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� The model used here includes Monod kinetics and death rates for two competing species in a chemostat.
� The modelling combines asymptotic analysis, stochastic Langevin systems and Fokker-Planck results.
� The long-term behaviour in many circumstances is predicted to favour one particular species.
� The long-term predictions are different from previous classic predictions in the field.
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This paper formulates two 3D models using stochastic differential equations (SDEs) of two microbial pop-
ulations in a chemostat competing over a single substrate. These models have two distinct noise sources.
One is general noise whereas the other is dilution-rate-induced noise. Nonlinear Monod growth rates are
assumed and the paper is mainly focused on the parameter values where coexistence is found in the
deterministic model. Nondimensionalising the equations around the point of intersection of the two
growth rates identifies the dimensionless substrate feed as a large parameter. This in turn is used to per-
form an asymptotic analysis leading to a reduced 2D system of equations describing the dynamics of the
populations on and close to a line of steady states obtained previously from the deterministic stability
analysis. That reduced system allows the formulation of a spatially 2D Fokker-Planck equation which,
when solved numerically, admits results similar to those from the SDEs. Contrary to previous suggestions,
one particular population becomes dominant at large times. Finally, we briefly explore the case where
death rates are included.

� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Motivation

For decades the growth of bacterial/cell populations has been a
subject of great interest to modellers. The reason behind the pop-
ularity of these systems is of course the industrial and ecological
importance of competing population growth processes as well as
the richness and complexity of the dynamics arising from even
simple systems of a few competing organisms. When exploring
these systems, coexistence of the different populations is of great
significance. One of the best known papers on analysis of coexis-
tence of competing populations is the paper by Stephanopoulos
et al. (1979) where they explored the dynamics of two microbial
populations competing for a single substrate. Before that paper it
was proven in Aris and Humphrey (1977) that if the substrate con-
centration is kept at the break-even point of the two populations
and the dilution rate constant at that value then both populations
can coexist. The result was also generalized and proven for multi-
ple competing populations in Hsu (1978) with the use of Lyapunov
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Table 1
Parameters and their values for E. coli and Spirillum sp. respectively.

Parameter
(dimensionless)

Definition Value Reference

h Dilution rate Varying –
zf Substrate feed 15,000 –
ai Maximum growth

rate
2.911,
1.636

Stephanopoulos et al.
(1979)

bi half-saturation
coefficient

1.911,
0.636

Stephanopoulos et al.
(1979)

r Noise intensity Varying Our model
h0 Dilution rate mean 1 –
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functions. However that situation presents a knife-edge event
where the extinction of one or of the other population occurs if
the dilution rate diverges from this exact value (El Hajji and
Rapaport, 2009). The main result by Stephanopoulos et al. was that
this extinction occurs due to the noise present in the control of the
dilution rate in every chemostat. The interesting conclusion was
that either population can become extinct depending on the value
of the dilution rate and the initial conditions.

A chemostat is an automated bioreactor in which spent medium
which contains metabolic products, microorganisms and left over
nutrients is continuously removed while fresh medium is added
at the same rate to keep the volume constant (Novick and Szilard,
1950). That rate is called the dilution rate and in the case where it
is smaller than the growth rate of the micro-organism that micro-
organism will grow. The chemostat provides a powerful means of
systematically investigating how growth rate impacts processes
of the cells such as gene expression and metabolism and the regu-
latory networks that control the rate of cell growth. Moreover, cells
grown in chemostat for generations can be used to study their
adaptive evolution in environmental conditions that limit cell
growth (Ziv et al.). One of the most important characteristics of
the chemostat for multiple microorganism populations competing
over a single substrate is the Competitive Exclusion Principle
(CEP). Per the CEP in the above scenario only one population will
survive. More specifically the one that has the lowest break-even
concentration will survive while the other will be led to extinction.
The break-even concentration is the concentration of the nutrient
such that the specific growth of a microorganism is equal to the
dilution rate. A great number of papers have focused on proving
the CEP for different growth function assumptions and removal
rates. Most of the papers use deterministic equations to describe
the evolution of populations in the chemostat while a few have
recently addressed what happens when stochasticity is taken into
account with either linear growth rates (Xu and Yuan, 2016) or with
only a single population (Ji and Yuan, 2014; Xu and Yuan, 2015).

1.2. Aim

The aim of this paper is to explore the idea of coexistence by
simulating the dynamics of the full equations for two microbial
populations and one substrate for non-linear Monod growth func-
tions with general noise as well as dilution rate induced noise as
explored in Stephanopoulos et al. (1979). The rest of the paper
begins with materials and methods, where we present the
stochastic version of the full model, for both cases, in the form of
a set of three stochastic differential equations (SDEs) of the Lange-
vin type. Beforehand an asymptotic analysis, which is performed
for the case where the substrate feed is large to aid our under-
standing of the system, shows an intricate structure within the
dynamics and provides a simplified two-dimensional version from
which we can derive and numerically solve the Fokker-Planck
equation readily. Finally we examine the case were death rates
are added to the model solely for the dilution rate noise case.
The next section after that is Results and discussion. Here, the
equations are numerically solved and simulated for the parameter
values of the same two microbial populations used in
Stephanopoulos et al. (1979). Following the results section, our
work and findings are summarized in Further discussion and
finally in the last section named Conclusion we raise possible
issues as well as possible extensions to our work.

2. Materials and methods

For two populations in a chemostat competing over a single
substrate the dimensionless equations are given by:
dx
dt

¼ xðf ðzÞ � hÞ; ð1Þ

dy
dt

¼ yðgðzÞ � hÞ; ð2Þ

dz
dt

¼ hðzf � zÞ � xf ðzÞ � ygðzÞ: ð3Þ

Here f ðzÞ; gðzÞ represent the dimensionless growth rates given by
the following equations:

f ðzÞ ¼ a1z
b1 þ z

; ð4Þ

gðzÞ ¼ a2z
b2 þ z

: ð5Þ

A list of the parameters and their definitions is given in Table 1.
The non-dimensionalisation was performed around the break-

even concentration of the substrate assuming that there is such.
In the case of the parameter values used in Stephanopoulos et al.
(1979) which will also be used here, there is such a point. In the
dimensionless system the two growth rates break even when
z ¼ 1 in which case f ðzÞ; gðzÞ are also equal to one. In order to have
coexistence of the two populations the value of the dimensionless
dilution rate, h, must be one. Then it can be shown using linear sta-
bility that there is a line of steady states given by y ¼ zf � x� 1
(Stephanopoulos et al., 1979).

Eqs. (1)–(3) were simplified in Stephanopoulos et al. (1979) and
the system reduced to one dimension before introducing the noise
term in the dilution rate. In our analysis, by contrast, the noise
term is introduced in the full equations without further simplifica-
tions, first, and computational studies are made; afterwards a self-
consistent asymptotic treatment is also applied to complement the
numerical approach and provide further comparisons.

2.1. Stochastic Langevin equations

It was been shown in Imhof and Walcher (2005) that in a che-
mostat system of the form (1)–(3) stochastic effects can be added
as follows:

dx ¼ xðf ðzÞ � h0Þdt þ r1xdW1ðtÞ; ð6Þ
dy ¼ yðgðzÞ � h0Þdt þ r2ydW2ðtÞ; ð7Þ
dz ¼ h0ðzf � zÞ � xf ðzÞ � ygðzÞ� �

dt þ r3zdW3ðtÞ: ð8Þ
Here Wi are independent Wiener processes (Brownian motions).

In the case of stochasticity being solely due to random fluctua-
tion in the dilution rate the equations are different. Here, the dilu-
tion rate h fluctuates around a mean value and so:

h ¼ h0 þ fðsÞ; ð9Þ
Here, fðsÞ is a Gaussian random noise. Substituting that back into
(1)–(3), a system of stochastic differential equations is found:
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dx ¼ xðf ðzÞ � h0Þdt � rxdWðtÞ; ð10Þ
dy ¼ yðgðzÞ � h0Þdt � rydWðtÞ; ð11Þ
dz ¼ h0ðzf � zÞ � xf ðzÞ � ygðzÞ� �

dt þ rðzf � zÞdWðtÞ: ð12Þ
Here W is a Wiener process and the formal derivative of the Gaus-
sian noise. The Wiener process increments are the same in each of
the equations because there is a unique source of noise, i.e. the vari-
ation in the dilution rate.

2.2. Asymptotic analysis for large zf

According to Stephanopoulos et al. (1979) the half-saturation
coefficients for most populations are of the order of a few mil-
ligrams per litre, and as a result the break-even value of the sub-
strate concentration at which the two specific growth rate curves
intersect is of similar order. The concentration of the substrate in
the feed is of the order of several grams per litre, so that zf is of
the order of several thousands. That gives a natural large parame-
ter in the system which we can use to perform an asymptotic anal-
ysis. The large value of zf is of great importance to the analysis of
Stephanopoulos et al. (1979) since it is used to suggest that the
movement along the line of steady states is slow whereas the
movement of the system from any point close to the line towards
the line itself is very fast. Hence, according to this suggestion the
behaviour of the system around the line can be ignored and the
system modelled on the line. The reason behind the present anal-
ysis is to understand the system better close to the line of steady
states and determine whether we can justify the reduction of the
system to one dimension or not. In fact using the results from
the asymptotic analysis indicates we can only reduce the system
to two dimensions near the line of steady states and we then
numerically solve the corresponding Fokker-Planck PDE readily.

We can investigate what happens for xð0Þ; yð0Þ of O(1) and lar-
ger: all such cases are of some concern and validity, and they pass
through a number of successive temporal stages. A central case
however is found to occur for specific combinations of the initial
conditions on x, y, namely

xð0Þ ¼ M1; yð0Þ ¼ M2: ð13Þ
The initial values M1;M2 are considered later.

2.2.1. Stage 1
Since all variables start at order less than zf we can see from the

system of equations that in order to balance the equation we need
to introduce a fast time T ¼ zf t. This will give us d

dt ¼ zf � d
dT. Hence,

expanding the variables as:

x ¼ x0 þ �x1 þ � � � ;
y ¼ y0 þ �y1 þ � � � ;
z ¼ z0 þ �z1 þ � � � ;
and taking the O(zf ) terms gives:

dx0
dT

¼ 0;

dY0

dT
¼ 0;

dz0
dT

¼ h:

The above means that in the first stage x,y will remain constant
while z will increase linearly with time, z � z0 þ hzf t for a period of
O(1/zf ).

2.2.2. Stage 2
Stage 2 has t of O(1). After the end of stage 1, z has been

increased to O(zf ) whereas x and y remain constant. In stage 2, x,
y grow exponentially at order-unity rates while z saturates near
the value zf at large t. Now we can introduce a new expansion
for z:

z ¼ zf�zþ � � � ;
Furthermore we have constants bi � Oð1Þ and hence bi � z

which means that f ðzÞ � a1 and gðzÞ � a2. Using these we have to
leading order:

_x ¼ xða1 � hÞ;
_y ¼ yða2 � hÞ;
_�z ¼ hð1� �zÞ:
Thus the solutions are

x ¼ xð0Þeða1�hÞt; ð14Þ
y ¼ yð0Þeða2�hÞt ; ð15Þ
z ¼ zf ð1� C0e�htÞ; ð16Þ

(see Fig. 1) Since both x and y increase exponentially they will
become large quickly and start affecting z. We want as a central
case both x and y to have an almost equal contribution to the
dynamics so we need to pick the appropriate initial conditions
for y, i.e. y(0). Namely, what we examine is x; y � zf at the same
time.

M1eða1�hÞt � zf ; M2eða2�hÞt � zf : ð17Þ
2.2.3. Stage 3
In this stage x, y interact directly with z. This interactive stage

has the form:

t ¼ Lþ t0; ðx; y; zÞ ¼ zf ðx0; y0; z0Þ þ � � � ; ð18Þ
where the primed quantities are of order unity and the large param-
eter L satisfies

L ¼ ða1 � hÞ�1 logðzf =M1Þ ¼ ða2 � hÞ�1 logðzf =M2Þ; ð19Þ
owing to (17).

Given the expansion (18), the system (1)–(3) reduces to the lin-
ear equations

dx0

dt
¼ x0ða1 � hÞ; ð20Þ

dy0

dt
¼ y0ða2 � hÞ; ð21Þ

dz0

dt
¼ hð1� z0Þ � x0a1 � y0a2; ð22Þ

in stage 3. The solution for x0; y0; z0 here yields, after matching with
the previous stages,

x0 ¼ l1e
ða1�hÞt0 ; ð23Þ

y0 ¼ l2e
ða2�hÞt0 ; ð24Þ

z0 ¼ 1� C3e�ht0 � l1e
ða1�hÞt0 � l2e

ða2�hÞt0 ; ð25Þ
(see Fig. 2) with the coefficients l1;l2 of the two growing exponen-
tials being notable. From matching with the previous stage we
deduce that C3 ¼ 0. As t increases from �1 the solution z0 increases
monotonically at first but then at a finite time z0 achieves a maxi-
mum value, after which z0 decreases monotonically and reaches
zero within a further finite time, say at t0 ¼ t00.

To find the coefficients l1;l2 as a function of M1;M2 we require
the following:

M1eða1�hÞL ¼ l1zf ; ð26Þ
M2eða2�hÞL ¼ l2zf ; ð27Þ



Fig. 1. Plot of x; y; z for the second stage.

Fig. 2. Plot of x; y; z for the third stage.
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which by fixing M1;M2 and finding L can admit the coefficients for
stage3.

A significant condition for z0 to reach that zero comes straight
from (22), which implies that

h� x00a1 � y00a2 < 0: ð28Þ
based on the assumption that z0 approaches zero from above at
t0 ¼ t00�, i.e. dz0=dt0 must then be negative. The quantities x00; y

0
0 in

(28) are the values of x0; y0 at t0 ¼ t00.

2.2.4. Stage 4
Stage 4 arises when z reduces to the order of unity. This is a

rapid decrease stage in which we have

t ¼ Lþ t00 þ z�1
f T; ðx; y; zÞ ¼ ðzf x00; zf x00; ZÞ þ � � � : ð29Þ
Thus x; y remain constant to leading order. The governing sys-
tem (1)–(3) produces evolution equations for the perturbations
in x; y, while for Z we find that

dZ
dt

¼ h� x00f ðZÞ � y00gðZÞ: ð30Þ

Here f ðZÞ; gðZÞ are non-trivial, being respectively a1Z=ðb1 þ ZÞ;
a2Z=ðb2 þ ZÞ. Matching with stage 3 at large negative T we again
find that condition (28) needs to be satisfied in order for Z to
decrease at the start of stage 4. That leads to an evolution of Z
towards the constant value Z1 at large positive T. The constant
satisfies:

x00f ðZ1Þ þ y00gðZ1Þ ¼ h; ð31Þ
(see Fig. 3) due to (30).



Fig. 3. Plot of z for the fourth stage 4.
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We omitted the x; y plot as it is mostly trivial especially in the
case of h ¼ 1 where they reach the steady state by the end of
stage 4.

2.2.5. Stage 5
Stage 5 is the final stage. Here x, y are of O(zf ), whereas z is O(1)

and the typical time variation is of order unity. Hence

t ¼ Lþ t00 þ �t; ðx; y; zÞ ¼ ðzf �x; zf �y;�zÞ þ � � � : ð32Þ
The equations in this stage reduce to

_�x ¼ �xðf ð�zÞ � hÞ; ð33Þ
_�y ¼ �yðgð�zÞ � hÞ; ð34Þ
h ¼ �xf ð�zÞ þ �ygð�zÞ; ð35Þ
Fig. 4. Plot of x; y for
(see Fig. 4) where the feedback effects
f ð�zÞ ¼ a1�z=ðb1 þ �zÞ; gð�zÞ ¼ a2�z=ðb2 þ �zÞ are nontrivial again. The ini-
tial conditions are:

ð�xð0Þ; �yð0Þ;�zð0ÞÞ ¼ ðx00; y00; Z1Þ; ð36Þ

from matching with the previous stage. We observe that the initial
conditions satisfy the restriction

�xð0Þa1 þ �yð0Þa2 > h; ð37Þ

in view of the requirement (28) in an earlier stage.
In the differential-algebraic equations (DAEs) above �z is given

by solving the algebraic expression whereas x and y are given by
the regular differential equations of the full system. For the follow-
ing analysis as well as the Fokker-Planck equation we will use the
the fifth stage.
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variables �x; �y and �z.The equation for �z is quadratic so we end up
with two possible solutions for �z. If we make a contour plot of
the solution for �x; �y varying between 0 and 1 we can see that one
solution yields only negative results so it can be dropped (see
Fig. 5). Keeping the other solution though yields a line of singular-
ities given by:

�y ¼ h
a2

� a1
a2

�x: ð38Þ

Hence, we need to solve the system from this line onwards. To do
that we first need to make sure that in stage 5 the system is already
far from that line. This can be easily deduced from the fact that in
stage 5 the system already starts away from the line of singularities
due to (37).

The asymptotic approach provides a firm basis for the deter-
ministic case but it also points towards use of the apparently
self-consistent approximations in the present work in terms of
increased understanding of the stochastic differential and Fokker-
Planck equations. As far as we know no such basis exists as yet
for the approximations in Stephanopoulos et al. (1979).
2.3. Fokker-Planck equation of stage 5 Langevin equations with the
assumption of constant substrate source

Deriving the Langevin equations for stage 5 so as to find the
respective Fokker-Planck equations is trivial and identical to deriv-
ing the stochastic equations for the full system. For the Fokker-
Planck equations we use the methodology shown in Appendix A
and we obtain two different equations depending on the noise
assumptions. More specifically in the case where the Brownian
motion increments are the same we gain an extra term. In the pro-
cess of deriving the Fokker-Planck equations we make a significant
assumption/simplification which is that the algebraic equation for
z has no noise. The only variation of �z due to noise comes from the
variability of �x; �y. Without that assumption we cannot readily
derive a compact Fokker-Planck equation for stage 5. We will show
that this assumption makes z vary significantly less than how
much it would in the case of noise in the algebraic equation. This
doesn’t seem to affect the qualitative results and it provides a com-
Fig. 5. Contour plot of the two solutions for z fro
promise between no z variation in Stephanopoulos et al. (1979)
and full �z stochastic variation since from simulation of the stochas-
tic equations for the full system we will see that the smaller the
noise in the z equation the more noisy x; y are close to the line.
As a result the system takes more time to reach a steady-state.
Hence, the limit is to consider the noise intensity of Eqs. (8) and
(12) as zero and recover Eq. (3). Which when close to the line of
steady states will in turn be replaced by (35) due to the asymptotic
analysis.

The biological premise of not including noise effects on the
equation from �z arises if we consider a chemostat where a constant
source of substrate is provided equal to h0zf . In that case we can
suppose that the change in the dilution rate only affects the sub-
strate evolution indirectly through the stochastic effect on x; y
populations.

Using the general formula for the derivation of the Fokker-
Planck equation from Appendix A, the Fokker-Planck equations
for the simplified 2D system of the fifth stage, for the general noise
and dilution rate noise respectively, are found to be:
@
@t pð�x; �y; tj�x0; �y0; t0Þ ¼ � @

@�x
�xðf ð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	

� @
@�y

�yðgð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	
þ r2

1
2

@2

@�x2
�x2pð�x; �y; tj�x0; �y0; t0Þ
� �

þ r2
2
2

@2

@�y2
�y2pð�x; �y; tj�x0; �y0; t0Þ
� �

;

ð39Þ
@
@t pð�x; �y; tj�x0; �y0; t0Þ ¼ � @

@�x
�xðf ð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	

� @
@�y

�yðgð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	
þ r2

2
@2

@�x2
�x2pð�x; �y; tj�x0; �y0; t0Þ
� �

þ r2

2
@2

@�y2
�y2pð�x; �y; tj�x0; �y0; t0Þ
� �

þr2 @2

@�x@�y
�x�ypð�x; �y; tj�x0; �y0; t0Þ½ 	:

ð40Þ
Here pð�x; �y; tj�x0; �y0; t0Þ is the probability density of the system being
in state �x; �y at time t assuming that it started in state �x0; �y0 at time
t0. Moreover, r is the noise intensity.
m the quadratic equation derived in stage 4.
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2.3.1. Numerical solution formulation, boundary and initial conditions
To simulate low noise intensity a very fine grid mesh was used

in the polygon areas created by cutting the corner below the line of
singularities mentioned in stage 5 in Section 2.2.5 and extending
the area as far �x ¼ 3 and �y ¼ 3 which would correspond to
x ¼ y ¼ 3zf . The corner cut is the area below the line defined as:

y ¼ 1=a2 � a1x=a2 þ 10�2: ð41Þ
That is to avoid the numerical errors occurring by being too close to
the line of singularities.

The mesh used is the following (see Fig. 6):
The initial condition for the numerical solution of the Fokker-

Planck equation is a two dimensional Gaussian with means
l1 ¼ l2 ¼ 0:5 and standard deviations of r1 ¼ r2 ¼ 0:05:

pðx; y;0Þ ¼ 1
2pr1r2

e
�1

2ð
ðx�l1 Þ2

r2
1

þðy�l2Þ2
r2
2

Þ
:

The boundary conditions are such that the probability density is
zero at the �x ¼ 3; �y ¼ 3 boundary and there is no flux out of the
region so that the total probability remains equal to 1. For the
boundary at x ¼ 3; y ¼ 3 we impose pð3; y;0Þ ¼ pðx;3;0Þ ¼ 0 as
well as @p

@x jx¼3 ¼ 0; @p
@y jy¼3 ¼ 0. For the �x ¼ 0 or �y ¼ 0 boundary we

do not need to specify p ¼ 0 boundary conditions as the form of
the Fokker-Planck equation at the boundary implies that if p is ini-
tially zero there it will remain so. To see that we need only write
down (see below) the Fokker-Planck at the y ¼ 0 boundary for
one of the noise cases as the other will admit something similar.

@

@t
pð�x;0; tjx0; �y0; t0Þ ¼ � @

@�x
�xðf ð�x;0Þ � h0Þpð�x; 0; tj�x0; �y0; t0Þ½ 	

� ðgð�x;0Þ � h0Þpð�x; 0; tj�x0; �y0; t0Þ

þ r2

2
@2

@�x2
�x2pð�x;0; tj�x0; �y0; t0Þ
� �

þ 0r2pð�x;0; tj�x0; �y0; t0Þ

þ r2 @

@�x
�xpð�x; 0; tj�x0; �y0; t0Þ½ 	:
Fig. 6. 2D mesh for the solution of the Fokker-Planck equation.
We can see that there is no contribution to the evolution of p on
that boundary from values of y – 0 and that if p ¼ 0 initially it
remains so as @p

@t ¼ 0.
Finally we require that p is zero on the diagonal line (38) and

that the flux at this line is also zero. To enforce that boundary con-
dition we first need to calculate the probability flux. This is given
by:

@tpþr � J ¼ 0; ð42Þ
which from (39) and (40) admits:

J¼ �xðf ð�x;�yÞ�h0Þp�r2

2
@

@�x
�x2p
� �

; �yðgð�x;�yÞ�h0Þp�r2

2
@

@�y
�y2p
� �� �

;

ð43Þ

J¼ �xðf ð�x;�yÞ�h0Þp�r
2

2
@

@�x
�x2p
� ��r2 @

@�y
�x�yp½ 	;�yðgð�x;�yÞ�h0Þp�r

2

2
@

@�y
�y2p
� ��r2 @

@�x
�x�yp½ 	

� �
;

ð44Þ

The no flux or reflecting boundary conditions are then

n � J ¼ 0 ð45Þ
where n is the outward normal to the surface. In our case this con-
dition is automatically satisfied at the �x ¼ 0; �y ¼ 0 boundaries and
we only need to impose it on the diagonal line as well as the
�x ¼ 3; �y ¼ 3 boundaries.

2.4. Adding death rates to the model

To explore what happens in the case of adding death rates to the
model we first need to take a step back and present the dimen-
sional system. The growth rates for two microbial population are
the combined growth rates, given by the Monod model of uninhib-
ited growth, minus the death rate (di):

l1ðsÞ ¼
l1

ms

K1
s þ s

� d1; ð46Þ

l2ðsÞ ¼
l2

ms

K2
s þ s

� d2: ð47Þ

Here, li
m is the maximum specific growth rate, Ki

s is the half-
saturation coefficient in the specific growth rate expression and s
is the substrate concentration.

We are interested in the points of intersection between these
two curves, which are always two since the equation
l1ðsÞ ¼ l2ðsÞ is quadratic in s. In the absence of death rate it is easy
to deduce that there can potentially be two intersection points
with one being always zero and the other for positive s and positive
values of the growth rates. Instead of the positive intersection
point it is possible that we have one for negative s value and neg-
ative growth rates but this crossing is no longer of any biological
interest. So we have only two interesting cases, (a) one intersection
point at zero or (b) two points, one is zero and the other some-
where in the upper right quadrant. For (b) it is trivial to find the
relations between the parameters of the two growth rates depend-
ing on the assumption you make about the growth rates, i.e. which
is largest as s ! 1.

On the other hand, including two distinct death rates compli-
cates the situation. Now there are three biologically relevant cases
which give very different relations between the parameters, (a)
both the intersection points being at the upper right quadrant,
(b) the first being at the lower right and the second on the upper
right and (c) the first being in the lower left quadrant and the sec-
ond in the upper right. In all the other cases both intersections
points occur at negative growth rate values (see Fig. 7).



Fig. 7. Plot of the dimensional growth rates with and without death rates for different substrate values.
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First we will focus on (b) and (c) since they are the simplest
cases and admit only one interesting point of intersection. In the
analysis that follows it is always assumed that l1ðsÞ > l2ðsÞ as
s ! 1, and hence obtaining the first relation:

l1
m � d1 > l2

m � d2: ð48Þ
Moreover, we want the end-values of the growth rates to be

positive which gives the next two relations:

l1
m > d1; ð49Þ

l2
m > d2: ð50Þ
The simplest case is (b) where both intersection points are for

s > 0 and the first admits a negative growth rate whereas the sec-
Fig. 8. Stability of system with death rates and two intersection point

Table 2
Stability analysis w/death rate.

Steady-state Conditions for k1 < 0 Conditions for k2 < 0

x ¼ y ¼ 0 f ðzf Þ > h gðzf Þ > h

x ¼ 0; gðzÞ ¼ h gðzf Þ > h h < 1
y ¼ 0; f ðzÞ ¼ h f ðzf Þ > h h > 1
f ðzÞ ¼ gðzÞ ¼ h zf > 1 AND h ¼ 1 NA k2 ¼ 0
ond a positive. Let us have a look at the additional conditions
imposed by (b). The solutions to the quadratic equation
f ðsÞ ¼ gðsÞ are:

s1;2 ¼ �B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
2A

:

where A, B and C are as follows:

A ¼ l1 � d1 þ d2 � l2;

B ¼ K2ðl1 � d1 þ d2Þ � K1ðl2 � d2 þ d1Þ;
C ¼ K1K2ðd2 � d1Þ:

In order for both s1; s2 to be positive we just need the smaller, s1,
to be positive. For that to happen we need the following conditions,

(I) B < 0, (II) C > 0 so that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4AC

p
< �B, since we already know

from (48) that A > 0, and finally (III) B2 > 4AC in order to have real
solutions. From these conditions only one is of immediate impor-
tance and that is (II) due to the fact that (I) and (III) will be satisfied
by another stronger condition we need in order to have the desir-
able geometry (l1ðs2Þ > 0;l1ðs1Þ < 0). So, C > 0 implies:

d2 > d1: ð51Þ
s in the upper quadrant with initial populations being the same.
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In addition if we also require l1ðs1Þ ¼ l2ðs1Þ < 0 and
l1ðs2Þ ¼ l2ðs2Þ > 0 we get one final condition:

K1d1

l1 � d1
>

K2d2

l2 � d2
: ð52Þ

What that inequality says is that l2 crosses the s-axes before l1,
meaning that s10 > s20 where, l1ðs10Þ ¼ l2ðs20Þ ¼ 0. Using (48) and
(51) another condition is obtained which is weaker than (52), i.e.
necessary but not sufficient, but useful for the stability analysis
that follows.

K1 > K2: ð53Þ
Fig. 9. Plot of 3 runs of non-dimensional microbial populations versus non-dim
Inequality (52) was found using Mathematica and we can again
use Mathematica to show that if it is satisfied then B < 0 and
B2 � 4AC P 0. Hence, the only two conditions needed for case (b)
are (51) and (52).

The nondimensionalisation as well as the results of the stability
analysis are found in Appendix B. The linear stability is summed up
in Table 2.

If now case (c) is considered, namely the case where one inter-
section point is at the upper right quadrant and the other in the
lower left, the exact same stability analysis results are recovered
as was expected. In case (c) there is one condition opposite to
(51) which, when combined with (48) admits one extra condition:
ensional time for varying values of the dilution rate and noise intensity.



D. Voulgarelis et al. / Chemical Engineering Science 175 (2018) 424–444 433
d1 > d2; ð54Þ
a1 > a2: ð55Þ

Other than that the stability analysis remains the same as in
Table 2.

As stated before this analysis is valid for cases (b) and (c) when
there is a single intersection point in the upper right quadrant. In
case (a) where there are two nondimensionalisation and linear sta-
Fig. 10. Plot of 3 runs of non-dimensional microbial populations versus non-di

Fig. 11. Plot of 3 runs of non-dimensional microbial populations versu
bility analysis is much more complicated and very difficult to per-
form. So instead we summarize the stability of the system via
numerical simulation in Fig. 8.

We can deduce that the stability seems to be exactly what
we expected according to the cases where we had one
intersection point, i.e. the population surviving in each seg-
ment of the parameter space is the one with the highest
growth rate.
mensional time for varying values of the dilution rate and noise intensity.

s non-dimensional time for varying values the r3 noise intensity.
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3. Results

Due to the fact that zf is usually large we chose an arbitrarily
large value equal to 15,000.The choice of zf does not affect our
results. Similar results are obtained for lower values as long as zf
is in the order of a few thousands. While our asymptotic analysis
and further simulation of the simplified system and Fokker-
Planck take zf asymptotically large.

3.1. Simulation of Langevin equations for full system without death

To simulate the dynamics of the full system close to the line of
steady states we use the Euler-Maruyamamethod on the system of
SDEs (6–8) and (9–12). The initial conditions for x; y are the given
by y ¼ zf � x� 1 which is the line of steady states and specifically
we chose x ¼ zf =2� 1; y ¼ zf =2. Moreover z always starts from the
value of 1 so that the system is initiated on the line of steady states.

The Euler-Maruyama method has a strong convergence of order
1/2. Alternatively we can use the Milstein method with a strong
convergence of order 1 (Higham, 2001). We noticed no difference
in the numerical results from the two approaches and hence we
performed the simulations using the former. In the following fig-
ures we present the evolution of the two populations for different
values of h and different noise intensities.

3.1.1. Evolution of microbial populations for general noise
For the simulation of the general noise case we initially picked

the values of the noise intensities such that they are at the same
Fig. 12. Plot of 10 runs of non-dimensional microbial populations versus non-d
order as the ones used at the dilution rate induced case. Meaning
that for r3 we picked high intensity to account for the fact that
environmental stochasticity affects z dramatically because of the
zf term in the equation. In addition we increased the values of
r1;r2 to see if there is any qualitative difference to the dynamics.
We can do that since the noise terms are different for x; y and z. For
h ¼ 0:99 though we can see that when the noise is high the compe-
tition persists for long and although y is the only one surviving
there could be values of the intensity that either does. We do not
observe something similar for h ¼ 1:01 where it is again clear
who the winner is and the results agree with the deterministic
case. So we further see an advantage of the x population of the y.

It is interesting to explore what happens to the case of high
noise in x; y and decreased noise in z

The two plots combined with Fig. 9(b) show that the variation
the dynamics of x;Y are mainly affected by the stochasticity in
x; y and that noise in z has little to no effect whether r3 is larger
or smaller than the noise intensity. That can justify the replace-
ment of the differential equation for z with the algebraic equation
found using the asymptotic analysis when the system is close to
that line (see Figs. 10 and 11).
3.1.2. Evolution of microbial populations for dilution rate induced
noise

The plots of Figs. 12 and 13 show a clear dominance of the x
population for the case where the mean value of the dilution
rate is 1. We can further see that higher noise favours the pop-
ulation with the highest maximum growth rate whereas lower
imensional time for varying values of the dilution rate and noise intensity.



Fig. 13. Plot of 10 runs of non-dimensional microbial populations versus non-dimensional time for varying values of the dilution rate and noise intensity.
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favours the other. This is particularity evident in the last two
plots. For h ¼ 0:99 deterministically we are in the region were
y should survive and x must vanish and with low noise we
see that this is the case. However as noise intensifies we can
see that there is a longer competition between the two popula-
tions. For particular values of h;r we can create a situation
where both populations coexist for a very long period were a
very extended simulation needs to take place to determine
which one will eventually survive. It is also worth noticing that
there is a contrasting effect of the noise intensity depending on
which region of h values the system is in. If it is P 1 then higher
intensity drives the system to a steady state faster whereas if
6 1 higher intensity has the opposite effect.

The plots for the case of h ¼ 1 are in contrast to what was
found in Stephanopoulos et al. (1979) where because of the fact
that z was considered constant, the drift term disappeared in
the Fokker-Planck equation and the evolution was purely
stochastic. As a result both populations had similar chances of
survival if they had the same initial conditions. This is not
the case here.

Despite the fact that the noise term is the same in all three
equations of the full system it is interesting to see what happens
if we kept the noise intensity, r, the same in (10) and (11) but
decrease it in (12) (see Fig. 14).

We can clearly see that the lower noise in z causes the
dynamics to become more noisy and hence reach a steady-
state value at significantly larger times than the case were the
noise of z is greater.
3.2. Simulation of Differential-Algebraic system for general noise

Having justified the use of the reduced system for the case of
general noise we can use the derived Fokker-Planck Eq. (39) to
simulate the probability density function of the system. The
advantage of using the DAE system without noise in the alge-
braic equation is that if we solve for z as mentioned in the pre-
vious section and substitute into the SDEs for x; y we can then
derive a Fokker-Planck equation in two ‘‘spatial” dimensions
and time which allows us to explore the evolution of the system
for low noise and long times with much lower computational
cost, higher accuracy and more clarity. We may also refer to
the spatially 3D Fokker-Planck system which has a single deriva-
tive in t and double derivatives in x, y, z. This system also
involves a single z-derivative of the algebraic term in square
brackets on the right-hand side of Eq. (8). Our emphasis guided
by the numerical studies is on the solution of the system when
the latter (algebraic) term is zero. Setting that term to zero then
creates a specific connection between x, y, z derivatives. This
allows any z derivative for example to be replaced by a combi-
nation of x, y derivatives and that in turn leads to the Fokker-
Planck system becoming one in t, x, y only as in the present
working. The reason for not wanting to use a noise intensity that
is very low is the fact that the smaller the noise intensity the
smaller the diffusion term of the Fokker-Planck equation and
the finer the mesh needs to be to solve the equations correctly.
This 2D Fokker-Planck was numerically solved using the finite
element method (FEM) in Mathematica 11.



Fig. 14. Plot of 3 runs of non-dimensional microbial populations versus non-dimensional time for different values of the noise intensity in the x, t stochastic equations and
the z equation.
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The system was initialized such that x; y have almost the same
magnitude and such that the system starts on the line of steady
states. In Fig. 15 the evolution of the Fokker-Planck equation is
seen for different times represented by different colours for the
case of h ¼ 1 and varying noise intensities. In plot (b) we have
the same noise intensities to compare with the following simula-
tion of Eq. (40) in the next subsection. It is clear that for large time
the system tends to y ¼ 0 and centred a bit off x ¼ 1.
Fig. 16(a) shows what happens in the case where h ¼ 0:99. As
in the SDE case the probability density function implies that the
system needs a lot of time to settle to one steady state. It seems
that y population has a slight advantage here as we can also see
in the numerical simulations of the Langevin equations before.
Unfortunately due to numerical errors the solution of the
Fokker-Planck dissipates so we are not able to properly explore
the very long time behaviour of the solution which should



Fig. 15. Numerical solution of the Fokker-Planck equation for h ¼ 1 and varying values of the noise intensity.

D. Voulgarelis et al. / Chemical Engineering Science 175 (2018) 424–444 437
probably be a peak around y ¼ 1. On the other hand for lower
noise we get exactly what we would expect deterministically
for the case of h ¼ 0:99 which is only for y to survive
(Fig. 16b) which is the same as the result shown in the previous
subsection.
3.3. Simulation of Differential-Algebraic system for dilution rate
induced noise

As we already mentioned we need a bridge with the results
from Stephanopoulos et al. (1979). In that paper the authors
explored what happened in the case where z is simply assumed
constant. In the present work, using the asymptotic analysis and
the algebraic equation for z we made a simplification that allows
us to see what happens when the variation of z is very small as
well as the noise intensity low for the h ¼ 1 scenario. It is easy to
show that for the same level of noise intensity the variation of z
in the case of (33)–(35) and (10)–(12) is very different. In the for-
mer the variation is significantly smaller as evident from the figure
below. (see Fig. 17).

Again the system was initialized such that x; y have almost the
same magnitude and such that the system starts on the line of
steady states. In Fig. 18(a) the evolution of the Fokker-Planck equa-
tion is seen for different times represented by different colours for
the case of h ¼ 1. It is clear that for large time the system tends to
y ¼ 0 centred a bit off x ¼ 1. Fig. 18(b) shows the large time beha-
viour of the system for h ¼ 1. Both plots are for low noise intensity
with value r ¼ 0:03.

Fig. 19(a) demonstrated what happen in the case where
h ¼ 0:99. We can see that the result is exactly what we expect
for the case of low noise, i.e. y reaches a steady-state which is again
slightly smaller than 1 and x dies out. On the other hand 19(b)
shows that in the presence of high noise r ¼ 0:2 this result changes
and the population with the highest maximum growth rate is
favoured.



Fig. 16. Numerical solution of the Fokker-Planck equation for h ¼ 0:99 and high and low noise intensity respectively.
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3.4. Simulation of Langevin equations for full system with death

To explore the case where death of the microbial populations is
included we picked some dummy values for the death rates such
that there is a point of intersection between the modified growth
curves of the two populations and such that the dominance for
high values of z reverses. Meaning that as z ! 1 y has a greater
growth rate than x which is given by a2 � c2. In this case we have
a2 � c2 > a1 � c1 and the relation between the parameter of the
growth rate is given by 67. The simulation values chosen can be
found in Table 3

The following figures are for both general noise and dilution
rate induced noise respectively.

Figs. 20 and 21 imply that when death rate is included the
quantity that plays the most important role changes for the maxi-
mum growth rate (ai) to that minus the death rate (ai � ci). Other
than that the results seem to be qualitative very similar to the
respective noise cases without death.

4. Discussion

In this project we investigated the coexistence of two popula-
tions in a chemostat competing over a single substrate under
two distinct noise cases. the first was general environmental noise
and the second was noise due to the fact that the chemostat dilu-
tion rate cannot be kept perfectly at a constant value. Extending
the classical deterministic equations for the chemostat we
included noise and formulated Ito type stochastic differential
equations that were simulated at the deterministic steady-state
line were the two populations are supposed to coexist. In both



Fig. 17. Evolution of z using the algebraic equation without noise and the differential equation with noise respectively. Notice how the fluctuation of the non-dimensional
substrate are much three orders of magnitude smaller in the case where the algebraic equation is used.
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noise cases we found no evidence of coexistence and as always one
population survived. In the dilution rate case the population with
the higher maximum growth rate was always benefited indepen-
dently of the noise intensity and in addition higher intensity
seemed to help that population even further. The most important
result was that for the dilution rate value where deterministically
both populations would survive (h ¼ 1) only one did and it was
always the same one. Similar results were found in the general
noise case. No case where either population can survive was found
as in Stephanopoulos et al. (1979) although there might be some
combination of r1;2 in the general noise scenario when that could
possibly be observed.

Following the results of the SDEs simulation a asymptotic anal-
ysis was performed which is valid when the dimensionless sub-
strate feed is large. That asympotic analysis aided us in breaking
the dynamics of the system in 5 stages where the last stage, being
the one of interest, represents the approach of the system to the
steady state and reduces the dimensions of our system to 2 instead
of 3. That allows the formulation of a 2D Fokker-Planck equation
which can be solved numerically. The resulting Fokker-Planck
equation is slightly different depending on the noise assumptions
and in both cases the results agree with the simulations of the
SDEs. The benefit of formulating and Fokker-Planck equation is
that if it is solved it admits the fate of the system without the need
for multiple simulations and can clearly show the path of the sys-
tem towards the final steady state.

Moreover, the effect of adding death rate was explored by first
performing a linear stability analysis of the deterministic system in
order to show that it remains that similar to the case without death
rate. Following the stability analysis we performed simulations of
the SDEs with dummy death rates such that the balance of the
growth curves is reversed. Meaning that the for large substrate val-
ues the y population had the highest growth rate which is given by
the maximum growth rate minus the death rate as z ! 1. Our
results shows no qualitative difference with the no death rate cases
which was expected.



Fig. 18. Numerical solution of the Fokker-Planck equation for h ¼ 1 and r ¼ 0:03.
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Finally, a note is appropriate on the choice of noise intensi-
ties. As far as we know there are no experimental values to jus-
tify our choice of noise intensities and any justification was
made on the grounds of realistic mathematical results. In the
case of dilution induced noise the low intensity was selected
such that the substrate does not become negative which would
result in unrealistic results and the system eventually diverging.
This of course is due to the choice of a large substrate feed
value. For the case of general noise we made two choices. One
similar to the previous case so that we have a base for compar-
ison and the other one has higher values which gave realistic
magnitude of oscillation around the deterministic steady state.
The range of noise values with which we simulated the general
noise case is within the range of values used in other papers
with similar types of noise. A few can be found in the table
below (see Table 4):

It is important to mention that simulations were also performed
with lower nondimensional substrate feed values, in the order of a
few thousand, and the results were unaltered.
5. Conclusion

Our work has been an investigation of coexistence and compet-
itive exclusion in the case of general, non-linear Monod growth
rates for two populations in a chemostat with stochastic effects
taken into account. Based on the analysis and numerical simulation
of two microbial populations competing in a chemostat in
Stephanopoulos et al. (1979) we wished to extend our understand-
ing in two ways. The first was exploring the differences of solving
the full system rather than a one-dimensional simplification and
the second was adding a more general type of noise. In the original
paper the results for h ¼ 1 are independent of noise intensity and
suggest that either population has a probability of surviving
depending solely on the initial conditions on the line of steady
state. Interestingly keeping the nature of the noise the same as
the original paper but solving for the full system admits different
results from the ones found in the one-dimensional case but only
when h ¼ 1. That seems to remain true when we have general envi-
ronmental noise.



Fig. 19. Numerical solution of the Fokker-Planck equation for h ¼ 0:99 and low and high noise intensity respectively.

Table 3
Parameters and their values for the case of death rate.

Parameter (dimensionless) Definition Value

zf Substrate feed 15,000
ai Maximum growth rate 2.512, 1.411
bi Half-saturation coefficient 0.041, 0.204
ci Death rate 1.41306, 0.171927
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Despite the fact that in the case of general noise and high
intensity the competition was more persistent something similar
was not observed for low noise. Contrary to previous sugges-
tions, one particular population becomes dominant at large
times. An important step was the derivation of the Fokker-
Planck equation for a reduced 2D system which can be used
for more systematic exploration and simulation of it as well as
the inclusion of death rate. Of course there is plenty of room
for future work and further improvements. Currently our results
are based on simulations of the respective stochastic systems so
one possible path will be to try and prove the existence of the
stochastic steady states analytically as was done for simpler lin-
ear growth rates (Xu and Yuan, 2016) and potentially prove
mathematically that in the case where h ¼ 1 there exist one or
two steady states (y ¼ 0 or x ¼ 0) depending on the nature and
intensity of the noise as well as the growth parameters. Addi-
tionally, a lot of work can be done regarding the Fokker-Planck
equation derived here. As mentioned before due to numerical
errors there is some probability density flux outwards of the
domain leading to the total probability decreasing instead of
staying constant at 1. A more systematic numerical solution of
the equations could prevent that which would be useful in clar-
ifying their long time behaviour and whether there is a bimodal
distribution in the general noise case with h ¼ 0:99. Finally, one
could explore the case where death rate is included and there
are two intersection points in the upper right quadrant. It would
be interesting to see how the fate of the system is affected when
the two points are close and the noise is such that the dilution
rate could potentially reach either value of these two points.



Fig. 21. Plot of 6 runs of non-dimensional microbial populations versus non-dimensional time for the full system with death rate and dilution rate induced noise.

Fig. 20. Plot of 6 runs of non-dimensional microbial populations versus non-dimensional time for the full system with death rate. and general noise.

Table 4
Noise intensity ranges in the literature.

Range Reference

ð0:2;1:1Þ Xu and Yuan (2016)
ð0:08;1Þ Ji and Yuan (2014)
ð0:02;1:55Þ Xu et al. (2013)
ð0:2;1:8Þ Zhang et al. (2017)

442 D. Voulgarelis et al. / Chemical Engineering Science 175 (2018) 424–444
Acknowledgement

We would like to acknowledge support from the EPSRC DTC
(EP/F500351/1)

Appendix A. Derivation of the Fokker-Planck equation from the
Langevin SDEs

Without loss of generality let us take the one-dimensional case
and assume that the evolution of the variable f ðtÞ is due to a deter-
ministic, Gðf ; tÞ, and a stochastic element with multiplicative Gaus-
sian white noise, Sðf ; tÞfðtÞ, such that E fðt1Þfðt2Þ½ 	 ¼ r2dðt1 � t2Þ.
df ðtÞ
dt

¼ Gðf ; tÞ þ Sðf ; tÞfðtÞ ð56Þ
The above equation can be written in the form:

df ðtÞ ¼ Gðf ; tÞdt þ Sðf ; tÞrdWðtÞ ð57Þ
where dWðtÞ is a Wiener process increment.

To formulate the corresponding Fokker-Planck equation we
need to find the drift and diffusion terms, l;D respectively. In
order to achieve that we have to compute the moments of variable
f using the Langevin equation (Risken, 1984). The general formulas
for the moments are:

mðnÞðf 0; tÞ ¼ 1
n!

lim
dt!0

1
dt

Z
ðf � f 0Þnpðf ; t þ dtjf 0; tÞ ð58Þ

1
n!

lim
dt!0

1
dt

E ðf ðt þ dtÞ � f ðtÞÞnjf ðtÞ ¼ f 0
� � ð59Þ

Using the fact that in Eq. (58) f ðt þ dtÞ � f ðtÞ ¼ df ðtÞ is given by
Eq. (57) as well as the properties of the expectation of the Wiener

process increments, namely E dWðtÞ½ 	 ¼ 0; E ðdwðtÞÞ2
h i

¼ dt, we

get:

E df ðtÞjf ðtÞ ¼ f 0
� � ¼ E Gðf ; tÞdt þ Sðf ; tÞrdWðtÞjf ðtÞ ¼ f 0

� � ¼ Gðf 0; tÞdt

E ðdf ðtÞÞ2jf ðtÞ¼ f 0
h i

¼ E G2ðf ;tÞdt2 þS2ðf ;tÞr2dW2ðtÞþ2Gðf ;tÞSðf ;tÞrdWðtÞdtjf ðtÞ¼ f 0
h i

¼ S2ðf 0;tÞr2dtþOððdtÞ2Þ

Now, the drift and diffusion terms can be found:
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lðf 0; tÞ ¼ lim
dt!0

1
dt

Z
ðf � f 0Þpðf ; t þ dtjf 0; tÞ

¼ lim
dt!0

1
dt

E ðf ðt þ dtÞ � f ðtÞÞjf ðtÞ ¼ f 0
� � ¼ Gðf 0; tÞ

Dðf 0; tÞ ¼ lim
dt!0

1
2dt

Z
ðf � f 0Þ2pðf ; t þ dtjf 0; tÞ

¼ lim
dt!0

1
2dt

E ðf ðt þ dtÞ � f ðtÞÞ2jf ðtÞ ¼ f 0
h i

¼ S2ðf 0; tÞr2

Hence, the corresponding Fokker-Planck is:

@

@t
pðf ; tjf 0; t0Þ ¼ � @

@f
Gðf ; tÞpðf ; tjf 0; t0Þ½ 	

þ r2

2
@2

@f 2
S2ðf ; tÞpðf ; tjf 0; t0Þ
h i

The general formula for the n-dimensional Fokker-Planck equa-
tion is given by:

@

@t
pðf ; tjf 0; t0Þ ¼ �

X
i

@

@f i
lðf ; tÞpðf ; tjf 0; t0Þ½ 	

þ
X
i;j

@2

@f if j
Di;jðf ; tÞpðf ; tjf 0; t0Þ
� � ð60Þ

It can been shown (Öttinger, 1996) that for a general N-dimensional
It�o SDE system of the form:

dXt ¼ lðXt ; tÞdt þ rðXt ; tÞdW t

where Xt and lðXt; tÞ are N-dimensional vectors, rðXt; tÞ is an NxM
matrix and W t is an M-dimensional standard Wiener process.

The corresponding Fokker-Planck of the above system is:

@pðx; tÞ
@t

¼ �
XN
i¼1

@

@xi
liðx; tÞpðx; tÞ
� �

þ 1
2

XM
j¼1

XN
i¼1

@2

@xi@xj
Di;jðx; tÞpðx; tÞ
� � ð61Þ

Here, Di;j ¼
PM

k¼1rikrjk or equivalently Dðx; tÞ ¼ r � rT .

A.1. Application to chemostat model

The SDEs governing the stage 5 simplification of the chemostat
model with general noise are given by:

d�x ¼ �xðf ð�x; �yÞ � h0Þdt þ r1�xdW1ðtÞ;
d�y ¼ �yðgð�x; �yÞ � h0Þdt þ r2�ydW2ðtÞ:
where N ¼ M ¼ 2 and

lðx; tÞ ¼ �xðf ð�x; �yÞ � h0Þ; �yðgð�x; �yÞ � h0Þð Þ;

rij ¼
r1�x 0
0 r2�y

� �
;

W t ¼ W1ðtÞ;W2ðtÞð Þ:
Using the above it is trivial to find that the Fokker-Planck equa-

tion for our 2D system is:

@

@t
pð�x; �y; tjx0; �y0; t0Þ ¼ � @

@�x
�xðf ð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	

� @

@�y
�yðgð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	

þ r2
1

2
@2

@�x2
�x2pð�x; �y; tj�x0; �y0; t0Þ
� �

þ r2
2

2
@2

@�y2
�y2pð�x; �y; tj�x0; �y0; t0Þ
� �
When noise originates from the dilution rate the increments
and intensity are the same so we instead have:

rij ¼
�r�x 0
�r�y 0

� �
;

W t ¼ WðtÞ;WðtÞð Þ:
From which we gain an extra term by using the methodology

explained above:

@

@t
pð�x; �y; tjx0; �y0; t0Þ ¼ � @

@�x
�xðf ð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	

� @

@�y
�yðgð�x; �yÞ � h0Þpð�x; �y; tj�x0; �y0; t0Þ½ 	

þ r2

2
@2

@�x2
�x2pð�x; �y; tj�x0; �y0; t0Þ
� �

þ r2

2
@2

@�y2
�y2pð�x; �y; tj�x0; �y0; t0Þ
� �

þ r2 @2

@�x@�y
�x�ypð�x; �y; tj�x0; �y0; t0Þ½ 	
Appendix B. Equations, nondimensionalisation and stability
analysis of system with death rate

The system of coupled equations describing the evolution of the
microbial populations and the concentration of the substrate is the
following:

_x1 ¼ � qx1
V

þ l1ðsÞx1; ð62Þ

_x2 ¼ � qx2
V

þ l2ðsÞx2; ð63Þ

_s ¼ qðsf � sÞ
V

� 1
Y1

l1ðsÞx1 �
1
Y2

l2ðsÞx2: ð64Þ

It is more convenient if Eqs. (62)–(64) are nondimensionalised.
Since the exploration of the intersection points is our main aim,
the characteristic measures used for the nondimensionalisation will
be the growth rate and the substrate values at the point of intersec-
tion. The values for which the growth rate curves intersect is sc so
that l1ðscÞ ¼ l2ðscÞ ¼ lc . The dimensionless variables are give
below:

x ¼ x1
Y1sc

; y ¼ x2
Y2sc

; z ¼ s
sc
; zf ¼ sf

sc
; s ¼ lct; h ¼ q

Vlc

f ðzÞ ¼ l1ðzscÞ
lc

; gðzÞ ¼ l2ðzscÞ
lc

By the definition of z and the dimensionless growth rates, at the
intersection point z ¼ 1 and f ð1Þ ¼ gð1Þ ¼ 1. The equations for the
dimensionless growth rates are:

f ðzÞ ¼ a1z
b1 þ z

� c1 ð65Þ

gðzÞ ¼ a2z
b2 þ z

� c2 ð66Þ

where ai ¼ li
m

muc
; bi ¼ Ki

s
sc
; ci ¼ di

lc
. Furthermore, due to the relation at

the intersection point we obtain:

ci ¼
ai

bi þ 1
� 1 ð67Þ

Finally, the new set of equations is:

_x ¼ xðf ðzÞ � hÞ; ð68Þ
_y ¼ yðgðzÞ � hÞ; ð69Þ
_z ¼ hðzf � zÞ � xf ðzÞ � ygðzÞ: ð70Þ
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B.1. Linear stability analysis

Before proceeding to the stability analysis, the dimensions of
the system can be reduced. Adding (68)–(70) admits:

_xþ _yþ _z ¼ hðzf � z� x� yÞ
In steady state,

z ¼ zf � x� y ð71Þ
This steady state is reached if the system is initialized inside the tri-
angular domain defined by (71) (Stephanopoulos et al., 1979). Now
there is a new system of equations where (70) is replaced by (71).
That system admits four steady states, (1) x = y=0 where both pop-
ulations wash out, (2) x = 0 and gðzÞ ¼ h where x1 washes out and x2
grows, (3) y = 0 and f ðzÞ ¼ h where x2 washed out and x1 grows and
finally (4) f ðzÞ ¼ gðzÞ ¼ h where both populations coexist. The con-
ditions for stability of these states will be explored. All the condi-
tions found in the first section hold for the new growth
parameters exactly as before.

Two more conditions need to be taken into account before the
stability analysis that those are the following:

c2 > c1 ) a2
b2 þ 1

>
a1

b1 þ 1
ð72Þ

ci > 0 ) ai
bi þ 1

> 1 ð73Þ
B.1.1. x ¼ y ¼ 0
Linearising around the (0,0) steady-state gives the Jacobian

matrix which can be used to find the eigenvalues. These are:

a2zf � ðb2 þ zf Þðc2 þ hÞ
b2 þ zf

;
a1zf � ðb1 þ zf Þðc1 þ hÞ

b1 þ zf

� �

It is straightforward to show that these eigenvalues are negative
when,

f ðzf Þ; gðzf Þ < h:
B.1.2. x ¼ 0; gðzÞ ¼ h
Using the same approach of linearisation around the steady

state we can find the eigenvalues for the second steady-state. In
this case we have x ¼ 0 and we need to solve gðzÞ ¼ h to find the
value for y. Specifically y ¼ zf þ b2

hþc2
hþc2�a2

. The eigenvalues are:

�ða2 �c2 �hÞða2zf �ðb2 þ zf Þðc2 þhÞÞ
a2b2

;
ðc2 þhÞða1b2 þðb1 �b2Þðc1 þhÞÞ�a2b1ðc1 þhÞ

a2b1 �ðb1 �b2Þðc2 þhÞ
� �

For the first eigenvalue to be negative two opposing conditions are
found, gðzf Þ > h. The last means that h is greater than the value of
gðzÞ as z ! 1.

The conditions for the second eigenvalue to be negative are
h < 1.

B.1.3. y ¼ 0; f ðzÞ ¼ h
Linearising around this steady state gives the eigenvalues,

�ða1 �c1 �hÞða1zf �ðb1 þzf Þðc1 þhÞÞ
a1b1

;
ðc2 þhÞðb2ð�a1 þc1 þhÞ�b1ðc1 þhÞÞþa2b1ðc1 þhÞ

a1b2 þðb1 �b2Þðc1 þhÞ
� �
Condition for the first eigenvalue to be negative are f ðzf Þ > h. As
for the second eigenvalue the condition is simply h > 1.

B.1.4. f ðzÞ ¼ gðzÞ ¼ h
In the final steady-state we have co-existence and the growth

rates, the dimensionless dilution ðhÞ rate as well as z are all equal
to 1. Here, there is a line of fixed-points and not a single point. That
line is given by the equation y ¼ zf � x� 1. Since the intersection
points exists and is at the positive quadrant the line must also be
in the upper right ðx; yÞ quadrant. So, zf > 1, otherwise the line will
never be in a region where both x; y > 0 which is the biologically
relevant region. Linearising the system around an arbitrary point
(A,B) where B ¼ zf � A� 1, admits these eigenvalues:

2a1b1ðb2 þ 1Þ2ðA� zf þ 1Þ � 2Aa2ðb1 þ 1Þ2b2

2ðb1 þ 1Þ2ðb2 þ 1Þ2
;0

( )

Since A is part of the fixed-points line we know that A < zf � 1 and
we can show that the first eigenvalue is always negative.
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