and reactive fluid that averages at -0.05 ‰ is comparable to that 289	

observed for Mg isotopes during magnesite dissolution and subsequent chemical equilibrium 290	

demonstrated by Pearce et al. (2012) in experiments performed at 120 and 150oC. In contrast, 291	

in the witherite-fluid system, investigated by Mavromatis et al. (2016b), no significant stable 292	

Ba isotope fractionation was observed during the achievement of chemical and isotopic 293	

equilibrium. In this latter case it was argued that the absence of measureable fractionation of 294	
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stable Ba isotopes between witherite and fluid at chemical equilibrium might stem from the 295	

small difference in the Ba-O bond length between witherite (i.e. 2.80 Å; Holl et al., 2000) and 296	

the aqueous Ba octahedron (i.e 2.79 Å; Persson et al., 1995). Indeed the Me-O bond lengths in 297	

strontianite and magnesite are longer compared to the respective aqueous Me2+ species, which 298	

may lead to observed greater degree of fractionation. 299	

 300	

4.1.2 Strontianite precipitation 301	

Strontianite precipitation occurred between 12500 and 13000 min of elapsed time 302	

when aqueous pH increased from ~6 to ~8 as seen in Fig. 3. This pH increase was driven by 303	

changing the supplied gas from pure CO2 to laboratory atmosphere (~0.05%), and resulted in 304	

an increase of the supersaturation of the reactive fluid with respect to strontianite (Ω ≈ 2.7; 305	

Table 1), and significant removal of Sr from the fluid phase to the solid. The invoked pH-306	

jump forced the system to attain a second chemical equilibrium (phase II). Unlike phase I, 307	

however, measurable changes in the δ88/86Srfluid were observed throughout phase II (Fig. 4). 308	

The fluid became significantly enriched in 88Sr (Fig. 4), indicating a preferential uptake of the 309	

lighter 86Sr into the precipitating strontianite. Owing to the closed system behavior of Sr in 310	

this experimental setup, the extent of stable Sr isotope fractionation during strontianite 311	

precipitation can be estimated using a Rayleigh-type equation (Criss, 1999) where the 312	

fractionation factor α between strontianite and reactive fluid is defined as: 313	

    (4) 314	

where δ88/86Srinit and δ88/86Srinst are the Sr isotope composition of the reactive fluid during 315	

phase I (average δ88/86Srfluid = 0.194±0.006‰; n=5) and throughout the precipitation period 316	

(i.e. ~12500 – 13000 min, 0.2 > δ88/86Srfluid > 0.62; Fig. 4), respectively. F is the molar 317	

fraction of Sr remaining in the reactive fluid. At F = 0.052 (see ESM Table 1) δ88/86Srinst is 318	

1
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0.62 ‰, representing the δ88/86Srfluid at the beginning of phase II and at the end of the pH-319	

jump. A fractionation factor αstrontianite-fluid at this point in the experiment is estimated to be 320	

0.99987, which corresponds to Δ88/86Srstrontianite-fluid ≈ -0.13 ‰. The mass of Sr removed via 321	

sampling compared to that in the reactive fluid is ~3 orders of magnitude lower (ESM Table 322	

1), and thus does not affect the results of Eq. 4. Note here that the estimated α value using Eq. 323	

(4) refers to strontianite precipitation between 12540 and 13380 min elapsed time. The 324	

Δ88/86Srstrontianite-fluid value, however, can also be estimated by fitting all the measured data for 325	

the aqueous fluid in phase I and during strontianite precipitation, as is illustrated in Fig. 5. 326	

Indeed the Rayleigh curve fitted in Fig. 5 provides an αstrontianite-fluid value of 0.99985 (or 327	

Δ88/86Srstrontianite-fluid ≈ -0.15‰). Likely this slight difference in calculated α values occurs due 328	

to statistical treatment of the data, as in the case of Eq. (4), only two measured values at 329	

12540 min and 13380 min were taken into account during the calculation, whereas for the 330	

Rayleigh-type fractionation fit all data points during phase I and during strontianite 331	

precipitation (t = 1500–13380 min; n = 10) were considered. The observed enrichment of 332	

strontianite in the lighter 86Sr isotopomer is overall in good agreement with the behavior of 333	

alkali earth metals during the precipitation of pure metal-carbonate phases (e.g., Böttcher et 334	

al., 2012; Pearce et al., 2012; Tang et al., 2008b; Eisenhauer et al., 2009, Mavromatis et al., 335	

2012a; 2016b; Shirokova et al., 2013; Li et al., 2015). Similar is the case for the incorporation 336	

of alkaline earths in CaCO3 minerals as traces or impurities (e.g., Li et al., 2012; Mavromatis 337	

et al., 2013; 2017a; 2017b; Böhm et al., 2012; Immenhauser et al., 2010; Fruchter et al., 2016) 338	

In contrast to divalent cation isotope fractionation at equilibrium that can be estimated 339	

by thermodynamic considerations of the solid structure and the aqueous species in the fluid 340	

phase (Schauble 2011; Rustad et al., 2010; Schott et al., 2016; Pinilla et al., 2015), isotopic 341	

fractionation during mineral growth at far from equilibrium conditions is neither well 342	

understood nor adequately modeled. There are two models designed to simulate isotopic 343	

fractionation during calcite growth; 1) the growth entrapment model (GEM), and 2) the 344	
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surface reaction kinetic model (SRKM). The growth entrapment model, developed by Watson 345	

and coworkers (Watson and Liang, 1995; Watson, 1996; 2004), suggests the presence of a 346	

chemically and isotopically distinct surface layer that is in contact with the reactive fluid and 347	

can be either enriched or depleted in an isotopomer or a trace element. The GEM assumes that 348	

this reactive layer at the calcite surface is approximately 0.5 nm thick. The GEM has 349	

previously been applied to simulate uptake of elements and/or their isotopes in a number of 350	

experimental studies (e.g., Mavromatis et al., 2013; 2015b; Noireaux et al., 2015; Gabitov et 351	

al., 2008; 2012; Tang et al., 2008a; 200b; 2012). Alternatively, DePaolo (2011) developed the 352	

surface reaction kinetic model (SRKM) using the principle of transition state theory (TST) to 353	

simulate elemental and isotopic fractionation during calcite growth. This model has been 354	

further extended recently (Nielsen et al., 2012, 2013; Watkins et al., 2013), and suggests a 355	

continuous change of the fractionation factor during mineral growth. This is not consistent 356	

with the mono-directional Rayleigh model used herein to estimate the fractionation factor 357	

during mineral growth, though it is worth noting that Druhan et al. (2013) suggested that a 358	

coupled ion-by-ion and reactive transport model is a better approach to a Rayleigh model in 359	

the studied groundwater system. Note also here that to date the SRKM model has been only 360	

applied to the formation of calcite in natural systems or in laboratory studies. The application 361	

of the SRKM model to elements that their masses is not limited only to two isotopomers as in 362	

the case of Ca (see Druhan et al., 2013) requires extension with respect to the system of 363	

equations that has to be solved. 364	

In addition to growth kinetics, there are other parameters that have been shown to 365	

control isotopic fractionation during mineral growth. These include ionic strength and 366	

temperature (Watson, 1996; 2004; Dietzel et al., 2004; Tang et al., 2012), crystal structure 367	

(Mavromatis et al., 2012b, Gussone et al., 2003), as well as aqueous complexation (AlKhatib 368	

and Eisenhauer, 2016; 2017a; 2017b, Schott et al., 2016; Fujii et al., 2013; 2014; Mavromatis 369	

et al., 2017a; 2017b). Aqueous complexation effects together with the dehydration of aqueous 370	
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Me2+ ions have been shown to control fractionation between Mg-bearing carbonates and 371	

reactive fluids (Schott et al., 2016). In fact, dehydration of aqueous Mg2+ has been suggested 372	

to control both rate of crystal growth (Saldi et al., 2009; Gautier et al., 2014; 2016) and Mg 373	

isotope fractionation for a variety of Mg-carbonate minerals (Pearce et al., 2012; Mavromatis 374	

et al., 2013; 2017a, b; Immenhauser et al., 2010). In the case of aqueous Sr, however, 375	

dehydration of the 9-coordinated aquo-ion, occurs rather fast (109 s-1) compared to Mg (105 s-376	

1; Lincoln and Merbach, 1995), thus dehydration may not be of great significance for isotope 377	

fractionation between aqueous Sr and strontianite. Thus the observed Sr isotope fractionation 378	

during strontianite precipitation can be attributed to growth kinetics in our experiments.   379	

 380	

4.2 Sr isotope fractionation during chemical equilibrium 381	

The pH increase induced by the change from pure to atmospheric CO2 bubbling 382	

promoted rapid precipitation of strontianite, the rate of which was effectively dependent on 383	

the rate of CO2 degassing. As such, the decrease in aqueous Sr concentration closely tracked 384	

the temporal evolution of pH, and near steady conditions with respect to both aqueous Sr 385	

concentration and pH occurred simultaneously after ~12500 minutes as soon as chemical 386	

equilibrium was achieved (Fig. 3). Yet, the δ88/86Srfluid during phase II continued to evolve 387	

well past the achievement of chemical equilibrium (Fig. 4). This suggests the continuous 388	

exchange of Sr between strontianite and the reactive fluid at chemical equilibrium that is 389	

marked by a preferential release of light 86Sr from the solid to the fluid phase. The continued 390	

evolution of the isotopic composition of the fluid after the attainment of chemical equilibrium 391	

has previously been observed for stable Ba isotopes in the witherite-fluid system (see 392	

Mavromatis et al., 2016b) and stable Mg isotopes in the magnesite-fluid system (Pearce et al. 393	

2012). These observations are consistent with the concept of dynamic thermodynamic 394	

chemical equilibrium. Under equilibrium conditions in a mineral-fluid system, both forward- 395	

(i.e., precipitation) and back- (i.e., mineral dissolution) reactions occur, but at equal rates. 396	
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Thus the net reaction rate is zero, which results in no measurable change in elemental fluid 397	

composition. The concept of thermodynamic chemical equilibrium has been widely used to 398	

describe fluid-mineral reactions under the formulation of the transition state theory (Lasaga, 399	

1981; Aagaard and Helgeson, 1982; Oelkers, 2001; Schott et al., 2009). In accordance with 400	

the witherite-fluid and the magnesite-fluid systems, the obtained results presented herein 401	

suggest that isotopic fractionation, in this case for Sr, is induced during mineral precipitation 402	

when the aqueous Sr is transferred to the precipitating strontianite. This results in the rapid 403	

enrichment of the fluid in 88Sr observed between ~12000 and 13800 min (Fig. 4) due to the 404	

preferential uptake of 86Sr into the precipitating strontianite. Near and at chemical equilibrium 405	

the rate of precipitation approaches or becomes equal to that of dissolution, which provokes 406	

the enrichment of the fluid with the lighter 86Sr due to re-equilibration. At the end of the 407	

experimental run, the δ88/86Srfluid does not approach that of phase I (i.e. 0.194 ‰) but is 408	

somewhat heavier, averaging at 0.400 ‰ (n=4) between 20100 and 25860 min of elapsed 409	

time (Fig. 4). 410	

 After the chemical equilibrium achieved in phase II, the δ88/86Srfluid values exhibit an 411	

exponential decline that can be expressed using a relaxation curve. Similar relaxation curves 412	

have been used previously in order to estimate fluid composition changes that have been 413	

induced by jumps in experimental conditions, such as temperature-jumps (Prabhananda et al., 414	

1987; Castaing et al., 1991), pressure-jumps (Dangles et al., 1994), and pH-jumps (Pines and 415	

Huppert, 1983; Benezeth et al., 2008). More recently we used a similar approach to explain 416	

the temporal evolution of Ba isotopes after witherite precipitation (see Mavromatis et al., 417	

2016b). Similar to this latter study, the temporal evolution of δ88/86Srfluid during phase II of the 418	

experimental run can be written as: 419	

         (5) 420	

where yo and A are constants and equal to 0.339 (±0.064) and 2.368 (±2.051) respectively, x is 421	

the reaction time (in minutes) from the onset of the experimental run and τ denotes the 422	

td /86/88 x
ofluid AeySr -+=
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relaxation time. For the experimental data shown here, τ takes the value 6233 (±3017). Note 423	

here that the use of Eq. 5 provides the means to quantify the observed isotope trend during 424	

phase II, it cannot however provide insights to the individual reaction mechanisms controlling 425	

isotope exchange. On the other hand, relaxation curves have been earlier used to define the 426	

order of reaction.  427	

 At the end of phase II, mass balance calculations suggest that the mass of strontianite 428	

remaining in the reactor was ~4.9 g, with a final measured specific area of 1.1 m2/g, similar to 429	

that of the seed material. Considering that there are 4 atoms of Sr in each unit cell of this 430	

mineral phase, the amount of Sr in the outer surface of the strontianite present in the reactor at 431	

the end of the experiment is equal to ~0.08 mmol. Note here that for this calculation a cubic 432	

unit cell was assumed with volume equal to that of the strontianite unit cell (i.e. 259 Å3) and 433	

an edge dimension of ~6.4 Å. This cubic unit cell has been used in all the calculations 434	

presented below. 435	

The observed deviation from the Rayleigh curve at high FSr-precipitated, illustrated in Fig. 436	

5, suggests a continuous exchange of Sr between the 86Sr enriched strontianite and the 88Sr 437	

enriched fluid. The amount of Sr released from strontianite to the fluid in order to produce its 438	

observed reduction in δ88/86Srfluid can be estimated by mass balance calculations. At the 439	

chemical equilibrium that describes the strontianite-fluid system during phase II, the mass 440	

balance can be written as: 441	

	 	 (6)	442	

where δ88/86Srfluid-final and δ88/86Srfluid are the final isotopic compositions of the fluid during 443	

phase II of the experiment (i.e., 0.40‰, n=4) and after the end of strontianite precipitation due 444	

to pH jump at t = 13,380 min (i.e., 0.62‰), respectively. The fraction of Sr in the aqueous 445	

phase that must be derived from exchange with strontianite after the end of precipitation is 446	

represented in Eq. (6) as fstrontianite. At the end of the experimental run, the analyzed strontianite 447	

solid had a δ88/86Srstrontianite of 0.154‰ (Table 1). From Eq. (6) it is calculated that to produce 448	

testrontianitestrontianitestrontianifluidfinalfluid fSrfSrSr ´+-´=-
86/8886/8886/88 )1( ddd
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the measured Sr stable isotopic composition of the fluid, ~47% of the Sr in the fluid phase at 449	

the end of the experiment must have been derived from strontianite, despite a lack of 450	

strontianite dissolution. During phase II chemical equilibrium, the average Sr in the fluid was 451	

0.15 mmol, indicating that 0.08 mmol or 0.2% of the total mass of Sr present in strontianite 452	

(i.e., 33.02 mmol) were exchanged with the fluid by the end of the experiment. The problem 453	

with this calculation, however, is the assumption that the bulk isotopic composition of the 454	

solid at the end of the experiment represents the isotopic composition of the freshly 455	

precipitated strontianite. Bulk δ88/86Srstrontianite is consistent with the large amount of aqueous 456	

Sr removed from the reactive fluid as SrCO3 (see Fig. 5), which simply denotes that the bulk 457	

composition of the solid at the end of the pH jump should be similar to that of the initial fluid. 458	

On the other hand, the temporal evolution of the δ88/86Srfluid during precipitation (Fig. 4) 459	

suggests an isotopic zoning of the precipitated solid with a relative enrichment of 86Sr in the 460	

early precipitating layers and a progressive depletion towards the surface of the crystals. The 461	

evolution of the δ88/86Srstrontianite as a function of Sr precipitated as strontianite that is illustrated 462	

in Fig. 5 suggests that at the time the δ88/86Srfluid takes its maximum value of 0.62 ‰, which 463	

would equate to an instantaneous value of δ88/86Srstrontianite,inst for strontianite of 0.48‰. The 464	

decline of the δ88/86Srfluid far below this value during phase II suggests that the observed 465	

isotopic exchange cannot be limited to a single surface layer, but is rather extended below it. 466	

The isotopic gradient in the solid invoked by the Rayleigh distillation process makes the 467	

estimation of the Srsolid involved in the exchange not a straight forward process. As a first 468	

approach we assume that at isotopic equilibrium during phase II the fractionation factor 469	

between strontianite and fluid should be similar to that measured for phase I, i.e. Δ88/86Srsolid-470	

fluid = -0.05‰. Thus the isotopic composition of the solid should be ~0.35‰ considering that 471	

the measured δ88/86Srfluid is 0.40‰ (Fig. 4), and assuming that this latter value represents 472	

isotopic equilibrium. As calculated from the evolution of the δ88/86Srstrontianite,inst value (Fig. 5), 473	

the amount of Sr precipitated as strontianite is 0.55 mmol. This number is ~8 times larger than 474	
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all Sr present in the external strontianite surfaces in the reactor which is calculated to be ~0.08 475	

mmol, based on a cubic unit cell as described previously. In other words, this simplified 476	

calculation suggests that 7-8 unit cells (or ~4 nm) below the freshly precipitated strontianite 477	

surface must participate in isotopic exchange to produce the observed evolution of fluid 478	

chemistry. Note here however that this calculation assumes that all the surface sites are active, 479	

thus corresponds to the maximum moles of Sr that actually exchange with the fluid phase. As 480	

mentioned previously, these calculations include some analytical uncertainties, mainly due to 481	

the isotopic zoning in the freshly precipitated strontianite, but they nevertheless confirm that 482	

isotope exchange associated with sorption/desorption processes on the outer surface layer 483	

alone cannot explain the observed temporal evolution of the reactive fluid during phase II. 484	

Rather, it is suggested that a significant proportion (0.2 %) of the solid mass is participating in 485	

the observed isotopic exchange that takes place in phase II of the experiment.  486	

 The participation of such a large mass of the strontianite crystal suggests a mechanism 487	

of exchange with the crystal interior, rather than just the surface. The implication is that Sr is 488	

transported within the freshly precipitated crystal, either as an aqueous species within the pore 489	

space of the crystal or in the solid state, or that the outer 4  nm of the sample is dissolved and 490	

re-precipitated in place (e.g., Putnis and Mezger, 2004; Putnis, 2015). Solid-state diffusion of 491	

cations (Cd2+, Ca2+) has been documented to occur in calcite at 25°C at a rate on the order of 492	

nanometers in weeks (Stipp et al., 1992; Lahav and Bolt, 1964). Lahav and Bolt (1964) 493	

estimate a diffusion coefficient of 8 × 10-24 m2/s of Ca2+ in calcite at 25°C. If the same 494	

diffusion coefficient is assumed for Sr2+ transport in strontianite and we apply the simplified 495	

diffusion equation of Stipp et al. (1992; Equation 7), which neglects particle shape, a 496	

diffusion distance of 2 nm within 8520 min is calculated (i.e., the time span over which 497	

δ88/86Sr is observed to stabilize during phase II) as:  498	

𝑡 = 𝑑%
𝐷          (7) 499	
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where t is time, d is distance, and D is the diffusion coefficient. On the other hand, if the 500	

diffusion coefficient determined by Cherniak (1997) for Sr2+ in calcite between 440 and 501	

800°C is extrapolated to 25°C using the activation energy (1.57 × 10-36 m2/s), a diffusion 502	

distance of only 9 × 10-7 nm is calculated. The disagreement with the Cherniak (1997) 503	

diffusion coefficient may be due to error in extrapolation from high to low temperature (e.g., 504	

Gorski and Fantle, 2017). Although it is unknown whether Sr2+ in strontianite exhibits a 505	

similar rate of diffusion as Ca2+ in calcite, the better agreement between the diffusion distance 506	

calculated with the Lahav and Bolt (1964) diffusion coefficient and our experimentally 507	

calculated 4 nm thickness of isotopic alteration is permissive of a solid-state diffusion process 508	

as an explanation for the observed isotopic exchange. It should be noted that the Lahav and 509	

Bolt (1964) diffusion coefficient was determined in heterogeneous aqueous-solid systems at 510	

low temperature, suggesting it may combine aqueous and solid-state diffusion or 511	

dissolution/re-precipitation, compared to the Cherniak (1997) diffusion coefficient, which was 512	

measured under anhydrous conditions. As such, the Lahav and Bolt (1964) diffusion 513	

coefficient may better represent the conditions of our experiments.  514	

With diffusion occurring at this relatively fast rate, it would nevertheless take ~3960 515	

years to entirely re-equilibrate the strontianite crystals (i.e., for the diffusion front to reach the 516	

center of a 2 µm crystal). For a different element it has earlier been suggested that the 517	

diffusion of carbon in calcite at temperatures between 250-550°C exhibits a depth-518	

dependence, with a higher diffusion coefficient in the outer-most layers due to a higher 519	

density of dislocation pipes and defects (Anderson, 1969). In the case of the experiments 520	

conducted in this study, mass balance calculations suggest that about 600 unit cells (or 14 % 521	

of the Sr initially dissolved from the seed) re-precipitated on the surface of the crystals during 522	

the pH-jump. Diffusion in these outer-most layers therefore may not reflect rates of diffusion 523	

in the bulk crystal. The relatively rapid exchange observed in the upper 4 nm of the 524	

strontianite crystals could be followed by a slower re-equilibration of the bulk of the crystal, 525	
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therefore longer timescales than calculated might be required to reset the isotopic composition 526	

of the bulk crystal. Longer-term experiments are required to assess the diffusion coefficient 527	

and how it may change over time. Interestingly, a relatively slow rate of diffusion of Sr within 528	

the bulk crystal structure implies that the isotopic composition of the fluid will be dictated 529	

largely by the isotopic composition of the surface layers of the solid, which may lead to an 530	

apparent disequilibrium between the bulk solid composition and the fluid, as postulated by 531	

Druhan et al (2015). Given the available data, however, it is not possible to clearly distinguish 532	

the individual mechanisms of isotopic exchange, as aqueous diffusion and dissolution/re-533	

precipitation cannot be excluded.  534	

 535	

4.3 Implications for Sr isotope signatures of natural carbonate minerals 536	

 537	

The obtained results suggest that in the strontianite-fluid system, isotopic exchange 538	

between solid and aqueous fluid proceeds at chemical equilibrium. Similar behavior has been 539	

previously observed for Ba isotopes in the witherite-fluid system by Mavromatis et al. 540	

(2016b) and for Mg isotopes in the magnesite-fluid system at 150 and 200oC (Pearce et al., 541	

2012). Details on the mechanisms related to the observed isotopic exchange cannot be 542	

extracted mainly because the above calculations are essentially based on isotopic composition 543	

of the reactive fluid. It can however be inferred that the temporal evolution of the δ88/86Srfluid is 544	

not a result of solely a surface process such as adsorption/desorption phenomena that have 545	

been earlier observed in some metal oxides and hydroxides (e.g. Barling and Anbar, 2004; 546	

Wasylenki et al., 2015). Note here that the δ88/86Srfluid achieves a value of 0.4‰ at the end of 547	

phase II and does not evolve to lower values, although the bulk solid isotopic composition is 548	

~0.15‰, suggesting that a highly porous structure in the freshly precipitated solid cannot 549	

explain the isotopic shift of the δ88/86Srfluid value. Similar to the witherite-fluid system 550	

(Mavromatis et al., 2016b), the results of this study are likely explained by ion mobility below 551	
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the crystal surface, as has been measured by Stipp and co-workers for a number of anions and 552	

cations (Cd2+,Zn2+, Na+, K+ and Cl-) near the calcite surface	(Stipp et al., 1992; 1996; 1998). 553	

In these studies, ion exchange was assumed to extend up to 10 atomic layers below the crystal 554	

surface, which is in accordance with the ~7-8 unit cells that we estimated in this study for 555	

strontianite. However, the mechanism by which the ions are transported remains unclear.  556	

 Isotopic re-equilibration is well known to occur at high temperatures. It has been 557	

documented experimentally for Mg isotopes in magnesite (Pearce et al., 2012), and in 558	

biogenic Mg-calcite (Riechelmann et al., 2016). At low temperature, isotopic exchange has 559	

been observed in highly reactive hydrous Mg-carbonate minerals (Mavromatis et al., 2012a; 560	

2015a; Shirokova et al. 2013), hydrous Mg-sulphates (Li et al., 2012), calcite (Avrahamov et 561	

al., 2013; Mozeto et al., 1984), and redox active Fe-bearing minerals such as goethite, and 562	

(Handler et al., 2009). The most important outcome of the present study, however, is the 563	

observed continued exchange of Sr that alters the isotopic composition of the strontianite over 564	

time. This has also been observed for witherite, and has major implications for the 565	

interpretation of growth conditions of carbonates in natural archives, and the use of these 566	

archives as paleoproxies. Considering that natural carbonate archives tend to stay in contact 567	

with a fluid that differs in composition from the growth fluid from which they precipitated 568	

their isotopic signals may be significantly reset over time. This general behavior is of great 569	

interest for all carbonates phases, in particular for calcite and aragonite that are the most 570	

abundant carbonate minerals, biogenic or abiogenic, in Earth’s surface environments. 571	

Accordingly, Fantle and DePaolo (2007) studied Ca isotopes in calcite recovered from an 572	

IODP core, where Ca isotope re-equilibration between solid and fluid was postulated. Further 573	

experimental work is necessitated in order to unravel the mechanisms and the extent of Me2+ 574	

isotopic re-equilibration in carbonate minerals at temperatures encountered near the Earth’s 575	

surface for both constituting elements and traces/impurities. The potential secondary resetting 576	

of Sr isotope signals in the Sr-endmember carbonate mineral, strontianite, hints on limitations 577	
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for the straightforward use of stable Sr isotopes in carbonate minerals as environmental or 578	

forensic proxies. On the other hand, the improved understanding of such a highly dynamic Sr 579	

isotope exchange behavior between solid and fluid at chemical equilibrium conditions may 580	

open up new proxy approaches for estimating time-resolved re-setting periods and/or 581	

explanations for zoning structures of carbonate minerals. 582	

 583	

5. Conclusions 584	

 585	

In this study we examined the behavior of stable Sr isotopes during the interaction of 586	

strontianite with an aqueous phase. The obtained results suggest that under isotopic 587	

equilibrium conditions the Sr isotope fractionation between strontianite and aqueous fluid is 588	

rather small but measurable and close to -0.05 ‰. This finding is in agreement with the 589	

relatively smaller Sr-O bond length in the aqueous Sr ion compared to that in strontianite. In 590	

contrast, during strontianite precipitation a preferential uptake of the 86Sr isotopomer in the 591	

solid phase is observed, which is kinetically driven and is in overall agreement with the 592	

behaviour of alkali earth metals during their incorporation in carbonate minerals. 593	

The obtained results further suggest that at chemical equilibrium conditions, a 594	

continuous exchange of Sr isotopes between solid and fluid takes place and affects at least 7-8 595	

unit cells below the mineral surface. This observation is consistent with that observed 596	

previously for Ba isotopes in the witherite-fluid system and Mg isotopes in the magnesite-597	

fluid system, with isotopic exchange extending up to ~10 unit cells below the crystal surface. 598	

If such a process takes place in natural aqueous settings, it likely has major implications for 599	

the secondary change of isotopic signatures of natural carbonate minerals, in particular 600	

considering that the time scales for a solid-fluid contact are significantly larger compared to 601	

the present experimental approach. 602	

 603	
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Table 1: Strontium concentration, Sr isotope composition, pH and saturation degree with 893	
respect to strontianite in fluid samples and stable Sr isotope composition of solids and 894	
reference materials analyzed in this study for experiment 1. rp: growth rate of strontianite 895	
calculated according to equation (3). The sample SrCl2 – synthesis refers to composition of 896	
the fluid used for the synthesis of strontianite. 897	
 898	

Elapsed Time 
(min) 

Sr 
(mM) 

pH Ωstrontianite Alkalinity 
(mM) 

Rp (mol/m2/s) δ88/86Sr 
(‰) 

2sd 87/86Sr 

0  6.00	 	   	 	 	
1500	 5.08	 5.90	 1.16	 7.51	 	 0.191	 0.005	 0.708541	
2880	 5.08	 5.88	 1.12	 7.59	 	 	 	 	
4260	 4.86	 5.94	 1.20	 7.33	 	 0.200	 0.003	 0.708548	
5820	 4.96	 5.92	 1.20	 7.54	 	 	 	 	
7140	 4.89	 5.91	 1.12	 7.32	 	 0.193	 0.008	 0.708537	
8700	 4.87	 5.91	 1.15	 7.53	 	 0.198	 0.004	 0.708546	
10080	 4.72	 5.96	 1.24	 7.47	 	 	 	 	
11580	 4.87	 5.94	 1.23	 7.54	 	 	 	 	
12540	 4.76	 5.93	 1.18	 7.58	 	 0.187	 0.011	 0.708538	
12660	 4.29	 6.15	 1.55	 6.43	 1.5E-09	 0.167	 0.004	 0.708544	
12780	 3.27	 6.35	 1.41	 4.57	 3.0E-09	 0.202	 0.005	 0.708543	
12840	 2.27	 6.81	 2.07	 3.17	 5.5E-09	 0.227	 0.002	 0.708540	
12930	 0.76	 7.50	 2.71	 2.41	 5.1E-09	 0.298	 0.010	 0.708540	
13020	 0.47	 7.64	 2.22	 2.28	 9.5E-10	 0.508	 0.003	 0.708540	
13380	 0.27	 7.84	 1.83	 2.08	 1.7E-10	 0.590	 0.004	 0.708540	
14340	 0.21	 7.96	 1.59	 1.71	 1.8E-11	 0.622	 0.003	 0.708547	
15960	 0.17	 8.00	 1.13	 1.36	 7.7E-12	 0.597	 0.004	 0.708541	
17280	 0.17	 8.05	 1.16	 1.21	 7.8E-14	 0.527	 0.002	 0.708744	
18720	 0.18	 7.93	 0.93	 1.22	 	 0.538	 0.007	 0.708539	
20100	 0.23	 7.91	 1.07	 1.16	 	 0.475	 0.009	 0.708704	
21540	 0.22	 7.89	 1.05	 1.26	 	 0.428	 0.008	 0.708534	
24420	 0.19	 7.98	 1.04	 1.15	 	 0.369	 0.003	 0.708545	
25860	 0.14	 8.10	 1.02	 1.14	 	 0.387	 0.006	 0.708699	

	         
Strontianite	seed	      0.145	 0.003	 0.708542	
Strontianite	after	

dissolution	
     0.167	 0.004	 0.708542	

Strontianite	final	      0.154	 0.002	 0.708542	
	      	 	 	

SrCl2	-	synthesis	      0.154	 0.013	 0.708543	
 899	

	 	900	
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Figure	1	901	

	902	

Figure 1: Scanning electron microscopy images of strontianite seeds (A) and strontianite 903	
collected at the end of the experimental run (B). No significant changes in the shape and 904	
surface texture of strontianite occurred during the course of the experiment. 905	
  906	
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Figure 2 907	
 908	

 909	
 910	
Figure 2: Experimental setup (modified after Mavromatis et al., 2016) 911	
  912	
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Figure 3 913	
 914	

 915	
Fig. 3: Temporal evolution of Sr concentration (closed symbols) and pH (open symbols) in 916	
the two replicate experimental runs. The dashed gray line indicates the transition in bubbling 917	
from CO2 to atmospheric air. Analytical uncertainty is smaller than symbol size.  918	

 919	

  920	
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Figure 4 921	

 922	

 923	
 924	
Figure 4: Temporal evolution of δ88/86Sr values of Sr ions in the reactive fluid. The white 925	
points represent the δ88/86Sr value of the strontianite in the reactor. Analytical uncertainty is 926	
included in the symbol size. 927	
  928	
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Figure 5 929	
 930	

 931	
 932	
Figure 5: δ88/86Srfluid values (■) plotted as a function of the molar fraction of Sr precipitated as 933	
strontianite. (□): δ88/86SrSrCO3 values of the solid phase. The dashed lines indicate the 934	
theoretical evolution of the isotopic composition of the cumulated solid phase, whereas the 935	
dotted line indicates the instant isotopic composition of the precipitating solid. The 936	
fractionation factor used for both models, Rayleigh and closed system, is α = 0.99985.  937	
 938	


