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A ten singlet state vibronic coupling Hamiltonian was constructed describing the seven internal coordinates of acetylene. A
Σ+

g symmetry-adapted polynomial expansion of the nuclear coordinates over diabatic elements was used to fit adiabatic energies
obtained from ab-initio calculations. The fitted vibronic Hamiltonian was subsequently used to model vibrationally mediated
photo-dissociation (VMD) experiments. The model suggests that some control over dissociation channels might be achieved by
choosing different ranges of pre-excitation and UV-excitation energies.

1 Introduction

Acetylene represents the simplest molecule that contains all
the features of vibrational dynamics of polyatomic systems1

and has labile H atoms that undergo large amplitude motions.
It was the first molecule to be shown to have differing equi-
librium structures in the excited and ground states (trans and
linear, respectively)2,3. Its photo fragment, the C2H radical,
was observed in the interstellar medium4 and is a reactive in-
termediate in combustion processes5. To understand the de-
tails of the photo-excited dynamics of molecules such as this,
quantum dynamics simulations can provide useful information
by describing the non-adiabatic reactive pathways accessible
after the absorption of a photon6. To do this we need to con-
struct a model which adequately describes the excited state
landscape of acetylene.

A standard approach for these problems is to construct a
vibronic coupling model7: a simple polynomial expansion
of diabatic potential energy surfaces and couplings. The ex-
pansion coefficients are chosen so that the eigenvalues of the
potential operator map on to the adiabatic potential surfaces.
Usually normal mode coordinates are used and the surfaces
are expanded around the Frank-Condon point. Such mod-
els have been shown to reproduce the short-time dynamics
of non-adiabatic systems8. We have constructed a vibronic
model which describes the femtosecond dynamics of acety-
lene in the first three singlet adiabatic excited states, including
non-adiabatic effects between them as Renner-Teller (RT) and
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pseudo Jahn-Teller (pJT) diabatic coupling. We used a set of
curvilinear coordinates which describe trans and cis displace-
ments. These form Π Irreducible representations (IrReps) for
which Σ+ symmetry adapted functions can be used to con-
struct model diabatic potential. Details on the generation of
such a basis are given in a previous paper9. In that same pa-
per, the absorption spectra for the validation of the model con-
taining only the Π coordinates was presented. This required
10-states in the model to explicitly represent any pJT and RT
coupling the three lowest singlet exited states have to higher
lying states.

In this article we have expanded the model to include disso-
ciation coordinates and then used it to model the vibrationally
mediated (photo) dissociation (VMD) of acetylene. Since the
propagation of a full internal coordinate wavepacket for many
tens of picoseconds and the construction of a vibronic model
coupling triplet and singlet states are beyond the scope of this
work, we concentrate in simulating those experiments that re-
main in the singlet state landscape and are expected to occur
in the femtosecond regime. A number of vibrational states lo-
calised in the CH stretch local modes are prepared using lad-
der operators, followed by UV-excitation using a Gaussian en-
veloped sinusoidal function representing a experimental pulse
polarised laser field. Dissociation cross sections are calculated
for all possible angles, providing new insights into this photo-
process. The model suggests that for energies in the range 6.4-
7.0 eV S1 can give trans or near-linear geometries depending
on the IR pre-excitation of CH stretch local modes. Similar
control can result in trans or cis geometries in the range 7-8
eV for state S2.
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1.1 Singlet excited state landscape

The absorption spectrum has been recorded in the range 5.4-
7.8 eV10. The maximum intensity of the S1 ←S0 transition
lies near the vertical transition (∼ 6.9 eV), despite all valence
states in this region being optically forbidden at a linear geom-
etry. In this region we find singlet valence and Rydberg states.
Acetylene’s valence states appearing in its absorption spec-
tra arise from states formed from π → π∗ orbital excitations.
From the degenerate HOMO and LUMO orbitals of symme-
try Π⊗Π we can obtain Σ and ∆ ungerade triplet and singlet
states. Double excitations can in turn produce similar gerade
states. The contribution of a π∗ orbital to valence states has the
effect of stabilising the molecule towards a bent geometry. In
contrast, Rydberg states found in this range arise from orbital
excitations π → n/Λ (Λ = hydrogenic wavefunction) which
give stabilisation energies favouring a linear geometry11.

The S1 minimum has been found experimentally and the-
oretically to be at trans bent geometry with an isomerisation
barrier to its cis conformer via a torsional motion. The transi-
tion state geometry for cis-trans isomerisation has been calcu-
lated to be with one CCH angle being near-linear and the other
at 120o 12. For S2, a non-planar cisoid (cis like) minimum ge-
ometry has been calculated using ab initio methods12,13. Table
1 provides some critical points found in the literature as well
as their adiabatic transition energies.

In its ground state global minimum geometry acetylene be-
longs to the D∞h point group and is subject to Renner-Teller
(RT) and pseudo Jahn-Teller (pJT) stabilisation effects. S2/3
form a degenerate ∆u state which can exhibit RT effects.
Cederbaum et al were the first to carefully analyse the effect
of vibronic coupling in linear molecular systems14 and their
signature in spectra. More recently Bersuker and Liu15 high-
lighted the small contribution RT might have to the stabilisa-
tion energy of degenerate states. This study was followed by
work proving that for RT systems, all instabilities arise from
pJT coupling, having implications on spectroscopic selection
rules, transition dipole moments and line intensities16.

Singlet valence states leading to dissociation correlate adi-
abatically with two doublet states; the X̃2Σ+ ground state (∼
5.71 eV17) and a degenerate Ã2Π state (6.17 eV from the sin-
glet ground state minima using ab-initio methods13) (see Tab
4). The most careful theoretical study of critical points in the
excited state landscape was done by Cui and Morokuma13,18,
proposing a dissociation mechanism near the experimentally
observed threshold. Starting from S1, they distinguished pos-
sible pathways, as a function of energy, leading to either the
doublet ground state X̃2Σ+ or excited Ã2Π states of the C2H
moiety. From S1 they found a transition state barrier at 6.48
eV (including ZPE) to an adiabatic dissociation leading to the
Ã2Π state (6.15 eV). An alternative route to the same dou-
blet state but with a lower barrier of 6.28 eV (including ZPE)

to dissociation occurs via a conical intersection with S2 at an
out-of-plane geometry and then possibly via an avoided cross-
ing at 6.10 eV. They suggest this pathway should be a slow
process compared to tunnelling directly from S1 at such ener-
gies. More recent work11 suggests another avoided crossing is
found by dissociation from the linear geometry; a degenerate
Πu state is strongly pre-dissociated by higher lying Πg states
which then exhibit an avoided crossing with S0 at a CH bond
length 2.5 Å (discussed further in the following subsection).

The lowest energy pathway to dissociation has received
abundant attention from the spectroscopy community17,19; the
common view is that the S1 state undergoes intersystem cross-
ing to a manifold of triplet states where pre-dissociation takes
place (a drastic decrease in fluorescence yield has been re-
ported above 5.7eV20). This picture agrees with many ab ini-
tio calculations13,21,22, which suggest that after intersystem
crossing there would have to be a sequential energy trans-
fer along several modes involving large molecular contor-
tions that would make such a mechanism slow13. This agrees
with the observed µs metastable state lifetimes of the excited
acetylene upon irradiation23,24 and a lower limit for a pre-
dissociation lifetime has been suggested of at least tens of pi-
coseconds25.

1.2 Vibrationally mediated dissociation of acetylene

A number of experiments have probed the stability of acety-
lene near the adiabatic dissociation threshold energy range,
suggesting singlet dissociation channels open up above ∼6.2
eV, in agreement with theory. Most of these experiments
are termed vibrationally mediated (photo) dissociation (VMD)
experiments and represent some of the earliest examples of
control in photochemistry26; experimentalists prepare the ini-
tial state by rovibrational excitations (∼1.5-2.0 eV) prior to
photodissociation with UV pulses of 230-260 nm (4.7-5.4
eV). The rovibrationally excited wavefunction correlates dif-
ferently with the excited electronic states and provides new
insights into the excited state topology as well as facilitating
the assignment of vibrational progressions.

In the context of organic molecules, valence ππ∗ orbital
excitations typically do not significantly affect the CH bond
length, consequently vibronic CH stretch bands are usually
missing from electronic transitions. VMD allows experimen-
talists to probe the excited state surface along these modes
as well as to drive photochemical reactions (especially true
due to the high IR absorption coefficients for these modes)20.
These changes in Frank-Condon factors effectively influence
the electronic excitation.

For acetylene, excitation at trans bent geometries is ex-
perimentally observed to have better transition probabilities,
which is theoretically supported by the strong vibronic depen-
dence on the transition dipole moment surfaces (shown below
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Geometry Reference Internal Coordinates
CH/CC/Ang/Dih

Adiab.
ex. En.

(eV)
S1

trans Cui 97 1.105/1.377/122.4/NA 5.26
Malsch 01 1.094/1.382/122.0/NA 5.14
Ventura 03 1.092/1.372/122.2/NA 5.23
this work 1.105/1.422/125.3/NA 5.39

d-trans this work (0.979&1.859)/1.362
/(123.2&124.7)/NA 6.50

cis Cui 97 1.107/1.341/–/NA 5.77
Malsch 01 1.097/1.353/132.0/NA 5.55
Ventura 03 1.094/1.342/132.7/NA 5.58
this work 1.196/1.316/129.1/NA 5.60

d-cis this work (1.095&1.889)/1.333
/(134.2&123.0)/NA 6.65

linear Malsch 01 1.067/1.341/NA/NA 6.96
linear this work 1.0505/1.239/NA/NA 6.78

S2

trans Malsch 01 1.092/1.350/146.0/NA 6.68
Ventura 03 1.071/1.327/149.9/NA 6.80

cis Malsch 01 1.127/1.346/146.0/NA 6.60
Ventura 03 1.098/1.328/140.0/NA 6.55

cisoid this work (1.216&1.154)/1.372
/(137.6&115.5)/60.0 6.50

this work (1.116&1.092)/1.418
/(116.1&129.0)/82.2 6.70

d-cisoid this work (1.052&1.856)/1.278
/(155.1&121.0)/55.3 7.55

d-out of
plane

this work (1.077&1.830)/1.311
/(115.1&125.0)/105.3 7.55

linear Malsch 01 1.061/1.322/NA/NA 7.30
this work 1.056/1.239/NA/NA 7.23

S3

trans Malsch 01 1.078/1.325/168.1/NA 6.83
cis Malsch 01 1.080/1.328/169.0/NA 6.82

cisoid this work (1.083&1.096)/1.310/
(132.01&133.4)/76.8 6.90

out of
plane

this work (1.097&1.103)/1.377/
(121.8&121.8)/96.33 6.9

linear this work 1.075/1.239/NA/NA 7.20

Table 1 Acetylene excited state critical point geometries and
energies for states S1-S3. If two values are given by & it means the
CH bonds/angles where different for the two protons. Prefix d-
refers to a proton being stretched to near dissociation before
minimising model energy. Methods: Cui13: EOM-CCSD/cc-pVTZ
(CASPT2 for energy) ; Malsh12: CASSCF/ANO (PT2 for energies)
; Ventura22: MR-AQCC/cc-pVQZ ; this work:
EOM-CCSD/aug-cc-pVTZ

and in ref27). Experiments probing in the singlet adiabatic
dissociation threshold range using a 193 nm (6.424 eV) pulse
began more than three decades ago28; The nascent C2H was
measured to have energies peaking around 0.25 eV (and up
to 0.69 eV), but with little near 0 eV, suggesting that little in-
ternal conversion occurs29; the trans is active at the time of
excitation and likely to have this configuration at the time of
dissociation5.

Fuji et al20 posited a non-radiative relaxation channel open-
ing above 6.2 eV, which coincides with the calculated S2 bar-
rier towards dissociation or S0 crossing13. The vibrational
UV-IR double resonance spectra progressions in the 6.2-7.1
were assigned to trans and antisymmetric stretch vibrations.
Zhang et al posited a dissociation threshold above 193.3 nm
(6.41 eV) leading to an efficient adiabatic 2Π production when
exceeded, in agreement with Cui and Morokuma18. Schmid
et al1,30 excited up to 7.02 eV and observed two dissociation
channels they assign to X2Σ+ and Ã2Π states, with CH rup-
ture being increased by rovibrational pre-excitation. Ganot
et al21,31 probed around 6.3 eV, just below the adiabatic dis-
sociation threshold 6.4, to study the dissociation via the non-
adiabatic Ã/B̃ pathway. They found transitions involving trans
modes and dissociation pathway leading to the X2Σ+ state en-
hanced.

2 Model Hamiltonian

2.1 Vertical excitation Energies

Table 2 shows vertical excitation energies obtained using two
methods, complete active space (CAS) with second order
perturbation theory corrections (PT2) and equation-of-motion
coupled cluster singles and doubles (EOM-CCSD), with in-
creasing basis set size. The active space for the former was
obtained by performing single point calculations with differ-
ent low-energy orbitals, including up to 17 orbitals for any
given calculation. By weighting the contribution that every or-
bital has on N states proportionally to the energy of the states
which they describe, it is possible to reduce the active space
to those orbitals that best describe the lowest N states. The
orbitals thus obtained were in agreement with those of EOM-
CCSD calculations at the same basis set level.

For an MP2 optimised geometry (cc-pVDZ), the following
symmetry and energy ordering in a aug-cc-pVTZ, HF cal-
culation labels the active space orbitals: 4Ag, 1B3u, 2B3u,
1B2u, 2B2u, 3B1u, 4B1u, 1B2g, 2B2g. Geometry optimisations
were done with Gaussian 0332 and excited state calculations
with Molpro 0933 For a given basis, neither a second or third
order-perturbation changes state ordering and the results agree
with those of EOM-CCSD calculations. The inclusion of aug-
mented diffuse functions, however, has the effect of swapping
the order of degenerate states Πu with Πg. Finally, inclusion
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Fig. 1 Comparison of cuts along CCH angle using left:
EOM-CCSD/aug-cc-pV(q+d)Z, right: EOM-CCSD/aug-cc-pVTZ

of polarisable pV(q+d)Z functions further lowers the energy.
Performing a cut on the PES, Fig. 1 shows that the main effect
of polarisable functions is to lower the absolute energies of the
states without perturbing their topology and relative energies.
Since the difference between the relative energies of excited
states is slight, for practical purposes, models were fitted to an
EOM-CCSD/aug-cc-pVTZ energies. Some of the optimised
geometries or critical points on excited state surfaces in the
literature are given in Tab 1 and were also mentioned in the
introduction.

2.2 Choice of coordinates

Properly modelling the potential landscape of acetylene re-
quires a natural description of the cis-trans isomerisation and
out-of-plane torsion as a function of the dissociating coordi-
nates. It is clear that normal modes are inadequate for the
description of such excited state critical points; their rectilin-
ear character makes them restrictive on the kind of molecular
distortions one can easily describe (typically small and bound
displacements) without giving rise to rapidly changing state
energies that make a low order polynomial model prohibitive.
Jacobi34 and valence35 curvilinear coordinates are offered in
the literature but have disadvantages for the construction of
vibronic models built out of products of 1D operators. They
require the molecule to be non-linear for the dihedral angle to
be defined, resulting in strong correlation of the energy along
this degree of freedom (DOF) with regard to the others. Addi-
tionally, this same feature reduces the symmetry of the coordi-
nates from D∞h to C2h which allows a much larger number of
parameters into the model, complicating the fitting procedure.
Unable to use Σ+

g symmetry adapted basis, they becomes pro-
hibitive if we hope to describe all internal DOF and multiple
states.

The above implications suggest we would like curvilinear
coordinates that ideally span as many D∞h irreps as possible
so as to reduce the terms that enter into our model. A
solution is to use the same kinds of displacements that the
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Fig. 2 The steps taken to obtain curvilinear coordinates starting
from normal coordinates. Only coordinates in a single plane are
shown. Numbers in brackets refer to the equations in text.

D∞h normal coordinates have, but involving CCH angles and
radial (valence like) coordinates. To obtain such coordinates,
the Cartesian coordinates were mass-scaled relative to the
reference geometry: (xi− x0

i )→ 1√
mi

x̃i, and by diagonalizing
the Hessian a set of normal coordinates were obtained (see
Tab 3), four of which belong to degenerate Πg and Πu IrReps
and which describe trans and cis displacements.

The next steps taken are diagrammatically summarised in
Fig. 2. Rotations of these four normal coordinates were per-
formed to obtain a set of quasi-Cartesian coordinates describ-
ing the position of the hydrogen atoms:(

Qay
Qby

)
=

1√
2

(
1 −1
1 1

)(
Qcy
Qty

)
(1)

Where Qay refers to the quasi y-coordinate of hydrogen atom
‘a’ (similar definition for Qby) and Qcy and Qty refer to the cis
and trans normal coordinates along the yz-plane. A similar
operation is done for the xz-plane coordinates, Qcx and Qtx,
and for the symmetric and antisymmetric stretches, Qss and
Qas, to give single atom stretches along the z-axis. The only
difference between the Cartesian coordinates and these is that
the other bond distances change slightly so as to fix the centre
of mass and to maintain the linear space of linear rotations
and translations outside our coordinate space. Since we are
using mass-scaled normal coordinates, the KE operator is
invariant with respect to rotations.

From here a spherical polar transformation of each H atom
quasi-Cartesian coordinates was performed to obtain two sets
of quasi-spherical polar coordinates:

Qax =Ra · cos(θa)

Qay =Ra · sin(θa) · sin(φa)

Qaz =Ra · sin(θa) · cos(φa)−Qz
0

(2)

These are defined in such a way that the linear minima in the
ground state lies at θa =

π

2 ,φa = π,Ra = Qz
0. A similar set of
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State A B C D E
S0 -77.164 (Σ+

g ) -77.091 (Σ+
g ) -77.175 (Σ+

g ) -77.193 (Σ+
g ) -77.171 (Σ+

g )
S1 7.025 (Σ+

u ) 7.596 (Σ+
u ) 7.213 (Σ+

u ) 7.213 (Σ+
u ) 7.367 (Σ+

u )
S2 7.342 (∆u ) 7.990 (∆u ) 7.538 (∆u ) 7.534 (∆u ) 7.730 (∆u )
S3 7.343 (∆u ) 8.035 (∆u ) 7.538 (∆u ) 7.534 (∆u ) 7.730 (∆u )
S4 8.117 (Πu ) 9.788 (Πg ) 8.375 (Πu ) 8.415 (Πu ) 9.536 (Πg )
S5 8.117 (Πu ) 9.788 (Πg ) 8.375 (Πu ) 8.415 (Πu ) 9.536 (Πg )
S6 8.520 (Πg ) 10.638 (Πu ) 8.736 (Πg ) 8.776 (Πg ) 10.118 (Πu )
S7 8.520 (Πg ) 10.638 (Πu ) 8.736 (Πg ) 8.776 (Πg ) 10.118 (Πu )
S8 n/a 11.768 (Σ−g ) 9.476 (∆g ) 9.404 (∆g ) 11.578 (Σ−g )
S9 n/a 13.106 (∆g ) 9.476 (∆g ) 9.404 (∆g ) 12.249 (∆g )

Table 2 Vertical excitation energy (eV) comparison between CAS(6,9)+PT2 and EOM-CCSD with different basis-sets. S0 in Hartree A)
CAS(6,9)+PT2//aug-cc-pVTZ B) CAS(6,9)+PT2//pVTZ C) EOM-CCSD//aug-cc-pVTZ D) EOM-CCSD//aug-cc-pV(q+d)Z E)
EOM-CCSD//pVTZ

Mode Motion Symmetry ω (cm−1)
ṽ1,2 (Qtx,ty) Πg 557.8506

ṽ3,4 (Qcx,cy) Πu 749.5317

ṽ5 (Qccs) Σ+
g 1965.0605

ṽ6 (Qas) Σ+
u 3455.1418

ṽ7 (Qss) Σ+
g 3540.0541

Table 3 Harmonic Frequencies. Obtained from an MP2 calculation
with an cc-pVTZ basis.

State Char D∞h C2h C2v Cs C∞v

S0 Σ+
g Ag A1 A′ 2Σ+

S1 1πg Σ−u Au A2 A′′ 2Π

S2/S3 1πg ∆u Au⊗Au A2⊗B1 A′′⊗A′ 2Π

S4/S5 3sσg Πu Bu⊗Bu B2⊗B1 A′′⊗A′

S6/S7 3pσu Πg Bg⊗Bg B1⊗B2 A′⊗A′′

S8/S9 3sπu ∆g Ag⊗Ag A1⊗A2 A′⊗A′′

Table 4 Singlet state and symmetry correlation tables. Character of
Rydberg states is based on Ref11. Last column refers to the doublet
state which correlates adiabatically via dissociation.

coordinates are obtained for atom ‘b’. For these coordinates,
the resulting KE operator is potentially the simplest form this
system could have: it consists of a pair of angular momentum
operators, radial KE terms and a normal KE term for Qccs:

2 · T̂ =p̂2
i +

L̂2
i

R2
i
+∇

2
ccs, i = a,b (3)

where

L̂2
i =

1
sin(θi)

∂

∂θi
sin(θi)

∂

∂θi
+

1
sin2

θi

∂ 2

∂φ 2
i

p̂2
i =

1
R2

i

∂

∂Ri
R2

i
∂

∂Ri

(4)

This operator can be simplified further by factoring the radial
part of the wavefunction with Ri, ΦR(Ri)≡ Ri ·Φ(Ri). In this
way the radial kinetic energy term takes an “equivalent one-
dimensional” form36:

2 · T̂ =(
1
i

∂

∂R j
)2 +

L̂2
j

R2
j
+∇ccs, j = a,b (5)

These coordinates posses C2v symmetry. By operating with
the analogous but inverse rotation matrix of equation 1 on the
angular coordinates, a coordinate representation is recovered
that spans the D∞h point group:(

Θx
c

Θx
t

)
=

1√
2

(
1 1
−1 1

)(
θb
θa

)
(6)

where Θx
t and Θx

c correspond to trans and cis angular mo-
tion along the zx-plane. With the same treatment for the zy-
plane coordinates, {Θx

t ,Θ
y
t } and {Θx

c,Θ
y
c} form a basis for

Πu and Πg IrReps respectively. Crucially, these coordinates
give a much more accurate description of excited state critical
points than do normal coordinates. Although {Θx

t ,Θ
y
t } and
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{Θx
c,Θ

y
c} allow us to use the Σ+

g symmetry adapted matrices9,
and were indeed used to construct the model within the Θx

t
and Θx

c space, subsequently returning to {θ ,φ} coordinates
also proved advantageous since these leave the KE operator
in the simple form given in Eq. 5. One could have conceiv-
ably used the valence coordinates to obtain an analogous set
of coordinates, but the resulting transformed kinetic energy
operator would have been more complicated.

2.3 Potential surface and Fitting

Due to symmetry considerations, combined displacements
along several of these high symmetry coordinates can result
in identical potential energy along some other displacement.
For example, since φa + θb and φb + θa are related by a re-
flection, they are physically (energetically) indistinguishable.
Single energy points were calculated in physically distinct re-
gions of the potential energy landscape of the trans and cis
coordinate subspace, Θ

x|y
c|t , forming a basis for Πg/u IrReps.

Σ+
g symmetry adapted polynomials that form a matrix repre-

sentation of the diabatic potential were fitted using a genetic
algorithm tailored for these optimisation tasks37.

The resulting fitted potential energy model for the two RT
{Θx|y

c|t } pairs of degenerate Πg/u coordinates, with its calcu-

lated absorption spectra, was presented elsewhere9. The first
three states show stabilisation away from the linear geometry
which must arise from pJT coupling to higher lying states16.
Ten states were required to fit satisfactorily the RT coordi-
nates, having used 78 symmetry adapted basis function. After
rotating the model back to the C2v coordinates (to keep the
simple KE form), these four dimensions alone contribute 337
monomials into the potential energy matrix. Were lower or
no symmetry to be used, the number of allowed terms enter-
ing the fitting procedure for such a model would become pro-
hibitive. Lest one argues the model to be over-parametrised,
an 8 state model was attempted with no satisfactory fitting.
The model allows for a proper free dihedral rotation to occur.

To describe dissociation it was necessary to fit functions that
adequately describe the potential along Ra|b coordinates and
which correlate these to the others. The model and ab initio
adiabatic energies along these are shown in Fig. 3.
Since the ground state is significantly separated from the rest
of the states, and it was adequately represented by 1D Morse
potential functions, it is excluded in Fig. 3 in all but these two
panels. Ra|b were not rotated to the higher Σ+/− symmetries;
being CH radial coordinates, these are the most relevant coor-
dinates for dissociation and were fitted with Morse functions.
Along these dissociating coordinates, states 4Πg are shaped
by strong diabatic coupling to some other high lying repul-
sive states (of Πg or ∆g symmetry) resulting in an adiabatic
barrier-less dissociating surface (see top left, Fig. 3).

Since we can only expect the density of states to increase at
higher energies and compound the complexity of interactions,
the diabatic coupling responsible for this dissociative Πg state
was approximated by a function which ‘folds’ the coupling
with the higher lying state into the diagonal element:

W11 =
1
2

{
vM + vd−

√
(vM− vd)2 +4[α tanh(βQ)]2

}
(7)

where vM is a Morse potential function, vd a decaying expo-
nential and α tanh(βQ) describes the coupling to higher lying
states; as the coordinate dissociates the coupling reaches some
asymptotic value. The cost of using this approximate func-
tion is that it fails to properly describe the correct topology
when moving across several DOF (presumably along which
the missing higher lying states would have appropriately cor-
related the surfaces). Specifically, when correlating both dis-
sociative, Ra and Rb, coordinates the model surface does not
rise as quickly as it should and when correlating Qccs with Ra
the dissociating channel does not fall as quickly as it should (
bottom right panels in Fig. 3).

Additional ad-hoc functions were also used to fits these
spaces. For j =1,2, indexing degenerate state Πg, between Ra
and Rb;

WjΠg, jΠg = γRa,Rb ·Θ
+(Ra−0)Θ+(Rb−0) ·RaRb

WjΠg, jΠg = εRa,Rb ·
{

Θ
−(Ra−0)Θ+(Rb−0) ·RaRb+

Θ
+(Ra−0)Θ−(Rb−0) ·RaRb

}
and between Qccs and Ra;

WjΠg, jΠg = βRa,ccs ·Θ−(Rb−0) · tanh(λRbRb)·

tanh(λRaRa) ·
1
2
(tanh(λccs(Qccs−Q0

ccs))

Bilinear parameters (γRa,Rb and εRa,Rb ) correlate Ra and Rb
with different values along different quadrants. Parameters
βRa,ccs,λRb ,λccs,Q0

ccs determine the functions correlating Qccs

with Ra. Θ+/− are forward/backward step functions. Al-
though the first functions are non-differentiable at Ra|b = 0
(albeit continuous), they do not break symmetry and since
the multi configurational time dependent hartree algorithm
(MCTDH), used for the quantum propagation of this model,
uses a grid representation, it does not pose a problem. The top
right panels in Fig. 3 show the cis and trans displacement cor-
relating mode Qccs (Qccs frozen at the S1 minima along that
DOF); these cuts approximately show the two important S1
minima.

Finally, functions that correlate the four angular RT coordi-
nates to the radial Ra|b coordinates were fitted to single point
energies along the same selection of physically distinct dis-
placements described earlier (and shown in ref9) but includ-
ing Ra|b contributions. Polynomials are inappropriate for the
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Fig. 3 Potential energy surface cuts of the fitted model to calculated points of the excited states correlating Qccs to R or θ coordinates for
S1-S9. Since no terms correlate coordinates in S0, only the first two top left frames show S0. Curly brackets mean the coordinate is kept
constant but not at the reference geometry. Energy in eV, coordinates in Å[amu]

1
2 . The underline indicates which coordinate is shown in plot

(for mixed angular/radial/normal vectors). From left to right: first row: (Ra), (Qccs), trans (θa−θb +{Qccs}), cis (θa +θb +{Qccs}); second
row: (θa +Qccs), (Ra +Rb), (Ra +Qccs), (Ra−Qccs)

description of the asymptotic behaviour of dissociating coor-
dinates. The following functions adequately fit the surfaces at
the Ra|b→ ∞ regions.

For pJT coupling elements:

Wi j(Ra,θa,φa) =γ · tanh(λ ·Ra) · sin(α ·θa) ·G(β ,φa) (8)

where

G(β ,φa) =
1
4
· (cos(β ·φa)+3) ·Θ+(φa−

π

β
) ·Θ−(φa +

π

β
)+

1
2
· (Θ−(φa−

π

β
)+Θ

+(φa +
π

β
))

(9)
with γ , λ , α and β parameters to be optimised. Linear terms
corresponding to radial displacements have been replaced by
tanh functions, and even/odd polynomial functions were re-
placed by even/odd trigonometric functions. It is worth men-
tioning that these function obey D2h symmetry operations and
one can make it obey D∞h constraints. For example, to enforce
constraints on Π⊗∆ coupling functions:

+WΠx,∆y(Ra,θa,φa) =−WΠx,∆y(Rb,θb,φb)

=+WΠx,∆x(Ra,φa,θa) =−WΠx,∆x(Rb,φb,θb)

=−WΠy,∆x(Rb,θb,φb) = +WΠy,∆x(Ra,θa,φa)

=+WΠy,∆y(Rb,φb,θb) =−WΠy,∆y(Ra,φa,θa)

0.5

1.0

-1.0 0.0 1.0

G
(x

)

x
Fig. 4 The G(β ,x) function of Eq. (9), with β = 1

Wi j as defined above (and based on the procedure described in
ref9).

For diagonal inter-state diabatic coupling:

Wii(Ra,θa,φa) = γ · tanh(λ ·Ra) ·2(1− cos(α ·θa)) ·G(β ,φa)
(10)

with similar symmetry conditions and parameters as the afore-
mentioned coupling elements. G (shown in Fig. 4) en-
sures that the functions do not couple too strongly when,
say, simultaneous displacements along θa and φa occur:
Wii(Ra,θa,φa) +Wii(Ra,φa,θa) approximately results in the
same value as moving on either θa or φa alone). The model
in MCTDH input form is provided as supplementary informa-
tion.

The resulting fitted functions along some interesting cuts
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Fig. 5 Qualitative comparison of the adiabatic (left) and diabatic
(right) intra-state element surfaces along a dissociating coordinate
starting from a trans geometry.

describing out-of-plane, cis and trans geometries leading to
dissociation, are shown in Figs. 5 and 6. Since Qccs is kept at
the ground state reference geometry, the cis and trans minima
shown for S1 in the figure are not global and lie approximately
1 eV above the actual value. They are nevertheless qualita-
tively similar, as can be seen by comparing the cuts involving
angles in Fig. 3 to those in Fig. 6; Qccs only weakly couples
to the other coordinates in S1-S3. Given the coordinate system
used, the geometries of the C2H moiety after dissociation in
the different cuts in Fig. 6 are slightly different. The fitting
procedure was not trivial and a genetic algorithm was used37,
involving∼40 optimisation parameters. Fig. 5 compares a cut
along some trans dissociation channel in the diabatic and adi-
abatic representations; the diabatic dissociative 6Πg states get
mixed strongly (via pJT coupling) with 1Σ−u and 2∆u states so
that they instead become the dissociative channel.

A significant approximation in this model is that no cou-
pling to the ground state was included, so that non-radiative
relaxation to the ground state will not be reproduced (as ob-
served experimentally1,31). Theoretically, such a possible
pathway was found by Cui and Morokuma18 along a geometry
with strong dihedral and angle values (∼90o for both angles)
with a CH bond length of 2.111 Å, very close to dissociation.
Such a displacement is poorly described by the present curved
modes. Coupling along such a crossing required the involve-
ment of many degrees of freedom and was not adequately fit-
ted with these coordinates.

Another potential crossing was suggested by Laruelle et
al11 in a figure showing an avoided crossing along the CH
dissociation coordinate. Based on the electronic structure cal-
culations shown in Tab 2 we suggest their symmetry label as-
signment to Πg and Πu states were incorrectly swapped; at the
D∞h geometry, it is Πg which is the dissociative coordinate. To
certify whether such a crossing occurs or not, a high accuracy
calculation was performed using a aug-cc-pVTZ basis with 3
extra even-tempered functions (ratio=2.5)33 on the dissociat-
ing carbon and hydrogen atoms were added. Using C2v sym-
metry and starting at a 1.713 Å bond length, a CAS(8,8) energy

was obtained after several calculations with different active
orbitals to test for their contribution to the first three excited
states. From this active space, RS2C and MR CI (cluster cor-
rected Pople/Davidson) calculations were performed, plotting
the hydrogen dissociation coordinate (Fig. 7). No crossing is
found between S0-S1 at the linear geometry with these meth-
ods. No crossing was found along any other geometry with the
level of theory used for the model construction. Therefore, in
this model no states beyond the S1/S2 asymptotic dissociation
regions (> 1.9 CH Å) cross with these.

To explore the adiabatic potential energy landscape of this
model, simplex optimisations were performed with initial ge-
ometries set at different points in an equidistant grid across all
7 coordinates. Fig. 8 shows the histograms of the minima ob-
tained. They give some qualitative insight into the basin land-
scape of the model. Some sampled energies and geometries
are given in Tab 1; these are representative of the frequency
with which these were found based on a few samples chosen
and should not be taken as precise (a more holistic picture will
be provided in section 3). The top right panel shows the trans
and cis minima basins starting at around ∼ 5.4 and ∼ 5.6 eV
respectively. The third peak at ∼ 5.8 contains a mixture of
cis and bent geometries, with out-of-plane geometries for the
higher energies. The S2 surface (bottom right panel) has three
peaks - the∼ 6.58 peak corresponds to strong cis (angles close
to 90) with out-of-plane (cisoid), ∼ 6.65 peak has weaker cis
and out-of-plane mixtures and the ∼ 6.78 peak is similar to
the former but with bent (only one CH bond) geometries also
present. These geometries agree qualitatively with the find-
ings of Schubert et al27 and some representative geometries
given in Tab 1. For S3 only basins of out-of-plane cisoid ge-
ometries with closely similar energies where found. A wave-
function relaxation in the S1 state gives energies of 6.024 eV
= 5.4 eV + ZPE, using ZPE in line with the literature18.

For the left panels of the figure, one of the dissociative co-
ordinates was stretched to 1.9 Å and frozen during the optimi-
sation to give some perspective on the landscape near dissoci-
ation. For these stretched coordinates, the S1 minima (top left)
is posited to be at∼6.5 eV and have a mixture of trans and cis
conformations (provided in Tab 1 as d-trans/cis). There are a
significantly more trans conformations for the lowest energy
region, with more cis as one approaches 7.5 eV. This is likely
due to the fact the H atom continues to have an effect on the
potential energy (at ∞ one would expect equal amounts of con-
formers). The second peak starting ∼ 7.8 eV is mostly popu-
lated by cis conformations. Calculations on critical point op-
timisation18 suggest cis geometries to be involved during the
transition towards dissociation. Finding more trans confor-
mations at the lowest dissociation energy region of this model
would suggest trans to be the lowest energy path and this is
found to be the case in dynamics simulations, somewhat in
disagreement with the aforementioned critical point study. For
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Fig. 6 Potential energy surface cuts of the fitted model with calculated energies correlating θ ,φ to Ra|b coordinates for S1-S3 (and up to S9 for
cis/trans dissociation, shown in top-left panels). Curly brackets mean the coordinate is kept constant but not at reference geometry. Energy in
eV, coordinates in Å[amu]

1
2 for R or radians for angles. For those mixed angular/radial/normal vectors, coordinate underlined (below)

indicates which one is shown in the x-axis of plots. From left to right: first row : cis dissociation ({θa +θb}+Ra), trans dissociation
({θa−θb}+Ra), bent dissociation ({θa}+Ra), 2D bent-dissociation ({φa +θa}+Ra); second row: out-of-plane dissociation
({θa +φb}+Ra), skewed, out-of-plane dissociation ({θa +θb +φa−φb}+Rb), angle while CH stretched (φb +{Rb}), simultaneous (φa +Ra)

Fig. 7 Potential energy surfaces along the acetylene H-dissociation
using CAS+RS2 (green) and MRCI+Davidson (red). No S0-S1
crossing was observed.

t c
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Fig. 8 Histogram of energy minima from optimisations started with
initial geometries making a full DOF grid over the pertinent
potential landscape. first row: left panel shows critical points of S1
with one radial coordinate stretched to 1.9 Å, right S1 full
optimisation. second row: left S2 as above right S2 as above. Peaks
are labelled by the geometries that contribuited to them, with the
following legend: c: cis, t: trans, o: out-of-plane, b: bent (weight
contributed to the peak of geometry is written left-to-right).
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S2 (bottom left panel) the dissociation geometries favoured are
out-of-plane or cisoid (cis like) and begin at ∼ 7.3 eV with
only small angles for one of the CCH angles (near ‘bent’ ge-
ometries) , but increases significantly for the peak above∼ 8.6
eV.

3 Dynamics

Nuclear wave packet propagations were performed using the
MCTDH algorithm38. The absorption spectra of a number of
reduced dimensionality models were calculated, to serve as
validation for the model. A number of propagations were then
performed using the full-dimensional model to simulate VMD
experiments.

3.1 Numerical details

Since the coordinates used are essentially a pair of spherical
polar coordinates and a normal mode, the most natural choice
of primitive basis function with which to construct the nuclear
wavefunctions are the Legendre polynomials (being eigen-
functions of L2), radial Harmonic Oscillator (HO) functions
(for R) and harmonic oscillator eigen functions for the bound
Qccs. The radial HO representation is defined on [0,∞) and
has only the odd harmonic oscillator functions as a basis38,
φ HO

2 j−1(R), related to the Hermite polynomials. When diago-
nalizing the position operator, the weights of every discrete
variable representation (DVR) grid point are given by:

w
1
2
α ∝ R−1 ·U1α

(11)

where U is the matrix that transforms from the finite basis rep-
resentation (FBR) to DVR representation. The factor R−1 en-
sures the differential volume element from the Jacobian deter-
minant (r2 factor) for the radial part of the spherical harmonic
transformation is properly treated. This allows us to simplify
the KE into the form given in equation 5. Mode combination
for coordinates {θa,φa} (and similarly for b) were used, since
these are coupled via the kinetic energy operator (equation 5).
The radial coordinates were also mode-combined, since they
have many terms correlating them (Fig. 3).

3.2 Calculated spectra

A good test of the accuracy of a model Hamiltonian can be
obtained by calculating its absorption spectra. The absorp-
tion spectra of acetylene is dominated by a long progression
arising from S1 trans-bending mode as well as contributions
arising from CC and possibly CH (totally symmetric) stretch
modes2,9,12. To confirm this, we calculated three different
theoretical spectra from reduced dimensionality models; a
4-dimensional model of Renner-Teller, cis/trans coordinates

({θ ,φ}), a 5-dimensional model including the CC symmetric
stretch (Qccs) and a full, 7-dimensional model further includ-
ing the radial CH coordinates (Ra|b). These are shown in Fig.
9.

A ground state wavefunction found by energy relaxation
was initially operated on by the transition dipole from the
〈S0|µ|S1〉 elements of this coordinate subspace using a lin-
ear approximation. By multiplying the autocorrelation of the
resulting propagated wavefunction by a trigonometric damp-
ing function and Fourier transforming this product, we obtain
a theoretical estimate for the experimental absorption spectra
(Fig. 9). To reproduce such spectra, a nuclear wave-packet
was propagated for 180 fs. For the angular coordinates, at
least twelve single particle, two-dimensional functions (SPF)
were used to represent the time dependent basis for each state,
with sixteen for the first three excited states. In turn, the radial
components required at least nine on each state with twelve
on the first three excited states and the CC stretch required at
least seven on each state.

The number of primitive grid points for θ and φ coordi-
nates were 69 and 85 respectively. The R coordinates required
131 in the range [−8,55] Å[amu]

1
2 and Qccs required 79 in

the range [−20,55] Å[amu]
1
2 . The 4D model was the subject

of an earlier article9, and it is also presented here to contrast
the effect of the additional coordinates. Both the 5D and 7D
spectra gave results that qualitatively match the experimental
spectrum (Fig. 9) and resemble each other significantly, sug-
gesting that the radial CH vibrations may not be significantly
excited during the excitation, in accord with the fact that va-
lence ππ∗ orbital excitations typically don’t significantly af-
fect the CH bond length. This gives us some confidence the
model reproduces qualitatively the excited state behaviour of
acetylene.

3.3 Modelling VMD

The introduction describes how experimentalist have per-
formed energy resolved VMD experiments probing the range
5.5-7.0 eV. These were done by preparing the initial ground
state wavefunction to have quanta along local dissociation
modes39 with an IR field followed by UV-excitations to the
appropriate energy band. Though there exist methods38 in
the MCTDH package to explore the eigenfunctions of a vi-
bronic Hamiltonian, locating the appropriate mode combina-
tion eigenstates require the computation of a large number of
eigenfunctions making such a method prohibitively time con-
suming. Instead, using a Morse Hamiltonian to describe the
ground state Ra|b coordinate:

H =
p2

2m
+D(e−2α(Ra|b−r0)−2e−α(Ra|b−r0) (12)
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Fig. 9 top left: Calculated spectra for 4D Renner-Teller subspace, ten state model. top right: Calculated 5D spectra including CC stretch
(Qccs) in first excited state. bottom left: Calculated 7D spectra including radial coordinates (Ra|b). bottom right: Experimental Spectra10;
Image edited from Malsch et al 12, providing assignments for cis/trans progressions in S1-S3.

initial wavefunctions were generated by applying an approx-
imate raising operator on a previously relaxed ground state
wavefunction40:

L =
1√

2mω

[
(Λ− 1

2
)α−Λαe−α(α(Ra|b−r0)+ i · p

]
ω = α

√
2D/m Λ =

√
2D/m
α

(13)

To simulate the UV-excitation in a narrow energy range,
the laser field was modelled as a Gaussian envelope with the
appropriate central frequency interacting with the transition
dipole surface of the molecule. The transition dipole surfaces
has been linearly approximated; Fig. 10 shows dipole surface
cuts obtained from a CASSCF(6,9)//aug-cc-pVTZ wavefunc-
tion along the coordinates with significant contribution. These
surfaces peak at trans geometries and cancel along cis for S1
and S2. The transition dipole along the z-component also has
a significant value. To keep things manageable, in this work
only excitation along the x-component was considered. This
should give identical results to using the y-component since
the x and y vectors form a Πu representation.

Like diabatic coupling, transition dipole coupling exhibit
pJT like relations amongst the states. For example, from sym-
metry considerations, it is possible to show that 〈Σ+

g |µ|∆u〉
transition dipole surfaces expanded to first order in nuclear
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 θa 

Fig. 10 Transition dipole along θa; black: x-plane for 1Σ−u , blue:
x-plane for 1∆x

u, green: y-plane for 1∆
y
u. The sign of the surface is

reversed for coordinate θb.

coordinates have the following relations:

〈Σ+
g |µx(θa)|∆u〉 =−〈Σ+

g |µy(θb)|∆u〉=−〈Σ+
g |µx(θb)|∆u〉=

〈Σ+
g |µy(θa)|∆u〉 =+〈Σ+

g |µy(φa)|∆u〉=−〈Σ+
g |µy(φb)|∆u〉=

〈Σ+
g |µx(φb)|∆u〉 =−〈Σ+

g |µx(φa)|∆u〉
(14)

Similar terms can be obtained for 〈Σ+
g |µ|Σ−u 〉. The field was

enveloped under a Gaussian function to avoid the cost of prop-
agating a wavefunction under a permanent time-dependent ex-
ternal field; under such conditions, the constant mean-field in-
tegration scheme38, where the mean-field matrices are kept
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constant for longer time-steps than the single-particle func-
tions and MCTDH coefficients, cannot be used. Due to com-
putational limitations, it was only possible to model pulses in
the range of tens of femtoseconds. Modelling a femtosecond
laser pulse restricts the energy resolution that can be achieved
as its Fourier decomposition will result in a spread of frequen-
cies given by the uncertainty principle; a bandwidth with a
full width at half maximum (FWHM) of 0.14 eV was obtained
with a pulse of ∆t = h/∆E = [eV · fs]/[eV] = 4.135/0.14∼ 30
fs FWHM. The pulse is modelled using the following Gaus-
sian envelope:

ε(t) =
s
σ

√
4ln2

π
exp
(
−4ln2

σ2 (t− t0)2
)

cos(ω(t− t0)) (15)

where σ is the FWHM, s the strength parameter of the pulse
and ω the central frequency.

As the excited vibrational states have resonances to differ-
ent central frequencies, the population transferred is variable.
However, to ensure that at least 1% of the population is trans-
ferred for all tests (in some instances we obtained full pop-
ulation transfer), the strength parameter was set to 70. Step
functions were placed at the tails of the Gaussian envelope to
help with numerics. After the pulse had ensued (∼ 65 fs), the
propagation was halted and the CMF algorithm was used to
continue the propagation for another 200 femtoseconds.

Six equidistant central frequencies with energies of 6.4-7.8
eV + (ZPES0) - ∆IR where used, where ∆IR is the energy gained
from the Morse raising operator. With this operator we ‘IR’
pre-excite wavefunctions with the fundamental and overtones
2, 3, 5 and 7 to test with the mentioned pulses. Complex ab-
sorbing potentials (CAP) were used to annihilate any compo-
nents to the wavefunction that attempt to leave the grid along
the Ra|b coordinates. For the angular coordinates, at least nine
two-dimensional SPF per state were required to ensure that
the smallest SPF coefficient contributes ∼ 10−4 to the wave-
function. Similarly, at least six two-dimensional SPF per state
were required for the radial coordinates and four for the CC
stretch. With a sufficiently large grid we ensured the recipro-
cal grid in momentum space could describe the faster compo-
nents of the wavefunction under the pulse field. This required
51 grid points for θ , 49 for φ , 91 for R and 75 for Qccs.

Details for 36 propagations with varying initial overtone
and central UV frequency are tabulated in 5. From this ta-
ble, the following trends are apparent: with increasing to-
tal excitation energy more population is transferred from the
ground state to excited states and greater dissociation results.
Exciting with a total energy centred around 6.4 eV might re-
duce the number of states available to populate (resonant), be-
ing near the first vibrational S1 state. Although pre-exciting
to higher overtones reduces the overall transfer of popula-
tion when applying the UV-pulse, the flux across dissociation

channels nevertheless increases significantly compared to no
pre-excitation.

This is best illustrated, using the labelling in table 5, by not-
ing that propagation uv4-ir0 (no pre-excitation, but almost full
transfer from the ground state) dissociates as much as uv4-ir5
(large pre-excitation, but less 0.5% transfer from the ground
state). The model suggests that preparing the initial wave-
function in a higher local CH mode reduces the vibrational
overlap between the ground state and electronic excited state
vibrational wavefunctions but increases the energy imparted
towards dissociation. We remind the reader that in these prop-
agations the light pulse excites along trans vibrational modes,
since these have the strongest transition dipole surface ele-
ments. However, since the transition dipole along R are not
negligible, it may be that this model does not accurately re-
produce the correct transition vibrational overlap along these
coordinates.

Fig. 11 shows the flux into the dissociation channel for all
states over the 250 fs, for all 36 propagations. One can see that
for pre-excited pulses most of the transfer occurs shortly after
the pulse, whereas for the relaxed ground state wavefunction
the density transferred often continues to accelerate across the
dissociation region even after 200 fs.

The favoured geometries were determined at the time of
dissociation during the first 265 fs of dynamics. Figs. 13-
21 provided as supplementary information (some examples
reprinted in Fig. 12) show sets of frames of flux into the disso-
ciating channels of Ra within the coordinates φa (y-axis:(π >
φa >

π

2 )) and θa (x-axis:(π > θa > 0) while keeping θb fixed
in each frame ( π

2 > θb > 0). Each frame shows a value of i
for θb = (π/2− π/2×i

10 ), i = 0,1, ...,9. Note that θb = π/2 (in
equilibrium). φa roughly describes out-of-plane geometries
(when θa and θb 6= equilibrium), while θa < π

2 corresponds
to trans conformations and θa > π

2 to cis (for θb 6= π

2 , away
from the equilibrium geometry). Throughout all maps φb = π ,
fixed in the equilibrium geometry. In other words, each set
of frames shows a 3D subspace representing distinguishable
geometries (i.e. trans, cis, linear, bent and out-of-plane ge-
ometries), with a colour map determining the flux across that
dissociation channel. By bent geometry we mean one of the
bond angles is 180◦.

It should be mentioned that in the present experiment,
where we modelled a plane polarised pulse along the xz-plane,
the flux across trans, cis motion in the yz-plane should not re-
sult in the same as the xz-plane (therefore not shown in fig-
ures). Each frame was obtained by generating a collection of
geometry grid points representing the final flux for Ra dissoci-
ation of the wavefunction around this region. The flux in this
subspace is obtained by first acting on the wavefunction with a
product of box functions so as to only leave density around the
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Label Tot En
(eV)a

M Ob GS En
(eV)c

UV En
(eV)d

% S0 Pop e Tot
Diss f

Tot
Dissg

uv0-ir0

6.40

0 0.76 5.64 0.93272611 0.00001 0.01035
uv0-ir1 1 1.24 5.16 0.99513311 0.00001 0.00219
uv0-ir2 2 1.45 4.95 0.99889976 0.00003 0.00216
uv0-ir3 3 1.69 4.71 0.99984823 0.00006 0.00208
uv0-ir4 5 2.21 4.19 0.99994895 0.00166 0.00826
uv0-ir5 7 2.73 3.67 0.99983620 0.03261 0.08193
uv1-ir0

6.68

0 0.76 5.92 0.80290768 0.00002 0.03805
uv1-ir1 1 1.24 5.44 0.97325940 0.00004 0.00853
uv1-ir2 2 1.45 5.23 0.99135512 0.00016 0.02151
uv1-ir3 3 1.69 4.99 0.99791293 0.00045 0.02577
uv1-ir4 5 2.21 4.47 0.99977558 0.00170 0.01856
uv1-ir5 7 2.73 3.95 0.99937751 0.00184 0.05784
uv2-ir0

6.96

0 0.76 6.20 0.63214908 0.00011 0.14830
uv2-ir1 1 1.24 5.72 0.90362589 0.00050 0.03097
uv2-ir2 2 1.45 5.51 0.96092724 0.00203 0.09330
uv2-ir3 3 1.69 5.27 0.98791055 0.00902 0.16378
uv2-ir4 5 2.21 4.75 0.99849079 0.02113 0.11037
uv2-ir5 7 2.73 4.23 0.99840603 0.10555 0.46281
uv3-ir0

7.24

0 0.76 6.48 0.44770916 0.00034 0.46996
uv3-ir1 1 1.24 6.00 0.75210196 0.00156 0.16474
uv3-ir2 2 1.45 5.79 0.86979412 0.00807 0.81784
uv3-ir3 3 1.69 5.55 0.94852116 0.04258 1.07881
uv3-ir4 5 2.21 5.03 0.99267406 0.34027 1.13715
uv3-ir5 7 2.73 4.51 0.99669197 0.96607 2.54839
uv4-ir0

7.52

0 0.76 6.76 0.10565797 0.00224 2.17146
uv4-ir1 1 1.24 6.28 0.59616333 0.00616 0.30913
uv4-ir2 2 1.45 6.07 0.73817475 0.01522 1.01600
uv4-ir3 3 1.69 5.83 0.84498736 0.12002 4.61980
uv4-ir4 5 2.21 5.31 0.97359007 0.67901 3.47766
uv4-ir5 7 2.73 4.79 0.99154697 2.67559 6.33137
uv5-ir0

7.80

0 0.76 7.04 0.04684333 0.00636 8.57936
uv5-ir1 1 1.24 6.56 0.37867083 0.01286 0.98093
uv5-ir2 2 1.45 6.35 0.57932659 0.04972 1.72780
uv5-ir3 3 1.69 6.11 0.69098010 0.15060 11.9383
uv5-ir4 5 2.21 5.59 0.92338604 0.41226 8.03986
uv5-ir5 7 2.73 5.07 0.97904797 0.95607 4.33664

Table 5 Results from a series of propagations of acetylene with different initial IR + UV excitations. a Total energy (MO excitation + central
pulse) includes Zero Point Energy. ; b M.O. = Morse potential Overtone. ; c Ground state energy after using Morse ladder Operator (includes
ZPE). ; d Central Frequency of pulse. ; e Population remaining in ground state after pulse. ; f = Density (x1000) absorbed by dissociation
CAP’s after Pulse (65fs). ; g = Final density (x1000) absorbed by dissociation CAP’s after Pulse (265 fs).
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Fig. 11 Cumulative flux into the dissociation channel along Ra for 36 simulations. Time=0 fs determines when the UV-pulse has finished.
Labels for propagations refer to Tab 5 and to flux maps in Supplementary information.
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Fig. 12 Four representative panels displaying the total flux for all states into the Ra dissociation channel for 200 fs after the UV-pulse has
ended, within a 3D, angular-coordinate subspace (in ten 2D frames). Coordinate dimensions in radians. The y-axis correspond to φa the
azimuthal angle: π corresponds to the CCH linear conformation (bottom of the y-axis) and at π

2 (the top of the frame) corresponds to an
out-of-plane geometry (with respect to atom b). The x-axis corresponds to the θa polar angle: π

2 corresponds to the CCH linear geometry (and
located half-way along the x-axis) and with respect to atom b it forms a trans (left side of x-axis) or cis (right side of x-axis). Each frame
corresponds to a value of the polar angle of atom b, 0 < θb <

π

2 . Each frame has a number in the top LHS of the frame which provides the
contribution each frame gives to the total flux into the Ra dissociation channel (normalised to 10.0). In brackets (Total E (eV), Morse
Overtone). from left to right : uv4-ir0 (7.52,0) - near linear ; uv1-ir2 (6.68,2) - trans (with slight out of plane) ; uv0-ir4 (6.4 ,5) - mixture of cis
and trans (with slight out of plane) ; uv4-ir4 (7.52,5) - bent and cis (with strong out of plane)
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specific grid geometry θa = θa0,φa = φa0,θb = θb0,φb = π:

Θ̂|Ψ〉=[
[Θ+(θa−θ

+
a0) ·Θ

−(θa−θ
−
a0)]·

[Θ+(φa−φ
+
a0) ·Θ

−(φa−φ
−
a0)]·

[Θ+(θb−θ
+
b0) ·Θ

−(θb−θ
−
b0)]·

[Θ+(φb−
21π

20
) ·Θ−(φb−

19π

20
)]

]
|Ψ〉

(16)

where Θ± are the forward and backward step functions. θ
±
a0 =

θa0± π

20 Thus by setting θ
±
a0 so as to make a 4D box function

of width π

10 and centred at {θa = θa0,φa = φa0,θb = θb0}. The
flux is evaluated by taking the expectation value of the com-
mutator of a step function along Ra with the kinetic energy
operator:

〈Ψ|
[

Θ
+(Ra−Rdiss), p̂2

i +
L̂2

i
R2

a

]
|Ψ〉 (17)

Table 6 clarifies the results by giving the most likely ge-
ometries at the moment of dissociation for a given IR pre-
excitation (Morse overtone using the ladder operator) and UV
pulse. The observations and predictions this model makes can
be summarised as follows:

• Exciting in the region of 6-7 eV (including ZPE) should
lead to dissociation in a slightly out-of-plane trans geom-
etry, unless pre-excited with more than 2.2 eV along the
CH vibration, where the molecule is likely to dissociate
at near-linear and bent geometries. These channels are
likely to belong to S1.

• Exciting above 7 eV (including ZPE from the ground
state a mixture of out-of-plane cis and trans geometries
are obtained. These channels are likely to belong to S1.

• Strong out-of-plane, cis geometries are obtained by ex-
citing from high overtones to energies in the 7.5-7.8 eV
range. These channels are likely to belong to S2.

• No pure cis dissociating geometries were seen, having at
least some out-of-plane contribution. No cis was found
below ∼7 eV

Since we are working in a diabatic representation which was
built from strongly mixed adiabatic states and a pulse which
results in an energy band of 0.14 eV width, it was not possible
to determine with confidence to which adiabatic states these
different dissociating channels belong to. The adiabatic disso-
ciation channels suggested in the above summary are based on
the minima shown in Fig. 8, basins suggested by Fig. 8 and
geometries in Tab 1.

Total Energy (eV): IR + UV

Over
tone

6.4
(uv0)

6.68
(uv1)

6.96
(uv2)

7.24
(uv3)

7.52
(uv4)

7.8
(uv5)

0
(ir0) [T2-P1] [T2-P1] [T2-P1] [T2-P1] [C2-P2]

[T2-P2]

[B2-P2]
[T2-P2]
[C2-P2]

1
(ir1) [T2-P1] [T2-P1] [T2-P1] [T2-P2] [T2-P2] [T2-P2]

2
(ir2) [T2-P0] [T2-P0] [T2-P0] [T2-P1] [T2-P0] [T1-P0]

3
(ir3) [L -P0]

[B2-P2]
[T2-P0] [T2-P0] [T2-P1] [T2-P0] [T1-P0]

5
(ir4) [L -P0]

[B2-P1]
[L -P0]
[B2-P2]

[L -P0]
[B2-P2]

[B2-P2]
[T2-P0]

[B2-P3]
[C2-P2]

[B2-P3]
[C2-P3]

7
(ir5) [L -P0] [L -P0] [L -P0]

[B2-P2]
[T2-P2]
[C2-P2]

[B2-P3]
[C2-P2]

[B2-P3]
[C2-P3]

Table 6 Approximate geometries of dissociating H atom based on
VMD flux maps like those in Fig. 12. Legend:
letters: T=trans, C=cis, B=bent, L=linear, P=out-of-plane coordinate
contribution to T or C. numbers: 0=0◦, 1= π

8
◦, 2= 2π

8
◦
, 3= 3π

8
◦
,

radians away from equilibrium geometries referring to T, C, B or P.
By bent geometry we mean one of the bond angles is 180◦. Note that
for B geometries P cannot refer to out-of plane geometries (dihedral
angle not defined), but continues to be a bent molecule with P only
describing the location of the density in the 2D flux maps
(corresponding to a rotation about the z-axis of the bent molecule).
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4 Conclusions

The Σ+
g symmetry adapted polynomials basis generated else-

where9 were used to fit a full internal DOF, 10 state model
of acetylene. The model includes Renner-Teller and pseudo
Jahn Teller coupling along dissociation coordinates. To use
this basis, coordinates forming a basis for D∞h irreducible
representations were devised by a spherical polar transfor-
mation from rotated normal coordinates. Ten states were re-
quired to properly fit the first three excited states using these
1D product-form functions. The model agrees well with the
critical points reported in the literature, correctly describes
the S1 and S2/3 minima as well as out of plane geometries
The calculated experimental absorption spectra agrees quali-
tatively with the experimental one. This served as a validation
for the model which was then used to simulate VMD exper-
iments akin to those found in the literature. This was done
by operating the initial ground state wavefunction with Morse
ladder operators, mimicking IR pre-excitation, followed by a
Gaussian enveloped sinusoidal function representing a exper-
imental pulse polarised laser field. An increase in dissociation
yield was obtained by increasing pre-excitation, despite the
decrease in population-transfer away from the ground state,
owing to a reduced vibrational overlap with excited states. The
model suggests that for energies in the range 6.4-7.0 eV, S1
can give trans or linear/bent geometries depending on the IR
pre-excitation of CH stretch local modes. Similar control can
be obtained in the range 7-8 eV for state S2, where we can
also obtain dissociation at cis geometries. These results com-
plement and agree with many of the observations reported in
the literature; Indeed the trans mode plays an important part in
the dissociation mechanism, this work adds further light into
the dynamic behaviour of this fundamental system.
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