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Abstract  

The cost and carbon efficiency of building 
structures could be enhanced by the current 
developments in design automation and optimisation 
techniques. New ways to systematically assess design 
alternatives based on cost and carbon parameters 
are necessary. The study proposes a multilevel 
optimisation approach that combines Building 
Information Modelling (BIM) data and Finite 
Element Modelling (FEM) with a constrained genetic 
algorithm. The optimisation methodology is tested in 
a prototypical building floor system. Structural grid 
configurations, floor thicknesses and columns sizes 
and reinforcement details are identified. The results 
showed that the cost optimum design is 3% cheaper 
than the carbon optimum design but it has 7% more 
carbon. In addition, the concrete in the floor is the 
biggest contributor in both total cost and carbon. 
Relationships between cost- and carbon- optimum 
designs for the tested structural configuration are 
also discussed. 
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1 Introduction 
In reinforced concrete (RC) structures, cost 

optimisation has traditionally attracted attention 
amongst researchers and practitioners due to the 
increasing demands on the cost efficiency of buildings’ 
design and construction [1]. Cost optimisation studies 
have analysed common structural systems including 
beams, columns, frames and floors. An exhaustive 
survey of cost optimisation methods in various RC 
structures can be found in Sarma & Adeli [2].  

In flat slab systems, which are one of the most 
popular solutions in commercial RC buildings in the UK, 
only a few previous studies were found. Sahab et al. [3] 

applied genetic algorithms using the Equivalent Frame 
Method (EFM) to optimise the floors in one-storey, 
three-storey and four-storey buildings. In their study, 
column layout optimisation could significantly reduce 
the total cost of the structure. However, the algorithm 
was based on EFM method, which could limit the 
applications in more complex building scenarios. 

Only recently, Aldwaik & Adeli [4] have proposed a 
Finite Element Model (FEM) cost optimisation method 
for flat slabs using neural dynamics. They have reported 
cost savings of approximately 7-9% when compared the 
original design configurations for a floor scenario in a 
real-life high-rise building. Despite the interesting 
results, their study did not include any layout 
optimisation which could potentially offer larger 
savings. Environmentally-based optimisation studies in 
RC structures are far less developed than the cost-based 
ones. Nevertheless, it is becoming more challenging to 
make cost-effective decisions without evaluating the 
relationships between the economic and the 
environmental parameters together [5]. 

Generally, the implementation of environmentally-
based optimisation in structural engineering could be 
restricted by the: 1) Type of the objective functions not 
being universally agreed, 2) Constructability constraints 
not adequately addressed or included in the optimisation 
model [5]. A few optimisation studies that inlclude both 
cost and carbon parameters involve concrete beams 
[6][11], frames [7][8] and columns [9][10]. To our best 
knowledge there is no flat slab study with these two 
objectives.  

The use of Building Information Modelling (BIM) 
has the potential to improve the way environmental and 
cost models are integrated within building system 
analysis [14, 15]. The current study extends Aldwaik & 
Adeli’s [4] FEM-based model and explores how BIM 
technologies could also be combined with Finite 
Element Models (FEM) to develop cost and carbon 
optimisation models that can also be implemented in 
real-life building structures. The aim of the study is to 
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introduce a computational model that systematically 
tackles cost and carbon optimisation problems in RC 
flat slab buildings. The objectives of the study are 
threefold: 

1. To establish a multilevel approach for the 
optimisation of flat slabs based on cost and carbon 
functions, 

2. To utilise data inputs from Building Information 
Model (BIM) and a Finite Element Model (FEM) 
engine, and 

3. To validate the proposed optimisation 
methodology in a prototypical case study scenario 
and analyse the findings. 

2 Methodology 
Figure 1 shows the flow diagram of the 

methodology used in this study. The optimisation 
process begins by obtaining floor information from BIM 
components including node coordinates and total floor 
area. BIM data are then used as the input to create the 
geometric constraints of the structural floor in the FEM 
component. The structural analysis of the proposed 
optimisation methodology is performed in three main 
levels: 

1. Structural grid layout – number and size of bays 
2. Structural design elements – floor and columns 

dimensions 
3. Structural detailing – floor and columns 

reinforcement 

The reason for this distinction is to identify the 
parameters that have the biggest contribution in the 
structure’s embodied carbon and construction cost. The 
optimisation engine is a custom constrained genetic 
algorithm with penalisation factoring. The formulation 
of the objective functions is based on construction cost 
and embodied carbon inventories which were collected 
from literature sources. Two separate single-objective 
modes of the algorithm were built with: 1) A cost 
objective function, and 2) A carbon objective function.  

The multiobjective functionality of the model is also 
under development but it is not covered in this study. 
The optimisation component utilises FEM to run and 
perform the structural verifications based on Eurocode 2 
requirements. The genetic algorithm searches in the 
design space for the solutions that minimise the 
objective functions whilst satisfying the structural 
code’s requirements and constructability constraints. 
Once the genetic algorithm operator is minimised the 
optimisation process ends and the optimised flat slab 
configurations are obtained. In the subsequent sections 
the main components of the methodology are presented. 

 
Figure 1. Flow diagram showing the proposed 
methodology with its main functions  

2.1 BIM Component 
Obtaining high level of BIM integration in structural 

analysis is still considered a significant challenge	 in the 
current design practice. In this study, BIM 
functionalities are incorporated in the optimisation 
model. In particular, data required for the optimisation 
in FEM are directly obtained from the BIM geometry. 
The topology of the flat slab construction is mapped in 
BIM and transferred into the optimisation module where 
all coordinates, dimensions and material properties are 
recognised and translated into structural panels. To 
enhance the interoperability of the BIM model with the 
FEM engine in this study, Autodesk Revit 2016 is used 
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as the BIM model and Autodesk Robot 2016 as the FEM 
analysis engine. More information on BIM applications 
can be found in previous literature review where it was 
suggested that more than 70% of recent studies use 
Autodesk Revit for BIM-based life cycle and 
sustainability analysis of building systems [15].  

This type of FEM offers parametric modelling 
features, which are necessary when conducting multiple 
iterations for the verification of the genetic algorithm. 
Robot Application Programming Interface (API) gives 
access to the functionalities of the Robot programme 
and to individual components of the modelled structure 
from the programming language level. In this research, 
C# was used to access the .NET framework of Robot 
API and to design the optimisation based on its 
Windows Form Application. The programmable COM 
interface and the API of Robot automate repetitive tasks 
in Robot such as multiple case scenarios.  

2.2 Genetic Algorithm 
A tailored genetic algorithm was developed in C# to 

optimise the structure. The genetic algorithm’s 
conceptual construct, developed by Holland [12] in the 
1960’s and 1970’s mimics the evolutionary processes in 
nature by population, reproduction and heredity with the 
inherent ability for the designer to alter several 
parameters within the method such as population size, 
crossover technique and mutation rate. Figure 2 gives a 
schematic representation of the single-objective GA 
process implemented in this study. 

 
Figure 2. Schematic of single objective genetic 
algorithm (adapted from: [13]) 

Two different objective functions are utilised in the 
genetic algorithm to minimise the construction costs and 
embodied carbon of the whole structure.  

2.2.1 Cost Function 

The fitness function used in the calculation of the 
structural cost is modified to include the construction 
costs of the floor and columns. Equation (1) shows the 
general representation of the cost function used in the 
study. 
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where qi represents quantities (material weights) 
obtained from the FEM structural analysis and ci 
represents the cost factors for the different material 
types (concrete, steel reinforcement and formworks). 
The sum of the different structural members costs 
(columns and floor) is the total cost of the structure. 
Material and labour cost data are collected from Spon’s 
Architects’ and Builders’ Price Book 2017. As the cost 
factors have different units appropriate conversion 
factors were used. The output from the cost function is a 
total £ cost. The final result is weighted in £/m2 of floor 
area. 

2.2.2 Carbon Function 

The fitness function that calculates the embodied 
carbon of the structural elements in the genetic 
algorithm is shown in Equation (2).  
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where qi is the quantities (material weights) obtained 
from the FEM structural analysis and ei is the carbon 
factors for concrete, reinforcement. It follows a similar 
procedure with the cost function but the cost factors are 
substituted with the relevant carbon factors for the 
different material types. The carbon factors are based on 
Environmental Product Declaration (EPD) data. For the 
concrete carbon factor 130 kgCO2e/t was assumed and 
1270 kgCO2e/t was considered for the steel carbon 
factor. The final carbon results were converted in 
kgCO2e/m2 based on the total floor area. 

2.3 Optimisation Levels 
The optimisation of the structure is organised around 

three main levels: 1) Structural layout, 2) Sizes of 
columns and slabs, and 3) Reinforcement layout for 
columns and slabs. The components on these three 
levels are interconnected and therefore, understanding 
how these relationships affect the the cost and carbon 
performance of the structure becomes critical.  

Several computational modules have been 
established to ensure the seamless integration of these 
levels with the optimisation algorithm. The sections 
below elaborate on the integration process.  



34th International Symposium on Automation and Robotics in Construction (ISARC 2017) 
 

2.3.1 Grid Layout 

In this level the algorithm looks for the structural 
grid topology that minimises the objective functions. A 
computational module was created to enable the 
automatic generation of structural grids – i.e. columns 
location. The floor outline is obtained from the BIM 
model, and it is used to determine the boundaries of the 
slab. The algorithm reads the relevant boundary lengths 
and uses them to calculate all the possible structural bay 
combinations on X- and Y- directions. The algorithm 
uses a polynomial time approximate component and 
permutation with repetition to find all the appropriate 
bay combinations. The user assigns possible span 
lengths, which can be any integer, double or float 
number. In this research, a defined set of span lengths 
was used to resemble realistic conditions: The algorithm 
uses 0.5m length increments. 

2.3.2 Column and Slab Sizing  

The optimum sizing of the slab is determined by 
varying the slab depth within a discrete set of 
dimensions. This set includes constructability 
constraints. For example, for the slab thickness, the 
allowable limits have been constrained to practical 
increments of 25mm. The data are encoded into input 
arrays, and the algorithm uses a random operator to 
select an element from the list during each iteration. 
Discrete variables are used for the dimension 
optimisation of the RC columns. For this operation, 
50mm increments are implemented. 

2.3.3 Detailing  

Detailing parameters include all the reinforcement 
elements in the slab and the columns. The slab 
reinforcement (both X & Y directions) consists of a 
basic mesh that is applied everywhere with additional 
top and bottom reinforcement bars only applied on the 
zones that are needed. For the columns, bending 
reinforcement is considered. All the designs are 
compliant with the Eurocode’s requirements. This set of 
analysis consists of several algorithmic components. 

For the slab, the algorithm reads the required 
reinforcement data (Figure 3) from all the mesh points 
in the FEM model and it calculates the minimum and 
the maximum values. The minimum values are used for 
the estimation of the basic mesh and the maximum 
values are used for the calculation of the additional 
reinforcement where necessary. The bar diameters are 
limited to the most common diameters engineers use in 
practice (ø10, ø12, ø16, ø20, ø25, ø32). Their spacing 
also follows the common increments of 175mm, 200mm, 
225mm and 250mm.  

The total quantities (in tonnes) of basic 
reinforcement is then calculated by multiplying the 
reinforcement rate with the area of the slab. The 

differences between the assigned basic reinforcement 
and the maximum mesh/node values of the required 
reinforcement are used to estimate the area of the 
additional bars. Each component of the mesh carries a 
digital identity which is used in this component in order 
to identify the zones in need of additional reinforcement. 

 
Figure 3. Required reinforcement mapping on 
the flat slab  

A separate algorithmic component is implemented 
for the calculation of the bending reinforcement in the 
columns. This component uses forces (reaction loads), 
geometric (column cross section, storey height) and 
material data from the structural FEM model. Structural 
checks are conducted and the approved reinforcement is 
obtained from the calculation spreadsheet. The material 
quantities for the columns are used to update the 
objective function of the optimisation. 

3 Prototype Building 

3.1 Geometric Conditions 
The optimisation methodology described in the 

previous sections is tested on a prototype building 
scenario. Figure 4 shows the simplified plan of the floor 
for the tested building scenario as displayed in BIM. 
The floor consists of a 15x16m rectangle area with a 
centralised core structure for lateral stability. For the 
purposes of this study, the core structure (4x5m) is a 
fixed component assuming a RC 200mm-thick wall.  

The functional units for the objective functions are 
the slab and the columns. The dimensions of the floor 
are also fixed which means that the columns’ topology 
will be fitted within the boundary of the floor. It is 
envisaged that this type of geometry can be 
implemented in real-life high-rise buildings. In regards 
to the materials properties, C32/40 is used for the 
concrete (2400 kg/m3) and S500 for the steel bars (7850 
kg/m3). For the loads, it is assumed 2.5kN/m2 was 
assumed for superimposed load, 7.5 kN/m2 for live load 
and the dead load of the structure.  
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Figure 4. Plan of the floor boundary conditions  

3.2 Algorithmic Input 
Table 1 shows the input variables that are used in 

this building scenario. The algorithm uses the values 
from that list to find the combinations of genes that 
minimise either the cost or the carbon functions. A 
population of 100 individuals is used in the algorithm 
whilst the maximum generations were limited to 350 
generations.  

Table 1. Gene components for the genetic algorithm 

Gene Type Number 
of Options 

Designs 

1 Slab 
Thickness 

5 {225, 250, 275, 300, 
325} mm 

2 Column B 4 {250, 300, 350, 400} 
mm 

3 Column H 4 {250, 300, 350, 400} 
mm 

4 Bays X 4* {(5x6x5), (6x5x5), 
(8x8), (5x5x6)} m 

5 Bays Y 4* {(5x5x5), (8x7), 
(7.5x7.5), (7x8) m 

6 Bars per 
Column B 

3 {3, 4, 5} Number of 
Bars 

7 Bars per 
Column H 

3 {3, 4, 5} Number of 
Bars 

Total 
Combinations 

11,520 

*As generated by the computational compoment: The 
Number of options depends on the inputs’ details. In 
this case, values for the bays between 5m to 9m with 
0.5m increments are used. 

3.3 Penalisation 
The structural calculations are based on EN 1992-1-

1:2004 AC:2008. If the limit states defined in the code 

are violated, the algorithm assigns a penalty in the 
objective functions previously described. The design 
inputs that cause the violation receive lower probability 
for appearing in the future generations and they are 
eventually are eliminated from the population. Other 
structural constraints such as deflection limits could also 
be incorporated in the penalty function. This 
penalisation approach is an efficient way to assist the 
algorithm in finding the optimum combinations faster.  

4 Results 

4.1 Algorithmic Performance 
Several optimisation sequencies (at least 10 runs for 

every objective) were run and in every instance the 
algorithm converged to the maximum performance after 
approximately 280 generations. Figure 5 shows the 
representation of the algorithms’ convergence pattern 
displaying continuous improvements on the fitness 
function after each generation. Each iteration took 
approximately 25-30 seconds to complete in an Intel 
Core i5-4570 @ 3.2 GHz desktop computer.  

 
Figure 5. Convergence curve of the optimisation 
algorithm 

An important component of the algorithm is its 
ability to accurately calculate the reinforcement rates in 
the slab. The zoning module effectively identifies the 
variability of slab thickness and the reinforcement 
requirements. Figure 6 demonstrates the relationship 
between the tonnage of steel and concrete for the 
different slab thicknesses in a simple way. Two 
observations can be made: 1) Thinner slabs need more 
reinforcement than thicker ones, 2) The options with the 
300mm and 325mm slabs do not provide significant 
savings in reinforcement due to high minimum 
reinforcement requirements. For the analysis of the 
results, the entire optimisation set the input and output 
data categories were exported in a .csv file. The analysis 
of the results was conducted using Excel.  
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Figure 6. Relationship between concrete weight 
and reinforcement weigth in the slab  

4.1.1 Carbon Performance 

The performance of the algorithm for the carbon 
function is summarised in Figure 7. It becomes evident 
that the concrete in the slab is the biggest contributor to 
the total embodied carbon in the structure as the two 
curves appear to have very similar patterns. The 
reinforcement in the slab is the second biggest 
contributor. On average 90% of the carbon in the 
structure is attributed to the slab materials.  

 
Figure 7. Evolution of carbon components 
towards the carbon optimum solution 

4.1.2 Cost Performance 

Figure 8 shows the performance of the algorithm for 
the cost function. The initial fluctuations correspond to 
the early stages of the search, however the algorithm 
eventually stabilises around 120 £/m2. In this set of 
simulations, no single parameter clearly affects the 
results unlike in the carbon optimisation. Nevertheless, 
the slab concrete and formwork are the most 
contributing to the structure’s total cost. Detailed cost 
breakdown for the cost optimum solutions will be 
presented in the following sections.  

 
Figure 8. Evolution of cost components towards 
cost optimum solution 

4.2 Optimisation Solutions 
In this section, the optimum solutions obtained from 

both of the objective functions are presented. Table 2 
summarises the results. The algorithm search has been 
simplified for the design of the columns by applying the 
same dimensions on every column (the reinforcement 
calculation applies the same bar diameter to every bar in 
the section). If required, both elements could be 
overriden to allow for further customisation. Figure 9 
shows the geometric representation of the optimum flat 
slab designs. The carbon optimum solution has more 
columns (12 in total) and thinner slabs (225mm slab 
thickness). This finding verifies the relationship 
between the carbon function and the slab concrete as the 
algorithm tries to minimise it. The additional columns 
reduce the reinforcement requirements in the slab and as 
a result, the total carbon of the structure.  

Table 2. Optimisation results 

 Carbon 
Optimum 

Cost 
Optimum 

Slab Thickness 225mm 250mm 

Column B 250mm 250mm 

Column H 250mm 250mm 

Bays X 6mx5mx5m 5mx6mx5m 

Bays Y 5mx5mx5m 8mx7m 

Columns 
Reinforcement 

8 Bars per 
Column 

8 Bars per 
Column 

Total number of 
Columns 

12 (5xø16, 
7xø12) 

10 (1xø20, 
3xø16, 6xø12) 

Slab 
Reinforcement 

Rates 

101kg/m3 98kg/m3 
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Figure 9. Design configurations that minimise 
carbon and cost objective functions  

In comparison to the carbon optimum design, the 
columns in the cost optimum solution appear to have a 
larger impact on the results as the design consists of 10 
columns instead of 12. In addition, the reinforcement 
rate in the slab is 3% less than the one in the carbon 
optimum design. This is due to the thicker slab option 
(250mm).  

4.3 Discussion 
The detailed breakdown of the components in the 

carbon optimum solution shows the following:  

• 66% in the slab concrete 
• 25% in the slab reinforcement (basic mesh and 

additional reinforcement) 
• 6% in the columns concrete 
• 3% in the columns reinforcement 

On the othe hand, the detailed breakdown of the 
components in the cost optimum solution shows the 
following:  

• 25% in the slab concrete 
• 30% in the slab formwork 
• 22% in the slab reinforcement (basic mesh and 

additional reinforcement) 
• 12% in the columns reinforcement  
• 2% in the columns concrete 
• 9% in the columns formwork  

The analysis of the two optimum solutions indicates 
similarities in the final results. The relationship between 
the cost and the carbon optimum solutions is shown in 
Figure 10. The cost optimum solution resulted in 111 
kgCO2e/m2 and costs 122 £/m2. On the other hand, the 
carbon optimum solution costs 126 £/m2 and it has 103 
kgCO2e/m2. The results show an inverse correlation 
between cost and carbon optimum solutions. The cost 
optimum design is 3% cheaper but 7% more carbon 
intensive. The obtained results in the tested buiding 
scenario follow a similar pattern with results found on 
other structural systems in the literature [8]. 

 

 
Figure 10. Relationship between cost and carbon 
optimum solutions  

5 Conclusions 
This study investigates a computational framework 

for the optimisation of flat slabs in building structures. 
Three main contributions can be recognised in this 
research: The first novelty of the study is the use of 
BIM data combined with a FEM engine that operates 
within a genetic algorithm solver. The second novelty is 
the configuration of the optimisation in multiple levels 
of structural analysis. The final novelty is the 
development of both cost and carbon functions. A 
prototypical building scenario is used to validate the 
methodology. Results show that the effectiveness of the 
algorithm in finding optimum solutions is not limited by 
the increased computational complexity of the model. 
Cost and carbon optimum design configurations were 
obtained and analysed. For the tested scenario, the cost 
optimum solution costs only 3% less than the carbon 
optimum solution but has 7% more carbon. The slab 
accounts for more than 75% of the total costs in the cost 
optimum solution when the columns account for 
approximately 25%. On the other hand, in the carbon 
optimum design, the slab is responsible for 90% of the 
carbon emissions, and only 10% is related to the 
columns. Further analysis is required in actual buildings 
in order to verify the results of the study and evaluate 
the optimum designs against as built solutions.  
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