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Abstract 18 

1. The availability and accessibility of multispectral and radar Satellite Remote Sensing 19 

(SRS) imagery are at an unprecedented high. These data have both become standard source 20 

of information for investigating species ecology and ecosystems structure, composition and 21 

function at large scales. Since they capture complementary aspects of the Earth’s surface, 22 

synergies between these two types of imagery have the potential to greatly expand 23 

research and monitoring opportunities. However, despite the benefits of combining 24 

multispectral and radar SRS data, data fusion techniques, including image fusion, are not 25 

commonly used in biodiversity monitoring, ecology and conservation.  26 

2. To help close this application gap, we provide for the first time an overview of the most 27 

common SRS data fusion techniques, discussing their benefits and drawbacks, and pull 28 

together case studies illustrating the added value for biodiversity research and monitoring.  29 

3. Integrating and fusing multispectral and radar images can significantly improve our 30 

ability to assess the distribution as well as the horizontal and vertical structure of 31 

ecosystems. Additionally, SRS data fusion has the potential to increase opportunities for 32 

mapping species distribution and community composition, as well as for monitoring 33 

threats to biodiversity. Uptake of these techniques will benefit from more effective 34 

collaboration between remote sensing and biodiversity experts, making the reporting of 35 

methodologies more transparent, expanding SRS image processing capacity and promoting 36 

widespread open access to satellite imagery. 37 

4. In the context of a global biodiversity crisis, being able to track subtle changes in the 38 

biosphere across adequate spatial and temporal extents and resolutions is crucial. By 39 
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making key parameter estimates derived from SRS data more accurate, SRS data fusion 40 

promises to become a powerful tool to help address current monitoring needs, and could 41 

support the development of Essential Biodiversity Variables. 42 

 43 

Keywords: Image fusion, object-level fusion, pixel-level fusion, remote sensing of 44 

biodiversity, satellite data fusion  45 

 46 
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Introduction 47 

Satellite Remote Sensing (SRS) data from both radar and multispectral sensors have 48 

become a standard source of information for investigating species’ ecology and ecosystems 49 

distribution and dynamics at large spatial scales (Buchanan et al. 2009; Pettorelli et al. 50 

2014a). These two types of sensors acquire information about the Earth’s surface in 51 

fundamentally different ways: whilst multispectral sensors passively measure 52 

electromagnetic radiation reflected from the Earth’s surface, radar sensors are active, 53 

meaning they emit electromagnetic radiation and then measure the returning signal. 54 

Multispectral sensors capture information on chemical properties of surfaces, such as 55 

nitrogen or carbon content and moisture (Asner 1998; Tempfli et al. 2009), whereas radar 56 

responds to the three-dimensional structure of objects, being sensitive to their orientation, 57 

volume and surface roughness (Treuhaft et al. 2004). Additionally, radar sensors penetrate 58 

atmospheric conditions that incapacitate multispectral sensors, such as clouds, haze and 59 

fog, and can (depending on wavelength) return information from below the canopy 60 

(Santoro et al. 2007) or even from subsurface layers (McCauley et al. 1982). However, even 61 

though multispectral and radar sensors detect complementary aspects of the Earth’s 62 

surface (Lahat et al. 2015), the two types of data are so far not routinely combined in 63 

biodiversity monitoring and ecological research. 64 

To capitalise on the complementary characteristics of multispectral and radar sensors, 65 

their data needs to be integrated systematically, in a process generally called data fusion 66 

(Wald 1999). SRS data fusion can occur at three levels of analysis (Pohl & van Genderen 67 

1998; Fig. 1). First, imagery from different sensors can be used as separate predictors to 68 
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estimate a parameter of interest. This includes using multispectral and radar imagery 69 

jointly in a classification algorithm (Haack et al. 2002; Naidoo et al. 2016) or a statistical 70 

model (van der Wal & Herman 2007; Hamdan et al. 2014; Poggio & Gimona 2017). This is 71 

commonly referred to as decision-level fusion. Second, multispectral and radar imagery can 72 

be fused to derive entirely new predictors. This type of fusion includes object-level fusion, in 73 

which a landscape is divided into multi-pixel objects based on information from different 74 

remote sensors (Blaschke 2010), and pixel-level fusion, where pixel values are combined to 75 

derive a fused image with new pixel values, either in the spatial (Zhang 2010) or the 76 

temporal (Reiche et al. 2015a) domain. Since both pixel- and object-level fusions result in a 77 

new image, we will here refer to them as image fusion. When referring to decision-level 78 

fusion of SRS imagery, we will use the term “SRS data integration”, to emphasise that the 79 

SRS imagery remains separate. “SRS data fusion” refers to both SRS data integration and 80 

image fusion (Box 1). 81 

The routine use of SRS data fusion in ecology and conservation science has been previously 82 

hampered by the need for intensive pre-processing, especially precise image co-83 

registration (Pohl 1999). However, this obstacle has recently been removed with the 84 

launch of the ESA satellites Sentinel 1 and 2, which provide multispectral and radar 85 

imagery at high spatial and temporal resolutions, co-registered to sub-pixel accuracy, 86 

making these data suitable for direct use in SRS data fusion (Berger et al. 2012). As a result, 87 

there is now an unprecedented opportunity for ecologists and conservation scientists to 88 

capitalise on the opportunities associated with SRS data fusion. Whilst the benefits of data 89 

fusion for land cover and land use classification have recently been reviewed (Joshi et al. 90 

2016), there is currently no overview detailing its potential applications in ecology and 91 
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conservation. To address this literature gap, we here aim to (1) introduce relevant 92 

multispectral-radar SRS data fusion techniques, outlining their benefits and limitations, (2) 93 

illustrate situations where multispectral-radar SRS data fusion adds value over using a 94 

single source of data, and (3) outline existing limitations to the widespread use of SRS data 95 

fusion in ecology and conservation science, and discuss how these can be overcome. 96 

Because the application of multispectral-radar SRS data fusion in biodiversity monitoring is 97 

relatively new, we here aim to provide an overview over the variety of possible 98 

applications and opportunities arising from it, rather than present a systematic literature 99 

review. 100 

 101 

Overview of multispectral-radar SRS data fusion techniques, their benefits and 102 

limitations 103 

A wide variety of pixel- and object-level techniques for multispectral-radar SRS data fusion 104 

exists (Pohl & Yen 2014; Fig. 2), each with specific advantages and weaknesses.  105 

Pixel- or observation-level fusion occurs when corresponding pixel values from 106 

multispectral and radar images are combined to produce a new pixel value (Zhang 2010; 107 

Fig. 2), which is then used in the subsequent analysis instead of the original multispectral 108 

and radar values. Pixel-level fusion reduces the amount of information available later on, 109 

meaning that relevant patterns could be lost (Zhang 2010), but further processing can be 110 

significantly sped up because data volume is reduced. One further issue with this type of 111 

fusion is that it can lead to the production of new variables that can be difficult to interpret 112 

and relate to ecologically meaningful entities.  113 
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There are three main classes of pixel-fusion techniques: Component substitution, multi-114 

resolution analysis and arithmetic (or modulation-based) techniques (Zhang 2010). 115 

(1) Component substitution techniques such as principal component analysis (PCA) 116 

(Yonghong 1998; Fu et al. 2017) and intensity-hue-saturation (IHS) transformation 117 

(Chen et al. 2003; Leung et al. 2014) are among the most widely used pixel-fusion 118 

techniques (Pohl & Yen 2014). During PCA fusion, the original pixel values extracted 119 

from the radar and multispectral images are used to define new axes along which 120 

data variability is maximised; the new, fused pixel values are essentially linear 121 

combinations of their position along these new axes (Amarsaikhan et al. 2012). PCA 122 

image fusion is the only pixel-level image fusion technique that cannot be applied to 123 

imagery with different spatial resolutions. It is also the only pixel-level fusion 124 

technique that allows a theoretically unlimited number of multispectral and radar 125 

images to be fused; others typically limit this number to four (Pohl & van Genderen 126 

1998). IHS fusion represents another type of component substitution technique for 127 

pixel-level fusion, whereby three images with lower spatial resolution (typically 128 

multispectral data) are integrated with a single image with high spatial resolution 129 

(typically radar; Zhang 2010; Lu et al. 2011) to retain the radiometry but increase 130 

the spatial resolution of the former. Since the resulting images can be combined into 131 

a single RGB image, IHS fusion can facilitate visual interpretation (Zhang 2010). This 132 

process is similar to pansharpening, in which multispectral imagery with high 133 

spatial resolution is used to “sharpen” multispectral imagery with low spatial 134 

resolution, whilst maintaining the spectral information of the latter.  135 
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(2) Multi-resolution analysis, such as wavelet transformation (Zhang 2010; Lu et al. 136 

2011; Wang et al. 2016), is another broad type of pixel-level fusion, which starts 137 

with the decomposition of multispectral and radar imagery into their respective 138 

low- and high-frequency components (Lu et al. 2011). The wavelet transform of an 139 

image with low spatial resolution (typically multispectral) is used to replace the 140 

low-frequency transform of imagery with a higher spatial resolution (typically 141 

radar) before the fused image is reconstituted from the combined transforms. 142 

Wavelet transformations typically require a lot of computational resources for 143 

processing (Pohl & Yen 2014), but tend to be better at preserving the radiometry of 144 

the imagery with the lower spatial resolution than component substitution 145 

techniques such as PCA and IHS (Lu et al. 2011; Pohl & Yen 2014).  146 

(3) Arithmetic fusion techniques such as the Brovey transform algorithm (Zhang 147 

2010) and high pass filtering (HPF; Zhang 2010; Lu et al 2011) are techniques 148 

occasionally used in pixel-level SRS image fusion (Pohl & Yen 2014). They involve 149 

combining the original pixel values of high and low spatial resolution imagery in a 150 

linear expression to “sharpen” imagery with low spatial resolution (Zhang 2010; Lu 151 

et al. 2011). Arithmetic fusion techniques do not deal well with imagery from 152 

different types of sensors, because they are based on the assumption that pixel 153 

values in the fused image are linear combinations of those in the original images 154 

(Zhang 2010), which may not be the case when combining multispectral and radar 155 

SRS data. Additionally, they do not typically perform well if there is a small or no 156 

difference in spatial resolution between the images to be fused (Zhang 2010). As a 157 
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result, arithmetic fusion techniques are unlikely to be appropriate for multispectral-158 

radar SRS image fusion. 159 

Object-or feature-level fusion means that objects such as lines, shapes or textures are 160 

extracted from radar and multispectral imagery, based on brightness and intensity values 161 

of each pixel, as well as its spatial context, which are then used in subsequent analyses 162 

(Zhang 2010). Under our definition of image fusion, this includes two techniques: First, 163 

multispectral and radar SRS images with the same spatial resolution can be fused via image 164 

segmentation, during which they are used jointly to split an area of interest into 165 

homogeneous, discrete and contiguous objects (Blaschke 2010; Fig. 2). This is the most 166 

commonly used object-based image analysis technique (Blaschke 2010). Second, objects 167 

can be extracted separately from multispectral and radar SRS data (of the same or different 168 

spatial resolution) and combined in a feature map, which is then used in subsequent 169 

analyses (Lisini et al. 2011). Object-based fusion reduces all multispectral and radar 170 

information into a single layer of discrete objects, which are often relatively easy to relate 171 

to ecological features. As a result, object-level fusion may facilitate the mapping of non-172 

overlapping land cover classes because it reduces the number of objects that have to be 173 

classified. By contrast, pixel-based methods may be more suitable for mapping variables 174 

that vary significantly at spatial scales smaller than a given object, since they preserve the 175 

unique spectral and radar signal for each pixel.  176 

Decision-level fusion, or SRS data integration, does not require an additional processing 177 

step; rather, SRS imagery from different sensors are combined as separate predictors in a 178 

quantitative decision-making framework – such as a regression, a quantitative model or a 179 
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classification algorithm. Since SRS data integration is spatially explicit, it requires the same 180 

accurate co-registration and pre-processing as SRS image fusion techniques.  181 

The SRS data fusion techniques detailed above are typically used separately (e.g. Lu et al. 182 

2011); however, the development of hybrid techniques is an active research field, adding to 183 

the large choice of available techniques (Souza-Filho et al. 2009; Pohl & Yen 2014). The 184 

quality of information obtained through data fusion can vary significantly depending on the 185 

choice of the technique to be used (or combinations of techniques, e.g. Waske & 186 

Benediktsson 2007; Lisini et al. 2011; Lu et al. 2014; Wang et al. 2016). Since there is no 187 

coherent framework to choose the optimal technique given the large range of data types 188 

and applications, the current best practice is to test several different fusion methods on a 189 

representative subset of the area of interest, to gauge which approach may give the best 190 

results.  191 

 192 

Benefits for ecology, biodiversity research and conservation science  193 

Biodiversity is here defined as the structural, compositional and functional diversity of life, 194 

at different levels of organisation, including the genetic, species/population, and ecosystem 195 

levels (Noss 1990). Applications of multispectral-radar SRS data fusion (both image fusion 196 

and data integration) in biodiversity monitoring, ecology and conservation have the 197 

potential to improve the estimation of a wide range of key parameters, including 1) species 198 

distribution and community composition, 2) ecosystem distribution and structure, and 3) 199 

threats to biodiversity (Box 1; see Table 1A for case studies using image fusion, Table 1B 200 

for case studies for SRS data integration).  201 
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Species distribution and community composition 202 

Species distribution and community composition are central topics in macroecology, 203 

biogeography, conservation science and environmental management (Myers et al. 2000; 204 

McDowall 2004; Keith et al. 2012). Species is here understood as a group of organisms 205 

sharing a unique, fixed set of heritable traits that allows them to be distinguished from 206 

other such groups (Cracraft 1987, Sangster 2014), whilst a community is defined a set of 207 

species co-occurring at a given time and place (McGill et al. 2006).  208 

If a species of interest significantly affects the reflectance or backscatter signal received by 209 

a sensor, its distribution can be mapped directly from SRS (He et al. 2015). Whilst Light 210 

Detection and Ranging (LiDAR) and hyperspectral imagery (Box 1) is often recommended 211 

for mapping species directly, especially trees (e.g. Jones et al. 2010, Dalponte et al. 2012, 212 

Alonzo et al. 2014, Gosh et al. 2014), it is not possible (at present) to scale up these efforts 213 

to regional or continental scales, and systematically repeat them, since there are currently 214 

no active spaceborne LiDAR or hyperspectral missions. Due to the relatively coarse spatial 215 

resolution of most freely available multispectral and radar imagery (Fig. 3), direct species 216 

detection using this type of information has thus been mostly limited to mapping relatively 217 

large, homogenous stands of plants (e.g. Bradley & Mustard 2006, Gavier-Pizarro et al. 218 

2012). In this context, multispectral-radar imagery fusion has the potential to improve 219 

mapping of sufficiently large stands of plants with subtly different growth forms or 220 

phenology. For instance, Hong and colleagues (2014) were able to map stands of alfalfa 221 

Medicago sativa in grasslands by fusing radar backscatter (from the RADARSAT-2 sensor) 222 

and multispectral radiance (from the MODIS sensor) via IHS transformation, essentially 223 
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pan-sharpening the MODIS imagery before classification. This image fusion improved 224 

overall distribution mapping accuracy by 11% and 20% compared to using multispectral 225 

and radar data alone, respectively. The complementary strengths of multispectral and 226 

radar sensors can also be exploited by integrating them at the decision level to support 227 

species distribution mapping efforts. For instance, Ghulam et al. (2014) mapped three 228 

invasive plant species in a tropical forest by combining multispectral-derived information 229 

on vegetation type (from IKONOS and Geo-Eye-1) and radar-derived information on 230 

canopy structure (from ALOS PALSAR/RADARSAT-2) in a decision tree framework. The 231 

authors did not quantify how integrating these SRS data affected mapping accuracy 232 

compared to using a single data source, but they did report that the detection of one of the 233 

species was not possible based on multispectral SRS alone.  234 

Indirect species mapping is based on the principle that remotely sensed variables reflect 235 

habitat conditions that in turn are related to species distribution (He et al. 2015). Usually, 236 

rather than fusing imagery, multispectral and radar SRS data are integrated as distinct 237 

predictor variables in species distribution models. For bird species in particular, vertical 238 

habitat structure is important (Bergen et al. 2009), and may be better captured by radar 239 

backscatter than more indirect parameters derived from multispectral SRS, such as forest 240 

cover (Buermann et al. 2008; Culbert et al. 2013). For instance, Bergen et al. (2007) found 241 

that integrating radar-derived biomass information with vegetation type derived from 242 

multispectral SRS data increased the accuracy with which the distribution of bird species 243 

could be predicted. A similar approach has been used to predict the distribution of trees 244 

species across South America, using the Leaf Area Index (LAI) and the Normalised 245 

Difference Vegetation Index (NDVI) data (both derived from multispectral SRS; Box 1) in 246 
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combination with canopy moisture and roughness metrics derived from radar data (Prates-247 

Clark et al. 2008). Notably, in some of the above examples, the size of the study area was 248 

several million square kilometres (Table 1), illustrating the potential offered by SRS data 249 

fusion for large-scale habitat mapping. 250 

Compared to direct and indirect monitoring of species, SRS data fusion has rarely been 251 

applied to support the monitoring of communities. One exception to this pattern is the 252 

study by Wolter & Townsend (2011), who mapped the relative basal area of different tree 253 

species in a temperate forest after fusing multispectral and radar imagery (Landsat 254 

TM/SPOT-5 and RADARSAT-1/ALOS PALSAR respectively). In this particular situation, SRS 255 

image fusion improved the accuracy with which community composition was estimated, 256 

likely because the sensors had complementary strengths in detecting different tree species.  257 

 258 

Ecosystem distribution and structure 259 

Changes in ecosystem distribution and condition is at the heart of ecosystem accounting 260 

(UNSD SEEA-EEA 2013; Mace et al. 2015), and plays an important role in ecosystem risk 261 

assessments (Nicholson et al. 2009) such as the Red List of Ecosystems (Keith et al. 2013). 262 

Ecosystem here refers to a community, an associated abiotic environment, the interactions 263 

among and between them, and the physical space in which they interact (Tansley 1935; 264 

Pickett & Cadenasso 2002). SRS data fusion has been used to estimate a wide range of 265 

parameters informing the distribution of ecosystems, as well as parameters related to the 266 

horizontal and vertical structure of ecosystems (Table 1).  267 
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Ecosystem distribution 268 

Multispectral-radar SRS data fusion generally increases land cover classification accuracy 269 

(Joshi et al. 2016), allowing the separation of subtly different land cover types. This is 270 

relevant for biodiversity monitoring where it allows distinguishing between different types 271 

of ecosystems, vegetation types or geomorphological structures. Integrating multispectral 272 

and radar data at the decision level has been shown to increase accuracy of forest type 273 

mapping. SRS data integration has been mainly applied in tropical rainforests (e.g. Laurin 274 

et al. 2013), though such efforts have also been successful in temperate regions (e.g. 275 

Hégart-Mascle et al. 1998, Polychronaki et al. 2014, Barrett et al. 2016). This is likely 276 

because multispectral and radar sensors respond to different characteristics of forest 277 

stands: whilst multispectral data picks up on differences in vegetation “greenness”, radar 278 

backscatter contains information about canopy volume, and thus helps distinguish 279 

different stages of regrowth, or structurally distinct plantations from natural forests (e.g. 280 

Dong et al. 2013). This point is well illustrated by Rignot and colleagues’ work (1997) in the 281 

Amazon, which combined forest maps derived from Landsat 5 TM and SIR-C radar imagery 282 

to distinguish primary from secondary forest, as well as several regrowth stages. The 283 

combined approach allowed distinguishing a higher number of forest categories at high 284 

accuracy than using either data type alone. In some cases, image fusion can have additional 285 

benefits over SRS data integration: Lu and colleagues (2014) for example argue that 286 

multispectral-radar SRS image fusion (Landsat TM and ALOS PALSAR L-band respectively) 287 

enables a better distinction between different stages of tropical forest succession than is 288 

achieved by integrating the same SRS data using a classification algorithm. Fusion of 289 

multispectral with longwave radar in particular facilitates mapping succession stages in 290 
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tropical forests (Lu et al. 2011), potentially because it penetrates the canopy to a greater 291 

degree than shortwave radar (Baghdadi et al. 2009). Similarly, Morel et al. (2012) reported 292 

that effectively combining multispectral and radar at the post-decision stage (i.e. combining 293 

maps derived from each sensor separately) is less effective than SRS image fusion or data 294 

integration for improving forest detection accuracies. 295 

In addition to forest mapping, wetland mapping efforts can benefit from multispectral-296 

radar synergies, mostly via object-level image fusion (Table 1; but see Bwangoy et al. 2010 297 

for an example of multispectral-radar SRS data integration applied to tropical wetlands). 298 

The rationale for combining multispectral and radar imagery for wetland monitoring is 299 

that radar imagery allows the mapping of  surface water or wet soils, even beneath a 300 

canopy (Bourgeau-Chavez et al. 2009), whilst multispectral data responds to vegetation 301 

and wetness in open canopies. Multispectral-radar image fusion has been used to 302 

distinguish between geomorphological structures in wetlands (Hamilton et al. 2007, Souza-303 

Filho et al. 2009), or different vegetation types (Bourgeau-Chavez et al. 2009, 2016). 304 

However, these studies did not compare mapping accuracy achieved after image fusion to 305 

that achieved by using a single type of sensor, so it is unclear what the added value of 306 

image fusion was in these cases. Some insights are provided by Fu et al. (2017), who found 307 

that fusing ALOS-PALSAR/RADARSAT-2 and multispectral imagery from GF-1 increased 308 

mapping accuracy of wetland vegetation types beyond that achieved by using these data on 309 

their own. Similarly, when multispectral and radar imagery (Landsat TM5 and ALOS 310 

PALSAR, respectively) were integrated in a classification tree modelling approach, 311 

misclassification of different types of wetland vegetation and the extent of standing water 312 

were significantly reduced (Ward et al. 2014). Nevertheless, benefits of multispectral-radar 313 
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SRS data fusion may vary by wetland class (Maillard et al. 2008; Robertson et al. 2015) or 314 

with patch size (Gala & Melesse 2012). 315 

 316 

Horizontal structure 317 

Apart from enabling a better assessment of ecosystem and vegetation type distributions, 318 

integrating multispectral and radar imagery can also support efforts to estimate 319 

continuous parameters that characterise horizontal ecosystem structure related to canopy 320 

or soil structure. Horizontal ecosystem structure is here understood as the horizontal 321 

arrangement of ecosystem components in space (Bergen et al. 2009). Naidoo et al. (2016) 322 

for example reported that woody canopy cover is more accurately estimated when adding 323 

ALOS PALSAR and Landsat TM to a Random Forest algorithm (instead of using ALOS 324 

PALSAR on its own). Similarly, Cartus et al. (2011) successfully mapped tree stem density 325 

across 1,5 mio km2 of forest using on ERS-1 and 2 imagery and the MODIS Vegetation 326 

Continuous Field product. Multispectral-radar SRS data integration has also helped map 327 

sediment grain size in intertidal flats (van der Wal & Herman 2007), as well as soil 328 

properties such as moisture (Wang et al. 2004) and chemical or physical composition 329 

(Poggio & Gimona 2017).  330 

 331 

Vertical structure 332 

Estimating the vertical structure of ecosystems, which refers to the vertical arrangement of 333 

ecosystem components in space (Bergen et al. 2009), can be facilitated by SRS image fusion 334 

and data integration. So far, the focus has been on forest ecosystems and monitoring 335 
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biomass, as demonstrated by Basuki and colleagues (2013) who used multispectral-radar 336 

image fusion to assess aboveground biomass in tropical forests. Others have derived 337 

biomass from integrating multispectral and radar data in quantitative (Wang & Qi 2008) or 338 

empirical (Hyde et al. 2006, Ismail et al. 2015) models. Hyde et al. (2006) found that whilst 339 

LiDAR does provide more accurate estimates of canopy height and biomass on its own, 340 

integrating multispectral and airborne (X-band) radar data could achieve comparable 341 

accuracies, much higher than that achieved by either sensor type alone. This result is 342 

echoed by Hamdan et al. (2014) and Attarchi & Gloaguen (2014), who both used 343 

spaceborne L-band radar to estimate biomass in tropical and temperate forests 344 

respectively. This suggests that integrating or fusing multispectral and radar imagery could 345 

provide an important opportunity to improve biomass monitoring in the absence of a 346 

spaceborne LiDAR sensor. Apart from estimating biomass, multispectral and radar imagery 347 

have been fused to monitor forest height (Walker et al. 2007; Kellndorfer et al. 2010) with 348 

moderate accuracy (R2 between 0.7 and 0.9) when validated against forest inventory or 349 

LiDAR-derived samples of forest height. However, since these studies did not explicitly 350 

compare the accuracy of their models with and without data fusion, it is unclear to which 351 

extent combining the data types benefited them. 352 

 353 

Threats to biodiversity 354 

Being able to detect threats to biodiversity at all levels of biological and ecological 355 

organisation is necessary to prioritise areas for conservation (Joppa et al. 2016), plan 356 

conservation interventions (Pressey & Botrill 2008; Tulloch et al. 2015) and understand 357 
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the processes that shape biodiversity across a landscape (Shea et al. 2004). So far, SRS data 358 

fusion has rarely been applied to detect threats to biodiversity, but some promising case 359 

studies have emerged, mainly mapping deforestation across medium-sized study areas 360 

(hundreds or thousands of square kilometres, Table 1). It’s worth mentioning here that 361 

deforestation mapping has a different focus than forest distribution assessments: 362 

deforestation mapping aims to optimise the identification of areas where trees have been 363 

removed by humans, whereas forest mapping seeks to optimise the assessment of forest 364 

extent, often aiming to distinguish between different forest types (e.g. successional stages, 365 

Lu et al. 2011, 2014), and/or quantify forest condition. 366 

Combining multispectral and radar imagery has been shown to improve deforestation 367 

monitoring and reduce the lag between a deforestation event and its detection in areas 368 

where multispectral SRS data have significant cloud gaps (Asner 2001; Lehmann et al. 369 

2011; Reiche et al. 2015a,b). Reiche and colleagues (2015a) for example fused time series 370 

of multispectral and radar information at the pixel level, using the correlation between 371 

overlapping multispectral and radar time series to predict missing values in the former; 372 

this yielded a fused image for each time step, which was used to track deforestation. They 373 

reported that image fusion increased the overall accuracy with which deforestation was 374 

detected by 2.4% (compared to using only multispectral SRS data) under less cloudy 375 

conditions, but that, as cloud cover increased, this improvement in accuracy increased to 376 

ca. 40%. Additionally, the lag between deforestation events and their detection was 377 

significantly reduced, which makes these analyses more useful for informing responses on 378 

the ground.  379 
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Integrating multispectral and radar SRS data acquired at (roughly) the same time can help 380 

simultaneously reduce data gaps from cloud cover (for multispectral SRS) and layover (for 381 

radar SRS, Reiche et al. 2013), as well as improve the ability to distinguish forest from 382 

other land cover classes (Lehmann et al. 2011), both of which facilitates deforestation 383 

detection. By contrast, integrating subsequent multispectral and radar images in a Bayesian 384 

decision-framework has given mixed results: Whilst Lehmann et al. (2015) report that 385 

switching between SRS data types (here: from Landsat to PALSAR) increases erroneous 386 

detection of deforestation, Reiche et al. (2015b) found higher deforestation detection 387 

accuracy, and a reduction in detection lag, when integrating these SRS data sets. Forest 388 

degradation is another key threat to forest biodiversity which could benefit from fusing 389 

multispectral and radar SRS data. Forest degradation can either be detected through 390 

changes in forest structure, composition and function; it is also possible in some instances 391 

to map discrete degradation categories. For instance, integrating backscatter from ALOS 392 

PALSAR and tasselled cap-transformed Landsat 5 TM imagery in a Random Forest 393 

classification framework helped distinguish different stages of palm swamp degradation 394 

(Hergoualc’h et al. 2017).  395 

Compared to species- and ecosystem-level biodiversity monitoring multispectral-radar SRS 396 

data fusion has been applied to a relatively small range of biodiversity threats (Table 1), 397 

but four potential further avenues are worth mentioning. First, SRS data fusion has been 398 

shown to improve the accuracy with which indicators of eutrophication – such as Secchi 399 

depth – can be estimated across large areas (Zhang et al. 2002, Liu et al. 2014). This 400 

suggests that SRS data fusion could be a useful tool for monitoring threats to freshwater 401 

and marine ecosystems which are under pressure from anthropogenic eutrophication, such 402 
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as coastal areas (e.g. Kemp et al. 2005). Second, Stroppiana and colleagues (2015) reported 403 

that integrating radar imagery from Envisat ASAR and multispectral imagery from Landsat 404 

5 TM in a fuzzy decision framework improved burned area mapping. Though it is not 405 

possible to distinguish anthropogenic and wildfires from space, this suggests that SRS data 406 

fusion could support monitoring changes in fire dynamics, which threaten biodiversity in 407 

many ecosystems (Enright et al. 2015). Third, the detection of infrastructure associated 408 

with anthropogenic threats to biodiversity, such as roads, may benefit from SRS data 409 

fusion. Integrating LiDAR information about three-dimensional structure of landscapes 410 

with multispectral imagery has been shown to improve road detection over using 411 

multispectral imagery alone (Hu et al. 2004). Given the current lack of a satellite-based 412 

LiDAR mission, however, radar imagery could be used to provide similar information about 413 

the vertical structure of surfaces, and could be fused with multispectral imagery to 414 

facilitate road mapping (Lisini et al. 2011). Fourth, multispectral-radar synergies could 415 

help improve the mapping of invasive plant species, which may differ from native species 416 

in spectral characteristics (reflected in spectral reflectance), as well as growth and volume 417 

patterns (reflected in radar backscatter; Ghulam et al. 2014). Whether and to which degree 418 

data fusion can improve the detection of these anthropogenic threats however remains to 419 

be tested. 420 

 421 

What currently limits wider use of data fusion techniques? 422 
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Multispectral-radar SRS data fusion can have significant added value over using 423 

multispectral and radar SRS data alone, but there are currently four challenges that could 424 

prevent its routine use.  425 

First, there is a lack of understanding of the contexts in which multispectral-radar SRS data 426 

fusion likely improves estimates, which makes it difficult for scientists to decide where to 427 

invest time and energy in additional processing and analysis. There are indeed contexts in 428 

which multispectral-radar SRS data fusion does not improve accuracy over using a single 429 

type of SRS data, or in which the benefits of fusion depend on the type of multispectral and 430 

radar data used (Ban 2003), the fusion technique (Lisini et al. 2011; Basuki et al. 2013; 431 

Hong et al. 2014; Wang et al. 2016) or (in the case of classifications) which land cover class 432 

and/or which time period is considered (Polychronaki et al. 2014; Robertson et al. 2015; 433 

Carreiras et al. 2017). Collaboration between the ecology/biodiversity and the remote 434 

sensing communities, via platforms like the Group on Earth Observations Biodiversity 435 

Observation Network, will be crucial in identifying which biodiversity parameters could 436 

benefit most from SRS data fusion approaches, and which datasets and processing 437 

techniques are most appropriate (Pettorelli et al. 2014b).  438 

Second, multispectral-radar image fusion is often used without reporting a reason for data 439 

selection or fusion techniques, so it is hard to learn from experience. Additionally, it is often 440 

difficult to report all data analysis steps to a reproducible level of detail. A key step towards 441 

improving the transparency of SRS data fusion is making the code used in such analyses 442 

accessible, e.g. by using open-source software (Fig. 2). Scientific workflow systems, such as 443 
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Kepler (Ludäscher et al. 2009), could also help make SRS fusion methods more transparent, 444 

and aid quick identification and uptake of useful approaches (Michener & Jones 2012).  445 

Third, data fusion requires the capacity, both in terms of hardware and analysis skills, to 446 

source and process two very different types of SRS data. Barriers to more widespread use 447 

of SRS data by ecologists in general – such as unfamiliar data formats, pre-processing 448 

requirements, or lack of appropriate hardware (Kuenzer et al. 2014) – are multiplied when 449 

using two different types of data. Even among ecologists and biodiversity researchers 450 

which routinely use SRS data, self-reported data handling proficiency tends to be lower for 451 

active sensors such as radar (Palumbo et al. 2017). The added value of multispectral-radar 452 

SRS data fusion may well outweigh these technical drawbacks in many cases, but will 453 

clearly present an obstacle for widespread adoption in a scientific community that is still in 454 

the process of embracing big data (Michener & Jones, 2012). However, the emergence of 455 

cloud computing (e.g. in the Google Earth Engine), and growing coding literacy amongst 456 

ecologists could help minimise the impact of this obstacle (Marvin et al. 2016). Moreover, 457 

many open-source software platforms already have tools supporting common data fusion 458 

techniques, reducing the entry barrier to a more widespread uptake (Fig. 1). 459 

Fourth, data accessibility can remain a significant obstacle to multi-sensor SRS data fusion. 460 

Whilst multispectral SRS data, notably from the Landsat mission, have been freely available 461 

for almost a decade (Wulder et al. 2012), open access radar data has been more restricted, 462 

although ESA’s Sentinel missions are likely to alleviate this data accessibility problem 463 

(Turner et al. 2015; Fig. 3). To fully take advantage of multispectral-radar data fusion 464 

opportunities, especially for time series analysis, accessibility to past acquisitions is 465 



23 
 

necessary. As a result, promoting open-access data policies for current and future missions 466 

as well as data archives remains important (Turner et al. 2015). 467 

 468 

Conclusion 469 

SRS data fusion allows taking advantage of the complementary information captured by 470 

different sensors (Lu et al. 2014; Joshi et al. 2016), and has the potential to increase the 471 

quality of SRS-derived parameters for ecology and conservation. The case studies 472 

presented here are entry points for more structured efforts to benefit from the growing 473 

availability of multi-satellite data. There are currently many SRS missions with an open-474 

access policy providing global and repeated coverage of the Earth’s surface, both for 475 

multispectral and radar data (Fig. 3). This offers the unique opportunity to scale up SRS 476 

image fusion and integration to large spatial scales, and support global biodiversity 477 

monitoring efforts. These efforts are currently centred on the concept of Essential 478 

Biodiversity Variables (EBVs) (Pereira et al. 2013), which are variables that allow 479 

quantification of the rate and direction of change in one aspect of the state of biodiversity 480 

over time and across space (Pettorelli et al. 2016). SRS variables have been identified as a 481 

key resource to produce EBVs (so-called SRS-EBVs; Pettorelli et al. 2016), mainly for 482 

variables relating to ecosystem structure and function (Geijzendorfer et al. 2016, Pettorelli 483 

et al. 2017). So far, however, development of SRS-EBVs and other variables for large-scale 484 

biodiversity monitoring has been largely focused on using SRS data from a single sensor 485 

(e.g. Pasher et al. 2013, Vihervaara et al. 2017). Whilst multispectral and radar SRS data 486 

fusion has mainly been applied to structural or compositional aspects of biodiversity, it 487 
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could also benefit monitoring of functional aspects. For instance, mapping wetland 488 

inundation extent (e.g. Ward et al. 2014), forest succession stage (e.g. Lu et al. 2011), or 489 

burned areas (Stroppiana et al. 2015), and monitoring water quality (Zhang et al. 2002, Liu 490 

et al. 2014), have all been shown to benefit from multispectral-radar synergies, allowing 491 

more accurate characterisation of related ecosystem processes and functions (such as 492 

water and disturbance regulation and primary productivity). Identifying how SRS data 493 

fusion could support global biodiversity monitoring efforts through SRS-EBVs requires 494 

collaboration between remote sensing scientists and biodiversity/ecology scientists (Fig. 495 

4). Each community’s expertise and experience will be required to match monitoring 496 

requirements to remote sensing capability, so that SRS-EBVs are relevant, cost-effective 497 

and their production feasible (Pettorelli et al. 2016). This process will be particularly 498 

important for exploring the as-yet untapped opportunities arising from SRS data fusion to 499 

expand our biodiversity monitoring options from space. Much remains to be discovered 500 

about how best to capitalise on recent technological developments and changes in SRS data 501 

availability; we hope this contribution, by providing a solid introduction to SRS data fusion 502 

and its benefits for ecology and conservation, paves a way for this.  503 

  504 
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Figures and Tables 983 

Box 1: Definitions of key terms relating to remote sensing and data fusion. 984 

Table 1 Overview of current applications of multispectral-radar SRS data fusion for species  985 

and ecosystem  monitoring , as well as biodiversity threat detection via (A) image fusion 986 

(P= pixel-based fusion; O=object-based fusion) or (B) decision-level data fusion 987 

(integration). (*) identifies studies that explicitly compare multispectral-radar image 988 

fusion/data integration to approaches which use either data alone. 989 

Figure 1: Schematic overview of multispectral-radar SRS data fusion techniques. The 990 

parameter of interest can be a categorical variable, like land cover, or a continuous 991 

variable, like species richness. In pixel-level fusion, the original pixel values of radar and 992 

multispectral imagery are combined to yield new, derived pixel values. Object-based fusion 993 

refers to 1) using radar and multispectral imagery is input into an object-based image 994 

segmentation algorithm, or 2) segmenting each type of imagery separately before 995 

combining them. Finally, decision-level fusion corresponds to the process of quantitatively 996 

combining multispectral and radar imagery to derive the parameter of interest (by e.g. 997 

combining them in a regression model, or classification algorithm).  998 

Figure 2: Overview of the advantages and drawbacks of the most common multispectral-999 

radar SRS image fusion techniques, as well as examples for open-source software to 1000 

implement them. 1001 

Figure 3: Spatial resolution and launch date of freely available SRS data with global 1002 

coverage from active, long-term missions. Included are only missions which are currently 1003 
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active. The relative lack of radar missions is due to the fact that most missions with open-1004 

access data policies are not active (e.g. JERS-1, ALOS PALSAR, ERS-1/2) whilst imagery 1005 

from active radar missions is often behind a paywall (ALOS-2, RADARSAT-1/2, TerraSAR-1006 

X). 1007 

Figure 4: Roadmap for identifying and generating Essential Biodiversity Variables based 1008 

on SRS (SRS-EBVs) supported by data fusion. The ecology/conservation science community 1009 

and the remote sensing community each contribute their intradisciplinary expertise to a 1010 

collaborative, interdisciplinary process in which biodiversity monitoring requirements are 1011 

matched with appropriate SRS data and analysis techniques. The outcome of this process is 1012 

a consensus about which SRS-EBVs will benefit from data fusion approaches, as well as the 1013 

SRS data required and recommendations for data fusion techniques. This then feeds into 1014 

the operationalisation stage, which involves the two science communities as well as policy-1015 

makers, to enable the production and use of SRS-EBVs, and which includes validation, 1016 

endorsement, repeated generation, storage, dissemination of SR_EBVs. 1017 

.  1018 
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Box 1: Definitions of key terms relating to satellite remote sensing and data fusion 

 

Band: Defined section in the visible and near-infrared part of the electromagnetic 

spectrum (Wegmann & Leutner 2016). 

Data fusion: A formal framework in which data from different sources (and hence, 

sensors) is combined (“’alliance des données”) to obtain information of greater quality 

(Wald 1999). 

Hyperspectral remote sensing: Type of remote sensing which records radiance in a high 

number of sections of the electromagnetic spectrum (typically 100s of bands), allowing the 

reconstruction of a contiguous reflectance profile (Goetz et al. 1985). 

Image fusion: A type of data fusion, in which images from different sources are combined 

into a new image. The aim is to create an image that retains salient information whilst 

minimizing artefacts or distortion. 

Integration: We use “integration” to refer to decision-level data fusion, emphasising that 

whilst no new imagery is produced, the SRS data is systematically combined in a 

quantitative framework. 

Leaf Area Index (LAI): One-sided green leaf area per unit ground area (Myneni et al. 

1997). 

Light Detection and Ranging (LiDAR): A type of active remote sensor which emits pulses 

of light and measures the proportion of the signal which is reflected; based on this 
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information, the three-dimensional location of the object that reflected the light can be 

reconstructed. 

Multispectral remote sensing: Measuring the amount of electromagnetic radiation in a 

limited number of bands (typically less than 10) in the visible and infrared part of the 

spectrum. Widely used spaceborne multispectral sensors include the Landsat and MODIS 

missions. Different from hyperspectral remote sensing (see above).  

Normalised Difference Vegetation index (NDVI): A common vegetation index based on 

reflectance in the red and the near-infrared part of the spectrum, sensitive to the amount of 

photosynthetically active vegetation in a given area (Pettorelli et al. 2005). 

Pan-sharpening: Fusing multispectral imagery with a panchromatic image of higher 

spatial resolution to increase the spatial resolution of the former whilst preserving its 

spectral information (“colour”) (Vivone et al. 2015). 

Radar remote sensing: Emitting a signal of electromagnetic radiation with a defined 

wavelength in the microwave spectrum and measuring the intensity and wavephase of the 

returning signal. Widely used spaceborne radar sensors include ALOS PALSAR and 

RADARSAT-2. 
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Table 1  

(A) 

 Variable Proxy Multispectral 
sensor 
(spatial 
resolution) 

Radar sensor 
(wavelength; 
spatial 
resolution) 

Spatial scale Reference Type of 
data fusion 

Species-level 
biodiversity 

Species distribution Distribution of alfalfa 
stands (Medicago 
salvatica) 

MODIS (250m)  RADARSAT-2 (C-
band; 50m) 

50,000 km2 Hong et al. 
2014* 

P 

Community 
composition 

Relative basal area of 
10 tree species and 2 
tree genera 

Landsat 5 TM 
(30m), SPOT 5 
(10m) 

Radarsat-1 (C-
band, ca. 27m), 
ALOS PALSAR (L-
band, ca. 12.5m) 

360 km2 Wolter & 
Townsend 
2011* 

P 

Ecosystem-
level 
biodiversity 

Ecosystem 
distribution 

Distribution of different 
forest types, including 
different successional 
stages 

Landsat 5 TM 
(30m) 

RADARSAT-2 (C-
band, 8m), 
ALOS PALSAR (L-
band, 12.5m) 

3,100 km2 Lu et al. 2011* 

 

P 

Landsat 5 TM 
(30m) 

ALOS PALSAR (L-
band, 12.5m) 

3,000 km2 Lu et al. 2014* P 

Landsat 5 TM 
and Landsat 7 
ETM+ (30m) 

ALOS PALSAR 
(25m) 

ca. 370,000 
km2 

 

Lucas et al. 
2014 

 

O 

Distribution of 
vegetation and/or 
geomorphology types 
in a wetland ecosystem 

Landsat 7 
ETM+(15m 
and 30m) 

JERS-1 (L-band, 
100m), 
SRTM (C-band, ca. 
90m) 

31,000 km2 

 

Hamilton et al. 
2007 

O 

Landsat 5 TM 
(30m) 

RADARSAT-1 (C-
band, 33x27 m) 

1,600 km2 Souza-Filho et 
al. 2009 

P 

Landsat 5 TM 
(30m) 

ALOS PALSAR (L-
band, 20m), 
ERS-1/2 (C-band, 
30m) 

250 
km2/34,000 
km2 
respectively 

Bourgeau-
Chavez et al. 
2009, 2016 

0 

GF-1 (2m and 
8m) 

ALOS PALSAR (L-
band, 14m) 

250 km2 Fu et al. 2017* P/O 
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RADARSAT-2 (C-
band, 6.3m x 5.2m) 

Vertical ecosystem 
structure 

Canopy height 
 

Landsat 5 TM 
and Landsat 7 
ETM+ (30m) 

SRTM (C-band, ca. 
30m) 

62,000 km2 

 

Walker et al. 
2007* 

O 

Landsat 7 
ETM+ (30m) 

SRTM (C-band, ca. 
30m) 

110,000 km2 Kellndorfer et 
al. 2010 

O 

Aboveground biomass Landsat 7 
ETM+ (30m) 

ALOS PALSAR (L-
band, 16m 
resampled) 

31, 000 km2 Basuki et al. 
2013 

P 

Threats to 
biodiversity 

Deforestation Historic deforestation 
events 

Landsat 7 
ETM+ (30m) 

ALOS PALSAR (L-
band, 25m) 

30 km2 Reiche et al. 
2015a* 

P 

 

(B) 

 Variable Proxy Multispectral sensor 

(spatial resolution) 

Radar sensor 

(wavelength; spatial 

resolution) 

Spatial 

scale 

Reference Type of data fusion 

Species-
level 
biodiversity 

Species 
distribution 

Bird species  NLCD (from Landsat 
TM; 30m) 

SIR-C (both L and C 
band, 25m) 

ca. 1,200 
km2 

Bergen et al. 
2007* 
 

Genetic Algorithm For 
Rule Set Production 

MODIS–derived LAI 
and Vegetation 
Continuous Fields 
(500m) 

QuickScat (X-band, 
1km) 

17.8 million 
km2 

Buermann et 
al. 2008 

Species Distribution 
Model 

Subcanopy 
plant species 

Landsat 5 TM and 7 
ETM+ (30m), GeoEye-1 
(1.64m), IKONOS (4m) 

RADARSAT-2 (L-band, 
8m), ALOS PALSAR (L-
band, 12.5m) 

22.3 km2 Ghulam et al. 
2014 

Decision tree 
algorithm 

Tropical tree 
species 

MODIS-derived NDVI, 
LAI, Vegetation 
continuous fields 
(500m) 

QuickScat (X-band, 
1km) 

ca. 7.5 
million km2 

Prates-Clark 
et al. 2008 

Species Distribution 
Model 

MODIS –derived LAI 
and Vegetation 
Continuous Fields 

QuickScat (X-band, 
2.25km), SRTM (C-
band, ca. 30m) 

17.8 million 
km2 

Buermann et 
al. 2008 

Species Distribution 
Model 
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(500m) 
Ecosystem-
level 
biodiversity 

Ecosystem 
distribution 

Wetland 
vegetation 
types  

Landsat TM and ETM+ 
(57m) 

JERS-1 (L-band, 
100m), SRTM (C-band, 
30m) 

1.2 million 
km2 

Bwangoy et 
al. 2010 

Classification trees 

GF-1 (2m and 8m) ALOS PALSAR (L-band, 
14m) 
RADARSAT-2 (C-band, 
6.3m x 5.2m) 

250 km2 Fu et al. 
2017* 

Random forest 

Forest types Landsat TM (30m), 
AVNIR-2 (10m) 

ALOS PALSAR (L-band, 
15m) 

7,750 km2 Laurin et al. 
2013 

Maximum Likelihood 
& Neural Networks 
Classifiers 

SPOT 1 or 2 (20m) ERS (C-band, 12.6m) Not 
reported 

Hégart-
Mascle et al. 
1998 

Dempster-Shafner 
fusion 

Landsat TM (30m) SIR-C (C and L-band, 
12.5m) 

ca. 520 km2 Rignot et al. 
1997* 

Rule-based 
classification 

Horizontal 
ecosystem 
structure 

Forest stem 
density 

MODIS vegetation 
continuous field 
product (500m) 

ERS1-2 (C-band, 25 m 
or 50m depending on 
location) 

1.5 million 
km2 

Cartus et al. 
2011 

Exponential SIBERIA 
model, semi-empirical 
Interferometric Water 
Cloud Model 

Woody 
canopy cover 

Landsat TM (30m) ALOS PALSAR (L-band, 
12.5m) 

ca. 31,000 
km2 

Naidoo et al. 
2016* 

Random Forest 

Sediment 
grain size 

Landsat TM (30m) ERS-1 and 2 (C-band, 
12.5m) 

ca. 100 km2 van der Wal & 
Herman 
2007* 

Multiple least-squares 
regression 

Soil density, 
composition 

Sentinel-2, Landsat, 
MODIS (rescaled to 
100m) 

Sentinel-1 (C-band, 
rescaled to 100m) 

ca. 78,000 
km2 

Poggio & 
Gimona 
2017* 

Generalised additive 
model 

Soil moisture Landsat 5 TM (30m) ERS-2 (C-band, not 
reported) 

400 km2 Wang et al. 
2004 

Quantitative modelling 

Vertical 
ecosystem 
structure 

Biomass JERS VNIR (18m) JERS-1 SAR (L-band, 
60m) 

6700 km2 Wang & Qi 
2008 

Quantitative modelling 

Landsat 7 ETM+ (30m) ALOS PALSAR (L-band, 
resampled to 30m) 

107 km2 Attarchi & 
Gloaguen 
2014* 

Linear regression 

SPOT-5 (5m) ALOS PALSAR (L-band, 
25m) 

1,090 km2 Hamdan et al. 
2014* 

Linear regression 

Timber 
volume 

SPOT-4 (resampled to 
100m) 

ALOS PALSAR (L-band, 
resampled to 100m) 

ca. 360 km2 Ismail et al. 
2015 

Linear regression 
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Ecosystem 
function 

Fire dynamics 
extent of 
burned areas 

Landsat 5 TM (30m) Envisat ASAR (C-band, 
60m x 80m)  

ca. 90,000 
km2 

Stroppiana et 
al. 2015* 

Fuzzy decision 
algorithm 

Wetland 
inundation 
dynamics 

Landsat 5TM (30m) ALOS PALSAR (L-band, 
100m) 

ca. 3,400 
km2 

Ward et al. 
2014* 

Classification tree 
modelling 

Landsat 7 ETM+ (30m) RADARSAT-1 (C-band, 
12.5m) 

ca. 15 km2 Gala & 
Melesse 2012 

Post-classification 
combination 

Threats to 
biodiversity 

Eutrophication Chlorophyll-α, 
Secchi disk 
depth, 
suspended 
sediment 
concentration, 
turbidity 

Landsat 5 TM (30m) ERS-2 (C-band, 12.5m) ca. 29,600 
km2 

 

Zhang et al. 
2002* 

Artificial neural 
networks 

Inorganic 
nitrogen 
concentration 

HJ-1 (30m) RADARSAT-2 (C-band, 
12 x 8m) 

ca. 2,500 
km2 

Liu et al. 
2014* 

Random Forest 

Forest 
degradation 

Degradation 
of palm 
swamp 

Landsat 5 TM (30m) ALOS PALSAR (L-band, 
12.5m) 

3,500 km2 Hergoualc’h 
et al. 2017 

Random Forest 

Deforestation Plantation 
expansion 

Landsat TM and ETM+ 
(30m) 

ALOS PALSAR (L-band, 
50m) 

3,400 km2 Dong et al. 
2013 

Post-classification 
combination 

Deforestation 
events 

Landsat TM (30m) SIR-C (L and C-band, 
12.5m), JERS-1 (L-
band, 12.5 m) 

ca. 520 km2 Rignot et al. 
1997* 

Rule-based 
classification 

Landsat 5 and 7 (30m) ALOS PALSAR (L-band, 
25m) 

ca. 7,800 
km2 

Reiche et al. 
2013* 

Rule-based 
classification 

Landsat 7 ETM+ (30m) ALOS PALSAR (L-band, 
25m) 

ca. 96 km2 Reiche et al. 
2015b* 

Bayesian time series 
modeling 

Landsat 
MSS/TM/ETM+ (30m) 

ALOS PALSAR (L-
band; 25m) 

3,300 km2 Lehmann et 
al. 2011* 

Bayesian time series 
modeling 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 


