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Abstract

Background: Phenotypic data derived from high content screening is currently annotated using free-text, thus
preventing the integration of independent datasets, including those generated in different biological domains, such
as cell lines, mouse and human tissues.

Description: We present the Cellular Microscopy Phenotype Ontology (CMPO), a species neutral ontology for
describing phenotypic observations relating to the whole cell, cellular components, cellular processes and cell
populations. CMPO is compatible with related ontology efforts, allowing for future cross-species integration of
phenotypic data. CMPO was developed following a curator-driven approach where phenotype data were
annotated by expert biologists following the Entity-Quality (EQ) pattern. These EQs were subsequently transformed
into new CMPO terms following an established post composition process.

Conclusion: CMPO is currently being utilized to annotate phenotypes associated with high content screening
datasets stored in several image repositories including the Image Data Repository (IDR), MitoSys project database
and the Cellular Phenotype Database to facilitate data browsing and discoverability.
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Introduction
Recent advances in imaging techniques make the study
of complex biological systems feasible, particularly at the
cellular level, complementing existing “omics” ap-
proaches, most notably genomics and proteomics, by re-
solving and quantifying spatio-temporal processes with
single cell resolution [1]. High content screening (HCS)
is an imaging based multi-parametric approach that al-
lows the study of living cells. HCS is used in biological
research and drug profiling, to identify substances, such
as small molecules or RNA interference (RNAi) re-
agents, which can alter the phenotype of a cell. It can
also be used to look at the effect of knocking out genes
completely, or to determine protein localization by
modifying genes to produce tagged proteins that can be
visualized. Phenotypes may include morphological

changes of a whole cell, or any of its cellular compo-
nents, as well as alteration of cellular processes.
Correlative analysis of cellular phenotypes, specific to

individual genes, with morphological imaging data from
diseased tissue specimens (both human and mouse tis-
sues) allow us to link phenotypic data to associated
image annotations and metadata, leading to a powerful
predictor of disease biomarkers as well as drug targets.
For example, when a certain cellular phenotype, like ‘mi-
totic delay’ or ‘multi-nucleated cells’, observed in cells
after gene knockdown experiments, is also observed in
cells of a cancer tissue, this could give us an indication
of which gene(s) might be involved in the aetiology of
the disease, in that specific tissue. Knowledge of the
functional implications of somatic tumor mutations can
thus be used to design more targeted drug therapies.
Data derived from live cell imaging is typically associ-

ated with rich metadata, including genetic information,
and can be more easily interpreted and linked to under-
lying molecular mechanisms. As we move to higher or-
ganisms, such as mouse and human, the degree of
metadata available decreases (e.g. no genetic information
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is available for diseased human tissues), alongside the
feasibility of assays that can be carried out in such or-
ganisms (e.g. genetic engineering is only possible in cell
lines and mouse models). Taking this into consideration,
it becomes evident that integrating imaging datasets
from different biological domains could greatly advance
our understanding of the molecular mechanisms under-
lying specific diseases.
Due to its late arrival on the “omics” scene, the im-

aging field has not yet achieved the same degree of
standardization that other high-throughput approaches
have already reached [1], thus hampering integration of
image data with current biological knowledge. Standards
are needed for describing, formatting, archiving and ex-
changing image data and associated metadata, including
suitable nomenclatures and a minimal set of information
for describing an imaging experiment. This is crucial to
enable the establishment of databases and public reposi-
tories for image data and allow for the integration of in-
dependent datasets.
The use of ontologies to annotate data in the life sci-

ences is now well established and provides a means for
the semantic integration of independent datasets. Des-
pite the availability of several species-specific ontologies
for describing cellular phenotypes (e.g. the Fission Yeast
Phenotype Ontology), there isn’t an appropriate infra-
structure in place to support the large-scale annotation
and integration of phenotypes across species and differ-
ent biological domains.
As part of the BioMedBridges project,1 efforts are un-

derway to integrate biological imaging datasets provided
by emerging biomedical sciences research infrastruc-
tures, including Euro-BioImaging,2 for the provision of
cellular image data; Infrafrontier,3 for mouse tissue
image data, and BBMRI/EATRIS,4 for human tissue
image data. Such infrastructures are generating a wealth
of imaging data that can only be made interoperable
through consistent annotation with appropriate
ontologies.
There has been much work published on the develop-

ment of cross-species phenotype ontologies and their
benefits [2]. To date ontologies describing phenotypes
exist for a host of species including mammalian pheno-
types (MP; [3]), Ascomycetes (APO; [4]), S. pombe
(FYPO; [5]) and C. elegans (WPO; [6]). There are also
well established ontology design patterns for modeling
phenotypes in a species and domain independent man-
ner that utilise the Phenotype and Trait Ontology
(PATO) [7]. These phenotypic descriptions are based
around the Entity-Quality model (EQ) that refers to de-
scribing a phenotype in terms of an Entity (E), from one
of many given reference ontologies, such as Gene Ontol-
ogy (GO, [8]) and an associated Quality (Q), from PATO
[9]. For example, a “large nucleus” phenotype could be

expressed in EQ using the entity term “nucleus”
[GO:0005634] from GO’s cellular component and the
quality term “increased size” [PATO:0000586] from
PATO. This model has been adopted by a range of
model organism databases for the annotation of various
phenotypes ranging from disease, anatomical and cellu-
lar phenotypes [10].
Ontology languages, such as the Web Ontology Lan-

guage (OWL), allow us to express logical definitions for
classes that describe class membership based on quanti-
fied relationships to other classes. The Basic Formal
Ontology (BFO) defines the “inheres in” [BFO:0000023]
relationship that can be used to capture the relationship
between qualities, which in BFO are specifically
dependent continuants, and the bearer of those qualities,
which are typically independent continuants. For ex-
ample, in order to logically define a “large nucleus
phenotype” we say that the quality of “increased size”
inheres in the bearer, which in this case would be the
“nucleus”. We can express this relationship logically in
OWL using existential quantification to assert that the
class of all “large nucleus phenotype” is equivalent to the
class of things that have an “increased size” quality that
“inheres in” a “nucleus”. We could go on to further de-
scribe another class of phenotypes, such as a more gen-
eral “nuclear size phenotype” and by virtue of the fact
that “increased size” is a subclass of a more general “size”
quality, use an OWL reasoner to automatically classify
“large nucleus phenotype” as a subclass of “nucleus size
phenotype”. Highly scalable reasoners, such as ELK [11],
have made it practical for ontology engineers to fully ex-
ploit this expressivity when working with large ontol-
ogies. In the case of building phenotype ontologies, it
means we can now build logical class definitions for a
large number of phenotypes following the EQ pattern,
and let the reasoner do the work to classify those pheno-
types and infer equivalence across different phenotype
ontologies.
A previous effort to develop a species neutral cellu-

lar phenotype ontology (CPO) was undertaken by
Hoehndorf et al. [12]. The CPO was automatically
generated and includes logical class definitions com-
posed from GO and PATO terms. Whilst in principle
this is a reasonable approach, in practice the resulting
ontology was difficult to work with and did not pro-
vide a good vocabulary for data annotation. The size
of the ontology coupled with limitations in standard
ontology authoring software made it impractical to
extend and maintain this ontology whilst keeping in
sync with GO and PATO via the automatic gener-
ation process. The size and automatic label creation
strategy also made it difficult for the biocurators to
find terms for annotating data. It would have been a
considerable amount of effort to manually clean the
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CPO to make it fit for purpose as a general annota-
tion vocabulary for imaging datasets.
Our approach was therefore to build CMPO from the

available data, using a post-composition approach where
phenotypes were manually annotated with ontology
terms that were later used to compose new stable
phenotype terms in the ontology. These new terms were
annotated with appropriate meta-data, such as synonyms
and definitions that reflect how the terms are used in
the data and literature.

Results
As of release 1.9 CMPO contains 361 phenotype terms.
CMPO provides a root class called ‘cellular phenotype’
which is further divided into five major sub-types,
namely; ‘cell process phenotype’, ‘cellular component
phenotype’, ‘molecular component phenotype’, ‘single cell
phenotype’ and ‘cell population phenotype’. (Fig. 1). Each
of these categories represents a different level of granu-
larity for which we see phenotype descriptions in the

data. Every effort is made to ensure that each CMPO
term has an equivalence axiom that describes the term
using an OWL class expression. We strive to avoid
asserting subclass axioms between named phenotype
classes and instead use a reasoner to infer classification
using logically defined classes.

Cell process phenotype
The cell process phenotypes aim to capture phenotypic
descriptions at the level of cellular processes. Using the
Manchester OWL syntax (MOS) notation5 we can ex-
press a CMPO cell process phenotype as being logically
equivalent to the anonymous OWL class ‘has_part some
(‘process quality’ and (inheres_in some biological_pro-
cess))’, where the ‘process quality’ comes from PATO and
the biological_process term is from GO. In some cases,
such as the CMPO ‘mitotic process phenotype’, we
would like to capture all phenotypes that inhere either
the GO ‘mitotic cell cycle’ or part of the GO ‘mitotic cell
cycle’. Whilst OWL provides the vocabulary for union
(OR) operators in OWL class descriptions, this would
take CMPO outside of the OWL-EL6 sublanguage. In
order to keep CMPO within EL and have the ability to
compute desirable subclass relations, we used two separ-
ate equivalence class axioms e.g. ‘mitotic process pheno-
type’ is equivalent to ‘has_part some (‘process quality’
and (inheres_in some (part_of some ‘mitotic cell cycle’)))’
and equivalent to ‘has_part some (‘process quality’ and
(inheres_in some ‘mitotic cell cycle’))’.
There are also cases where phenotype descriptions at-

tempt to capture the absence of a process e.g. ‘absence of
mitotic chromosome decondensation phenotype’. Whilst
PATO contains a quality called ‘lacking processual parts’,
it would be incorrect to assert that absence of mitotic
chromosome decondensation is a quality that inheres in
the mitotic chromosome decondensation process itself.
To deal with such cases we make use of the BFO ontol-
ogy ‘specifically depends on at all times’ [BFO:0000070]
(also referred to as ‘s depends on’ or ‘towards’) relation,
that can be used to relate a relational quality or dispos-
ition to a relevant entity. For ‘absence of mitotic chromo-
some decondensation phenotype’ we describe it as a
‘lacking processual parts’ quality that inheres in the cell
cycle as a whole, where the ‘lacking processual parts’
quality specifically depends on the ‘mitotic chromosome
decondensation phenotype’. The fully qualified equivalent
class description for this phenotype is ‘has_part some
(‘lacking processual parts’ and (towards some ‘mitotic
chromosome decondensation’) and (inheres_in some ‘cell
cycle’))’. A similar pattern is used throughout CMPO to
deal with cases of phenotypes where the phenotype de-
scribes the absence of a particular entity.
HCS data often includes phenotypes relating to pro-

tein localisation in the cell. CMPO aims to describe

Fig. 1 Visualisation of the top-level terms in the CMPO phenotype
ontology showing cell process, single cell, cellular component and
molecular component phenotypes
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protein localisation phenotypes in terms of the protein
localisation process that is occurring along with details
of the protein complex being transported and in some
cases the target and end location of the protein. Using
the ‘transports or maintain localization of ’ and ‘has tar-
get end location’ object properties from the OBO Rela-
tion Ontology we describe a complex phenotype as
equivalent to ‘has_part some (‘occurrence quality’ and
(inheres_in some (‘protein localization’ and (‘transports
or maintains localization of ’ some polypeptide) and (‘has
target end location’ some cellular_component))))’. The
GO provides good coverage of protein localisation pro-
cesses that CMPO has utilised to develop a branch of
protein localisation phenotypes relating to various cellu-
lar components and the CMPO design pattern is con-
sistent with the pattern used in the OWL edition of GO.

Cellular component phenotypes
All cellular component phenotypes are logically de-
scribed as any quality (non processual quality) that
inheres in any cellular component from GO e.g. in
MOS notation ‘has_part some (quality and (inheres_in
some cellular_component))’. Typically these observa-
tions relate to the morphology or position of a par-
ticular component in a cell. In order to drive all the
necessary inference to infer subclasses of a general
term such as ‘nuclear phenotype’ we describe these
terms using three equivalence class axioms to capture
qualities of the nucleus, nuclear parts, and any qual-
ities that11 are ‘towards’ the nucleus.

Molecular component phenotypes
The molecular component phenotype branch describes
phenotypes at the level of molecules in the cell. All mo-
lecular component phenotypes are logically equivalent to
‘has_part some (quality and (inheres_in some ‘molecular
entity’))’ where the molecular entity is a bio-molecule
from the ChEBI ontology [13]. To date this branch of
the CMPO only contains phenotypes terms relating to
the shape of DNA molecules within the cell.

Single cell phenotypes
Single cell phenotypes in CMPO describe phenotypes
that are observed at the level of the whole cell. Single
cell phenotypes are described as logically equivalent
to ‘has_part some (quality and (inheres_in some’cell in
vitro’))’ where ‘cell in vitro’ is imported from the Cell
Ontology [14]. The single cell phenotypes are further
classified in terms of cellular component number,
whole cell morphology, cell movement, cell nucleation
and cell viability.

Cell population
CMPO describes a cell population phenotype as a collec-
tion of qualities that inhere in a population of cells. We
distinguish between qualities of the population as a
whole and qualities of individual cells within the popula-
tion using the Relation Ontology ‘bearer of ’ relationship.
For example, CMPO describes a ‘fewer mitotic meta-
phase cells’ phenotype as a ‘has fewer part of type’ quality
that inheres in a population that bears a ‘mitotic meta-
phase phenotype’. In MOS we can define ‘fewer mitotic
metaphase cells’ as equivalent to ‘cell population’ that
‘has_part some (‘has fewer parts of type’ and (‘bearer of ’
some ‘mitotic metaphase phenotype’))’.

CMPO annotation properties
CMPO follows many standard conventions from the OBO
foundry for ontology term metadata. Every CMPO term
must have an rdfs:label and definition using the Informa-
tion Artifact Ontology (IAO) “definition” [IAO:0000115]
predicate. In cases of phenotype terms that could be
traced back to a source publication or dataset, we used
the “definition source” [IAO:0000119] predicate from IAO
to link the term to the publication. The standard set of
OBO synonym properties are also used to capture exact,
broad and narrow synonyms for a term. The source
CMPO OWL file imports the full GO and PATO ontology
to support development of the ontology and to drive the
inference. Finally we define a CMPO slim so that we can
easily extract a simplified version of CMPO for a release
of the ontology that exclude all the PATO and GO terms.

CMPO availability
The CMPO homepage (http://www.ebi.ac.uk/cmpo) pro-
vides access to the ontology and issue tracker for sub-
mitting new term requests. The source ontology for
CMPO is hosted on GitHub7 and it is also available from
the NCBO BioPortal [15] and the EMBL-EBI’s Ontology
Lookup Service (OLS).8

Applications of CMPO
In the context of the BioMedBridges project, we want to
demonstrate the power of interoperability of large-scale
image data sets from different biological scales to enable
drug target and biomarker discovery for human diseases,
focusing on cancer as an example.
CMPO is being used to annotate mitotic phenotypes

observed in live human cells, as well as cellular pheno-
types from tissue microarrays of diseased tissues from
both human patients and mouse models. Analysing
phenotypic correlations between cellular and tissue data
sets, and linking imaging data with molecular data, in-
cluding the cancer genome sequence and expression
data, will allow for in silico validation of the predictions
and prioritization of biomarkers for validation in clinical
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research. In particular, we focus on genes with a function
in controlling cell cycle and cell division, as well as inva-
sive behaviour, for which comprehensive molecular and
cellular datasets are available.
CMPO is currently being utilized to annotate pheno-

types associated with HCS datasets stored in the Image
Data Repository (IDR), a next generation repository cur-
rently being developed to: (i) provide easy access to ‘ref-
erence’ image data linked to peer-reviewed publications
and support browsing, search and visualization of image
data and metadata; (ii) facilitate the establishment and
adoption of data standards to enable interoperability of
image data; (iii) link such data to other biomolecular
data resources (e.g. genomics databases, structural data-
bases and functional annotation) and (iv) build a compu-
tational resource to support the re-analysis of image
data and the development of new computational tools.
IDR is built upon established, actively developed open
source platforms and applications, including the
OMERO software for visualization, management and
analysis of biological microscope images [16]. The
OMERO API is currently being extended to explicitly
support ontological annotations and access CMPO
through OLS to look up of additional information and
subsumption queries [17]. Since CMPO has been applied
to annotate phenotypes associated with IDR data (Fig. 2),

50 new phenotype terms have been added to the ontol-
ogy. CMPO has also been integrated into the MitoSys
project database9 and the Cellular Phenotype Database
[18] to facilitate data browsing and discoverability. Work
is in progress to add a functionality for ontology based
browsing in CellCognition [19].

Method
Eleven imaging datasets were initially sourced to collect
a set of candidate phenotypic descriptions for manual
ontology annotation [20–30]. Our approach was to an-
notate the phenotypes with terms from GO and PATO
to generate EQ based annotations that would be later
post-composed to form new CMPO terms. We devel-
oped a simple Web application called Phenotator for the
data providers to submit and annotate their phenotypes
with an EQ. The Phenotator is built using services from
the NCBO BioPortal [15] to generate simple drop down
menus and autocomplete search functionality to guide
the users in generating EQs with appropriate terms
(Fig. 1). Phenotator has a feature to export the collected
EQ annotations as an OWL file containing new terms
that are logically defined according to the SUBQ pat-
tern,10 which can be expressed in Manchester OWL syn-
tax as “(has_part some (<Quality> and inheres_in some
<Entity>))”. One hundred twenty-seven phenotype

Fig. 2 Screenshot of the Image Data Repository showing image meta-data that include phenotype annotation to CMPO term “decreased
duration of mitotic prophase” [CMPO:0000329]
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descriptions from the original 11 datasets were entered
into Phenotator, together with 41 phenotypes collected
from cell migration assays (Z. Kam, personal communi-
cation) and 193 phenotypes from the GenomeRNAi
database [31]. The domain experts entered EQ based de-
scriptions for a total of 201 phenotypes.
The EQs were exported from Phenotator as an

OWL file and loaded into the Protege OWL ontology
editor. The generated OWL file imported the full
Gene Ontology and PATO and the ELK reasoner was
used to compute an automatic classification of the
post-composed EQ terms. The biological curators and
ontology experts were able to use this classification to
both verify the collected EQs and inform the organ-
isation of the upper level of the ontology so that the
terms were classified into useful categories. After sev-
eral iterations of this process, the post-composed
terms were assigned permanent CMPO identifiers and
relevant metadata for each term was collected in
preparation for the initial release.
CMPO accepts new terms requests via the CMPO

website and also accepts more structured term requests
via the Webulous application. Webulous provides a ser-
vice for specifying ontology term creation templates.
These templates can be loaded into tools such as Google
Sheets using the Webulous Google Sheets Add-on,11 so
that users can submit batch requests of new terms to
CMPO. The CMPO Webulous templates have been used
by the Image Data Repository (IDR) curators as a mech-
anism for adding new terms to CMPO for both cellular
process and cellular protein localisation phenotypes.
CMPO releases are managed using a continuous inte-

gration server and the OBO ontology release tool
(Oort).12 CMPO is released as four files: a single OWL
file that contains all axioms and the full GO and PATO
import; a single Mireoted13 version of CMPO with only
relevant GO and PATO terms, and two simple versions
that only contain CMPO terms that are available in
OWL or OBO format. All files are made public via the
CMPO website and the CMPO GitHub repository.14

Discussion
CMPO follows established best-practices from the Open
Biomedical Ontology community and can provide a way
to bridge low-level cellular phenotype data across spe-
cies. Merging CMPO with other post-composed pheno-
type ontologies, such as FYPO, and classifying these
together using a reasoner shows that equivalent terms
can be inferred. Some manual intervention is required to
harmonise the URIs used for some of the relationships
and many terms don’t merge as expected because the
OWL version of FYPO doesn’t use the SUBQ pattern
used in CMPO. Best practices for the translations of EQ
annotations into OWL statements are still emerging and

inconsistent use of common OBO relationships and lack
of shared design patterns suggest that there is still some
work to be done to integrate the various cellular pheno-
type ontologies.
Most cellular phenotype ontologies contain terms for

describing features such as cell size, shape and morph-
ology that are often observations that can be considered
subjective or are only valid in the context of a particular
assay. For instance, nuclei are not bright unto them-
selves, but we have data where the phenotype has been
recorded as “bright nuclei” in response to a particular
treatment. CMPO currently includes terms such as
“bright nuclear body” and “increased cell size”, however,
these terms are unlikely to have a shared meaning across
independent datasets. We believe having these terms in
the ontology is important as they represent the vocabu-
lary of the domain, but their use without additional con-
text may be of less value for data integration. Ontologies
for describing types of microscopy assays already exist
and should be used in combination with ontologies like
CMPO in order to provide a meaningful annotation,
however, best practices and tooling to support this kind
of structured data annotations are still lacking.
Despite the generality of the ontology building meth-

odology applied, several challenges remain, including the
lack of common design patterns that curators could con-
sistently use when creating new terms, in the pre-
composition phase. The need for common design pat-
terns can be illustrated with an example from CMPO for
the creation of an ‘increased cytoplasmic actin pheno-
type’ term. This term was initially problematic to anno-
tate with a basic EQ because no term for cytosolic actin
existed in GO. The curators initially used a close ap-
proximation which was EQ(‘actin filament’, ‘present in
greater number in organism’), but the fact that the actin
is localised to the cytosol is lost in the EQ. To increase
the expressivity of the annotation in Phenotator a third
column was added to capture additional modifiers to the
EQ resulting in annotations emerging like EQE2 (‘actin
filament’, ‘localised’, ‘cytosol’). There are other ways that
one might consider describing this phenotype such as
EQE2 (‘cytosol’, ‘has extra parts of type’, ‘actin filament’).
Guidelines and tooling that help with guiding the cura-
tors to create a good EQ annotation are therefore
needed to resolve ambiguities and develop a consistent
strategy for creating new ontology terms.
Pattern-based tooling to rapidly generate new terms

are emerging and these could nicely complement exist-
ing tooling that are primarily aimed at annotating phe-
notypes with EQs such as Phenotator and Phenote.
Phenotator and Phenote do little to guide the annotator
to make a correct EQ annotation and the translation of
these annotations to OWL typically only allows for a
basic SUBQ pattern. Tools like TermGenie [32] and
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Webulous offer greater flexibility for post composing
terms, as they are not restricted to EQ alone and can
use more expressive design patterns for the translation
of input data into OWL.

Conclusion
CMPO is a species neutral ontology for describing cellu-
lar phenotypes that has been established according to
the best practices from the Open Biomedical Ontology
community. This allows CMPO to be developed inde-
pendently from other phenotype ontologies, but to also
remain interoperable via inference derived from the use
of logical class descriptions. This interoperability will
allow future integration of data annotated with species-
specific vocabularies with imaging data annotated with
CMPO.
We are committed to the continued development of

CMPO and the use of CMPO in tools such as CellCog-
nition and resources such as the IDR, Mitosys and Mito-
check. We are developing better tools to support
building ontologies from design patterns that allow us to
engage the imaging user community in the future devel-
opment of CMPO. Beyond the benefits in browsing and
searching phenotypic data, CMPO also enables new data
analysis. For example, by replacing free-text annotations,
CMPO makes automatic evaluation of phenotypic simi-
larity possible and allows systematic exploration of the
links between gene function and loss of function pheno-
types across experiments thus facilitating the conversion
of phenotypic annotations to functional annotations.
Additional work to harmonise the various cellular phe-
notypes ontologies with CMPO will provide new possi-
bilities for integration and analysis of this kind of data
across species.

Endnotes
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2http://www.eurobioimaging.eu/
3https://www.infrafrontier.eu/
4http://bbmri-eric.eu/
5http://www.w3.org/TR/owl2-manchester-syntax/
6http://www.w3.org/TR/owl2-profiles/#OWL_2_EL
7https://github.com/EBISPOT/CMPO
8http://www.ebi.ac.uk/ols
9http://www.mitosys.org/
10https://github.com/obophenotype/upheno/blob/mas-
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