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ABSTRACT 

Changing lake-water total organic carbon (TOC) concentrations are of concern for lake 

management because of corresponding effects on aquatic ecosystem functioning, drinking water 

resources and carbon cycling between land and sea. Understanding the importance of human 

activities on TOC changes requires knowledge of past concentrations; however, water-monitoring 

data are typically available for the past few decades only, if at all. Here, we present a universal 

model to infer past lake-water TOC concentrations in northern lakes across Europe and North 

America that uses visible-near-infrared (VNIR) spectroscopy on lake sediments. In the orthogonal 

partial least squares model, VNIR spectra of surface-sediment samples are calibrated against 

corresponding surface-water TOC concentrations (0.5–41 mg L-1) from 345 Arctic to northern 

temperate lakes in Canada, Greenland, Sweden and Finland. Internal model-cross-validation 

resulted in a R2 of 0.57 and a prediction error of 4.4 mg TOC L-1. First applications to lakes in 

southern Ontario and Scotland, which are outside of the model’s geographic range, show the model 

accurately captures monitoring trends, and suggest that TOC dynamics during the 20th century in 

these regions were primarily driven by changes in atmospheric deposition. Our results demonstrate 

that the lake-water TOC model is not geographically restricted, nor biased by post-depositional 

diagenesis, allowing the identification of past TOC variations in northern lakes of Europe and 

North America over timescales of decades to millennia. 

 

Introduction 

Changing total (or dissolved) organic carbon (TOC/DOC) concentrations have been monitored 

in many lakes across the northern hemisphere over the past decades, with increasing trends in most 
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regions but also declines in some areas1-3. TOC in inland waters is an important component of the 

global carbon (C) cycle, as the pathway between the terrestrial environment and the ocean, lakes 

and rivers contribute to greenhouse gas emissions and sequester C in their sediments4-5. In the 

functioning of aquatic ecosystems, TOC concentrations play a fundamental role by influencing 

physical and chemical water properties, and consequently the structure of biological communities6. 

For example, TOC affects water acidity7, dissolved oxygen levels8-9, water color and thus light and 

heat penetration10-11, which in turn regulate the development of thermal stratification and 

hypoxia/anoxia. TOC is also strongly bound to nutrients, and together these factors influence 

species distributions and habitat availability for primary producers (bacteria, algae) to fish and thus 

the productivity of aquatic ecosystems12-16. Furthermore, TOC affects the transport and 

sequestration of metals and organic pollutants17, the development of toxic algal blooms18 and 

associated costs for drinking water treatment19-20. 

Increasing TOC trends in Europe and NE North America have largely been attributed to reduced 

sulfate deposition and the subsequent recovery of soils from acidification, which increases organic 

matter solubility and thus TOC export from terrestrial to aquatic environments1. Following such a 

recovery, future TOC dynamics in these and other regions will be dominated by other stressors 

(e.g., changes in land use, nitrogen deposition, climate change) that affect the composition and size 

of the terrestrial TOC pool as well as the transport of TOC between terrestrial and aquatic 

environments. For example, over the next few decades climate-mediated changes in hydrology and 

land cover are projected to alter C cycling and TOC levels in lakes across boreal, subarctic and 

Arctic landscapes21-25. To provide realistic scenarios for these future changes in TOC 

concentrations and their associated implications for aquatic ecosystems, it is crucial to understand 

the role of single natural and anthropogenic stressors and their individual contribution to current 
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and past changes in TOC levels. Monitoring data are critical for analyzing current trends but are 

available for relatively few lakes and span a few decades at most. 

Paleolimnological studies have shown that it is possible to reconstruct past trends in TOC/DOC 

concentrations in lakes from sediment records using inference models based on visible-near-

infrared (VNIR) spectroscopy26-29. VNIR spectroscopy is a fast, inexpensive and non-destructive 

technique that is particularly sensitive to changes in organic matter quality. The technique is widely 

used for quality control in industrial processes but has also become an important tool in 

environmental and biological studies to determine, for example, plant and animal tissue 

composition30, different soil constituents31 and chlorophyll-a concentrations in sediments32. By 

employing a transfer function between VNIR spectra of lake-surface sediments, i.e., the most 

recently accumulated material, and corresponding TOC/DOC concentrations in the water column, 

the method allows for the reconstruction of long-term data from sediment cores on the scales of 

decades to millennia. These long-term data provide critical knowledge about TOC changes in 

response to past environmental change, natural long-term TOC variability and reference levels 

prior to human disturbances. For example, recent studies in southern and central Sweden showed 

that the current TOC increase was preceded by a long-term decline over the last 500 to 1000 years 

in response to increasing human land use27-28, 33. In southern Sweden, changes in acid deposition 

were identified as an important factor contributing to TOC dynamics during the 20th century34-35. 

In other studies, the technique has allowed the tracking of TOC/DOC variations throughout the 

Holocene in response to environmental changes that have included treeline migration, mire 

development and permafrost dynamics26, 36-40. 

The existing VNIR inference models for lake-water TOC/DOC are based on regional lake 

calibration sets from Sweden26-28 and Canada29. However, first applications of these models to 

sediment records from outside their geographical calibration range suggest that the technique may 
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not be geographically restricted29, 39, and that it might be possible to develop a universal model for 

lakes across large environmental gradients. Such a supra-regional model would allow for the 

application of the technique in other regions without the time and expense required to generate a 

sufficiently large regional calibration set. 

Here, we combine sediment and water chemistry data from 345 lakes from Canada, Greenland, 

Sweden and Finland to establish a universal VNIR lake-water TOC inference model for northern 

lakes in Europe and North America (hereafter referred to as Northern lake-water TOC model). The 

calibration lakes span large vegetation and climate gradients from the Arctic across the boreal forest 

to the northern temperate zone (Fig. 1). To evaluate the Northern lake-water TOC model’s 

performance, we applied it to sediment records from lakes that are located a) within (boreal 

Sweden, subarctic Canada) and b) outside (United Kingdom, northern temperate Canada) the 

model’s geographic calibration range, and compared sediment-inferred to monitored lake-water 

TOC/DOC trends. By applying the model to a series of annually laminated sediment cores collected 

from the same lake over a 27-year period41-42, we assessed whether post-depositional (diagenetic) 

changes in the sediment composition distort the reconstructions of past TOC levels. 

 

Materials and methods 

Calibration samples. The Northern lake-water TOC model is based on surface-sediment 

samples and corresponding lake-water TOC measurements from 345 lakes covering a TOC range 

from 0.5 to 41 mg L-1. The model includes samples from previously developed models for Sweden 

(n=146; 0.7–22 mg TOC L-1)26-28 and Canada (n=142; 0.9–41 mg TOC L-1)29 as well as additional 

samples from Finland (n=47; 0.5–18 mg TOC L-1) and Greenland (n=10; 4.9–28 mg TOC L-1). The 

study lakes span a large geographic and environmental gradient from the high Arctic to boreal and 
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northern temperate zones and from western Canada across to eastern Fennoscandia, and vary in 

elevation from sea level to 1387 m above sea level (a.s.l.). The calibration set covers a climate 

range with mean July air temperature from 3.5 to 17.0°C and range in mean annual precipitation 

from <150 to 1900 mm. Catchment vegetation ranges from polar desert in the Canadian high Arctic 

through tundra and boreal coniferous forests to mixed coniferous and deciduous forest in southern 

Sweden. The lakes vary in depth from 2 to 49 m, and are relatively undisturbed by human activities, 

except for atmospheric deposition and some agriculture and infrastructure developments, 

predominantly in southern Sweden. Lake characteristics vary from (ultra)oligotrophic to eutrophic 

(TP: 0.1–68 µg L-1) and from acidic to alkaline (pH 3.5–8.8) (Table S1). 

Surface sediments (topmost 0.5 cm or 1.0 cm) for the calibration model were generally recovered 

from the deepest part of each lake using a gravity corer, except for high Arctic sites where samples 

were taken mostly at shallower near-shore sites (<1 m water depth). Surface water sampling (within 

uppermost 1 m of water column) and water chemistry analyses followed standard protocols. TOC 

concentrations used for the calibration are mostly based on single measurements, except for 47 

Swedish reference lakes (http://miljodata.slu.se/mvm/), which were sampled at least four times per 

year and the average TOC concentrations over the 3 years prior to sediment sampling were used in 

model development. More information about lake characteristics and limnological variables can be 

found in Table S1 and in the respective regional model papers26-27, 29. The Northern lake-water 

TOC model is calibrated against TOC concentrations because these were quantified for all lakes in 

contrast to DOC. In lakes for which DOC and TOC were measured (n=241), DOC compromised 

on average 87% of the TOC pool. 

Diagenesis series. Nylandssjön (62° 57′ N, 18° 17′ E; 34 m asl) is a 17.5 m deep, mesotrophic 

boreal-forest-lake with a surface area of 0.28 km2 located at the coast of the Gulf of Bothnia in 

northern Sweden. Since the beginning of the 20th century when the lake culturally eutrophied, 

http://miljodata.slu.se/mvm/
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hypolimnetic hypoxia has occurred regularly during the summer and winter, leading to the 

formation of annually laminated (varved) sediment. The varved character of the sediment enables 

accurate subsampling of individual years, and sediment cores have been repeatedly recovered from 

Nylandssjön over the past four decades using a freeze corer41-42. In this study, we used sediment 

cores recovered in 1983, 1985, 1989, 1992, 1993, 1997, 2002, 2004, 2006, 2007 and 2010. This 

core series allows tracking the influence of post-depositional, diagenetic processes on the 

composition of sediment that accumulated in the 1982 varve (surface varve of 1983 core) after 2, 

6, 9, 10, 14, 19, 21, 23, 24 and 27 years. 

Long-term TOC reconstruction lakes. We applied the Northern lake-water TOC model to 

sediment records from six lakes, with three each located within and outside the model’s 

geographical calibration range (Fig. 1). The lakes located within the geographic range of the model 

include Långsjön (60° 43′60′′ N, 16° 25′46′′ E; 239 m a.s.l.; Zmax = 6 m; area = 0.07 km2) and 

Gipsjön (60° 39′01′′ N, 13°37′23′′ E; 376 m a.s.l.; Zmax = 14 m; area = 0.67 km2). Both of these are 

humic, naturally acidic (pH = 6.1/5.5 in 2010–2012) lakes located in the spruce and pine-dominated 

boreal forest of south-central Sweden, and have been part of the Swedish freshwater monitoring 

program since 198728. Slipper Lake (64°35′65′′ N, 110°50′07′′ W; 460 m a.s.l.; Zmaz = 17 m, area 

= 1.9 km2) is a slightly acidic (pH = 6.4), oligotrophic tundra lake in the central Canadian subarctic, 

located ~50 km north of the current treeline29, 43.  

Lakes located outside of the geographic limits of the model include Heney Lake (45° 23′ N, 79° 

07′ W; 351 m a.s.l.) and Eagle Lake (44° 40′19′′ N, 76° 40′26′′ W; 198 m a.s.l.), which are 

oligotrophic lakes surrounded by mixed coniferous and broad-leaved forests in south-

central/southern Ontario, Canada. Heney Lake is a relatively small (0.21 km2) acidic lake (pH = 

5.9 in 2010–2012), with a maximum depth of 6 m, and has been regularly sampled for DOC and 

other lake-water variables since 1978 as part of the Ontario Ministry of the Environment and 



 8 

Climate Change’s long-term monitoring program at the Dorset Environmental Science Centre. 

Eagle Lake is a slightly alkaline (pH = 7.9), comparatively large (6.65 km2) and deep (31 m) lake, 

and DOC concentrations have periodically been measured since 200144. Round Loch of Glenhead 

(55°5’ N, 4°25’W; 298 m a.s.l.) is an oligotrophic moorland lake in south-west Scotland, United 

Kingdom. The lake has a surface area of 0.13 km2, a maximum depth of 14 m45 and is part of the 

United Kingdom Upland Waters Monitoring Network (UWMN), formerly the UK Acid Waters 

Monitoring Network, with data extending back to 1988. The lake acidified following atmospheric 

acid deposition during the last century and is currently recovering, with a pH of 5.3 in 2011–201346. 

All sediment cores were radiometrically dated by analyzing 210Pb, 226Ra (via its granddaughter 

isotope 214Pb), 137Cs, and 241Am using gamma spectrometry. Resulting age-depth relationships for 

the past 100-150 years were calculated using the constant rate of 210Pb supply (CRS) dating 

model47. For Gipsjön, Långsjön and Slipper Lake, sediment ages beyond the dating range of 210Pb 

were constrained by accelerator mass spectroscopy (AMS) radiocarbon ages determined on 

terrestrial macrofossils and bulk sediments. Deeper sediments from Heney Lake, Eagle Lake and 

Round Loch of Glenhead were not radiocarbon dated and sediment ages beyond the 210Pb dating 

range were estimated based on linear extrapolations of the 210Pb chronologies. Additional 

information regarding site descriptions, sampling and dating techniques can be found in detailed 

studies of the sediment records from Långsjön and Gipsjön28, Slipper Lake29, 43, Heney Lake48, 

Eagle Lake44, and in the SI for Round Loch of Glenhead (Fig. S1). 

Because of the potential mobility of sulfur in sediments, we used total lead (Pb) concentrations 

in the sediment records from Heney Lake, Eagle Lake and Round Loch of Glenhead as indicator 

for increased deposition of atmospheric pollutants in the respective areas. Similar to sulfur dioxide, 

Pb emissions increased following industrialization in response to the increased ore smelting, 

combustion of coal and later leaded gasoline, and peaked in the 1970’s49-51. In the Canadian lakes, 
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Pb was measured on freeze-dried powdered sample material by wavelength dispersive X-ray 

fluorescence using a Bruker S8 Tiger spectrometer, while a Spectro XLAB2000 X-ray fluorescence 

spectrometer was used for Round Loch of Glenhead. 

VNIR spectroscopy and model development. Prior to spectroscopic analyses, sediment 

samples were freeze-dried and subsequently sieved (125 µm mesh) or ground to a fine powder to 

remove the effects of water and particle size on the VNIR signal. VNIR spectra were recorded with 

a FOSS XDS Rapid Content Analyser in diffuse reflectance mode. Each sediment sample spectra 

represents a mean of 32 scans at 2-nm resolution in the wavelength range from 400 to 2500 nm. 

The measured diffuse reflectance (R) of light in the VNIR region was transformed to apparent 

absorbance (A) following the equation: A = log (1/R). Orthogonal Partial Least Squares (O-PLS) 

regression modelling52 was used to establish the calibration model between the VNIR spectral 

information of the surface sediments and the corresponding measured TOC concentration in the 

surface water. Prior to numerical analysis, VNIR spectra were centered, while TOC concentrations 

were standardized and square-root transformed. To evaluate the model performance, we used the 

cross-validated (CV) coefficient of determination (R2
cv) and the root mean square error of cross-

validation (RMSECV) (in mg TOC L-1) resulting from seven-fold cross-validation. PLS modeling 

and lake-water TOC reconstruction were performed using SIMCA 14.0 (Umetrics AB, Umeå, 

Sweden). 

 

Results and discussion 

Northern lake-water TOC model. The calibration between 345 surface sediment VNIR spectra 

and corresponding measured lake-water TOC concentrations resulted in a 7-component OPLS 

model with an R2
cv of 0.57 and RMSECV of 4.4 mg L-1 (10.9% of TOC gradient) (Fig.2, Table S2). 
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The internal performance of the Northern lake-water TOC model is slightly less accurate but 

comparable to the previously published regional TOC/DOC models for Sweden and Arctic Canada 

(R2
cv = 0.61–0.72; RMSECV = 1.6–4.4 mg L-1 (10.8–11.3% of TOC/DOC gradient)26-27, 29. Part of 

the discrepancy between sediment-inferred and measured TOC concentrations results from the fact 

that most lake-water TOC concentrations used for the calibration are based on single measurements 

(n=291), which do not account for inter and intra-annual TOC variability, which can be large in 

lakes with low residence time, and/or high mean concentrations. For example, in the 47 Swedish 

reference lakes, the only lakes in the calibration set with multiple measurements (n ≥ 4 per year), 

TOC varied substantially over the 3 years preceding sediment sampling, with an average standard 

deviation of 2.0 (0.5–6.1) mg L-1 (18.5% (6.1–58.0%) of the mean TOC content) across all lakes. 

High TOC concentrations are less accurately inferred and commonly underestimated (Figs. 2 and 

S2), which is likely a consequence of having few lakes with high TOC in the calibration set (13 

lakes with TOC >20 mg L-1). 

Impact of diagenesis on lake-water TOC reconstruction. The Northern lake-water TOC 

model infers an average TOC concentration of 7.6±0.3 mg L-1 (n = 11) for the sediment varve from 

Nylandssjön that formed in 1982 and which has been repeatedly sampled from sediment cores that 

were recovered over the following 27 years (Fig.3). No relationship was found between sediment 

aging and inferred lake-water TOC content (R² = 0.003; p = 0.87). Previous studies have shown 

that sediments in Nylandssjön undergo strong early diagenetic changes in the first three decades 

after sediment deposition (but especially in the first 5–10 years), altering the organic matter 

quantity and quality (e.g., C and nitrogen (N) content, C and N isotopes, specific biomarkers). For 

example, post-depositional changes led to an average total C loss of 23%, a total nitrogen loss of 

35% and consequently an increase in C/N ratios from ~10 to ~1241-42, 53. Despite these diagenetic 

changes, sediment-inferred lake-water TOC concentrations remain unaltered, which demonstrates 
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that sediment ageing, during the early critical years when diagenetic alterations are greatest and 

thus likely also over longer timescales, does not bias the reconstruction of lake-water TOC 

dynamics using VNIR spectroscopy. 

Sediment-inferred long-term trends. Långsjön, Gipsjön (Sweden) and Slipper Lake (Canada) 

are located within the Northern lake-water TOC model’s calibration range (Fig.1). Inferred lake-

water TOC concentrations for these lakes match previously published long-term trends based on 

the regional Swedish and Canadian TOC/DOC models, respectively, as well as available 

monitoring trends for the past three decades (Fig.4). As shown previously with the regional 

Swedish model, the universal Northern lake-water TOC model shows a long-term declining trend 

since the 17th century (Fig.4a-b) for Långsjön and Gipsjön, which has been attributed to human 

landscape alteration through early forest grazing and farming in central Sweden28. Compared to the 

regional model, the universal Northern lake-water TOC model somewhat underestimates absolute 

values during the monitoring period for Långsjön, but with a closer match in Gipsjön. This 

demonstrates that the model’s reduced site-specificity compared to the regional model does not 

affect the ability to predict past TOC trends but may lower the accuracy of the approach. When 

applied to Slipper Lake (Canada) the Northern lake-water TOC model closely reproduces the 

dynamics inferred by the Canadian DOC model29 (Fig.4c). 

Heney Lake, Eagle Lake (Canada) and Round Loch of Glenhead (Scotland, UK) are located outside 

of the Northern lake-water TOC model’s geographical calibration range (Fig.1). Inferred TOC 

trends for the three lakes are in good agreement with monitoring data and capture the ongoing TOC 

increase (Fig.5). While sediment-inferred absolute TOC values match measured DOC 

concentrations in Heney Lake and Eagle Lake, the Northern lake-water TOC model slightly 

overestimates (~2 mg L-1) DOC concentrations monitored in Round Loch of Glenhead. The better 

fit between measured and inferred values for Heney Lake and Eagle Lake might be explained by 
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the larger mesh size used for filtration of water samples from the two Canadian lakes (80 µm) 

compared to samples in the UK UWMN (0.45 µm), which would reduce the difference between 

the different C pools (DOC vs. TOC) in the Canadian lakes. 

Long-term TOC reconstructions for the three lakes show a similar pattern, with higher TOC levels 

prior to a pronounced decline during the 20th century followed by the currently observed TOC 

increase (Fig.5). Prior to ~1900 C.E., TOC values were relatively stable in Heney Lake (6.8±0.5 

mg L-1) and Eagle Lake (6.1±0.4 mg L-1), while past dynamics in Round Loch of Glenhead were 

more complex, with inferred values around 5–7.5 mg L-1 during ~1500–1700 C.E. followed by 

elevated values around 8–10 mg L-1 during ~1700–1850 C.E. By the late-19th to early-20th century, 

TOC decreased in all lakes by 50–70%, from concentrations in the range of 6–7.5 mg L-1 to 

minimum values of 2–3.5 mg L-1 during the mid-20th century. Recovery of TOC levels started in 

the 1980’s and 1990’s in Heney Lake and Eagle Lake, and by the 1970’s in Round Loch of 

Glenhead, with inferred concentrations for the topmost samples of 4.6, 4.7 and 7.0 mg L-1, 

respectively. 

The three lakes are located in areas with notable acid deposition during the past century, and soils 

and surface waters in these areas are currently recovering from the effects of acidification2. For 

example, diatom-based pH reconstructions showed a distinct pH decline from 5.5 to 4.8 in Round 

Loch of Glenhead following industrialisation45, 54. In all lakes, sediment-inferred TOC dynamics 

closely follow changes in sulfate deposition and mirror the increase in sulfur dioxide emissions in 

the late 19th to early 20th century, as well as emissions reductions since the 1970’s50, 55-56 (Fig. 6). 

The concurrent changes strongly suggest that TOC dynamics in these lakes were mainly driven by 

changes in deposition chemistry during the 20th century. These data support the assumption that 

the currently observed TOC increase in these former high deposition areas is largely a response to 

reduced acid deposition, promoting TOC export from catchment soils to the lakes1. All three of 
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these study lakes record inferred TOC decreases in concert with the rise of total Pb concentrations 

(a robust proxy for increased deposition of atmospheric pollutants, including sulfur, following 

industrialization) in the sediments, which emphasizes their common response to acid deposition 

(Fig 6). 

Current TOC concentrations remain beneath inferred pre-industrial levels in the two Canadian 

lakes, which suggests the potential for TOC to increase further by an order of ~2 mg L-1 in the latter 

phase of recovery from acidification. However, human activities (road and cottage development, 

forestry, mining) over the past 150 years have altered the lakes’ catchment characteristics such as 

vegetation cover and composition, complicating the identification of appropriate TOC reference 

levels, such as seen in the long-term land-use driven changes in south-central Sweden28. In 

addition, other concurrent environmental changes in response to climate change or atmospheric N 

deposition may have further shifted the post-acidification TOC baseline57. For Round Loch of 

Glenhead, the identification of pre-industrial TOC levels is more difficult because of the 

landscape’s long history of anthropogenic disturbance, including land clearance, burning, and 

grazing, over several millennia. Elevated TOC levels prior to the TOC decline coincide with a 

period of increased blanket peat erosion around the lake45, 58, which would have increased the input 

of terrestrial-derived organic matter and thus elevated the lake’s TOC load. Inferred TOC for this 

period may therefore overestimate pre-industrial reference conditions, suggesting that current TOC 

concentrations in Round Loch of Glenhead might have already returned to, or possibly exceeded, 

pre-industrial levels. 

The strong agreement between monitored and sediment-inferred TOC/DOC trends, as well as 

the consistent response to a common environmental stressor (i.e., acid deposition) for lakes in 

different geographic regions, demonstrates that the Northern lake-water TOC model can accurately 

infer past lake-water TOC trends, even in regions outside of its geographic coverage. With its wide 
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applicability across large environmental gradients, the universal Northern lake-water VNIR-TOC 

model is a powerful tool for the fast, cost-efficient reconstruction of long-term TOC dynamics in 

northern lakes across Europe and North America, and potentially also in other northern regions for 

which regional calibration sets do not yet exist. Application of the technique can provide new 

insights into long-term C cycling in inland waters, help to identify the confounding effects of 

concurrent changes in TOC when interpreting biotic changes in aquatic community structures, and 

to determine appropriate reference conditions for drinking water management. Knowledge about 

past TOC variations will help to refine process-based TOC/DOC models34, 59-60, and thus better 

predict future changes in surface-water chemistry. 
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