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 The indentation-induced selective etching approach is proposed to fabricate 

site-controlled pyramidal nanotips on monocrystalline silicon surface. 

 

 The height and radius of the pyramidal nanotips increase with the indentation 

force or etching time within the etching time of 20 min. 

 

 Various tip arrays on silicon surface can be produced by selective etching of the 

site-controlled indent patterns, and the maximum height difference of these tips is 

less than 10 nm. 
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ABSTRACT 

In the present study, the indentation-induced selective etching approach is proposed to 

fabricate site-controlled pyramidal nanotips on monocrystalline silicon surface. Without any 

masks, the site-controlled nanofabrication can be realized by nanoindentation and post 

etching in potassium hydroxide solution. The effect of indentation froce and etching time on 

the formation of pyramidal nanotips was investigated. It is found that the height and radius of 

the pyramidal nanotips increase with the indentation force or etching time, while long-time 

etching can lead to the collapse of the tips. The formation of pyramidal tips is ascribed to the 

anisotropic etching of silicon and etching stop of (111) crystal planes in KOH aqueous 

solution. The capability of this fabrication method was further demonstrated by producing 

various tip arrays on silicon surface by selective etching of the site-controlled indent patterns, 

and the maximum height difference of these tips is less than 10 nm. The indentation-induced 

selective etching provides a new strategy to fabricate well site-controlled tip arrays for 

multi-probe SPM system, Si nanostructure-based sensors and high-quality information 

storage. 
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1. Introduction 

Nanotechnology has led the boom of information technology and biotechnology, and 

nanofabrication plays a key role in promoting scientific and technical development in modern 

world [1-3]. A number of commercial techniques have been developed for fabricating 

micro/nanoscale structures and devices, and some typical examples include photolithography, 

electron beam lithography, focused ion beam lithography and so on [4]. Although these 

prevalent nanofabrication methods got great progress in the past decades, their high operating 

cost and multiple-step processes largely restrict their applicability in many important areas. 

None of any current nanofabrication methods can satisfy all aspects of requirements in 

nanoscience and nanotechnology at the same time for meeting continuous ultra-precision 

devices and functional diversification [5,6]. To explore new micro/nanofabrication methods 

with high precision, low cost and high flexibility is still of much concern. Moreover, it is 

significant to achieve site-controlled nanofabrication on designated surface areas accurately 

for meeting special requirements [7,8].  

In recent years, new methods appear to be flexible alternatives for nanoscale patterning 

and fabrication. Due to its simplicity, low-cost and flexibility, scanning probe microscope 

(SPM) showed robust performance in local anodic oxidation [9,10], manipulation of single 

atoms [11,12], dip-pen nanolithography [4,13], surface texturing [14,15] and so on. As its 

basic ability, SPM lithography provides a maskless and straightforward approach by 

mechanical scratching to produce site-controlled nanochannels on the surface of various 

materials, where mechanical interaction plays a dominant role in the material removal [16,17]. 

The mechanical scratching can easily result in the wear of a diamond tip [18]. Moreover, the 

scratch-induced structural damage beneath the nanochannel area, such as amorphization and 

lattice distortion, cannot be avoided. Such structural damage will degrade the physical and 

mechanical properties of fabricated nanostructures [19,20]. An alternative SPM-based 

nanofabrication can be realized by friction-induced selective etching, and protrusive 

structures or deep grooves can be produced by post etching of a scratch on material surface, 

such as silicon, quartz, glass and so on [ 21-23]. For producing protrusive nanostructures, the 

amorphous layer and/or deformed crystal layer beneath the scratched area can act as an 

etching mask in KOH aqueous solution [24-26 ]. In contrast, the scratched area after 

tribochemical removal of surface oxide can promote the chemical attack from the etching 

solutions and result in deep groove [27]. It is also noted that high-aspect nanostructures can 

be produced on monocrystalline silicon through friction-induced selective etching of a 

scratched Si3N4 mask [28]. Various patterns, including slopes and hierarchical stages, can be 



produced by programming the loading mode and scanning traces. The friction-induced 

selective etching provides an active way for site-controlled nanofabrication without any 

masks. 

Since the nanoindentation can lead to a series of crystal transformation beneath the 

contact area [29], the pressed area is expected to act as a mask in post etching. In the present 

study, a simple nanofabrication method through indentation-induced selective etching was 

established to prepare pyramidal nanotips on silicon surface. The effect of indentation force 

and etching time on the formation of pyramidal tips was investigated, and the fabrication 

mechanism was addressed. As a maskless and straightforward nanofabrication approach, the 

indentation-induced method provides a new strategy to fabricate well site-controlled 

nanoscale tip-arrays and high-density storage structure. 

2. Materials and Methods 

2.1. Materials 

The Si(100), Si(110) and Si(111) wafers were purchased from MEMC Electronic 

Materials, Inc., USA. By an atomic force microscope (AFM; SPI3800N, Seiko Instruments 

Inc., Japan), the surface root-mean-square (RMS) roughness of the silicon wafers was 

measured as no more than 0.1 nm over a 1 μm × 1 μm area. To eliminate the effect of the 

native oxide layer on the fabrication, silicon wafers were dipped in 5 wt.% HF solution for 2 

minute to etch off the oxide layer [27]. Then the samples were ultrasonically cleaned with 

acetone, ethanol and deionized water for 3 min in turn to remove surface contaminations. 

2.2. Fabrication methods 

As shown in Fig. 1, the fabrication process consists of nano-indentation and post etching. 

With a Berkovich tip and an in-situ nanomechanical test system (TI900, Hysitron Inc., USA), 

a series of patterned indents were produced on silicon surface under various applied normal 

loads Fn of 2, 3 and 4 mN (Fig. 1a). Then the indented surface was immersed in KOH 

aqueous solution for various etching time, and pyramidal nanotips were produced in-situ from 

the indentation area on silicon surface (Fig. 1b). A mixture of 20 wt.% KOH solution and 

isopropanol alcohol (IPA) with the volume ratio of 5:1 was used as an etchant for selective 

etching, and IPA was employed to improve the surface quality [27]. The temperature for the 

selective etching was set as 25
o
C±0.5

o
C. All AFM images of the fabricated nanostructures on 

silicon surface were scanned by a Si3N4 tip (MLCT, Veeco Instruments Inc., USA) in vacuum 



with a nominal tip radius of ~20 nm. 

 

Fig. 1. Schematic diagram for the fabrication process by the indentation-induced selective 

etching. (a) Schematic diagram and AFM image of an indent produced on Si surface under an 

indentation force Fn. (b) A pyramidal tip created on Si surface after selective etching in KOH 

aqueous solution. 

3. Results and discussions 

3.1. Effect of etching time on indentation-induced selective etching 

The etching time has a strong effect on the formation of pyramidal nanotips during 

indentation-induced selective etching. An indent with a depth of about 6 nm was firstly 

produced by indenting under Fn=2 mN. Then a pyramidal nanostructure was detected on the 

indent area after dipping in KOH aqueous solution, as shown in Fig. 2. It was noted that the 

formation of nanotips was obviously etching time-dependent, and the height of the 

nanostructure increased firstly and then decreased with increasing etching time. The 

protrusive nanotips almost collapsed completely after etching for 60 min. The variation of the 

height of these nanotips with etching time was plotted in Fig. 3. The height increased from -6 

to 280 nm with the increase in etching time from 0 to 20 min, and 20 min-etching led to a 

maximum height. Since the deformation layer beneath the indented area can be etched away 

gradually with the increase in the etch time [25]. Long-time etching can also cause the 

etch-off of the deformation layer, and then the selective etching becomes weak and the 

protrusive structures trend to disappear completely. For example, the height after etching for 

60 min was ~2 nm, and it is comparable with the height of surface asperities. 

Fig. 3 shows the radii of the pyramidal tips plotted as a function of the etching time, 

 



which is similar to the trend of change in the height. When the sample was etched for 25 min, 

the radius reaches ~300 nm. Considering that the height and radius of pyramidal 

nanostructure increase linearly with the etching time, the etching from 5 to 20 min is better 

for a controllable fabrication. 

 

Fig. 2. Indentation-induced selective etching under various etching time. The indentation 

force for the indentation is 2 mN. 
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Fig. 3. The height (left) and radius (right) of the nanotips as a function of etching time. 

3.2. Effect of indentation force on indentation-induced selective etching 

In addition to the etching time, the indentation force also reveals a great effect on the 

indentation-induced selective etching. Since the etching time of 20 min can lead to the 

maximum growth of the pyramidal nanotips in the present study, the etching time of 20 min 

will be used for the following comparative test. As shown in Fig. 4a, indentation tests were 

performed on Si surface under various loads of 2, 3 and 4 mN, and the depth of the indents 

increased with the normal load. Fig. 4b shows the AFM images of the sample after etching in 

0 min                                          5 min                                                10 min

15 min                                                                20 min                                              25 min

30 min                                                                 40 min                                               60 min



KOH aqueous solution for 20 min. The height and radius of the pyramidal nanostructure 

increased with the normal load during etching. At a load of 2 mN, the height and radius of the 

tip structure are 280 nm and 100 nm, while at a load of 4 mN, the height and radius are 480 

and 300 nm, respectively. Therefore, low applied normal load in scratching can facilitate the 

formation of sharp tip structure. 

 

Fig. 4. Indentation-induced nanofabrication under various applied indentation force. (a) AFM 

images of the indents created on Si surface under 2, 3 and 4 mN. (b) AFM images of the 

pyramidal nanotips after etching for 20 min. The cross-section profiles across tip peaks were 

plotted below for the comparison. 

3.3. Mechanism of indentation-induced selective etching 

The fabrication mechanism could be related to the different etching rate of the 

indentation area and original silicon surface, and the indent area triggers the selective etching. 

In the friction-induced selective etching process, the residual amorphous and deformed silicon 

layer produced by tip scratching can be directly used as an etching mask in KOH solution to 

fabricate protrusive nanostructures [24,25]. The amorphous and crystal transformation were 

also founded beneath the indented area [29]. It is deduced that in this study the crystal 

deformation beneath the indented area on Si surface could also act as a resist mask against 

etching, and the formation of the inclined planes in the pyramidal structure is ascribed to the 

anisotropic etching of Si crystal planes in KOH aqueous solution. The indentation-induced 

crystal deformation, including amorphous layer and multiple phases of silicon crystal, can 

hinder the etching, resulting in a quite lower etching rate of the indent than the unprocessed 
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silicon surface. With the onset of selective etching, different crystal planes are exposed to the 

etching solution around the indenter tip-affected area. The etching rate of other crystal planes 

of silicon, such as (100) and (110), is much higher than that of (111) plane [30,31]. Therefore, 

the (111) crystal plane can act a barrier to resist the etching, forming pyramidal planes, as 

shown in Fig. 5. The inclined pyramidal plane is exactly the etch-stop surface of (111) crystal 

plane [24,32]. It is noted that the slope angle of the inclined plane in the present study is about 

55° (close to the included angle of (100) and (111) crystal planes), by which the above 

mechanism for selective etching can be verified. 

 

Fig. 5. The schematic illustration for the selective etching of an indent on Si(100). 

 

Fig. 6. Indentation-induced selective etching on Si(111) and Si(110) substrates. (a) AFM 

images of the indentation array created on Si(111) and Si(110) surface under the indentation 

force of 2 mN. (b) AFM images of the indents after etching for 10 min. 

For comparison, the indentation-induced nanofabrication was also conducted on Si(111) 

and Si(110) surface. As shown in Fig. 6, the crystal plane has an obvious effect on the 
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indentation-induced selective etching process. After the selective etching, deeper holes were 

detected from the indents on Si(111), while protrusive structures were created on Si(110). For 

the (111) crystal plane with a very low etching rate, the crystal deformation in the indentation 

can promoting the etching rather than acting as a mask. In other words, Si(100) substrate is 

the right candidate for realizing the proposed indentation-induced selective etching to 

fabricate pyramidal nanotips. 

3.4. Nanotip arrays fabricated on Si(100) by indentation-induced selective etching 

 

Fig. 7. Pyramid-shaped tip arrays fabricated on Si(100) surface by indentation-induced 

selective etching. (a) AFM images of the indents on silicon produced at indentation force of 2, 

3 and 4 mN. (b) Pyramidal tip arrays by selective etching of the indents in (a) for 10 min. The 

cross-section profiles of the tips were obtained from the dotted lines marked in (b). 

With the indentation-induced selective etching nanofabrication method, a series of 

pyramid-shaped tip arrays were fabricated on Si(100) surface. Fig. 7a illustrates the 4 × 4 

indentation arrays on silicon produced at indentation force of 2, 3 and 4 mN. The tip arrays 

were fabricated after selective etching of the indents in KOH aqueous solution for 10 min (Fig. 

7b), and the corresponding profiles of these tips were measured and plotted. It is noted that 

the maximum height difference of the tips after selective etching of the indents created under 

2 mN is less than 10 nm, showing a good repeatability of the proposed fabrication method. By 
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designing the configuration of the indentation pattern, various tip arrays can be produced by 

the proposed fabrication method. 

When the indentation-induced selective etching method is used, long etching time in 

KOH aqueous solution could cause the roughness of Si surface [25]. For a tip array 

production, it is necessary to ensure that the tip is quite higher than the asperities around. 

Therefore, it is necessary to investigate the asperities on the rough surface resulting from 

etching. The maximum height of surface asperities with the etching time ranging from 0 to 60 

min is plotted in Fig. 8, and AFM images of some surface asperities are shown in the inset. 

When Si sample is etched from 0 to 40 min, the height of asperities is less than 10 nm, which 

is quite lower than the produced tip arrays. However, when the etching time is increased to 60 

min, the asperity height can be up to 20 nm, which is comparable with the collapsed tips (Fig. 

2). Therefore, combining the results in Fig. 3, the etching time no more than 20 min is 

recommended for indentation-induced selective etching to fabricate the uniform tip arrays. 

 

Fig. 8. The maximum height of surface asperities on Si over an area of 1 μm × 1 μm plotted 

as a function of etching time. The inset picture shows the AFM images after different etching 

time. 

Summarily, without any resist mask and template, site-controlled nanofabrication can be 

realized on Si(100) surface through indentation-induced selective etching. This method 

provides meaningful strategy for the application of multiple-tip SPM and high-density 

information storage. SPM-based lithography has yet been rarely used in the field of industrial 

manufacturing, because of its disadvantages of small scanning range and low efficiency, and a 

nice bit of research has been focused on developing multi-probe SPM [33,34]. To produce tip 

arrays is significant for a multi-probe SPM system, where the multi-tip arrays play a key role 

in realizing large-scale and high efficiency scanning [35,36]. Even with impressive recent 
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advances in cantilever array design, those arrays tend to be highly special for a given 

application and is quite expensive [37]. In contrast, the tip-array fabrication by the 

indentation-induced selective etching in the present study is of low cost and environmentally 

friendly, and can be easily realized. In addition, the indentation-induced selective etching 

provides new strategy for fabricating Si nanostructure-based sensors [38], and high-quality 

MEMS-based scanning-probe data-storage system [39,40]. 

4. Conclusion 

In summary, we have proposed a simple nanofabrication approach by 

indentation-induced selective etching, and pyramid-shaped tip arrays can be produced on 

Si(100) surface. The height and radius of the tip produced are dependent on the indentation 

force during tip pressing process and the etching time in KOH aqueous solution. The 

formation of pyramidal planes is ascribed to the anisotropic etching of Si crystal planes in 

KOH aqueous solution. The indent area triggers the selective etching, and (111) plane can 

stop the etching to some extent, resulting in the formation of pyramidal tips. As a maskless 

and straightforward nanofabrication method, the indentation-induced selective etching 

nanofabrication provides a new strategy to produce well site-controlled tip arrays for 

multi-probe SPM system and high-density information storage. 
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