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Highlights: 

 Ecosystem risk assessment protocols enable the use of a wide range of data sources to 

assess the changing status of ecosystems. 

 Unstructured use of satellite remote sensing for assessing ecosystem dynamics can 

introduce substantial error and uncertainty. 

 We identify remote sensing products that are useful for assessing degradation of a range 

of marine, aquatic and terrestrial ecosystem types. 

 We provide guidance and a framework for integrating remote sensing data into ecosystem 

risk assessment. 

  



Abstract 

The current set of global conservation targets requires methods for monitoring the 

changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to 

this task, providing objective syntheses of a wide range of data to estimate the likelihood of 

ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets 

suitable for analysing changes in ecosystem area, structure and function at the temporal and 

spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty 

about how to select and effectively utilise remotely sensed variables for risk assessment. Here, 

we review the use of satellite remote sensing for assessing spatial and functional changes of 

ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk 

assessment. We suggest that decisions on the use of satellite remote sensing should be made a 

priori and deductively with the assistance of conceptual ecosystem models that identify the 

primary indicators representing the dynamics of a focal ecosystem. [future] 

Keywords: risk assessment, biodiversity monitoring, ecosystem status, earth observation, 

satellite remote sensing, ecological indicators 

  



1. Introduction 

Habitat loss, degradation and fragmentation continue to threaten ecosystems worldwide 

(Tittensor et al. 2014). The adoption of the Aichi 2020 Targets, agreed by 194 nations under the 

Convention on Biological Diversity (Convention on Biological Diversity 2014), and the 2030 

Sustainable Development Goals (UNDP 2015) are crucial global policy responses to counteract 

these fundamental drivers of biodiversity loss. These agreements explicitly include goals on the 

conservation and restoration of ecosystems and their characteristic biota. For example, five of the 

twenty Aichi Targets relate directly to the status of ecosystems (Convention on Biological 

Diversity 2014). Yet identifying tools that can be used to assess progress towards these 

ecosystem-based conservation targets remains a fundamental challenge (Collen and Nicholson 

2014, Tittensor et al. 2014). The emergence of ecosystem risk assessment protocols such as the 

IUCN Red List of Ecosystems (www.iucnrle.org), which provide decision rules for classifying 

ecosystems according to their risk of collapse, can help address this challenge.  

Ecosystem risk assessment protocols aim to estimate the probability of ecosystem 

collapse over a specified time frame (Keith 2015). Currently, more than 30 countries assess 

ecosystems, ecological communities, or habitats to estimate the risks they face, with the 

conservation status of at least 725 ecosystem types formally reviewed (Murray, unpub. data). For 

the purposes of risk assessment, ecosystems are normally defined as complexes of organisms and 

their physical environment within a particular area (see Nicholson et al. 2015 for a review of 

terms used in ecosystem risk assessment). They are recognized as having four essential elements: 

a biotic complex, an abiotic environment, the interactions within and between them, and a 

physical space in which these operate (Tansley 1935). Risk assessments typically require 

information on the geographic distribution of an ecosystem, changes in spatial extent, and 

http://www.iucnrle.org/


changes in ecosystem function over time (Nicholson et al. 2009, Nicholson et al. 2015). For 

example, the International Union for Conservation of Nature’s (IUCN) Red List of Ecosystems, 

the only global protocol for ecosystem risk assessment, comprises a risk assessment model with 

five quantitative criteria that integrate multiple symptoms of ecosystem collapse (Figure 1; Keith 

et al. 2013, Rodríguez et al. 2015). The Red List of Ecosystems criteria consider both the spatial 

aspects of ecosystem decline, including reductions in area (Criterion A) and susceptibility to 

spatially explicit threats (Criterion B), and the functional aspects of decline that focus on both 

abiotic and biotic symptoms of ecosystem degradation (Criteria C and D; Figure 1). A fifth 

criterion allows the use of stochastic ecosystem models that may incorporate both the spatial and 

functional aspects of decline to estimate risks of collapse (Criterion E; Keith et al. 2013). 

Declines in geographic distribution and both biotic and abiotic functions are typically measured 

over a 50-year timeframe to capture long-term directional changes in ecosystem dynamics, 

although future projections to a 50-year time frame may also be used (Bland et al. 2016). 

Many data sources are relevant for ecosystem risk assessment, including those from short 

and long term monitoring programs, field surveys, and underwater, aerial and satellite sensors. 

Of these, satellite remote sensing offers the greatest opportunity to evaluate ecosystem change 

beyond the site level (Turner et al. 2003) and to scale the risk assessment process to provincial, 

national and continental jurisdictions. However, the need for interdisciplinary expert skills in the 

identification and use of satellite remote sensing data is a central factor that has limited the 

uptake of this source of environmental information by ecologists and slowed the development of 

national, continental and global lists of threatened ecosystems. Furthermore, the increasing 

availability of data from an ever-growing range of sensors has led to a bewildering choice of 



remotely sensed data that seem suitable for assessing ecosystem change over a range of time 

periods (Porter et al. 2012, Kennedy et al. 2014).  

In this review we investigate the proven capabilities and future potential of satellite 

remote sensing for assessing the status of ecosystems across a range of major ecosystem types, 

identifying important mechanisms and processes of ecosystem change and the sensors that best 

represent them. We identify recent case studies that demonstrate the advantages, challenges and 

key considerations of using remotely sensed data in studies of ecosystem dynamics. In doing so, 

we provide a primer for environmental managers, risk assessors, and ecosystem scientists to 

judiciously utilize remote sensing for ecosystem risk assessments at a range of spatial scales. 

Lastly, we develop a simple framework for incorporating indicators that can be monitored with 

satellite remote sensing across a wide range of ecosystem types, with the aim of establishing a 

clear assessment workflow to progress a global list of threatened ecosystems. 

2. Spatial distribution of ecosystems 

Accurate maps of the geographic distributions of ecosystems and how they change over 

time are fundamental components of most ecosystem risk assessment protocols (Figure 1; 

Nicholson et al. 2015). Ecosystems with small geographic range size are at greater risk of 

collapse from environmental catastrophes than those that are distributed over large areas (Keith 

et al. 2017, Murray et al. 2017a). Similarly, the rate of areal change is a widely used indicator of 

an ecosystem’s trajectory towards collapse, because a decline in area reduces the ability of an 

ecosystem to maintain its characteristic biota and fundamental processes (Keith et al. 2013). The 

areal trajectories of many of Earth’s major ecosystem types have been quantified with time-

series remote sensing data. Examples of estimated annual rates of change in extent include –3.7 

% for tropical peatlands (Wilcove et al. 2013), –2 % for coastal wetlands in East Asia (Murray et 



al. 2014, Murray et al. 2015) and >1 % for forests globally (Hansen et al. 2013). However, 

producing time series of ecosystem maps at spatial and temporal scales that underpin such 

estimates of change is a specialist task. The need for detailed knowledge of available data, 

advanced analytical methods, and an understanding of constraints and uncertainties of remote 

sensing has limited the availability of highly accurate and consistent maps that can be used 

operationally for ecosystem risk assessments. 

Traditional remote sensing methods, such as visual interpretation and classification of 

satellite, aerial and underwater imagery have been widely used to generate fine (<10-m) to 

coarse (>1-km) grain maps of ecosystems over the last few decades. However, the investment 

required to produce map time series can be prohibitive for managers seeking to implement 

ecosystem risk assessment protocols, particularly in developing countries (Mumby et al. 1999). 

To achieve accurate, high resolution time-series maps of ecosystem distributions, it is often 

necessary to host large amounts of spatial data, access sufficient computing infrastructure and 

manage highly technical workflows. New geospatial analysis platforms have solved many 

limitations of ecosystem-scale remote sensing by storing vast spatial data archives and allowing 

users to develop complex analyses at no-cost. These platforms operate at global (eg Google 

Earth Engine) and continental scales (eg The Australian Geoscience Data Cube) and are 

beginning to make near real-time analyses of ecosystem change at these scales commonplace 

(Hansen et al. 2016, Gorelick et al. 2017). As an example, the collapse of the Aral Sea ecosystem 

(Keith et al. 2013) has now been documented over a 32-year period at high spatial (30-meter) 

and temporal (monthly) resolution as part of a global analysis of more than three million Landsat 

satellite images (Pekel et al. 2016).  



The development of ‘virtual constellations’ to integrate data from different satellite 

sensors and the rapidly increasing use of composite images (Figure 3) can enable the 

development of high-quality maps in areas previously limited by chronic cloud cover or poor 

data coverage (Wulder et al. 2015). Time series of ecosystem extent may be extended into the 

past with historical data, such as topographic maps (eg Murray et al. 2014) and aerial 

photographs (eg Palandro et al. 2003), or by models that allow projections over time (Soares-

Filho et al. 2006). This allows the long-term spatial dynamics of ecosystem distributions to be 

mapped to match the decadal time-frames required by ecosystem risk assessment protocols 

(Figure 3). Similarly, the growing use of machine learning methods to analyze large sets of 

biological, biophysical, spectral and climatological data against a limited amount of training data 

has enabled accurate differentiation of a wide range of ecosystem types from the surrounding 

landscape over rapidly increasing spatial domains (eg Hansen et al. 2013). For example, the 

global forest change dataset was developed by classifying pixels using more than 15 high-

resolution global composite images as predictors, each of which were developed from more than 

500,000 Landsat images (Hansen et al. 2013). Other approaches, including automated remote 

sensing systems such as the Earth Observation Data for Habitat Monitoring system (EODHaM; 

Lucas et al. 2015) utilise several remote sensing methods (eg image segmentation and supervised 

classification) within their workflows, and can produce standardized habitat maps at multiple 

scales that are also suitable for use in ecosystem risk assessment. 

Although trends in area are important indicators of the status of an ecosystem, varying 

map accuracies (typically classification errors) or the direct comparison of maps developed at 

different spatial resolutions can substantially influence estimates of area across a time-series and 

cause incorrect inferences about ecosystem change (Fuller et al. 2003, Olofsson et al. 2014). 



Therefore, regardless of the mapping method employed, a clear focus of an ecosystem mapping 

protocol for risk assessment must be to produce accurate and consistent maps over time, with a 

robust method for estimating accuracy and associated uncertainty. Comparing classifications to 

independent reference data—confirmed observations of a focal ecosystem—is the most common 

approach for estimating accuracy and can be used to quantify uncertainty around area change 

estimates (Olofsson et al. 2014). New model-based approaches for map classifications provide 

useful diagnostics that can inform better choices of mapping units and can propagate uncertainty 

from training data acquired in situ through to corresponding ecosystem maps (Lyons et al. 2016). 

These new approaches to mapping and classification should help produce better ecosystem maps 

and estimates of area change for use in ecosystem risk assessments. 

3. Ecosystem processes and function 

The disruption of biotic and abiotic ecosystem processes can also be key pathways 

towards ecosystem collapse. For those protocols that integrate functional changes into risk 

assessment, identifying variables to monitor and matching these with remote sensing indicators 

remains a challenge. Some ecosystem risk assessment protocols provide a useful framework for 

conceptualizing processes that lead to ecosystem degradation, helping to isolate specific 

components of ecosystems that could be monitored with satellite data (Nicholson et al. 2015). 

The IUCN Red List of Ecosystems, for instance, requires assessors to identify the most important 

functional symptoms of risk, such as declines in particular biota that perform critical roles in 

ecosystem function or changes in particular components of the abiotic environment that cause 

reductions in those biota (Figure 1; Keith et al. 2013). Examples of the latter include a loss of 

connectivity, interrupted nutrient cycling or increased disturbance regimes (Keith et al. 2013, 

Pettorelli et al. 2017). Contrasting ecological drivers and threats across different terrestrial, 



marine and freshwater ecosystems therefore result in extremely diverse expressions of functional 

decline, which can only be track accurately with carefully selected data and analytical methods 

(Keith et al. 2013). 

Most ecosystem risk assessment protocols offer guidance on the selection and use of 

time-series data for monitoring ecosystem dynamics. However, substantial error can be 

introduced into risk assessments as a result of variation in data processing streams (Morton et al. 

2014), particular start and end-points of a time-series (Wessels et al. 2012), data biases in remote 

sensing data (Smit et al. 2013), varying severity and extent of change (Keith et al. 2013) and 

natural temporal fluctuations in ecosystem properties (eg seasonal; Ferrari et al. 2012). 

Consequently, it is necessary to take care in choosing indicators variables for use in risk 

assessment by first clearly resolving the relationship between remotely sensed data and key 

mechanisms of ecosystem change (03-05, Figure 2). Conceptual models that represent the 

pathways and mechanisms of change in key ecosystem features are often the best way to 

describe these relationships (Bland et al. in press). For example, a conceptual model of the 

Antarctic shallow invertebrate-dominated ecosystems illustrated the critical role of sea ice cover 

in maintaining its geographic distribution and key biotic and abiotic elements (Clark et al. 2015). 

The process of developing a conceptual model for the ecosystem allowed transparent selection 

and use of remotely sensed sea ice distribution data to estimate future risk of collapse, ultimately 

indicating that the ecosystem qualified as Near-Threatened to Vulnerable under the IUCN Red 

List of Ecosystems (Clark et al. 2015).  

To support identification of variables suitable for ecosystem risk assessments that can be 

monitored with satellite remote sensing, we reviewed 17 published case studies that have 

conceptualised or described the relationship between satellite remote sensing data and specific 



ecosystem responses that contribute to elevated risk of ecosystem collapse(Table 1). Cases were 

selected to illustrate different uses of remote sensing data for monitoring symptoms of ecosystem 

collapse across a range of ecosystem types. This review indicated that a wide variety of variables 

that can be monitored with satellite remote sensing, including area loss, biomass change, and 

disease stress, have been used successfully to quantify spatial, biotic and abiotic degradation in a 

manner directly suitable for ecosystem risk assessment. For example, Tebbs et al. (2015) used 

reflectance data obtained from the Landsat Archive to analyse cyanobacterial biomass, 

suspended sediment and extent of cyanobacterial scum in a system of 15 connected alkaline-

saline lakes (‘flamingo lakes’) in the East African Rift Valley. These data enabled an assessment 

of the changing ecological states of the lakes system over a 13 year period (Tebbs et al. 2015). 

Such analyses can be incorporated into ecosystem risk assessments by generalising these 

measurements to an index of ‘relative severity’ of lake degradation over the time frame of the 

assessment, obtained as the ratio of observed change of one of these variables to the amount of 

change that would lead to ecosystem collapse (Keith et al. 2013).  

To provide practical guidance on the use of satellite remote sensing data for risk 

assessments of specific ecosystem types, we have identified remote sensing products that have 

been used for monitoring degradation of 21 ecosystem types spanning in eight sub-realms (Table 

2). Surprisingly, the underlying drivers of ecosystem degradation are often similar across 

functionally related ecosystem types, and several remote sensing products are particularly useful 

for assessing ecosystems with similar characteristics (Table 2). For instance, because of the 

strong functional relationships between sea surface temperature (SST), coral death and loss of 

coral cover, SST is a frequently used variable for assessing risks to coral reef ecosystems (Bland 

et al. 2017). Indeed, SST has been used to assess the likelihood of bleaching of Australia’s Great 



Barrier Reef (Ainsworth et al. 2016) and the Meso-American Barrier Reef (Mumby et al. 2014), 

and enables real-time bleaching alerts via NOAA’s Coral Reef Watch (Liu et al. 2014). Near-

shore kelp forest ecosystems are also sensitive to changes in SST, and remotely sensed estimates 

of SST have been used to monitor functional decline of those systems (Table 2; Vergés et al. 

2016). Sedimentation is a qualitatively different process of degradation in aquatic ecosystems. In 

this case, satellite-derived water turbidity data (Table 2) has been be used to infer environmental 

degradation of both near-shore marine ecosystem types such as coral reef (Fabricius et al. 2014, 

Herzfeld et al. 2016) and seagrass (Kilminster et al. 2015), and freshwater ecosystem types (e.g., 

lentic ecosystems; Tebbs et al. 2015). 

4. Threatening processes 

Many ecosystem risk assessment protocols require extensive assessments of threatening 

processes. These include information on the location of threats, their extent, and their impacts on 

ecosystems and their component biota (Nicholson et al. 2015). Landscape- and seascape-scale 

perspectives on threats (eg deforestation, coastal development, pollution, fire, invasive species, 

disease, extreme weather events) are crucial to the application of risk assessments (Keith et al. 

2017). The spatial distribution of threats that alter the extent of an ecosystem can be used to 

derive area change estimates as a result of their impact (Figure 3), parameterise models that 

simulate the impact of such threats (Murray et al. 2017a), or evaluate ecosystem degradation by 

assessing loss or disruption of key processes (eg fragmentation; Bland et al. 2016, Ferrari et al. 

2016a). Some risk assessment protocols also require assessments of ‘plausible threats’ 

(Nicholson et al. 2015). In these cases, remote sensing data can be used to develop disturbance 

histories that can help estimate the likelihood and extent of these types of threats (Rodríguez et 



al. 2015). Finally, spatial data on the distribution of observed threats can be used to formulate 

threats scenarios and parameterize conceptual or quantitative ecosystem models. 

Many attempts to quantify the impacts of threats to species and ecosystems have been limited 

by a lack of suitable data (Joppa et al. 2016), a poor understanding of how threats influence 

specific ecosystem processes (Keith et al. 2013), subjective judgments about the nature of threats 

(Hayward 2009), and the cumulative or synergistic impacts of threatening processes (Tulloch et 

al. 2015). However, as the frequency of satellite data acquisition increases, the spatial resolution 

of the data decreases, and data processing pipelines improve, the utility of remote sensing for 

rapidly identifying and responding to threatening processes is beginning to live up to its 

potential. For example, the development of near real-time alert systems (eg Liu et al. 2014, 

Hansen et al. 2016) are useful for identifying ecosystems at risk, enable rapid response to threats 

by governments and land managers, and aid in reducing risks to ecosystems over shorter time 

frames than previously possible. Remote sensing data is also becoming increasingly accessible to 

non-experts through the development of user friendly methods and online applications that allow 

straightforward access to remote sensing datasets (e.g., Ferrari et al. 2016b, Gorelick et al. 2017, 

Murray et al. 2017b).  

5. Integrating remote sensing into ecosystem models 

Ecosystem models that elegantly represent salient ecological processes deliver the 

capacity to monitor and predict change, estimate risks of ecosystem collapse and explore 

alternative future management scenarios (Bland et al. 2017). Such models can be parameterised, 

initiated, or validated with remote sensing data. The eReefs model of the Great Barrier Reef, for 

example, consists of 1 km and 4 km resolution models that integrate three-dimensional 

hydrodynamic, sediment, biogeochemical and ecological data obtained across a spatial domain 



of several thousand square kilometres. eReefs utilises satellite remote sensing data (such as SST) 

to predict more than 40 biotic and abiotic variables across space and throughout the water 

column in near real-time and at high spatial resolution (Herzfeld et al. 2016). Stochastic land-use 

models such as the ‘SimAmazonia’ model can produce maps of estimated future land-use change 

(including deforestation) using satellite-derived historical deforestation maps (Soares-Filho et al. 

2006). This type of model, which often include a stochastic process, is particularly suitable for 

assessing the risk of collapse by averaging results over a large number of stochastic simulations 

(e.g., Bozec and Mumby 2015, Bland et al. 2017). Remote sensing data therefore has great 

potential for parameterizing a wide variety of ecosystem models, and is increasingly being used 

to assess the skill of models at reproducing ecosystem dynamics. The continued development of 

ecosystem models, particularly those designed to directly ingest relevant remote sensing data and 

that account for environmental stochasticity, allow risks to ecosystems to be estimated for a 

range of future scenarios and greatly enhance our ability to formulate environmental and 

conservation policy. 

6. Conclusions 

Utilizing data from existing remote sensing platforms, and integrating these with in situ 

monitoring programs, expert knowledge, clear conceptualization of ecosystem processes, and 

quantitative ecosystem models will be crucial to support the global deployment of ecosystem risk 

assessment protocols. We have suggested a structured pathway for the selection and use of 

remote sensing data for use in ecosystem risk assessment (Figure 2), which is founded upon a 

basic understanding of each ecosystem to be assessed. Ideally, remote sensing data should have 

spatial resolution and temporal resolutions that are fine enough to represent ecosystem dynamics 

and allow for the detection of rapid changes, correlate closely with appropriate in situ indicators 



of ecosystem degradation, and be capable of delivering deep time-series that allow ecosystem 

monitoring over several decades. Influencing the development of future satellite sensors through 

direct engagement with private and public space agencies and rapidly employing novel 

technologies as they become available will also enhance our ability to estimate risks to 

ecosystems. Rapid degradation of ecosystems is occurring in nearly all biomes, and compiling a 

global list of threatened ecosystems as soon as possible will better enable an international 

response to global change and ensure the persistence of natural ecosystems into the 22nd 

century.  
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Tables 

  



Table 1. Case studies that were used to identify the types of remote sensing data used to 

estimate spatial or functional declines of a wide diversity of ecosystem types. These studies 

were selected to illustrate different uses of remote sensing data for monitoring symptoms of 

ecosystem collapse. The reference list supporting this table is located in supplementary Table S2. 

 

Ecosystem  

response 
Ecosystem type Remote sensing indicator Reference 

Area loss Intertidal flat Ecosystem distribution Murray et al. (2015) 

 Tropical forest Vegetation cover Hansen et al. (2013) 

 Cloud forests Cloud dynamics Ponce-Reyes et al. 

(2013) 

Biomass change Alkaline-saline Lakes Chlorophyll-a Tebbs et al. (2015) 

 Kelp forest Normalized Difference Vegetation 

Index 

Cavanaugh et al. 

(2010) 

 Savanna Above ground biomass Levine et al. (2016) 

Bleaching Coral reef Sea Surface Temperature  Ainsworth et al. (2016) 

 Coral reef Rugosity Ferrari et al. (2016) 

Decline in relative 

abundance 

Coral reef Coral cover Palandro et al. (2008) 

Desertification Arid shrubland  Vegetation cover Kefi et al. (2007)  

Disease stress Temperate rainforest  Reflectance ratios Leckie et al. (2004) 

Diversity decline Coral reef Spectral signal Mellin et al. (2012) 

Drought stress Forest ecosystems Vegetation indices see Norman et al. 

(2016) 

Eutrophication Aquatic ecosystems Vegetation cover see Zhang et al. (2016) 

Migration Mangrove forest Water cover dynamics Asbridge et al. (2016) 

 Mangrove forest Land surface temperature Cavanaugh et al. 

(2014) 

Vegetation loss Grasslands Normalized Difference Vegetation 

Index 

Hilker et al. (2014) 

 

  



Table 2. Potential remote sensing indicators for assessing symptoms of increasing risk of 

collapse for functionally similar ecosystem types. For simplicity ‘vegetation indices’ here 

includes indices such as Leaf Area Index (LAI), Normalized Difference Vegetation Index 

(NDVI), Enhanced Vegetation Index (EVI); refer to the cited studies for further details. The full 

reference list supporting this table is located in supplementary Table S1. 

 

Ecosystem type Main pressures 
Example symptoms of 

increasing collapse risk 
Potential indicators 

Tropical & sub-tropical forests   

Moist montane Warming, drying, cloud stripping 

(Auld and Leishman 2015; Ponce-

Reyes et al. 2013) 

Replacement of mesic 

vegetation  

Cloud cover, precipitation 

Tropical Deforestation, land use change, 

drought, climate change (Hansen et 

al. 2013; Levine et al. 2016) 

Declining extent, change 

in above ground biomass 

Vegetation height & 

structure, land cover 

change, vegetation indices, 

dry season length 

Temperate & boreal forests & woodlands   

Boreal Timber harvest, drought, stand-

replacing fires, climate change 

(Bond‐Lamberty et al. 2014; Chapin 

III et al. 2004; Delpierre et al. 2016) 

Skewed stand structure, 

forest cover thinning, 

tree mortality 

Burned area, vegetation 

height & structure, land 

cover change 

Temperate evergreen Deforestation, land use change 

(Hansen et al. 2013) 

Declining extent Vegetation height & 

structure, land cover 

change, vegetation indices 

Cool temperate Fire, invasive species, climate change 

(Anderson et al. 2006; Bergstrom et 

al. 2015; Payette et al. 2001) 

Tree mortality, 

replacement by 

grassland, reduced 

productivity 

Burned area, net primary 

productivity, vegetation 

indices, land surface 

temperature 

Shrublands & shrub-dominated woodlands   

Shrubby woodlands Desertification, drying, over-grazing 

(Vicente-Serrano et al. 2012) 

Stunted vegetation, 

reduced biomass, phase 

shifts to alternative 

overgrazed desert state 

Vegetation height & 

structure, land cover 

change, vegetation indices 

Tropical & subtropical savannas   

Savanna Predator persecution, trophic 

cascades, CO2 fertilization, changed 

fire regimes (Van Langevelde et al. 

2003) 

Woody thickening, 

diversity decline 

Vegetation height & 

structure, land cover 

change, vegetation indices 

Polar / alpine   

Subantarctic 

megaherb 

Invasive species, over-grazing, 

climate change (Bergstrom et al. 

2015; Bergstrom et al. 2009) 

Vegetation mortality Vegetation indices 

Tundra Climate change, reduced snow 

persistence, fire (Stow et al. 2004) 

Species replacement Vegetation indices, burned 

area, snow cover 

Temperate & montane grasslands   

Temperate grassland Plant invasions, drought, fire, land Changed productivity Vegetation indices, land 



use change (Villarreal et al. 2016) and phenology cover change 

Wetland    

Bogs, marshes, fens, 

peatland 

Eutrophication, land use change (Koh 

et al. 2011; Torbick et al. 2012) 

Mortality of water-

dependent vegetation, 

altered flood regimes, 

declining extent 

Surface water extent, 

hydroperiod, vegetation 

indices 

Freshwater springs & 

oases 

Aquifer change, water extraction 

(Stromberg et al. 1996) 

Mortality of endemic 

flora and fauna 

Surface water extent, land 

cover change, hydroperiod 

Freshwater lakes Eutrophication, water extraction 

(Tebbs et al. 2015) 

Algal bloom, declining 

extent, altered flood 

regime 

Photosynthetically active 

radiation, hydroperiod, 

surface water extent, 

turbidity 

Permanent rivers, 

streams, creeks 

Water extraction, river regulation 

(Nilsson and Berggren 2000; Pisanu 

et al. 2015) 

Mortality of water-

dependent vegetation, 

altered flood regimes 

Surface water extent, 

hydroperiod 

Marine & Coastal    

Coral reef Acidification, warming (Ainsworth et 

al. 2016; Ferrari et al. 2016; Graham 

et al. 2015) 

Bleaching, macroalgal 

dominance, changing 

structural complexity 

Sea surface temperature, 

chlorphyll-a, structural 

complexity, turbidity 

Intertidal flat Land reclamation, changing sediment 

regimes, relative sea level rise 

(Murray et al. 2014; Murray et al. 

2015) 

Declining extent, 

erosion, subsidence 

Land cover change, sea 

level altimetry, ground 

deformation 

Kelp forest Predator harvest, warming 

(Cavanaugh et al. 2010; Steneck et 

al. 2002; Wernberg et al. 2016) 

Increasing urchin 

barrens, cover decline 

Vegetation indices, sea 

surface temperature 

Mangrove forest Coastal reclamation, sediment 

declines, sea level rise (Kuenzer et al. 

2011; Lovelock et al. 2015) 

Tree mortality, declining 

extent 

Vegetation height & 

structure, land cover 

change, vegetation indices, 

land surface temperature, 

hydroperiod 

Salt marsh Land reclamation, relative sea level 

rise, changing sediment regimes 

(Deegan et al. 2012; Kirwan and 

Megonigal 2013; Kirwan et al. 2016) 

Erosion, drowning, 

vegetation loss 

Land cover change, sea 

level altimetry, ground 

deformation 

Seagrass Eutrophication, habitat loss, sea level 

rise (Kilminster et al. 2015; Saunders 

et al. 2013) 

Changes in extent, loss in 

cover, reduced biomass 

Sea surface temperature, 

ocean color, vegetation 

indices 

Tidal Marsh Eutrophication, habitat loss, sea level 

rise (Deegan et al. 2012; Kirwan and 

Megonigal 2013; Kirwan et al. 2008) 

Changes in extent, loss in 

cover, reduced biomass 

Vegetation indices, land 

cover change. 

  



Figures  



Figure 1. Overview of the IUCN Red List of Ecosystems risk assessment protocol, showing 

potential remote sensing indicators useful for assessing the risk of ecosystem collapse. Purple 

boxes indicate spatial distribution symptoms of collapse risk, green boxes indicate functional 

symptoms, and the magenta box indicates where all symptoms of collapse can be integrated into 

a single risk analysis.  

 

 
 

  



Figure 2. Framework for identifying and using remote sensing data in ecosystem risk 

assessment. A preparation stage is required to evaluate the risk assessment protocol and define 

the assessment unit (01-02). Developing a conceptual ecosystem model and identifying 

indicators variables to monitor with remote sensing follows (03-06), with opportunities to 

incorporate with field data and ecosystem models (purple). The ecosystem is then evaluated 

against risk assessment criteria (demonstrated here with the IUCN Red List of Ecosystems 

criteria; 07-09), before summarizing and reviewing the results (10-12). The ecosystem is then 

formally listed (13). Ideally, the assessment is repeated with new data on a regular basis.  

 

 

 
 

  



Figure 3. Time-series classified maps of the Yellow Sea tidal flat ecosystem indicate a decrease 

in extent over 32-years due to land reclamation and the construction of a sea wall, Gyeonggi 

Province, South Korea. Maps were developed with random forest classifications of Landsat TM 

(a; 1985), ETM+ (b; 2000) and OLI (c; 2015) image composites (d; 2015 composite).  
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