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Abstract

Discovering 3D arrangements of objects from single in-
door images is important given its many applications in-
cluding interior design, content creation, etc. Although
heavily researched in the recent years, existing approaches
break down under medium or heavy occlusion as the core
object detection module starts failing in absence of directly
visible cues. Instead, we take into account holistic con-
textual 3D information, exploiting the fact that objects in
indoor scenes co-occur mostly in typical near-regular con-
figurations. First, we use a neural network trained on real
indoor annotated images to extract 2D keypoints, and feed
them to a 3D candidate object generation stage. Then,
we solve a global selection problem among these 3D can-
didates using pairwise co-occurrence statistics discovered
from a large 3D scene database. We iterate the process al-
lowing for candidates with low keypoint response to be in-
crementally detected based on the location of the already
discovered nearby objects. Focusing on chairs, we demon-
strate significant performance improvement over combina-
tions of state-of-the-art methods, especially for scenes with
moderately to severely occluded objects.

1. Introduction
Partial occlusions pose a major challenge to the suc-
cessful recognition of visual objects because they re-
duce the evidence available to the brain. . . .As a result,
recognition must rely not only on information about the
physical object but also on information about the occlu-
sion, scene context and perceptual experience [14].

For many scene understanding tasks such as creating
a room mockup for VR or automatically estimating how
many people a room can accommodate, it is sufficient to
estimate positions, orientations, and rough proportions of
the objects rather than exact point-wise surface geometry.

Given a single 2D photograph, the goal of this paper is to
select and place instances of 3D models, particularly the
partially occluded ones, to recover the photographed scene
arrangement under the estimated camera.

With the easy access to large volumes of image and 3D
model repositories, and the availability of powerful super-
vised learning methods, researchers have investigated mul-
tiple subproblems relevant to the above goal, such as ob-
ject recognition [15], localization [32], pose prediction [37],

Figure 1: We present SEETHROUGH, a method to detect ob-
jects (specifically chairs) from single images under medium
to heavy occlusion by reasoning with 3D scene-level con-
text information. Our method significantly improves detec-
tion rate over state-of-the-art alternatives.
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or developed a complete system IM2CAD [22] that selects
and positions 3D CAD models that are similar to the in-
put imaged scenes. While these approaches work reliably
in rooms with relatively low occlusion, under moderate to
heavy occlusion the methods quickly deteriorate. A com-
mon source of failure is that under significant occlusion,
state-of-the-art semantic segmentation or region detection
methods begin to break down, and hence any system rely-
ing on them also fail (see Figure 1).

Unlike images with limited occlusion where direct
image-space information is sufficient, occluded scenes re-
quire a different treatment. One possibility is to train an
end-to-end network to go from single images to parameter-
ized scene mockups. However, a major bottleneck is obtain-
ing suitable training data. On the one hand, in our experi-
ments the networks trained with synthetic 3D scene data do
not easily translate to real-world data. On the other hand,
obtaining real-world training data is difficult to scale as it
requires complex annotations in 3D from single images. In-
stead, we propose a novel approach that heavily relies on
3D contextual statistics that can be automatically extracted
from synthetic scene arrangement data.

Our key insight is that typical indoor scenes exhibit sig-
nificant regularity in terms of co-occurrence of objects,
which can be exploited as explicit priors to make predic-
tions about object identity, placement and orientation, even
under significant inter- or intra-object occlusions. For ex-
ample, a human observer can easily spot heavily occluded
chairs due to the presence of other visible nearby chairs and
a table (see Figure 1), as we have a good mental model of
typical chair-table arrangements.

We introduce SEETHROUGH that generates 2D key-
points from input images using a neural network, lifts the
keypoints to candidate 3D object proposals, and then solves
a selection problem to pick objects scored according to ob-
ject cooccurrence statistics extracted from a scene database.
We iterate the process by allowing already selected objects
to reinforce selection of weakly witnessed occluded ones.

We tested our approach quantitatively on a new scene
mockup dataset including partially occluded objects and
show significant improvement of recognition over baseline
methods on multiple quantitative measures. Although our
current implementation is focused on the chair class, the
method itself is not inherently limited to this, and could
be extended to other classes with appropriately annotated
data. (Full code, training data, and scene statistics will
be available for research use. Supplementary material
is available at http://geometry.cs.ucl.ac.
uk/mhueting/proj/seethrough/seethrough_
supplementary.tar.gz)

2. Related Work
Scene mockups. 3D scene inference from 2D indoor im-
ages has recently received significant research focus due

to the ubiquity of the new generation capture methods
that enable partial 3D and/or depth capture. A significant
amount of progress has been made following the early work
of Hoeim et al. [18], first with approximating only room
shape [9, 28, 26, 16], then inferring cuboid-like structures as
surrogate furniture [10, 7, 39, 38, 33]. However, for detailed
geometry prediction, the image input is generally supple-
mented with additional per pixel depth or point clouds [24].
Mattausch et al. [29] used 3D point cloud input to iden-
tify repeated objects by clustering similar patches. Li et
al. [25] utilize an RGB-D sensor to scan an environment
in real time, and use the depth input to detect 3D objects
queried from a database. While these works take 3D data as
input, our method relies only on a single RGB image.

Recently, Izadinia et al. [21] in their impressive
IM2CAD system demonstrated scene reconstruction with
CAD models from a single image using image based object
detection (using FRCNN) and pose estimation approaches.
Although their objective is similar to ours, the performance
is bounded by the individual vision algorithms utilized in
their pipeline. For example, if the segmentation misses an
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object because of signifi-
cant occlusion (inset shows
top FRCNN [32] detections
with scores), there is no
mechanism to recover it in
the reconstruction (see Sec-
tion 5 for comparison). On the contrary, our novel pairwise
based search incorporates high level relationships typical to
indoor scenes to recover from such failures successfully.

3D→2D alignment. Another way to create scene mock-
ups is by directly fitting 3D models to the image. Pose
estimation work [37, 35, 19, 26, 23, 4] also demonstrated
that given object images, reliable 3D orientation can be pre-
dicted, which in turn might help with scene mockups. Lin et
al. [27] used local image statistics along with image-space
features to align a given furniture model to an image. Aubry
et al. [4] utilized a discriminative visual element processing
step for each shape in a 3D model database, which is then
used to localize and align models to given 2D photographs
of indoor scenes. Like most existing methods, their ap-
proach breaks down under moderate to high occlusion. Our
method performs better, as other nearby objects can provide
higher order information to fill in the lost information (see
Section 5).

Priors for scene reconstruction. Scene arrangement pri-
ors have been successfully demonstrated in 3D reconstruc-
tion from unstructured 3D input, as well as scene synthe-
sis [12]. Shao et al. [34] demonstrated that scenes with sig-
nificant occlusion can be reconstructed from depth images
by reasoning about the physical plausibility of object place-
ments. Monszpart et al. [30] uses the insight that planar
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patches in indoor scenes are often oriented in a sparse set
of directions to regularize the process of 3D reconstruction.
On the other hand, based on priors between humans, Fisher
et al. [13] leveraged human activity priors together with ob-
ject relationships as a foundation for 3D scene synthesis. In
contrast to the complex and high order joint relationships
used in these works, our object centric templates are com-
pact and primarily encode the repetition of similar shapes
(such as two side by side chairs) across pose and location.
This compact and simple template representation ensures
that our search stays tractable at run-time.

3. Overview

In a scene with many chairs, we observe that the environ-
ment is not important for the recognition of the unoccluded
chair – the shape of the object is clearly visible and imme-
diately recognizable. However, under occlusion, the task of
recognizing the object necessitates adding 3D contextual in-
formation. State-of-the-art methods based on FRCNN [32]
correctly detect chairs that are visible, but miss partially oc-
cluded ones (see inset figure in Section 2). However, under
occlusion, the task of recognition becomes easier with more
contextual and cooccurence information (see Figure 2).

Figure 2: As humans, our understanding of scenes is heavily
predicated on the context [14]. From left to right, less global
information makes detection of chair harder.

Motivated by the above insight, we design
SEETHROUGH to run in three key steps: (i) an image-space
keypoint detection trained on AMT-annotated real pho-
tographs (Section 4.1); (ii) a candidate generation step that
takes the estimated camera to lift detected 2D keypoints
to 3D (deformable) model candidates (Section 4.2); and
(iii) an iterative scene mockup stage where we solve a
selection problem to extract a scene arrangement that
proposes a plausible object layout using a common object
co-occurrence prior (Section 4.3).

4. Method

We now describe the three main steps of the
SEETHROUGH system in detail starting with keypoint de-
tection, followed by our approach for candidate object de-
tection, and ending with our scene inference.

4.1. Keypoint Detection

At this stage our goal is to detect very subtle cues for
potential object placements in a form of keypoints. A key-
point is a salient 3D point that appears across all objects
of the same class (e.g., tip of a chair leg). We expect that
a small number of (projected) keypoints will still be visi-
ble even under severe occlusions, and be useful in creating
reasonable hypothesis for potential object placement. We
represent this signal in two flavors: first, a keypoint map,
a per-pixel function that indicates how likely a particular
keypoint is to occur at that pixel (each keypoint has a sepa-
rate map mi), and second, keypoint locations which define
the 2D coordinates for each keypoint. Both sets of infor-
mation are used at different stages of our algorithm. We
collected our own training data and trained a convolution
neural network to detect a continuous keypoint probability
function, which we further use to extract candidate keypoint
locations.

We picked Nk keypoints (Nk = 8 in our tests) (see sup-
plemental material) and fine-tuned a variant of ResNet-50
neural network [15] to predict these keypoint maps in Nk
output channels (see supplemental material for architecture
details). We also tested the CPM architecture [36], but it
yielded slightly inferior performance. While the latter fo-
cuses on keypoint detection it was pre-trained on human
poses rather than general images, which is why we believe
CPM did not generalized as well to our particuar task (see
supplemental material).

The above network predicts continuous keypoint maps
M := {m1, ...,mNk

}, and to extract the final keypoint lo-
cations (2D positions in the image) we used local maxima
above a threshold τm (Figure 3). We denote the set of these
keypoint locations by Q := {Q1, . . . ,QNk

}.

single image keypoint maps keypoint locations

CNN

Figure 3: We trained a neural network on real images to de-
tect keypoint maps, which are then converted to 2D keypoint
locations via thresholding and non-maximal suppression.

4.2. Candidate Object Detection

The goal of this step is to propose multiple candidate
objects based on the detected keypoints. While we do not
know how to group points, we observe that a very small
number of keypoints (as few as two) belonging to the same
object, provide enough constraints to infer the scale and the
orientation of a proxy 3D object. Hence, we can generate
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multiple candidates even with a sparse signal under mod-
erate to high levels of occlusions. Using these generated
candidates, we can recast the global inference problem as
a discrete graph optimization problem, where we only need
to solve for indicator variables, selecting a subset of candi-
dates. Thus, we want higher recall at the expense of lower
precision in this step. Furthermore, in order to incorporate
a slightly bigger context than a single keypoint, we select
subsets of points that can compose an object. At training
time we learn a deformable template from a database of 3D
models, and at test time we optimize the fitting of these tem-
plates to various subsets of keypoints.

Object template. Given a database of consistenly aligned
3D models M with manually labeled keypoints we use
Principal Component Analysis (PCA) to project 3D coor-
dinates of keypoints to a lower-dimensional space (we take
eigenvectorsλ1, ...,λk that explain> 85% of the variance).
Our template is parameterized by a linear combination of
these eigenvalues with weights p = [p1, ..., pk] (represent-
ing offset from the mean λ0). The final object template is
defined by a weighted linear combination of the eigenvec-
tors: T (p) := λ0 +

∑
i piλi.

We formulate an optimization problem where we solve
for object parameters (i.e., p) while making sure that the
object aligns with the detected keypoints. To relate our 3D
deformable model to 2D images, we need a camera esti-
mate. We use a variant of Hedau et al. [17] to estimate a
rotation matrix CR with respect to the ground plane, the
focal length Cf , and define the camera’s location Ct to be
at eye height (1.8m) above the world origin, giving camera
parameters C := [CR, Cf , Ct]. For each object we solve
for a 2D translation across the ground plane t, azimuth θ,
scale s, and 3D chair template parameters p. Hence, the
reprojection zi of the i-th keypoint to image space is:

zi := ΠC (Rup(θ) s ki(p) + t) , (1)

where ki(p) = [T (p)]i is a keypoint on the deformed tem-
plate, Rup is a rotation around the up vector, and ΠC is a
projection to the camera space.

As described next, we fit our template object in two
stages: first, we propose a candidate based on a pair of
points, and then, we refine these candidate parameters with
respect to all keypoint maps.

(i) Initial proposals. To propose initial object candidates
we sample all pairs of detected keypoints. We use a pair
because it gives the smallest set to sample that provides
enough constraints to extract an initial guess for object
translation, scale, and orientation. For each pair, we ini-
tialize as t = 0, θ = 0, s = 1,p = 0, and optimize:

Linit =
∑

i∈{u,v}

‖zi − ki‖2 + α1‖s− 1‖2 + α2‖p‖2︸ ︷︷ ︸
regularizer (Lreg)

, (2)

where α1 and α2 are respectively the weights balancing
scale and deformable template parameters (α1 = 1 and
α2 = 1 in our tests).

(ii) Parameter refinement. For each of the initial pro-
posals extracted above, we refine the fitting. Specifically,
instead of considering point-locations, we define our objec-
tive with respect to soft keypoint maps mj , maximizing the
probability of template corners to align with keypoints pre-
dicted by the neural network, i.e.,

L =
∑

i∈{1,...,Nk}

‖1−mi(zi)‖2 + Lreg, (3)

with Lreg as defined in Equation 2. If L < τu, we add the
final parameters as a candidate placement to our candidate
placement setO.

Selecting a 3D mesh. For the results presented in this pa-
per we show 3D meshes rather than object templates. Par-
ticularly, we pick the closest 3D model from our database by
projecting its keypoints into the object PCA space, finding
the nearest neighbor of the deformed template, and finally
deforming it using the optimized parameters p.

4.3. Scene Inference

We do not expect all individual objects selected as can-
didates to be in the scene, since they might overlap, or have
inconsistent arrangement. First, we capture scene statis-
tics obtained from a large scene dataset with a probabilistic
model, and then use the model to formulate an alternating
discrete and continuous optimization.

Learning scene model. We model higher level scene
statistics via a graphical model where each object is a node
and edges between pairs of nodes capture object-to-object
co-occurrence relationships. We used a Gaussian Mixture
Model (GMM) with Nm (set to 5 in our tests) mixture
components to model relative orientation δθ and transla-
tion δt of pairs of chairs from a very large synthetic scene
dataset [40]. We only take into account chairs that are
within a distance δr = 1.5m from each other, reasoning
that far-away objects have weaker relationships. We use
Expectation-Maximization algorithm to fit the GMM and
add a small bias (0.01) to the diagonal of the fitted covari-
ance matrices since objects in the database are axis-aligned.

Graph optimization. We formulate a graph labeling
problem to decide which of the candidate objects should
be included in the scene mockup, denoted by indicator vari-
able γi ∈ {0, 1}, where γi = 1 iff object Oi is included.
We minimize the following objective function:

Lgraph :=
∑
i

γiUi +
∑
i,j

γiγjPi,j , (4)
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where Ui is a unary penalty for an included object, and Pi,j
is pairwise penalty for a pair of included objects.

We define the unary energy by projecting object’s key-
points to the image and convolve the resulting keypoint map
with a Gaussian, following the same procedure we used to
create ground truth keypoint maps. This provides a location
map n. And we set:

Ui := −logit
(
‖n�mi‖F
‖n� n‖F

)
, (5)

where ‖·‖F represents the Frobenius norm,� represents the
Hadamard product, and logit(x) = log (x/(1− x)). Note
that since we do not expect a single placement to explain the
entire keypoint location map, we setup the score as a mul-
tiplicative one, with the value only being dependent on the
agreement of the actual keypoints the placement exhibits.

We define the pairwise energy using the GMM model
learned from the scene dataset:

Pi,j := −logit
(
GMM(δi,jθ , δi,jt )

)
, (6)

where δi,jθ , δi,jt are the relative orientations and translation
of the objects oi, oj .

We solve for the indicator variables {γi} using
OpenGM [3] by converting the above formulation into a lin-
ear program and feeding it to CPLEX [1] to find the final set
of selected objects.

Refined object fitting. After selecting the set of objects,
the scene mockup is ready. However, we found that our
scene priors can also improve the initial object fitting re-
sults. To achieve this, we add a term from our GMM model
to the regularization term (Lreg) in object fitting. We go
through all candidate objects and re-optimize their param-
eters, keeping the selected objects fixed. As noted by Ol-
son et al. [31], the structure of the negative log-likelihood
(NLL) of a GMM does not lend itself to non-linear least
squares optimization. Instead, we approximate the NLL of
the full GMM by considering it as a Max-Mixture, reducing
the NLL to the weighted distance from the closest mixture
mean. We define the Max-Mixture likelihood function

pMax(δ) = max
i
wiN(δ|µi,Σi),

where δ =

[
δt
δθ

]
is the relative translation and orientation

of the new candidate w.r.t. the already placed object, and
wk is the weight of the kth mixture in the model. We use
the sum of negative log-likelihoods of these terms for all
selected objects that are within a distance of δr to the refined
candidate:

− log(pMax(δ)) = min
k

1

2
(δ−µk)

TΣ−1
k (δ−µk)− log(wkηk),

where N(µ,Σ) represents the normal distribution, and ηk
is the Gaussian normalization factor for the kth mixture.
At optimization time, during each step we find the mixture
component k∗ that minimizes this function, and then opti-
mize w.r.t. the negative log likelihood of the Gaussian of
that component alone, resulting in the following term to be
added to the objective function Lreg (Equation 2):

1

2
(δ − µk∗)TΣ−1k∗ (δ − µk∗). (7)

Refined selection. Refined candidates and objects se-
lected for the mockup can help in placing additional objects
that have subtler cues. Hence, we iterate between refined
fitting and refined selection processes. In the refined se-
lection, we assume that previously selected objects cannot
be removed, and add the unary term to favor placing new
candidates. So, for each candidate placement in the second
iteration, we add a term to Ui (Eq. 5):

−
∑
k

logit(GMM(oi, o
∗
k)
β), (8)

where {o∗k} are the objects selected at previous iterations.

5. Results and Discussion
5.1. Training and test data

We curated three datasets to evaluate our method.
(Datasets to be made available for research use.)

(a) 2D keypoints on indoor images. We downloaded
5000 images from the HOUZZ website using keywords like
living room, kitchen, dining room, meeting room, etc. We
utilized the Amazon Mechanical Turk platform to obtain
keypoints on the images requiring at least 3 workers to agree
per image. For each image, we asked the turkers to mark
the keypoints of the chairs (maximum of 8 keypoints per
chair). Please refer to the supplemental material for details
about the web-based annotation interface. We convolved
these keypoints with a Gaussian filter to simplify the CNN’s
task of learning of smooth filters and averaged the results.

1 2 3 4 5 6 7 8 9 10 11
Number of chairs
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10

20
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s Occlusion
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Mid
High

Figure 4: Number of chairs and their estimated visibil-
ity distribution in the sampling of images in our annotated
HOUZZ dataset.
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Figure 5: Qualitative comparison of the baseline methods: SEEINGCHAIRS (orange) and FASTERRCNN3D (blue) against
SEETHROUGH (green). Annotated groundtruth poses (gray) are provided for reference in the top view. Note that our approach
both detects ore chairs and correctly aligns them compared to the others.

(b) Scene mockup groundtruth. In order to quantita-
tively measure the performance of SEETHROUGH and com-
pare with alternate methods, we require a set of ground truth
annotated scenes, i.e., images for which all the 3D objects
(chairs in our case) have been placed manually. We are not
aware of a similar dataset with mockups for 3D objects in-
cluding the (partially) occluded ones. Hence, we setup an-
other annotation tool in which an object can be placed by
clicking and dragging, as well as by annotating a number of
keypoints of the object, and optimizing for its location and
scale. Moreover, objects can be copied and translated along
their local coordinate axes, allowing for quick and precise
annotation (see supplemental for details). We used the au-
tomatically estimated camera parameters for the automatic
refinement, while discarding any image with grossly erro-
neous camera estimates. We used the tool to annotate 300
scenes (see Figure 4), which were randomly selected from
our HOUZZ dataset.

(c) 3D models and scenes. For our database models, we
used the chair models from the ShapeNet [6] database and
for scene statistics, we used 45K houses from the PBRS
dataset [40]. While the latter comes with 400K physically-
based renderings, we tried using these synthetic images to
pretrain networks for predicting keypoint maps, but found
that fine-tuning a variant of ResNet-50 with weights trained
on ImageNet produced more accurate results (see Sec-
tion 5.4 for more details).

5.2. Performance Measures and Parameters

Hyperparameters. Our optimization pipeline depends
on a number of parameters that we optimized using Hyper-
Opt [20], which employs a Tree of Parzen Estimators [5].
We used the LOCANG measure as our objective measure.
As ground truth data, we used 10 scenes fully annotated
specifically for this purpose, in the same way as the data
used for evaluation (see above). See supplemental material
for the list of resulting hyper parameter values.
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Figure 6: Quantitative performance of SEETHROUGH against the state-of-the-art method-based baseline methods. We out-
perform the baselines significantly across all the measures. Please refer to supplemental for the tabulated values.

Quantitative measures. We use source and target to de-
note the two scenes between which a measure is computed.
We specifically do not use ‘result scene’ and ‘ground truth
scene’ as the ground truth acts as a target to compute preci-
sion, and acts as source to compute recall.

We denote the objects in the source and target scene as
oS ∈ S, oT ∈ T , respectively. We use J3(oS , oT ) and
J2(oS , oT ) to represent the Jaccard index or intersection-
over-union (IoU) of the bounding boxes of oS and oT in
3D world space and 2D screen space, respectively. Fi-
nally, given an object oS we define the ‘J∗i correspon-
dence’ with T as the object with the MaxIoU with oS as:
J∗i (oS ,T ) := arg maxoT∈T Ji(oS , oT ). Intuitively, this re-
turns, for a given object, the best matching object from the
other scene in terms of overlap. Next, we briefly describe
our selected measures (see supplemental for details).
(a) IOU3D: This measures average IoU for 3D bounding
boxes around objects. Specifically, given a source scene
and a target scene, we average MaxIoU across all objects
in the source scene (measuring IoU overlap with the corre-
sponding object in the target).
(b) IOU2D: Similar to IOU3D, this measure averages IoU
for 2D bounding boxes around projected objects.
(c) LOC: This measures the fraction of correct locations of
objects in the source scene with respect to the target. We
consider every object in the source scene that has a J∗3 cor-
respondence over a threshold τJ to have a correct location.
(d) LOCANG: Similar to LOC, this measures additionally
requires the angle difference to be under a threshold τθ.
(e) ANGDIFF: This measures the average angle difference
for the objects that have a correct location.

5.3. Baselines: State-of-the-art Alternatives

We are not aware of prior research focusing on produc-
ing scene mockups in the presence of significant occlu-
sion. Hence, we created two baselines by combining rel-
evant state-of-the-art methods. We convert the output of
each baseline (in both cases 3D pose but 2D image space
locations of chairs) to our comparable 3D scene mockup
format.

(a) SEEINGCHAIRS. Aubry et al. [4] proposed a method
to find chairs by matching so-called ‘discriminative visual

elements’ (DVE) from a set of rendered views of 1000+
chair models with any input image. These DVEs are linear
classifiers over HOG features [8] learned from the rendered
views in a discriminative fashion. At training time, they are
learned at multiple scales while keeping only the most dis-
criminative ones for matching. At test time, a patch-wise
matching process finds the best-matching image and ren-
dered patch pairs, and then finds sets of pairs that come from
the same rendered view (see [4] for details).

The above method outputs scored image space bounding
boxes together with a specific chair model and pose. For
our 3D performance measures, however, we need the out-
put in the form of a 3D scene. Hence, we convert each set
of bounding box, pose, and chair model to a 3D scene. Us-
ing our estimated camera, we optimize the location (in the
xz-plane) of the 3D model without changing its pose, such
that the 2D bounding box of the projected model matches
as closely as possible with the detected bounding box using
a least-squares formulation (solved using Ceres [2]).

(b) FASTERRCNN3D. As the second baseline, we com-
bine a convolutional neural network (CNN) trained for
image-space object detection and another CNN trained
for 3D object interpretation. Specifically, we use Faster-
RCNN [32] to extract bounding boxes of chairs from the
input image and then feed these regions of interest to 3D-
INN [37], which produces a templated chair model consist-
ing of a set of predefined 3D keypoints as well as a pose esti-
mate. Since our set of keypoints is a subset of the keypoints
produced by 3D-INN, we use our 3D candidate generation
part of SEETHROUGH to convert the extracted keypoints to
a 3D chair for the resultant scene mockup.

5.4. Evaluation and Discussion

We ran SEETHROUGH and the two baseline methods on
the full ground truth annotated scene set (Section 5.1). A
sampling of results can be seen in Figure 5. (Further visu-
alization for 100 scenes in our groundtruth set can be found
in the supplementary material.)

The baseline methods perform well when there is no oc-
clusion in the scene. Specifically, chairs that are clearly
visible are reconstructed reliably as the direct visual infor-
mation is sufficient to make an accurate inference about
the objects’ pose and identity. However, when chairs are
partly occluded, the methods break down quickly. In con-
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trast, SEETHROUGH, by incorporating co-occurrence ob-
ject model, is more often able to recover from these situ-
ations.

This difference in performance is also reflected in the
quantitative results (see Figure 6). Our method outperforms
the baselines on all counts. Additionally, in Figure 7, we
show how the LOCANG measure changes under varying
thresholds of angle (τθ) and IoU (τJ ).

SeeingChairs

FasterRCNN3D

SeeThrough

P
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o
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angle threshold IoU threshold

P
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F
u
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Figure 7: Performance variation according to LOCANG F1
measure for SEETHROUGH and the two baseline methods
under varying angle and IoU thresholds. We perform sig-
nificantly better across both the threshold ranges.

Performance under increasing occlusion. In order to
specifically test performance under varying occlusion, we
sorted the groundtruth annotated HOUZZ dataset into cate-
gories based on the extent of the visible chairs. We approx-
imate visibility as follows: we compute how many chairs
lie along view rays connecting the estimated camera loca-
tion with points on a discrete grid on the image plane. We
used the objects’ bounding boxes for this visibility compu-
tation. Higher values denote more occlusion (as there are
more chairs along the view rays). Figure 1 shows that while
all the three methods perform comparably under low occlu-
sion, only SEETHROUGH continues to have a high success
rate under medium to heavy occlusion.

Effect of multiple iterations. In Section 5.5, we
demonstrate the positive utility of multiple iterations to
SEETHROUGH. One of our key observations is that high-
confidence objects (e.g., unoccluded objects) are easier to
detect, and hence can provide valuable contextual informa-
tion in reinforcing the weaker signals (e.g., partially oc-
cluded objects). This behavior results in higher detection
rates using iterations and believed to be also functional in
the human perception systems [11, 14].

Utility of synthetic data. We found that training on syn-
thetic datasets [40] for predicting image-space keypoint
maps led to unsatisfactory results. For this experiment,
we took all renderings from 400K images that contain at
least one of the annotated chairs and reprojected the key-
point locations from corresponding 3D models into these
renders, yielding one image/keypoint map pair as training
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IoU3D LocAng
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Figure 8: Ablation study evaluating the importance of the
different stages of SEETHROUGH.

data per render, resulting in a total of 8000 image/keypoint
map pairs. We experimented with three different training
setups: (i) network trained with only synthetic data; (ii) net-
work first trained with synthetic data, and then refined using
real data, and (iii) network trained with only real data.

The best performance on the test set resulted from setup
#iii, i.e. training with only real data. One likely explana-
tion is that training the network with the synthetic data first
steers away the network weights from those that were the
result of the ImageNet pretraining, which already encom-
pass a high general understanding of real photographs.

5.5. Ablation Study

We evaluated the importance of the individual steps of
SEETHROUGH to the final performance (see Figure 8 and
supplemental). Specifically, we ran our pipeline on the full
test set under two weakening conditions: (a) we disable all
pairwise costs and run the remaining pipeline based solely
on the keypoint location maps; and (b) we disable itera-
tions by running the second and third stage only once, thus
removing the possibility of the candidate generation stage
benefiting from previously placed objects.

Discussion. Although IOU2D recall increases when dis-
abling scene statistics (option #a), the precision goes down
significantly. This is true as the pairwise costs by them-
selves do not propose new objects – they only make output
mockups more precise by pruning objects that do not agree
with others. In contrast, using only a single iteration (op-
tion #b) increases precision, but recall takes a significant hit.
This is not surprising, as in the later iterations the keypoint
location maps have decreased influence relative to the pair-
wise costs. As a result, while objects with weaker keypoint
response are more easily found, false positives also become
more likely. Overall, the combined IOU2D F1 measure is
highest for the full SEETHROUGH as well as the LOCANG
F1 measure.

6. Conclusion
We proposed SEETHROUGH, a method for automatically

finding partially occluded chairs in a photograph of a struc-
tured scene. Our key insight is the incorporation of higher

8



level scene statistics that allows more accurate reasoning in
scenes containing medium to high levels of occlusion. We
demonstrate considerable quantitative and qualitative per-
formance improvements across multiple measures.

Our method suffers from limitations that suggest a num-
ber of future research directions. First, we plan to extend
the evaluation to a more expansive class of objects beyond
chairs. Second, we think exploring templates that can ex-
press a broader understanding of the multi-object spatial re-
lationships is a promising future direction.
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