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Abstract
Covariate Dependent Random Measures with Applications in Biostatistics

by William BARCELLA

In Bayesian nonparametrics, the specification of suitable (for practical purposes)
stochastic processes whose realisations are discrete probability measures plays
a crucial role. Recently, real world applications have motivated the extension
of these stochastic processes to incorporate covariate information in the real-
isations with the aim of constructing infinite mixture models having weights
and/or component-specific parameters which depend on covariates. This work
presents four different modelling strategies motivated by practical problems in-
volving stochastic processes over covariate dependent random measures. After
presenting the main concepts in Bayesian nonparametrics and reviewing rele-
vant literature, we develop two Bayesian models which are extensions of aug-
mented response mixture models. In particular, we construct a semi-parametric
non-linear regression model for zero-inflated discrete distributions and propose
techniques to perform variable selection in cluster-specific regression models.
The third contribution presents a generalisation of Dirichlet Process for ran-
dom probability measures to include covariate information via Beta regression.
Properties of this new stochastic process are discussed and two illustrations are
presented for dealing with spatially correlated observations and grouped lon-
gitudinal data. The last part of the thesis proposes a modelling strategy for
time-evolving correlated binary vectors, which relies on latent variables. The
distribution of these latent variables is assumed to be a convolution of Gaussian
kernels with covariate dependent random probability measures. These four
modelling strategies are motivated by datasets that come from medical studies
involving lower urinary tract symptoms and acute lymphoblastic leukaemia as
well as from publicly available data about primary schools evaluations in Lon-
don.
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Chapter 1

Bayesian nonparametrics and
covariate dependent random
measures

Bayesian nonparametrics is a famous and still developing field within Bayesian statis-
tics. Its success is based on the great flexibility and adaptability to a wide variety of
practical applications. The focus of this chapter is to introduce the main elements of
this methodology and in particular the Dirichlet Process Mixture (DPM) models. The
second part of the chapter introduces the objective of this work which is related to the
extension of traditional DPM models to include covariate information and to use the
resulting models for answering applied questions. After reviewing the main contri-
butions from the literature, we present the outline of the work. Part of the material
included in this chapter is based on the work in Barcella et al. [2017].

1.1 Introduction

The objective of this thesis is to discuss new practical developments of stochas-
tic process priors over probability measures that could incorporate information
contained in covariates. This field has recently become prominent, both in the-
ory and applications, within the area of Bayesian nonparametrics (BNP). In the
current section we introduce the main elements of BNP modelling and how co-
variate dependent random probability measures arise and the role they play,
particularly from a practical point of view.

We introduce BNP models starting from briefly describing the main aspects
of Bayesian inferential procedures. Consider a set of observations y1, . . . , yn
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which are realisations of random variables taking values in a measurable space
called sample space. We assume that they are independent and identically dis-
tributed (iid) according to the probability density (or mass) function p(y | θ),
which is indexed by some unknown quantity θ. p(y | θ) is often referred to as
model (or sampling model).

The main target of statistical inference is to draw conclusions about θ, or
functionals of θ. There can be various perspectives to approach this problem.
In this work we concentrate exclusively on Bayesian inference. In this approach
all unknown quantities are treated as random variables. As such, the Bayesian
perspective is to look at θ as a random variable, so we write

y1, . . . , yn | θ
iid∼ p(y | θ). (1.1.1)

In order to perform an inference, Bayesian approach requires to complete
the model in (1.1.1) with a prior distribution. This is the assumed distribution for
θ before running the experiment that generated the observations. We write

θ ∼ p(θ). (1.1.2)

The choice of the prior distribution should incorporate all available knowledge
on the parameter. This process, usually called prior elicitation (or specification),
can be driven by a number of procedures, from which we distinguish different
areas in Bayesian statistics. A discussion about techniques for prior elicitation
is in Chapter 3 in Robert [2007]. The need in Bayesian setting of a prior distri-
bution and its elicitation are the most common criticisms to the Bayesian infer-
ential method (see for a discussion Gelman [2008]). In fact, while all statistical
inferential procedures assume a probabilistic model for the observations, only
Bayesian inference requires the extra assumption of the parameter’s distribu-
tion.

In the Bayesian paradigm, inference on θ involves estimating the posterior
distribution of θ, defined as the distribution of θ given the information contained
in the data, i.e. p(θ | y1, . . . , yn). This distribution can be obtained by using Bayes’
theorem as

p(θ | y1, . . . , yn) =
p(y1, . . . , yn | θ)p(θ)

p(y1, . . . , yn)
,
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where p(y1, . . . , yn | θ) is referred to as likelihood or joint density of the observa-
tions and in light of (1.1.1) is calculated as

p(y1, . . . , yn | θ) =
n∏
i=1

p(yi | θ).

Instead, p(y1, . . . , yn) is called prior predictive or marginal likelihood and is calcu-
lated as:

p(y1, . . . , yn) =

∫
Θ

p(y1, . . . , yn | θ)p(θ)dθ,

where Θ denotes the support of θ (also called parameter space). More generally,
a model can be defined in terms of a collection of probability measures over the
sample space indexed by some parameter and the procedure for obtaining the
posterior distribution described above applies only if the model is dominated1.
Nevertheless, there might be ways of defining posterior distributions, consis-
tently for all points in the sample space, which do not rely on Bayes’ theorem.

Depending on the characteristics of Θ, we distinguish between two types of
Bayesian models2: parametric and nonparametric models. In particular, a para-
metric model is characterised by Θ being (a subset of) a vector space of finite
dimension (see Definition 1.1.7 in Robert [2007]). Parametric models are the
most frequent in Bayesian literature and they can be suitable in a large number
of situations. However, they may be over-restrictive in certain circumstances.
In fact, parametric models fix the complexity of the model a priori, while some-
times it would be appealing to let the model increase in complexity as new
observations become available. In order to achieve the latter feature an elegant
strategy is to relax the condition of having the parameter space to be a finite
vector space and to consider Θ to be an infinite vector space. Models charac-
terised by such parameter spaces are called nonparametric. Reviews of these
models can be found in Ghosh and Ramamoorthi [2003], Müller and Quintana
[2004] and Hjort et al. [2010]. We call BNP the area of Bayesian inference dealing
with nonparametric models.

1Let us define a model as the collection P of probability measures P : B → [0, 1], where B is
the σ-algebra generated by the subsets of the sample space. The model is said to be dominated
if there exists a σ-finite measure µ : B → [0,+∞) such that P is absolutely continuous with
respect to µ, for all P ∈ P .

2Following the terminology in Robert [2007], we call Bayesian model the set of the model
(distribution) on the observations and the prior distribution.
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The main consequence of having an infinite dimensional parameter space is
that we need to specify a prior distribution over an infinite collection of random
variables, so prior distributions become stochastic process priors. Great efforts
have been spent in BNP literature to specify stochastic process priors which
could be useful for practical problems and for which stochastic process posteri-
ors could be derived analytically (or at least approximated). Based on which
stochastic process is employed in the BNP model, we can distinguish between
two main areas. The first one uses Gaussian processes (Rasmussen and Williams
[2006]), while the second one employs Completely Random Measures (CRM, King-
man [1967], Lijoi and Prünster [2010]). CRM include a variety of objects, the
most famous being the Gamma process and Beta process. In this work we deal
prominently with a process called Dirichlet Process, which is obtainable normal-
ising a Gamma process. Interestingly, realisations from a Dirichlet Process are
discrete probability measures. A brief review about Dirichlet Process and its
properties is presented in this chapter.

In the present work, we focus on methods which additionally index stochas-
tic processes over random probability measures to some covariate space.

1.2 Dirichlet Process

Dirichlet Process (DP) is commonly described as a distribution over distribu-
tions, which are defined on a measurable space (Θ,A), where A is a σ-algebra
of subsets of Θ. This stochastic process was first introduced by Ferguson [1973],
who discussed also several of its properties, such as the conjugacy and discrete-
ness of the realisations. Before moving to a formal definition we underline that
a realisation from DP is neither a scalar nor a vector or a matrix, but is a proba-
bility measure.

We introduce here the concept of partition as it will become necessary for the
definition of the DP. The collection of subsets (S1, . . . , Sk) represents a partition
of the set S if for every j and j′ (which are taken to be different) we have that
Sj ∩ Sj′ = ∅ and

⋃k
j=1 Sj = S. Note that k can be finite or infinite.

Definition 1.2.1. (Dirichlet Process). Let us consider a measurable space (Θ,A),
a positive scalar α and a diffuse probability measure G0 on (Θ,A). We call DP with
parameters α and G0 the stochastic process whose realisations are random probability
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measures with the following property. TakingG to be a realisation of a DP, we have that
for every partition (S1, . . . , Sk) of Θ the random vector (G(S1), . . . , G(Sk)) follows a
Dirichlet distribution with parameters (αG0(S1), . . . , αG0(Sk)).

The quantity α is called precision, while G0 is the centre measure (also called
base measure). A compact way to write is

G ∼ DP(α,G0).

Although not required from the original definition of the DP, we consider G0 to
be a diffuse probability measure and we highlight alternative interpretation of
G0 when required.

From Definition 1.2.1, the DP has Dirichlet distributed marginals. In this
sense, the DP can be viewed also as the infinite generalisation of the Dirichlet
distribution (see Griffiths and Ghahramani [2011]). The definition above does
not provide a way to construct the DP, but it states the properties for a process
to be a DP. In the same work Ferguson [1973] proved the existence of this ob-
ject referring to the Kolmogorov’s consistency theorem (Kolmogorov [1933]).
Another proof for the existence of the DP was provided by Blackwell [1973].

A number of the properties of DP were presented by Ferguson [1973] and
we recall here some of them. Let consider G ∼ DP(α,G0) on (Θ,A).

Under the topology of pointwise convergence, the support of the DP in-
cludes the set of all measures absolutely continuous with respect to G0. Fur-
thermore, the support of each realisation G is the same as G0, i.e. Θ. If we take
the random quantity G(A), where A is a measurable set in A, it follows that

E[G(A)] = G0(A)

V[G(A)] =
G0(A)(1−G0(A))

1 + α
.

From the latter we can notice that α determines the distance between G0 and G.
Ferguson also derived the posterior of the DP. Consider the following hier-

archical model

θ1, . . . , θn | G
iid∼ G

G ∼ DP(α,G0),
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the distribution of G | θ1, . . . , θn is still a DP. Indeed, we have that

G | θ1, . . . , θn ∼ DP
(
α + n,

αG0 +
∑n

i=1 δθi
α + n

)
,

where δθi is the Dirac measure that places a unitary mass of probability in cor-
respondence of location θi. This is often referred to as the conjugacy property of
the DP and it can be proved as an extension of the conjugacy property of Dirich-
let distribution prior for the parameters of a Multinomial sampling model.

An additional property, which has already been mentioned in this chapter,
is the almost sure discreteness of DP samples. This was proved by Ferguson
[1973], Blackwell [1973] and Blackwell and MacQueen [1973]. The discreteness
of DP samples is the property that makes this process ideal to deal with mixture
models and, consequently, with model-based clustering. The idea stems from
that if G, distributed as a DP, is discrete, this implies a positive probability of
ties in a sequence θ1, . . . , θn sampled from G. This in turn defines a partition of
the set N = {1, . . . , n}.

The first proof of the discreteness of the DP realisations provided by Fergu-
son [1973] relies on the representation of the DP as normalised realisations of
a Gamma process3. The latter are discrete since they can be constructed from
realisations of a Poisson Process, which is also discrete (see Kingman [1967] for
details). Equivalently, Jordan and Teh [2014] showed that a Gamma Process is
a CRM and since all CRM are discrete (Kingman [1967]), then normalising a
CRM results in a discrete probability measure.

In next sections of this chapter we will present alternative representations of
the DP presented in Blackwell and MacQueen [1973] and in Sethuraman [1994]
and we will highlight the links among them and with Definition 1.2.1.

1.2.1 DP and Blackwell-MacQueen urn

A proof for the discreteness of the DP realisations was also provided by Black-
well and MacQueen [1973] and it relies on the representation of the DP samples
through the use of a Pólya urn scheme. In particular, the authors extended the

3This can be regarded as the extension to processes of a known property of Dirichlet dis-
tributed random variables which can be represented normalising a finite set of Gamma random
variables (Ferguson [1973]).
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classical version of the Pólya urn and they introduced a generalised urn that
takes the name Blackwell-MacQueen urn.

A review of Pólya urn schemes is in Mahmoud [2008]. In a traditional Pólya
urn we assume to have a certain number of red balls and green balls. The
process starts extracting a ball at random from the urn. At this point if the
ball is, say, green we replace it into the urn and we add also one more green
ball. The same happens for a red ball extracted.

Blackwell and MacQueen modified the scheme above replacing the colour
of the balls with values from a probability measure G0. Then, they constructed
the sequence θ1, θ2, . . . according the to generalised Pólya urn in Blackwell and
MacQueen [1973] (Blackwell-MacQueen Urn, BMU) as follows

θ1 ∼ G0

θ2 | θ1 ∼ α

α + 1
G0 +

1

α + 1
δθ1 (1.2.1)

. . .

θn | θ1, . . . , θn−1 ∼ α

α + n− 1
G0 +

1

α + n− 1

n−1∑
i=1

δθi .

Blackwell and MacQueen [1973] proved three main results that we list be-
low:

• for n that tends to ∞ the probability distribution in (1.2.1) converges al-
most surely to a discrete probability measure, that we call G;

• G is distributed as a DP(α,G0);

• considering G from above we have that

θ1, . . . , θn | G
iid∼ G.

In order to understand the implications of the last point we present one
of the most important theorem in Bayesian statistics: the De Finetti’s theorem
(de Finetti [1931]). However, before we need to introduce the concept of ex-
changeability.

Definition 1.2.2. (Exchangeability). Let us consider a sequence of random elements
θ1, θ2, . . . taking value on Θ. This is said to be infinitely exchangeable if the joint
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distribution of any finite subsequence is invariant to permutations of the indices. Thus,
defining σ to be a permutation, n to be an arbitrary integer andA1, . . . , An to be subsets
of Θ, if θ1, θ2, . . . is infinitely exchangeable we have that

Pr[θ1 ∈ A1, . . . , θn ∈ An] = Pr[θσ(1) ∈ A1, . . . , θσ(n) ∈ An].

An example of infinitely exchangeable sequence is θ1, θ2, . . . from (1.2.1). De
Finetti’s theorem links the concept of exchangeability with the concept of inde-
pendent and identically distributed. Indeed, considering the sequence in Defini-
tion 1.2.2, De Finetti proved that this sequence is infinitely exchangeable if and
only if the joint distribution of any subsequence composed by n elements can
be written as

Pr[θ1 ∈ A1, . . . , θn ∈ An] =

∫ n∏
i=1

G(Ai)dP (G), (1.2.2)

where G is a random probability measure, that is commonly known as the di-
recting random measure, distributed according to P , called De Finetti’s mixing
measure. Expression (1.2.2) states that, conditioning on G, the random elements
θ1, . . . , θn are iid.

Recalling now the results in Blackwell and MacQueen [1973] if we take G to
be the limiting distribution of (1.2.1), then we know that G is the the directing
random measure for the sequence constructed using the BMU. In addition, we
also know that P , i.e. the law of G, is the DP. From (1.2.1), we deduce that the
joint distribution of a sequence θ1, . . . , θn is

Pr[θ1 ∈ A1, . . . , θn ∈ An] =
n∏
i=1

αG0(Ai) +
∑

l<i δθl(Ai)

α + i− 1
,

where δθl(Ai) is equal 1 if θl belongs to Ai.
The discreteness of the process in (1.2.1) has two main implications: (i) the

sequence θ = (θ1, . . . , θn) reduces to the sequence of its unique values θ∗ =

(θ∗1, . . . , θ
∗
k), with k ≤ n, (ii) the vector s = (s1, . . . , sn) with si ∈ {1, . . . , k},

which associates each i ∈ {1, . . . , n} to a component of the vector θ∗, defines a
partition of the set {1, . . . , n}.

The BMU is connected with another well known process called Chinese
Restaurant Process (CRP, Aldous [1985]), which is obtained integrating out θ∗
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from the BMU. The CRP takes its name from the following metaphor. Consider
a Chinese restaurant with no customers inside. As soon as a customer, i = 1,
enters into the restaurant a table is prepared by the waiters with probability
1. We denote this table with j = 1. If we now consider a second customer,
i = 2, entering the restaurant, he has the choice of sitting around table j = 1

with the customer i = 1 or asking for a new table. The probabilities for the
two choices are assumed to be proportional to the number of people sitting at
j = 1, which we denote n1, and α respectively. If we discover that eventually
the second customer asked for a new table, j = 2, then the third costumer, i = 3,
will have the choice of sitting at j = 1, j = 2 or open a new table with probabil-
ity proportional to n1, n2 and α. Iterating this process generates a partition of
the customers based on which table they sit at. Ignoring some steps, when the
(n+ 1)-th customer enters the restaurant he will sit at one of the k (with k ≤ n)
tables already occupied with probabilities proportional to n1, . . . , nk or to a new
table with probability proportional to α. More formally we have that

Pr[i = n+ 1 assigned to j | ρn] =

{
nj
α+n

, for j = 1, . . . , k
α

α+n
, for j = k + 1

, (1.2.3)

where ρn is a partition of N = {1, . . . , n}.
From the last equation it is already evident that the probability to be as-

signed to a specific table does not depend neither on the names of the tables
nor on the names of the customers, but only on the number of costumers sit-
ting at each of the tables. Following the terminology in Pitman [1996] we call
the resulting partition exchangeable. Such partitions imply, for example, that the
probability for two customers of sitting together is constant and equal to 1

α+1

(this is easily computed considering i = 1 and i = 2).
From (1.2.3), we can compute the general formula of the probability of a

generic partition of n items under the CRP as

p(ρn) =
αk

α(n)

k∏
j=1

(nj − 1)! (1.2.4)

where α(n) = α(α + 1) . . . (α + n − 1). This distribution belongs to the class of
the Exchangeable Partition Probability Functions (EPPF, see Pitman [1996]).

Comparing (1.2.3) and (1.2.1), we can see that BMU and CRP are similar . In
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particular, the difference is that BMU assigns a random value sampled from G0

to each group of observations belonging to the partition distributed as a CRP.
The vector containing all the group-specific values is θ∗ defined above.

We present additional results in terms of the partition implied by sampling
from realisations of a DP, using the BMU. These results were discussed by Ko-
rwar and Hollander [1973] and Antoniak [1974]. Consider a sequence θ1, θ2, . . .

from a BMU with parameters α and G0, then the following properties hold:

• the expected number of ties a priori in the subsequence θ1, . . . , θn is:

E[k] =
n∑
i=1

α

α + i− 1
,

which approximates to the quantity α log
(
α+n
α

)
for large n and diverges

for n that tends to∞;

• the distribution of the number of ties, k, in the sequence θ1, . . . , θn is

p(k) = c(n, k)n!αk
Γ(α)

Γ(α + n)
,

where c(n, k) is a constant obtainable from the recursion for Stirling num-
bers and Γ(·) indicates the Gamma function.

In this section we have introduced a representation of the DP samples that
exploits a generalisation of the Pólya urn called BMU. Thanks to this represen-
tation we have been able to investigate in details the effects of the discreteness
of the DP samples. However, so far we have not presented a constructive defi-
nition of the DP which will be presented in the next section.

1.2.2 A constructive definition of the DP

A constructive definition of the DP was presented by Sethuraman [1994]. Let
us consider the following random discrete measure

G =
∞∑
h=1

whδθh , (1.2.5)
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where both the locations of the atoms θ1, θ2, . . . in Θ and the weights are ran-
dom and independently generated. In particular, when

∑
hwh = 1 then G is a

random probability measure associated with Θ. A possible procedure for gen-
erating the weights in (1.2.5) such that they sum up one is called stick-breaking
(see for a review Ishwaran and James [2001]). In a stick-breaking process, we
have

vh ∼ Beta(vh | ah, bh), for h = 1, 2, . . .

w1 = v1 (1.2.6)

wh = vh
∏
r<h

(1− vr), for h = 2, 3, . . . .

In words, this consists in breaking a stick of length equal to one at a random
point, saving one part and breaking at random the second part, iteratively. The
locations attached to each weight are instead randomly sampled from a diffuse
distribution G0. The specification of the parameters ah, bh defines a number of
different processes with different characteristics.

Sethuraman [1994] showed that if ah = 1 and bh = α for all h = 1, 2, . . . and,
independently, θh

iid∼ G0 for all h = 1, 2, . . ., the resulting measure is distributed
as a DP(α,G0). In other words, if G is a realisation of a DP(α,G0) than G can
be constructed by the stick-breaking procedure above with randomly assigned
locations from G0.

An interesting connection can be established between the stick-breaking
definition of the DP and the BMU. In fact, it turns out that the probability of
belonging to the first cluster characterised by the location θ1 under (1.2.6), i.e.
w1 ∼ Beta(1, α), is the same as the one implied by the BMU. The intuition be-
hind the proof is now presented for w1 (a more formal proof is presented by
Jordan and Teh [2014]). Given the first iteration of the BMU which gives θ1, the
probability that n subsequent observations are assigned to the same θ1 is equal
to n!

(α+1)(n)
(which is equivalent to the probability of a partition with one block

and cardinality n + 1 under the CRP). Let Bi for i = 2, 3, . . . denote a sequence
of binary indicators such that Bi = 1 if θi takes an existing value in θ1, . . . , θi−1,
whereas Bi = 0 if θi is a new as yet unobserved value in θ1, . . . , θi−1. We can
rewrite the probability of having the first n+ 1 observations in the same cluster
in terms ofBi. Let us assume thatB1, . . . , Bn are independent Bernoulli random
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variables, given the parameter ξ. We have that:

Pr[B2 = 1, . . . , Bn+1 = 1] =

∫
ξndQ(ξ)

The right hand side of last equation is the n-th moment of the quantity ξ. Thus,
the problem at this point is to find a Q(ξ) which has the n-th moment equal
to n!

(α+1)(n)
. It can be shown that the distribution satisfying the latter is the Beta

with parameters 1 and α. An equivalent procedure applies to the probabilities
of being assigned to other clusters, conditioning on not being assigned to θ1.

In Figure 1.1 different samples (left panels) from three different DP’s with
the relative cumulative distribution functions (right panels) are shown. They
all have the same G0, which we set equal to the standard Normal distribution,
but with α = {1, 10, 100}, respectively. This picture clarifies the meaning of α
as well as the role of the centre measure. In fact, G0 determines the locations of
the atoms of (1.2.5), while large values of α lead to weights distributed almost
uniformly among the atoms. Differently, small values of α assign most of the
probability to few atoms.

1.2.3 Pitman-Yor Process

The expected number of clusters in the partition induced by the DP depends on
the precision parameter α and on the number n of samples generated from the
DP distributed random measure G and grows approximately as log(n). This
means that the expected number of clusters grows slowly with n. However,
real-world applications often show faster rates. So, Pitman and Yor [1997] mod-
ified the construction of the DP in order to obtain implied partitions of the ob-
servations in which the expected number of clusters grows as a power law.

The resulting process is usually called Pitman-Yor Process (PYP) and its re-
alisations are almost surely discrete random measures, whose weights can be
constructed using the following stick-breaking process

vh ∼ Beta(vh | 1− d, α + dh), for h = 1, 2, . . .

w1 = v1

wh = vh
∏
r<h

(1− vr), for h = 1, 2, . . . ,
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FIGURE 1.1: Examples of discrete probability measures (left pan-
els) sampled from DP with center measure G0 = N(0, 1) (contin-
uous black line) and α = 1, 10, and 100 (from top to bottom). The
cumulative distribution functions of five samples from the same

DP are shown on the right panels.
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where d ∈ [0, 1) and α ∈ (−d,+∞). Trivially, for d = 0 PYP becomes a DP with
precision equal to α. It can be shown that the sequence of the weights decays
slowly under a PYP, compared to a DP (where the weights decay exponentially
quickly), then favouring the generation of new clusters.

The latter observation is also confirmed by looking at the process over parti-
tion induced by the PYP. This results in the following generalisation of the CRP
in (1.2.3):

Pr[i = n+ 1 assigned to j | ρn] =

{
nj−d
α+n

, for j = 1, . . . , k
α+dk
α+n

, for j = k + 1
, (1.2.7)

where ρn is a partition of N = {1, . . . , n}.
Finally, taking the probabilities in (1.2.7) it can be shown that under a PYP

with parameters d and α the expected number of clusters is

E[k] =
Γ(n+ α + d)Γ(α + 1)

dΓ(α + d)Γ(n+ α)
− α

d
,

which approximates to Γ(α + 1)/(dΓ(α + d))nd.

1.3 Dirichlet Process Mixture Models

The aggregating property of DP makes it particularly effective to deal with clus-
tering problems. In fact, arguably the most famous application of the DP is the
Dirichlet Process Mixture (DPM) model (Lo [1984], Escobar and West [1995]), a
class of models that can be expressed hierarchically as follows:

y1, . . . , yn | θ1, . . . , θn
ind∼ p(yi | θi)

θ1, . . . , θn | G
iid∼ G (1.3.1)

G ∼ DP(α,G0).

We write ind∼ to say independent distributed. This model assumes individual-level
parameters θi for i = 1, . . . , n, but the discreteness of the DP distributed prior
G implies that the vector θ = (θ1, . . . , θn) can be rewritten in terms of its unique
values θ∗ = (θ∗1, . . . , θ

∗
k) and the assignment vector s = (s1, . . . , sn) (using the
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notation introduced for the BMU in Section 1.2.1). The latter defines a partition
of the observations whose sets can be interpreted as clusters of individuals.

In Figure 1.2 we display three sets of (truncated) infinite mixtures of Normal
densities (one per panel) generated after sampling five independent realisations
ofG. We set the latter to be distributed as a DP with α = {1, 10, 100} respectively
in each panel. As we would expect, α = 1 gives a priori large probability to a
small number of components of the mixture. On the contrary, α = 100 gives
high probability to a large number of components.

In order to highlight that (1.3.1) defines an infinite mixture model we write
an equivalent representation of the DPM model given by

y1, . . . , yn | G
iid∼ p(y | G)

p(y | G) =

∫
p(y | θ)dG(θ) (1.3.2)

G ∼ DP(α,G0).

Recalling the discrete nature of the DP samples as well as its representation in
(1.2.5), we can rewrite the sampling model as an infinite mixture model:

y1, . . . , yn | G
iid∼

∞∑
h=1

whp(y | θh).

Alternatively, a DPM can be specified using the BMU and CRP, i.e. inte-
grating out G from the joint distribution of θ1, . . . , θn. In particular, exploiting
the probability over partitions of the indexes {1, . . . , n} in (1.2.4) implied by a
DP distributed random measure, we can rewrite (1.3.1) as a Random Partition
Model (RPM, see Lau and Green [2007] for details). An RPM is characterised by
within-cluster-submodels and by a prior distribution on the partition. So, DPM
in (1.3.1) is equivalent to

p(ρn,y,θ
∗) ∝

k∏
j=1

∏
i∈Sj

[
p(yi | θ∗j )

]
g0(θ∗j )α(nj − 1)!

 , (1.3.3)

where g0 is the density associated with the distribution G0, while Sj = {i : si =

j, for i = 1, . . . , n}. Compared to (1.3.1), this is the joint density model, with
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FIGURE 1.2: DPM of Normal densities referring to (1.3.1). Top
panel displays five densities corresponding to five independent
realisations of G ∼DP(1, G0). In middle and bottom panels, G is

distributed as a DP with α = 10 and α = 100 respectively.
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G integrated out and parameterised in terms of the partition of the observa-
tions and the unique values among individual parameters. The term α(nj − 1)!

is called cohesion function for the j-th group of observations and is often de-
noted by c(Sj). Since p(ρn) can be seen as the product of the cohesion functions
for each of the groups, this links the DPM with a specific type of RPM called
Product Partition Model (PPM, Barry and Hartigan [1992], Hartigan [1990]),
characterised in the same way.

Extensions of the model in (1.3.1) and (1.3.3) can be obtained by employing
more general classes of prior distributions for G (see for example Chapter 4).
For detailed review see Lijoi and Prünster [2010].

Using (1.2.1), it is possible to specify the conditional posterior distribution
of θi for the model in (1.3.3) as follows:

p(θi | θ−i,y) ∝
∑
l 6=i

p(yi | θi)δθl(θi) + α

∫
p(yi | θ)dG0(θ)g0(θi | yi), (1.3.4)

where θ−i is the vector obtained from θ after removing its i-th component and
g0(θi | yi) is equal

g0(θi | yi) =
p(yi | θi)g0(θi)∫
p(yi | θ)dG0(θ)

.

The latter can be regarded as the posterior distribution of θi when si is different
from all other indicators in s.

1.3.1 Computational aspects of DPM models

Posterior inference in DPM models is often performed using Markov Chain
Monte Carlo (MCMC) algorithms (for an introductory review on MCMC meth-
ods see Andrieu et al. [2003]). Posterior computations involving DPM models
include the challenging step of either sampling G | y or ρn | y. Both these
posterior distributions present interesting challenges which have been largely
discussed in the literature. In particular, the posterior of the random measure
G is composed by the sum of an infinite collection of locations and weights,
whereas the posterior of the partition of the observation ρn is a distribution with
discrete support, where the number of possible partitions of the set {1, . . . , n}
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grows very fast at rate O(nn)4.
We list below the main MCMC algorithms for posterior inference in DPM

models. Exploiting the BMU versions of DPM model in (1.3.4), efficient algo-
rithms were proposed by MacEachern and Müller [1998]. Given that G can be
integrated out from the model, a Gibbs algorithm resamples the partition ρn

from its full conditional removing one point at time and assigning it to a clus-
ter at random according to the posterior version of the probability in (1.2.4). A
split and merge method was proposed by Jain and Neal [2004] as a solution for
the recurrent problem of MCMC approaches for partitions to remain blocked
in configurations with high probability due to the fact that transition states are
often characterised by very low probabilities. Alternatively, without integrat-
ing out G, the posterior distribution of interest, can be estimated through the
slice sampler introduced by Walker [2007] or by the retrospective sampler of
Papaspiliopoulos and Roberts [2008]. Approximated methods for sampling the
posterior G | y were proposed by Ishwaran and Zarepour [2000] and Ishwaran
and James [2001]. These consist in truncating the infinite mixture model im-
plied by the DPM model in (1.3.2) and use the estimation techniques typical of
the finite dimensional mixture models. A general review of available MCMC
methods for DPM models is presented by Neal [2000].

1.4 Covariate dependent random measures and DPM

Recently, BNP literature has been increasingly focusing on DPM models that
can vary flexibly across covariates. This need is motivated by several inferen-
tial problems such as density regression, covariate dependent clustering, non-
linear regression and classification. This can be achieved by enriching the struc-
ture of DPM in (1.3.1) in two ways: (i) specifying a covariate dependent prior
distribution for the partition of the observations ρn in (1.3.3) or (ii) allowing the
random measure G in (1.3.1) to depend on covariates. The resulting models are

4The number of partitions of a set containing n items is the Bell number, Bell(n), which is
defined by the following recurrence relation:

Bell(0) = 0

Bell(n+ 1) =

n∑
i=0

(
n

i

)
Bell(i).
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commonly referred to as the Random Partition Models with Covariates (RPMx,
Müller and Quintana [2010] and Dunson [2010]) and have been successfully
applied to a wide range of real-data problems, including epidemiology (Park
and Dunson [2010]), survival analysis (Müller et al. [2011]), genomics (Papath-
omas et al. [2012]), pharmacokinetics/pharmacodynamics (Müller and Rosner
[1997]) and finance (Griffin and Steel [2006]).

When an RPMx is specified through the distribution of ρn, the idea is to
preserve the product partition structure of the DPM, which often offers compu-
tational advantages. Considering a matrix of covariates X with n rows and D

columns and letting xi denote the i-th row, the idea is to write a prior distribu-
tion over the partition of the observations as

p(ρn |X) ∝
k∏
j=1

c(Sj,X
ρn
j ), (1.4.1)

where, for j = 1, . . . k,Xρn
j is the subset of the rows ofX associated with cluster

j of the partition ρn. The covariate dependent cohesion function c(Sj,X
ρn
j ) is

designed to assume higher values for similar covariates in the sub-matrixXρn
j .

Alternatively, including covariate information within G requires the specifi-
cation of a stochastic process prior over random measures which are indexed by
covariate values. The most common idea is to start from (1.2.5) and to specify
covariate dependent stochastic processes for the locations and for the weights
(MacEachern [1999] and MacEachern [2000]). Then, recalling (1.3.1) the result-
ing model of the observations would be

y1, . . . , yn | Gx1 , . . . , Gxn ∼
∞∑
h=1

wh(xi)p(y | θh(xi)), (1.4.2)

where both the weights and the locations of the mixture components are in-
dexed by the covariates.

Although the strategies above are similar (at least in the objective) it is not
always easy to link them, i.e. it is not always possible to derive a covariate
dependent prior for ρn integrating out a covariate dependent random measure
from the joint distribution of the parameters.

In the next sections we review the main contributions for specifying RPMx,
both based on covariate dependent prior distribution of ρn or G.
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1.4.1 Augmented Response Models

The most common strategy to include information about X into the partition
model in a DPM framework has been to treat each covariate as a random vari-
able, i.e. by specifying a suitable probability model. Müller et al. [1996] were
the first to introduce this idea within the DPM framework. In their work they
considered an augmented model defined onZ = (y,X) and their objective was
to estimate the smooth function g(X) = E(y | X). They approached the prob-
lem by modelling Z as a DPM of (R + D)-dimensional distributions, where R
is the dimension of the response variable (usually R = 1). Let Λ∗ be the matrix
containing the unique parameters for the k clusters, (Λ∗1, . . . ,Λ

∗
k). Considering

now a new observation z̃ = (ỹ, x̃), its predictive distribution can be derived as:

p(ỹ, x̃ | Λ∗) ∝
k∑
j=1

njp(ỹ, x̃ | Λ∗j) + α

∫
p(ỹ, x̃ | Λ)dG0(Λ).

Assuming uncertainty about the realised value of x̃, which might be a reason-
able and necessary assumption when x̃ is measured with error or not exactly
known in real applications, allows us to rearrange the latter equation as

p(ỹ | x̃,Λ∗) ∝
k∑
j=1

njp(x̃ | Λ∗j)p(ỹ | x̃,Λ∗j) + α

∫
p(ỹ | x̃,Λ)p(x̃ | Λ)dG0(Λ),

using Bayes’ theorem. The quantity njp(x̃ | Λ∗j) depends on the cardinality
of group j and on a measure of how likely it is that the new observation will
be clustered in group j, based on the value of its covariates. The latter is the
likelihood of the observed x̃. The smooth function g(X) is then estimated by
taking the expectation with respect to p(ỹ | x̃,Λ∗). Muller et al. described in
details the case where Z is a mixture of multivariate Gaussian distributions,
which leads to simplified calculations for g(X).

A similar approach was adopted by Müller et al. [2011]. They originally pro-
posed a modification of a PPM, the PPMx (PPM with covariates), to incorporate
measures of similarity among the covariates within each cluster employing the
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following structure for the prior of the partition of the observations:

p(ρn |X) ∝
k∏
j=1

c(Sj)f(Xρn
j ), (1.4.3)

where f(·), called similarity function, is an ad hoc function that takes large values
for highly similar values of the covariates. The authors proposed as a default
choice to specify f(·) a probability density (or mass) function. They showed un-
der mild conditions that f(Xρn

j ) can be seen as the likelihood of the covariates
belonging to cluster j, from which the cluster specific parameters have been in-
tegrated out. Given the cluster specific parameters for the covariates, the joint
probability of a PPMx is:

f(y,X,θ∗, ζ∗1, . . . , ζ
∗
D, ρn) ∝

k∏
j=1

∏
i∈Sj

[
p(yi | θ∗j , xi)f(xi | ζ∗j1, . . . , ζ∗jD)

]
p(θ∗j )f(ζ∗j1, . . . , ζ

∗
jD)c(Sj),

(1.4.4)

where θ∗ and ζ∗1, . . . , ζ
∗
D include the unique values of the parameters of the dis-

tribution of the response and of the covariates for the k clusters, respectively.
Expression (1.4.4) shows that the PPMx is a generalisation of the methodol-
ogy proposed in Müller et al. [1996]. Taking c(Sj) in (1.4.4) to be the cohesion
function implied by the DP and the covariates to be random variables with dis-
tribution p(xi | ζ∗j1, . . . , ζ∗jD) (thus allowing the similarity function to be a valid
probability density for the covariates), the PPMx simply reduces to a DPM on
the joint distribution of the response and the covariates representable by the
following hierarchy:

y1, . . . , yn |X,θ
ind∼ p(yi | xi, θi)

x1, . . . ,xn | ζ1, . . . , ζn
ind∼ p(xi | ζi) (1.4.5)

(θ1, ζ1), . . . , (θn, ζn) | G iid∼ G

G ∼ DP(α,G0),

with G0 = G0θ × G0ζ (where × denotes the product measure), θ = (θ1, . . . , θn)

and ζi = (ζi1, . . . , ζiD). Both (1.4.4) and (1.4.5) define a PPMx, in which θ and



44 Chapter 1. BNP and covariate dependent random measures

ζ are assumed a priori locally independent but globally dependent. Therefore,
every DPM can be represented as a PPMx, but the reverse is not always true.
For this relation to hold, it is necessary that p(yi,xi | θi, ζi) = p(yi | θi,xi)p(xi |
ζi). In this perspective the PPMx generalises the work by Müller et al. [1996]
allowing for the possibility of user-specific models for the covariates (via the
similarity function).

Alternatively, Park and Dunson [2010] proposed the Generalised Product
Partition Model (GPPM). The authors discussed how to incorporate covariate
information in the conditional prior distribution in (1.2.1). This results in a gen-
eralised BMU scheme from which they derived a covariate dependent version
of the PPM showing the same joint model in (1.4.4).

Within the PPMx framework in (1.4.4), the sampling model p(yi | θ∗j ,xi) does
not necessarily need to be a linear regression. Hannah et al. [2011] extended
(1.4.4) to the broader Generalised Linear Model (GLM) framework through the
appropriate specification of p(yi | θ∗j ,xi). This generalisation allows the user to
handle different types of data. They referred to this model as DP-GLM (see also
Shahbaba and Neal [2009]). A parametric version, i.e. with a finite number of
mixture components, of the DP-GLM constitutes a particular case of the Hierar-
chical Mixture of Experts (HME) model introduced by Jordan and Jacobs [1994]
and specified in a Bayesian framework by Bishop and Svenskn [2002].

Profile Regression (PR; Molitor et al. [2010]) is another prominent example
of augmented response models. In the original formulation this model han-
dles a binary outcome y = (y1, . . . , yn) which is common in epidemiological
applications, but the model is easily generalised to different types of response
variable. The PR model consists of two sub-models. The first one is the model
for the response:

yi | pi ∼ Bernoulli(pi),

with a logistic regression on the mean pi:

log

(
pi

1− pi

)
= θi + κwi. (1.4.6)

wi is a set of confounding variables with coefficients κ, while θi is an individual
random intercept.
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The second sub-model is a mixture model on the covariates, such that condi-
tioning on the cluster assignment vector, the probability of a specific covariate
profile becomes:

xi | ζi ∼ p(xi | ζi). (1.4.7)

When xi is a vector with D components, we can model each component inde-
pendently and we can treat ζi as a vector containing the parameters for each
component of the profile, i.e. ζi = (ζi1, . . . , ζiD).

In order to consistently estimate the posterior distribution of the partition
and the cluster-specific parameters, the authors proposed to model jointly the
random intercepts in (1.4.6) and the parameters of the covariates sub-model in
(1.4.7) according to an unknown distribution G, which follows a DP with pa-
rameter α and G0, with G0 being the product measure of G0θ and G0ζ . Express-
ing the joint model in terms of the implied partition and the cluster-specific
parameters, the PR can be equivalently represented as the PPMx in (1.4.4).

For the augmented response class of models, R packages are available for the
PPMx (https://www.ma.utexas.edu/users/pmueller/prog.html#PP
Mx) and for PR (http://cran.r-project.org/web/packages/PReMiuM).

1.4.2 Dependent Dirichlet Process

An alternative way to include covariate information in DPM is to allow the
weights and/or the locations in the stick-breaking construction of the DP in
(1.2.5) to depend on covariates. In particular, this can be represented in the
following way:

Gx =
∞∑
h=1

wh(x)δθh(x) (1.4.8)

wh(x) = vh(x)
∏
r<h

[1− vr(x)] ,

under the constraint that
∑∞

h=1wh(x) = 1. wh(·) is a function of the covari-
ates. In this context x represents a point in some covariate space X and vh(x)

is a realisation of a Beta distribution with parameters equal to 1 and α(x), the
latter being the (positive) realisation of a stochastic process indexed at x ∈ X .
The model defined in (1.4.8) is a particular case of the Dependent Dirichlet Pro-
cess (DDP, MacEachern [1999]). Each Gx is still marginally a DP for each x. In

https://www.ma.utexas.edu/users/pmueller/prog.html#PP
Mx
http://cran.r-project.org/web/packages/PReMiuM
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its original formulation, the DDP model allows for both covariate dependent
weights as well as for covariate dependent locations, as in (1.4.8). In many
applications the original formulation of the DDP has been reduced to accom-
modate covariate dependent locations only (examples are De Iorio et al. [2009,
2004], Gelfand et al. [2005], Duan et al. [2007], among others). However, in
terms of random partition models the version of (1.4.8) including only covari-
ate dependent weights (or the one including additionally covariate dependent
locations) presents the most relevant construction (see Müller and Quintana
[2010]). In this case the specification of a distribution for wh(x) is central, as
it determines the structure of the dependence between the covariates and the
weights, and consequently the way in which the covariate profiles inform the
clustering structure.

Although assuming that the Gx are marginally (for each level of the covari-
ates) a Dirichlet process or other known processes can be convenient (e.g. Grif-
fin and Steel [2006], Griffin and Steel [2010] and Chung and Dunson [2011]),
several authors have preferred to replace vh(x) and to employ a model Φh(x) in
order to allow for more flexible stick-breaking processes. The resulting pro-
cesses do not belong to DDP anymore. Examples include the Kernel stick-
breaking (i.e. when Φh(·) is a user-defined function with codomain in (0, 1)

which often captures the distance of the covariates from centroids) in Reich
and Fuentes [2007] and Dunson and Park [2008], the Probit stick-breaking (i.e.
Φh(·) is the cumulative distribution function of a Normal density, whose input
can be a function of the covariates or alternatively a spatial process indexed to
the covariates) in Rodriguez et al. [2009], Chung and Dunson [2009], Rodriguez
and Dunson [2011] and Arbel et al. [2016] and the Logistic stick-breaking (i.e.
Φh(·) is a Logit function, whose argument is a function of the covariates) in Ren
et al. [2011] among others. See Foti and Williamson [2015] for a review. Similar
approaches which however do not rely on a stick-breaking construction are in
Karabatsos et al. [2012] and in Antoniano-Villalobos et al. [2014]. The choice of
the distribution for wh(x) determines the DDP (or a dependent stick-breaking),
which can then be used as mixing measure in a hierarchical model leading to
(1.4.2). Note that it is also possible to assume an extra linear regression sam-
pling model for y, i.e. p(yi | x, θh) instead of p(yi | θh).

A related approach is the Weighed Mixture of DP (WMDP) by Dunson et al.
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[2007], which can be thought of as a finite mixture of DP distributed compo-
nents, one for each covariate level. The weights of this mixture are specified as
functions of the covariates. The resulting random measures maintain covari-
ate independent locations and can be used conveniently to specify an infinite
mixture model with covariate dependent weights.

Alternative solutions introduce dependence within the more general con-
struction of the discrete random measures based on Poisson random measures
(Kingman [1967]). See for instance the works of Müller et al. [2004], Griffin and
Leisen [2014], and Lijoi et al. [2014].

Many of DDP models can be fitted by the software Bayesian Regression

by Karabatsos [2015, 2016] available at http://georgek.people.uic.edu/
BayesSoftware.html.

1.4.3 Other Methods

In this section we briefly present two other methods that can be used to specify
covariate dependent DPM.

The first one is the Restricted DPM (RDPM) model introduced by Wade et al.
[2013]. The authors modified the usual structure of the DPM models by impos-
ing restrictions to the distribution of the partition of the observations to follow
the covariate proximity. For example, let us consider n instances of a univari-
ate covariate, x1, . . . , xn and the permutation of 1, . . . , n given by ordering in-
creasingly the covariate values, namely σx(1), . . . , σx(n). The RDPM restricts
the prior probability over the partition of the observations implied by a DPM
and considers only the partitions for which sσx(1) ≤ . . . ≤ sσx(n). It can be
shown that this construction satisfies the Ewens sampling law (Ewens [1972])
for the probability of the cluster frequencies. This same law is satisfied by par-
titions implied by the BMU in (1.2.1). This class of models is appealing because
it does not assume any distribution on the covariates when accounting for the
covariate similarity. The authors showed how to perform posterior inference in
the RDPM through efficient MCMC algorithms. The mixing properties of the
MCMC scheme are improved by restricting the support of the random parti-
tion.

A second alternative is represented by the Enriched Dirichlet Process Mix-
ture (EDPM) model described in Wade et al. [2014]. The strength of this method

http://georgek.people.uic.edu/BayesSoftware.html
http://georgek.people.uic.edu/BayesSoftware.html
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consists in its ability to create nested partitions (i.e. partitions within sets of a
partition). To this end, the authors specified a DPM model for the response vari-
able, setting a DP prior on the parameters of the sampling model for y. A DP
prior, dependent on the parameters of the response, is used for the parameters
of the sampling model on the covariates. This construction leads to a nested
clustering structure of the observations: a first level of clustering is at the re-
sponse level, whereas a second level is obtained within the clusters formed at
the first stage according to a DPM model on the covariates.

1.4.4 Remarks

Covariate dependent Dirichlet process mixture models have been increasingly
used in practice, especially when the objective is to specify flexible regression
models. The main motivation underlying the use of such models is to improve
predictions, in comparison to other possible nonparametric cluster-wise regres-
sion models. The latter has been demonstrated in simulation for augmented
response models in Cruz-Marcelo et al. [2013]. The improvement in predictions
is the result of substituting the traditional mixture weights in DPM models,
which depend on the cardinalities of each cluster, with some function of the
covariates. In this way the relation between covariates and response is studied
within clusters of observations, whose assignment probabilities vary across the
covariate space.

The review of covariate dependent DP presented in this section shows that
there are mainly two strategies for specifying such models in the context of DP.
The first way consists of modelling jointly the response and the covariates as
a DPM of multivariate distributions. The main advantage of using this tech-
nique is its computational simplicity. In fact, for all types of covariates the main
model remains a DPM, which has computational advantages allowing the use
of the efficient algorithms introduced by MacEachern and Müller [1998] and
Neal [2000] for posterior inference. For these models it is also possible to in-
tegrate out the variability on the mixing measure so that the conditional prior
distributions on the parameters of the mixture model can be expressed as a
modified Blackwell-MacQueen urn which includes the covariates (see Park and
Dunson [2010]). On the other hand, the main disadvantage of this strategy is
related to the fact that for high dimensional covariate space the likelihood of
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the augmented response variables becomes dominated by the portion relative
to the covariates and consequently the response does not inform effectively the
clustering.

The second technique relies on modifying the stick-breaking process through
which the weights (and/or the locations) of the traditional DPM models are
constructed to include covariates. All contributions to this field can be divided
between those that assume DPM models for each level of the covariates and
those which do not. In the first case the stick-breaking procedure at each covari-
ate level has to involve a sequence of Beta(1, α) random variables. This may be a
limitation in incorporating complicated covariate dependencies in the weights,
thus stick-breaking procedures which involve link functions that map some re-
gression of the covariates into the (0, 1) set have progressively been employed.
Once a convenient link function is found, a variety of types of dependence can
be accommodated in the weights, which is the main advantage of these tech-
niques. However, this kind of models often leads to poor inference when few
observations are available for each covariate level (even more so in presence
of continuous covariates). Furthermore, posterior inference may require more
sophisticated algorithms (as the slice sampler by Walker [2007] or retrospective
sampler by Papaspiliopoulos and Roberts [2008]) or truncation of the infinite
mixture to some fixed level for allowing the use of the blocked Gibbs sampler
by Ishwaran and James [2001].

1.5 Outline of the thesis

In the following chapters we present four contributions to the literature of co-
variate dependent random measures which have been inspired by different ap-
plied problems. Although we will often refer to the specific questions while mo-
tivating and constructing each contribution, we believe that the methodological
insights and the modelling strategies described in the sequel of this work can
be useful in different fields requiring no or little adaptation, depending on the
features of the specific problem. These contributions can be classified, using
the terminology of the previous section, into the group of augmented response
models and DDP mixture models.

We begin in Chapter 2 by dealing with the problem of specifying flexible
regression models for count data showing an out of pattern number of zeros.
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The motivation for this method comes from urology and is connected with the
need of a diagnostic tool which could assist the clinicians while assessing the
presence of infections of the lower urinary tract.

In Chapter 3 we investigate a way for inducing variable selection in cluster-
wise linear regressions. In particular, the objective is to divide a simple linear
regression problem in strata involving groups of observations which can be
considered similar and to perform cluster-specific variable selection. The moti-
vation comes from the analysis of which symptoms may be relevant predictors
for different degrees of infection of the lower urinary tract.

The third contribution in Chapter 4 involves an extension of the DDP to
allow for a better control of the induced partition of the observations while
including covariate information. The use of the resulting process, called De-
pendent Generalised Dirichlet Process, is then exemplified on two data sets in-
volving the evaluation of the risk of developing osteonecrosis as a consequence
of the treatments for leukaemia and the study of the determinants of the per-
formance of London primary schools.

The last contribution in Chapter 5 introduces a method based on covariate
dependent random measures to model vectors of correlated binary variables
evolving over time. The motivation for this comes from a data set containing
profiles of symptoms recorded after a sequence of attendance visits in which we
want to study possible interactions among the symptoms and their persistency.

The work is concluded in Chapter 6 with a summary of the main findings
and a discussion of possible new research directions.
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Chapter 2

A Bayesian nonparametric model for
zero-inflated data

Lower Urinary Tract Symptoms (LUTS) affect a significant proportion of the popula-
tion and often lead to a reduced quality of life. LUTS overlap across a wide variety of
diseases, which makes the diagnostic process extremely complicated. In this chapter we
focus on the relation between LUTS and Urinary Tract Infection (UTI). The latter is de-
tected through the number of White Blood Cells (WBC) in a sample of urine: WBC≥ 1

indicates UTI and high levels may indicate complications. The objective of this work
is to provide the clinicians with a tool for supporting the diagnostic process, deepening
our understanding of LUTS and UTI. We analyse data recording both LUTS profile
and WBC count for each patient. We propose to model the WBC using a random par-
tition model in which we specify a prior distribution over the partition of the patients
which incorporates information contained in the LUTS profile. Then, within each clus-
ter of patients, the WBC counts are assumed to be generated by a zero-inflated Poisson
distribution. The results of the predictive distribution allows identifying the symptoms
configuration most associated with the presence of UTI as well as with severe infections.
The material included in this chapter is based on the work of Barcella et al. [2016a].

2.1 Introduction

Lower Urinary Tract Symptoms (LUTS) define a group of symptoms that com-
prises urgency, pain, stress incontinence and voiding problems. They partic-
ularly affect elderly population with 40% of the men and 28% of the women
with age between 70 and 79 years (Irwin et al. [2006]) suffering from them.
This group of symptoms is related to a number of diseases (from neurological
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pathologies to anxiety and stress) which are not directly identified by disjoint
groups of LUTS, making the diagnostic process complicated. Often LUTS indi-
cate the presence of Urinary Tract Infection (UTI), a condition that may lead to
chronic problems when not readily diagnosed and consequently require time
consuming and expensive treatments.

Given the difficulty in interpreting LUTS, specific exams are commonly em-
ployed in order to assess the presence of the infection. The published data show
that the best biological indicator of UTI available is pyuria (≥ 1 White Blood
Cell count (WBC) µl−1) detected by microscopy of a fresh unspun, unstained
specimen of urine (Khasriya et al. [2010], Kupelian et al. [2013]). In the presence
of symptoms, any pyuria (≥ 1 WBC µl−1) correlates with other independent in-
flammatory and microbiological markers distinguishing patients from controls
(Gill et al. [2015], Khasriya et al. [2010], Kupelian et al. [2013]). This procedure
allows counting the WBC, but on the other hand it can only be performed in
specific laboratories, requiring time to return the results as well as represent-
ing a consistent cost for the health system. Therefore, it is common practice
to use dipsticks for examining urine samples, which can reveal the presence
of WBC which in turn indicates UTI. Dipsticks can be used by non-specialised
clinicians and deliver a result in few instants. However, Khasriya et al. [2010]
investigated the diagnostic power of dipstick urinalysis and identified deficien-
cies. Thus, an infection can be present much earlier than being diagnosed using
a dipstick increasing significantly the risk of chronicity.

For all these reasons, it is valuable to study the relation between LUTS and
UTI from a statistical point of view, in order to provide tools for assisting the
clinicians during the diagnostic process. This is the broad objective of this chap-
ter.

The starting point of our analysis is a dataset containing information about
patients affected by LUTS for which the counts of the WBC from the microanal-
ysis have been recorded together with the symptoms profiles. The latter are
vectors of binary indicators which indicate the presence of the symptoms. The
WBC counts in the dataset are zero more than 50% of the time, i.e. more than
half of the patients do not show microscopic evidence of UTI. We thus propose
an approach to model the relation between the WBC counts (response) and the
LUTS profiles (covariates), which extends nonparametrically the well known
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class of the zero-inflated distributions (Neelon et al. [2010]). This class of distri-
butions has been extensively employed in a number of applications: it involves
the specification of a parameter that regulates the inflation of the probability for
a specific outcome which could not be modelled according to standard distri-
butions.

Specifically, we propose a Bayesian RPM (Lau and Green [2007]) in which
the covariates are used jointly with the response to inform the clustering struc-
ture of the observations which has been a priori assumed to follow a CRP (Al-
dous [1985]). For a review about random partition models with covariates see
Section 1.4. Within each cluster we treat the WBC counts as iid random variables
distributed according to a Zero-Inflated Poisson (ZIP) distribution with cluster-
specific parameters. In this way we assume the covariates to affect the response
only through the clustering structure. The latter assumption can be relaxed to
allow also the mean of the Poisson component to depend on the covariates. We
call the resulting model Bayesian Nonparametric ZIP model (BNP-ZIP).

BNP-ZIP allows associating different combinations of the covariates with
different probabilities of having UTI (i.e. WBC≥1) as well as with different
levels of severity of the infections. The results of the study highlight the impor-
tance of the voiding class of symptoms for both the probability of being diag-
nosed with UTI and also its level of severity (which increases with the number
of WBC in the urine). Differently, the urgency and stress incontinence symp-
toms have low probability of being associated with UTI when they appear alone
or combined. We also believe that the predictive distributions which depend on
the covariates may represent a useful tool for supporting the clinicians in the
diagnostic process.

The rest of the chapter is organised as follows. In Section 2.2 we introduce
and discuss the zero-inflated models, while in Section 2.3 we describe our non-
parametric approach. Section 2.4 presents the analysis of the LUTS dataset. We
conclude the chapter with a discussion of the results in Section 2.5.



54 Chapter 2. A Bayesian nonparametric model for zero-inflated data

2.2 Models with zero-inflated (or deflated) distribu-

tions

Count data with out-of-pattern number of zeros are common in numerous real
world applications. Modelling such data without accounting for the excess of
zeros may lead to biased estimates of the parameters. The common approach to
deal with this problem involves the use of mixture models in which a distribu-
tion over counts (e.g. Poisson distribution, Negative Binomial distribution, etc.)
is mixed with a Dirac measure located at zero. The most famous approaches
include Hurdle models (Mullahy [1986]) and Zero-Inflated models (Lambert
[1992]). The first type of models specifies a mixture of a point mass at zero
and a zero truncated distribution for the non-zero observations. Differently,
Zero-Inflated models mix a standard distribution with the Dirac measure and
consequently model the inflation of the probability of the zero outcomes.

In this chapter we focus prominently on ZIP distributions. ZIP models can
be extended to incorporate covariate information through regressions using
convenient link functions on both the mixing probability and the mean param-
eter of the Poisson distribution. In order to account for the heterogeneity of
the patients, random effect models are also employed (Hall [2000], Leann Long
et al. [2015], Agarwal et al. [2002]). Random effects can either be assigned indi-
vidually to each observation or to clusters of observations. The latter approach
is more parsimonious in the number of parameters to be estimated but, when
the clustering structure of the observations is not known a priori, it is often
problematic to determine the number of clusters and their compositions in or-
der to assign effectively the random effects avoiding problems of overfitting.

This motivates our proposed approach. Placing a prior distribution over
the partition of the observations allows learning from the data the clustering
structure and capturing patient heterogeneity within the data.

2.3 Bayesian Nonparametric ZIP model

We present in this section a nonparametric model capable of dealing with obser-
vations having excess of zeros and accounting for clustering of individuals. We
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briefly show some properties of the model and we discuss MCMC algorithms
for posterior and predictive inference.

2.3.1 Random Partition Zero-Inflated Poisson model

It is often of interest to model response variables within clusters. This allows
us to account for possible patterns within the data as well as for highly dis-
persed observations and outliers. A common assumption is to consider the ob-
servations within each cluster as iid from a distribution having cluster-specific
parameters. However, when the data are not naturally in clusters, it is also
convenient to learn the clustering structure from the data. Thus, the strategy
employed in this chapter consists in specifying a convenient prior over the par-
tition of the patients and fitting independent models within each cluster. This
modelling strategy belongs to the class of RPM (Lau and Green [2007]).

We recall the notation for partitions introduced in the previous chapter,
where ρn indicates the partition of n items in clusters {S1, . . . , Sk} and s =

(s1, . . . , sn) denotes the cluster assignment vector. Let y = (y1, . . . , yn) be a col-
lection of variables presenting an out-of-pattern number of zero observations.
We assume the following joint model for the components of y:

y | ρn,µ∗,λ∗ ∼
k∏
j=1

∏
i∈Sj

[(1− µ∗j)δ0(yi) + µ∗jPoisson(yi | λ∗j)], (2.3.1)

where µ∗j ∈ (0, 1) and λ∗j ∈ (0,+∞) are cluster-specific parameters, while δ0(yi)

is the Dirac measure which places a unitary mass of probability at yi = 0.
Within each cluster, the model in (2.3.1) is a mixture between two distribu-

tions: the first one is a point mass located at 0 and the second one is a Poisson
distribution with cluster-specific mean equal to λ∗j . The model above implies
that Pr[yi = 0 | si, µ∗si , λ

∗
si

] = 1 − µ∗si + µ∗siexp(−λ∗si) and consequently that the
probabilities of all other outcomes different from 0 follow a rescaled Poisson
distribution. The role of the parameter µ∗j is crucial since it determines the infla-
tion level for the probability of the 0 outcome. Note that under a conventional
Poisson distribution with mean λ we have Pr[yi = 0 | λ] = exp(−λ).
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An alternative distribution on the counts may be employed in (2.3.1) in-
stead of the Poisson. A common example is represented by the Negative Bi-
nomial, which having two parameters can account for over-dispersed observa-
tions within each cluster. A useful parameterisation of the Negative Binomial
that can be employed in this context is the one involving mean and dispersion
parameters. Assuming these parameters together with the parameter control-
ling the zero-inflation to be cluster-specific allows writing an equivalent ran-
dom partition Zero-Inflated NB (ZINB) model.

2.3.2 Prior partition model

A RPM requires the specification of a prior distribution over ρn. A common
choice in BNP is to use the distribution over partitions implied by the CRP
(Aldous [1985]) which have been introduced in Section 1.2.1 and we report here:

p(ρn | α) ∝
k∏
j=1

α(nj − 1)! , (2.3.2)

where α is a positive scalar parameter and nj is the cardinality of cluster Sj . The
distribution above implies that also k is random taking value in {1, . . . , n}.

2.3.3 Clustering with covariates information

When covariates are available, it can be convenient to modify the CRP prior for
the partition of the observations in (2.3.2) in order to include clustering informa-
tion contained within the covariates. This is equivalent to assume higher prior
probability for two individuals having the same (or similar) covariate profile to
co-cluster. The specification of a distribution over the partition of the observa-
tions which could include covariates information has recently received remark-
able attention in RPM literature and various solutions have been discussed in
Section 1.4.

In this chapter we opt for specifying a model for the covariates in order
to construct a covariate dependent model on the partition of the observations.
In the previous chapter this strategy was referred to as augmented response model
and it is one of the most common in practice for its computational tractability. It
has been introduced by Müller et al. [1996] and extensions have been presented
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by Shahbaba and Neal [2009], Park and Dunson [2010], Molitor et al. [2010],
Müller et al. [2011], Hannah et al. [2011]. Let us consider a matrix of binary
covariates X with n rows and D columns and denote with xi = (xi1, . . . , xiD)

a generic row of X . Similarly to y, we assume clusters of rows of X to be
generated by the same distribution. We use ζ∗j = (ζ∗j1, . . . , ζ

∗
jD) to denote the

cluster-specific parameters for the model of the covariates and we write

X | ρn,Z∗ ∼
k∏
j=1

∏
i∈Sj

D∏
d=1

Bernoulli(xid | ζ∗jd), (2.3.3)

where Z∗ = (ζ∗1 , . . . , ζ
∗
k).

The formulation proposed above allows (2.3.2) to be rewritten as the condi-
tional probability of the partition given the covariates, which is

p(ρn | α,X,Z∗) ∝
k∏
j=1

α(nj − 1)!
∏
i∈Sj

D∏
d=1

Bernoulli(xid | ζ∗jd)

 . (2.3.4)

We adopt the latter to be the prior over the random partition of the observa-
tions. The second part in the distribution above represents the likelihood of the
covariates within cluster Sj which takes larger values in clusters having simi-
lar covariates. This corrects the probability of the partition implied by the CRP
favouring clusters containing homogeneous covariate patterns.

An advantage of the proposed model on the partition of the observations
is the flexibility with respect to the covariate type. In (2.3.4), modifying the
model on the covariates with other suitable distributions allows the user to in-
clude in the partition information from different (or mixed) covariate types. On
the other hand, the main disadvantage of this formulation arises when a large
number of covariates is included in the model. In this situation, the clustering
information contained in the covariates tends to dominate the partition which
becomes insensitive to the clustering patterns contained in the outcome. A pos-
sible solution to this problem has been presented by Wade et al. [2014].
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2.3.4 Joint probability model

We call the resulting model Bayesian Nonparametric ZIP model (BNP-ZIP),
which can be summarised by the following joint probability model

p(y,X, ρn,µ
∗,λ∗,Z∗, α) =

p(y | ρn,µ∗,λ∗)p(X | ρn,Z∗)p(ρn | α)p(µ∗,λ∗,Z∗)p(α),
(2.3.5)

where (µ∗,λ∗) are independent from Z∗. We derive p(y, ρn,µ∗,λ∗,Z∗, α | X)

from (2.3.5), which gives an RPM with covariate dependent partition.
An important aspect of the proposed formulation is that the joint model in

(2.3.5), when p(ρn | α) is as in (2.3.2), corresponds to the joint model under a
DPM model in which a DP prior is specified for the parameters of the response
and the covariates. Specifically, the joint model in (2.3.5) can be rewritten as the
following hierarchical model:

yi, | µi, λi
ind∼ (1− µi)δ0(yi) + µiPoisson(yi | λi)

xi | ζi
ind∼

D∏
d=1

Bernoulli(xid | ζid)

(µi, λi, ζi) | G
iid∼ G =

∞∑
h=1

vh
∏
r<h

(1− vr)δ(µh,λh,ζh) (2.3.6)

vh | α
iid∼ Beta(vh | 1, α)

(µh, λh, ζh) ∼ p(µh, λh, ζh) = p(µh, λh)p(ζh)

α ∼ p(α).

The random quantity G in the model above has been constructed using the
stick-breaking procedure and it has been proved by Sethuraman [1994] to be
DP distributed. Details about the relationship between DP constructed by stick-
breaking and the CRP can be found in Section 1.2.2, while the corresponding
connection between DPM and RPM is presented in Section 1.3 (see also Quin-
tana and Iglesias [2003]). The equivalence between the BNP-ZIP and a DPM
model is very useful when performing posterior inference.
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2.3.5 Prior specification

The model described in (2.3.5) is completed by specifying the hyperprior distri-
butions for the parameters. We assume independent prior distributions for the
cluster specific parameters

µ∗j ∼ Beta(µ∗j | aµ, bµ)

λ∗j ∼ Gamma(λ∗j | aλ, bλ)

ζ∗j ∼
D∏
d=1

Beta(ζ∗jd | aζ , bζ).

We also assume a prior distribution for the parameter α of the distribution
of ρn. This parameter takes positive real values, thus we employ a Gamma prior
distribution with parameters aα and bα. However, a prior distribution over sub-
sets of its real support can also be employed when in (2.3.6) the random distri-
bution G is replaced with its truncated version (up to H mixture components)

GH =
H∑
h=1

vh
∏
r<h

(1− vr)δ(µh,λh,ζh),

with vH = 1, for computational reasons. A detailed discussion about the ap-
proximation of G with GH has been presented in Ishwaran and James [2002].
When GH is employed Ohlssen et al. [2007] discussed the choice of a Uniform
prior distribution for α.

2.3.6 Posterior inference and MCMC

The model described above is a joint RPM model on the response and the co-
variates. The connection between the proposed RPM and the DPM model high-
lighted above is convenient since it allows using available efficient MCMC al-
gorithms developed for DPM models for sampling from the posterior distribu-
tions. A review of these algorithms can be found in Neal [2000].

In a Gibbs fashion, the posterior inference can be divided in three main
stages. In the first stage we resample ρn from its full conditional, whereas in
the second one we resample the cluster-specific parameters of the response and
the covariates from their full conditional distributions and finally we resample
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α from its full conditional distribution. The first stage can be performed us-
ing the Algorithm 8 in Neal [2000], or alternatively through the blocked Gibbs
sampler proposed by Ishwaran and James [2001]. The cluster-specific param-
eters are resampled independently across clusters. A Metropolis-within-Gibbs
step can be designed for the parameters of the response, while known full con-
ditional distributions are available for the parameters of the covariate model.
The resampling of α can be performed using a Metropolis-within-Gibbs step.
Alternatively, imposing a Gamma prior on α leads to tractable full conditional
distribution as discussed in Escobar and West [1995].

Posterior inference for BNP-ZIP can be also performed using WinBUGS (Lunn
et al. [2000]), JAGS (Plummer et al. [2003]) or Stan (Carpenter et al. [2015]) soft-
wares for Bayesian inference. JAGS code is provided in Appendix A. All these
softwares implement a truncated version of the DPM model to perform infer-
ence.

Posterior predictive inference is a key aspect of BNP-ZIP. Using the distri-
bution in (2.3.2) for the partition allows the model to grow in complexity when
new observations arise adding clusters to the partition. Furthermore, enrich-
ing (2.3.2) with the information of the covariates, as showed in (2.3.3), encour-
ages observations with similar covariates to be assigned to the same cluster
and hence to predict similar responses. In a standard statistical problem the
response of a new individual is unknown and needs to be evaluated, while the
covariates are available. Denoting with x̃ and ỹ respectively the covariates and
the response for a new individual, the predictive distribution p(ỹ | y,X, x̃) can
be evaluated within the MCMC scheme assigning the new individual to a clus-
ter given the available information (x̃ included) and sampling from the distri-
bution in (2.3.1) using the parameters µ∗s̃ and λ∗s̃, where s̃ is the cluster allocation
for the new observation with covariates x̃. Note that if s̃ indicates a new cluster
the two parameters are sampled from their prior distributions. Details of this
procedure are presented in Müller and Quintana [2010].

2.4 Data Analysis: Lower Urinary Tract Symptoms

In this section we present the analysis of the LUTS data using the BNP-ZIP
model. After a detailed presentation of the data, we describe the results in terms
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of clustering of the patients and of predictive inference. We also highlight the
medical implications of the results.

2.4.1 Data

In this study we consider n = 1424 patients at the first visit attendance at the
Lower Urinary Tract Service Clinic (Whittington Hospital, London, UK). All pa-
tients are female over 18 years of age. For each of them the result of the mi-
croanalysis of a sample of urine has been recorded in terms of the WBC count.
Presence of WBC in the urine (regardless of the quantity) indicates the presence
of UTI (Kupelian et al. [2013]). It is worth noticing that a large number of WBC
is also the sign of a high degree of inflammation and thus can be somehow
treated as an indicator of the severity of the infection. The empirical distribu-
tion of WBC count is strongly positively skewed: this is due to the fact that over
50% of the counts is equal to 0. Moreover the WBC counts different from 0 are
highly dispersed, ranging from 1 to 3840.

For each of the patients a profile of LUTS has been recorded. Each profile
contains information about four different types of symptoms: urgency symp-
toms, sudden urge to urinate; pain symptoms, pain while urinating or when the
bladder is full; stress incontinence symptoms, episodes of incontinence caused
by stressing the bladder; and voiding symptoms, problems in voiding the blad-
der. We recorded the profiles by binary vectors with 4 components, each taking
value equal 1 when the corresponding category of symptoms is activated and
zero otherwise. On average patients have between 2 and 3 categories activated,
and there are 66 patients that do not show any symptom. 163 patients suffer for
all four categories of symptoms.

2.4.2 Prior settings

For the analysis of the data described above we set the hyperparameters aµ =

bµ = aζ = bζ = 1, implying minimal prior information. Also the hyperpa-
rameters aλ and bλ are set equal to 1. We adopt the blocked Gibbs sampler to
sample from the full conditional distribution of the partition, approximating
the complexity of the model up to a certain number of possible occupied clus-
ters. We consider H = 70 as maximum number of clusters and we also set the
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hyperparameters aα and bα equal to 1. The truncation of the Dirichlet process
has been discussed by several authors. Following the strategy in Ishwaran and
James [2002], the adopted truncation level leads to negligible approximation
error (given the levels of α explored by the Gibbs sampler). A different practi-
cal approach to determine H has been discussed by Ohlssen et al. [2007], who
employ also a Uniform prior for α on the set (0, 10). This allows setting a priori
the largest possible approximation error.

We initialise the MCMC chain taking random starting points from the prior
distributions. We save 20 000 samples after a burnin period of 10 000 interac-
tions. The convergence of the MCMC chain to the posterior distribution has
been assessed by trace plots and computing sample autocorrelations and effec-
tive sample sizes.

2.4.3 Results

In this section we present the results obtained fitting the BNP-ZIP on the LUTS
data set. We recall that the objective is to identify the categories of symptoms
most associated with infection, i.e. with a count of WBC larger than 0. Further-
more, we want to assess which categoris of LUTS indicate a high level of WBC,
which is then related to the severity of the UTI.

Clustering output

The starting point of our analysis consists in investigating the posterior distri-
bution of the partition of the observations, i.e. p(ρn | y,X).

In order to investigate the composition of the clusters in terms of patients we
compute the posterior probabilities for all pairs of observations to be assigned
to the same cluster. These probabilities can be computed using the samples
from p(ρn | y,X) of the MCMC algorithm. With the aim of highlighting the
patterns that lead to the clustering structure, we plot the probabilities of co-
clustering ordering the observations according to different criteria. Figure 2.1
shows the probabilities of co-clustering, ordering the patients for increasing
values of WBC (left panel) and grouping the observations in terms of observed
combinations of the covariate profiles (right panel).

In the left panel, blocks of observations with large probability of co-clustering
are clearly visible along the diagonal of the plot. These blocks correspond to
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FIGURE 2.1: Level-plots of the probabilities of co-clustering of the
patients ordered by increasing value of the response (left panel)

and combinations of activated covariates (right panel).

groups of observations having similar responses. Evidently, these do not mix
with other groups, indicating quite distinct clusters of patients. An interesting
exception is represented by the first block that represents the patients with re-
sponse equal to 0. In our data set the patients with WBC equal to 0 are 717.
This block mixes with the blocks on the top right corner, which are those with
the largest value of WBC, underlying the difficulty of the diagnostic process
for UTI: similar patients (in terms of symptoms) may have a severe infections
(using the number of WBC for evaluating the severity of UTI) or no UTI.

The right panel in Figure 2.1 displays the co-clustering probabilities rear-
ranging the patients by different combinations of the covariates. Specifically,
each covariate profile is composed by four binary indicators which imply 16
different combinations of covariates (all observed in the dataset).

Table 2.1 indexes the different combinations of the covariates following the
order in which they appear in the right panel of Figure 2.1. Moreover, it gives
the exact positions of the groups of patients characterised by the same covari-
ate profile on the level-plot. Looking at the areas with high probability of co-
clustering in the right panel of Figure 2.1 we notice that patients having the first
seven combinations of covariates tend to co-cluster with the patients presenting
the same symptoms and also with some of the patients having only one cate-
gory activated. From the left panel of the same figure we know that ordering
the patients based on the value of WBC highlights distinct clusters. Therefore,
finding high co-clustering probabilities for these indexes of symptoms implies
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TABLE 2.1: Combinations of the symptoms. The columns From
and To identify the positions of the groups of patients sharing the

same combination of covariates in Figure 2.1 (right panel)

.

Index Urgency Pain Incontinence Voiding From To
1 0 0 0 0 1 66
2 1 0 0 0 67 220
3 0 1 0 0 221 285
4 0 0 1 0 286 362
5 0 0 0 1 363 394
6 1 1 0 0 395 494
7 1 0 1 0 495 712
8 1 0 0 1 713 785
9 0 1 1 0 786 797
10 0 1 0 1 798 917
11 0 0 1 1 918 936
12 1 1 1 0 937 990
13 1 1 0 1 991 1159
14 1 0 1 1 1160 1246
15 0 1 1 1 1247 1263
16 1 1 1 1 1264 1424

that these are likely to indicate specific mixture components. On the other hand,
indexes from 8 to 16 show less evident clustering structure (with some excep-
tion for example for index 12). This indicates that the symptom configurations
coded with these indexes may belong to different mixture components which
are also connected with different values of the WBC.

We further characterise the clusters in terms of symptoms considering a
point estimate of ρn, say ρ̂n = {Ŝ1, . . . , Ŝk}, and controlling which symptoms
are activated for the different sets of ρ̂n. We estimate ρ̂n minimising the Binder
loss function (Binder [1978]) which has the following form

L(ŝ, s) =
∑
i<i′

(
`1I{ŝi 6=ŝi′}I{si=si′} + `2I{ŝi=ŝi′}I{si 6=si′}

)
, (2.4.1)

where ŝ is a proposed partition, while s indicates the true partition. The choice
of the constants `1 and `2 allows us to express the preference for a small number
of large clusters or for a large number of small clusters, respectively. In our
application we set `1 = `2 = 1 penalising both terms equally. In this application
the true partition is unknown, but its distribution can be approximated using
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the draws from the posterior distribution of the membership indicators. The
posterior expectation of (2.4.1) is

E(L(ŝ, s) | Data) =
∑
i<i′

| I{ŝi=ŝi′} − γii′ |

where γii′ = E(I{si=si′} | Data) and it can be consistently estimated by the sam-
ples from p(ρn | y,X) approximated by the MCMC. The ŝminimising the latter
expectation is taken as point estimate of ρn. The R package mcclust is avail-
able for deriving ŝ from MCMC samples of the partition of the observations
(https://cran.r-project.org/web/packages/mcclust/).
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FIGURE 2.2: Symptom indicators (black) for the six largest clus-
ters in ρ̂n, i.e. the partition estimated minimising the Binder loss
function. For each panel (corresponding to a cluster), the x-axis
is related to the symptoms, whereas y-axis shows the patients for
each cluster. The number in the top-left corner of each panel cor-

responds to the cluster size.

In Figure 2.2 we display the composition (in terms of symptoms) of the six
largest clusters, which contain 75% of the patients. Each panel corresponds to
a cluster: each row of the plot corresponds to a patient while the x-axis rep-
resents the four symptoms. Black cells indicate activated symptoms. In most
of the panels in Figure 2.2 a pattern is evident. For example cluster Ŝ1 (top-
left panel), which corresponds to the largest estimated cluster, contains mainly

https://cran.r-project.org/web/packages/mcclust/
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patients with urgency and stress incontinence symptoms. Other examples are
Ŝ4 (bottom-left panel), which contains mainly patients with the pain symptoms
activated, or Ŝ5 which shows patients with all symptoms activated. Recalling
that each cluster is associated with similar covariates as well as with response
values generated by the same distribution, finding a pattern in the covariates
implies that particular symptoms, or combination of symptoms, are predictive
of similar response levels.

In order to have a better understanding of how different combinations of
symptoms relate with the response, in particular for those symptoms which
have high uncertainty about the clustering assignment, we explore the predic-
tive distribution of the response conditioning on symptoms combinations.

Predictive inference

Treating the symptom profiles as random in order to incorporate the covariate
information in the partition of the observations has remarkable advantages in
practice when the objective is to predict the level of WBC (the response), given
the symptom profile x̃. The BNP-ZIP will tend to assign the new patient to
the cluster characterised by similar/equal symptoms combination, and thus
predict a value of the response similar to the response of the patients in that
cluster. This practical advantage has been widely discussed in the literature by
Müller et al. [1996], Müller et al. [2011], Park and Dunson [2010], Hannah et al.
[2011] (among the others) and in the review papers by Müller and Quintana
[2010] and Cruz-Marcelo et al. [2013].

We analyse the predictive distribution p(ỹ | y, x̃,X) in order to gain some
understanding about the relationship between the different covariates combi-
nations and the presence and severity of UTI. In Figure 2.3, we plot the posterior
predictive distribution of y, p(ỹ = 0 | y,X, x̃), for x̃ equal to the different com-
binations of the covariates indexed according to Table 2.1. This is equivalent to
the predictive distribution of not having UTI. This figure shows that the covari-
ates with index 2,4 and 7 have posterior median probability of WBC equal to 0

close to 0.9 and with small dispersion. Moreover, Figure 2.2 seems to suggest
that these covariate indexes often co-cluster (see top-left panel relative to Ŝ1).
Also covariate index 1 has a similar median, but with larger dispersion. The
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(ỹ

=
0
|y
,X

,x̃
)

FIGURE 2.3: Posterior predictive distributions of the probability
of WBC equal to 0, given the covariate indexes in Table 2.1. The

black line in each box represents the median.

first three combinations of the covariates highlight that urgency and stress in-
continence symptoms (or their combination) are associated with low probabil-
ity of UTI, while index 1 corresponds to the configuration without symptoms.
Other combinations present similar and very high median probability of hav-
ing UTI. Interestingly, the profiles presenting voiding category activated have
low medians for the probability of WBC equal to 0 and small dispersion. This is
evident especially for index 10 and 13, which seem to often belong to the same
cluster (see top and bottom right panels referring to Ŝ3 and Ŝ6 in Figure 2.2).
Also pain symptoms seem connected with infection, although the respective
distributions are right skewed or very dispersed (see box plots relative to the
covariates indexed as 3, 6, 9 and 12).

In order to study the relation between the categories of symptoms and the
severity of UTI, we compute the distribution of the third quartile of the pre-
dictive distribution for all the combinations of the covariates. While clinicians
commonly agree that high levels of WBC are connected with complicated in-
fections, the third quartile of the distribution of the WBC does not have per se
a clinical interpretation. In fact, the choice of the third quartile has only a sta-
tistical interpretation. The distributions of these quantities for all symptoms
combinations are displayed in Figure 2.4. The distributions displayed are of-
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FIGURE 2.4: Distributions of the third quartile of the predictive
distribution of WBC, given the covariate indexes in Table 2.1. The

black line in each box represents the median.

ten right skewed with very long tail. The median of all distributions is smaller
than 20. The largest median is associated with profile 14, which has also the
second longest tail. Profiles 14 and 8 are characterised by the voiding category
activated together with the urgency and stress incontinence categories, which
confirms the results about the probability of having UTI. This suggests that not
only voiding category indicates high probability of UTI, but also it indicates
severe infection (when combined with urgency and stress incontinence prob-
lems).

We have performed a similar analysis using a ZINB within-cluster likeli-
hood, which we call Bayesian Nonparametric ZINB model (BNP-ZINB). This
has been done to check whether the Poisson assumption within each cluster
could be too restrictive. We compared the BNP-ZIP with BNP-ZINB using the
Brier score function as described in the next section. The results of this compar-
ison show that BNP-ZIP produces more accurate prediction for the presence of
infection, while it is comparable to the BNP-ZINB for predicting high values of
WBC.

The results of the analysis are of considerable clinical importance. Most clin-
icians assume that pain is the primary symptom indicative of urinary infection.
In fact, some doctors will not consider the diagnosis of UTI in the absence of
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pain. Thus, the findings of this chapter suggest that the treatment of the in-
fection should reverse this situation. Regrettable, urologists assume that the
voiding symptoms are caused by a structural obstruction of the urethra and
treat affected women by stretching the urethra. This procedure is unlikely to
help infection and carries the risk of causing urinary incontinence. Instead, it
is more likely that the voiding symptoms arise because of the inflammation in-
duced by swelling of the urethra induced by the infection which in turn causes
a relative obstruction to the urinary outflow.

Comparison with Related Methods

We evaluate the performance of the proposed method comparing it with a
Bayesian ZIP model (see for example Neelon et al. [2010]) and with a DPM
of Poisson distributions equivalent to the BNP-ZIP except for the absence of
zero-inflating parameters in the likelihood. In order to perform the comparison
we divide the the entire data set into a training set (which contains 80% of the
records) and a test set, both maintaining the same proportion of covariate types
as the whole data set. After fitting the model on the training set we evaluate
predictive performance using the test set. We use the distribution of the Brier
score (Brier [1950]) which is calculated as

Brier(q) =
1

m

m∑
i=1

(
f

(q)
i − y

(q)
i

)2

where y(q)
i is equal to 1 if yi > q and 0 otherwise, f (q)

i is the probability to observe
a response larger than q and m is the dimension of the test set. Small values of
the Brier score function indicate good predictions. We consider q = 0, 10, 45, the
latter two being the third quartile and mean of the WBC. The results show that
the nonparametric methods outperform evidently the parametric ZIP. Instead,
between the BNP-ZIP and DPM of Poisson distributions the differences are less
evident (especially for the discretisation level equal to 10), but in favour of the
proposed method. The same conclusions can be achieved also comparing the
models in terms of Deviance Information Criterion (Spiegelhalter et al. [2002]).
Although the predictive performances are similar, the main difference between
a DPM of Poisson distributions and the BNP-ZIP is in the cluster composition
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and consequently their interpretation, which we reckon more natural and con-
nected to traditional ZIP regression models. In fact, in our model clusters with
the same combination of covariates can accommodate both the excess of zeros
and the non-zero counts. On the other hand, the DPM creates clusters with the
mean of the Poisson very close to zero to accommodate the excess number of
zeros, but it also yields extra clusters if for same combination of symptoms a
significant number of high counts are observed. As a result, our model leads to
a more parsimonious representation of the clustering structure.

Traditional methods that can be used for the analysis of WBC counts us-
ing the symptoms as predictors include Classification And Regression Trees
(CART, Breiman et al. [1984]) and Random Forests (Breiman [2001]). These are
likelihood-free methods which partition progressively the covariate space ac-
cording to some decision rule in order to reduce the variability of the associated
response variable within each partition set. We compare the partition obtained
through these methods with the one estimated by the proposed technique. Both
CART and Random Forests highlight the importance of voiding symptoms. For
random forests this has been evaluated using the decrease in residual sum of
squares in a cluster (or node) achievable splitting on a certain variable. The
importance of voiding symptoms in the analysis with BNP-ZIP is evident by
looking at the division between the groups of indexes in Figure 2.3 and 2.4.

Sensitivity analysis

The BNP-ZIP requires the specification of four pairs of hyperparameters, namely
(aα, bα), (aζ , bζ), (aµ, bµ) and (aλ, bλ). We check the sensitivity of our model to dif-
ferent choices of the hyperparameters, focusing on the effects on cluster com-
positions. We propose two different checks. The first one consists of computing
the absolute values of the difference (entry-wise) of the co-clustering probabil-
ity matrices obtained with the values of the hyperparameters in Section 2.4.2
(used as reference values) and under alternative scenarios. We summarise the
distribution of the entries of the upper-triangular matrix containing the abso-
lute valued differences of the co-clustering probabilities using 95% credible in-
tervals. The second method consists of estimating the mode of the number of
clusters (ordered by size) which contains 95% of the patients under different
choices of the hyperparameters.
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We start considering the sensitivity of the proposed model to aα and bα,
keeping the reference values for the other hyperparameters. We set different
scenarios in order to have different values of prior expectation and variance of
the number of clusters, i.e. E(k) and V(k) (formulae for approximating these
quantities are presented in Jara et al. [2007]). The reference choice, aα = bα = 1,
leads, for n = 1424, to E(k) ≈ 7.84 and V(k) ≈ 44.57, which we reckon to be a
good trade-off between prior mean and prior variance (e.g. compare E(k) with
the prior standard deviation of k). The scenarios considered are presented in
Table 2.2.

TABLE 2.2: Results of the sensitivity analysis for different choices
of hyperparameters. Upper bound refers to the upper bound of the
95% credible intervals of distribution of the absolute values of the
differences of the co-clustering probabilities. Mode indicates the
mode of the distribution of the number of clusters (ordered by

size) which contain 95% of the patients.

Scenario E(k) V(k) Upper bound Mode
Reference 7.84 44.57 - 10
(i) aα = 1, bα = 5 2.51 3.59 0.0575 10
(ii) aα = 3, bα = 1 19.02 95.27 0.1465 14
(iii) aα = 5, bα = 5 7.84 13.87 0.0690 10
(iv) aα = 3, bα = 2 10.84 34.18 0.1975 15

The results presented in Table 2.2 show that the proposed model is robust
to the choices of hyperparameters in scenario (i) and (iii) compared to the ref-
erence scenario. Differently, scenarios (ii) and (iv) are less robust. This sug-
gests that increasing the prior expectation of the number of clusters impact the
posterior inference in particular when this variations does not correspond to a
relative increase in the variance of k.

We use the same strategy to assess the sensitivity of the model to the hyper-
parameters for the distributions of the cluster specific parameters. In addition
to the choice adopted in this chapter, i.e. aζ = bζ = aµ = bµ = aλ = bλ = 1, we
consider the scenarios in Table 2.3. The hyperparameters aα and bα are set equal
to 1 in all scenarios above. Results for all scenarios (including the reference one)
are in the same table. These show that under the stated criteria the BNP-ZIP is
robust to different values of aζ , bζ , aµ and bµ. Differently, the clustering com-
position is slightly affected by the choice of aλ, bλ. In fact, the distribution of
the differences of co-clustering probabilities shifts to higher values following
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TABLE 2.3: Results of the sensitivity analysis for different choices
of hyperparameters. Upper bound refers to 95% credible intervals
of distribution of the absolute values of the differences of the co-
clustering probabilities. Mode indicates the mode of the distribu-
tion of the number of clusters (ordered by size) which contain 95%

of the patients.

Scenario Upper bound Mode
Reference - 10
(aζ = 0.5, bζ = 0.5), (aµ = 1, bµ = 1), (aλ = 1, bλ = 1) 0.0510 10
(aζ = 1.5, bζ = 1.5), (aµ = 1, bµ = 1), (aλ = 1, bλ = 1) 0.0380 10
(aζ = 1, bζ = 1), (aµ = 1, bµ = 1), (aλ = 1, bλ = 0.1) 0.1485 13
(aζ = 1, bζ = 1), (aµ = 1, bµ = 1), (aλ = 0.1, bλ = 0.1) 0.0875 12
(aζ = 1, bζ = 1), (aµ = 0.5, bµ = 0.5), (aλ = 1, bλ = 1) 0.0610 10
(aζ = 1, bζ = 1), (aµ = 1.5, bµ = 1.5), (aλ = 1, bλ = 1) 0.0535 10

higher prior variances for λ∗j . In the same way also the mode of the number of
clusters containing the 95% of the patients increase.

2.5 Discussion

The present chapter proposes an approach for the study of LUTS and their rela-
tion with UTI. LUTS comprise a group of symptoms that can indicate a variety
of diseases, however they are frequently associated with UTI. The latter is iden-
tified through the presence of WBC in the urine. Moreover, large WBC counts
can also be connected with the severity of the infection and the degree of in-
flammation. Finally, UTI can become chronic if treatments for acute infections
are not delivered promptly. For these reasons it is valuable to gain insight into
the relationship between LUTS and UTI and to provide the clinicians with a
tool capable of supporting the diagnostic process.

To this end, we propose a model for a dataset of patients affected by LUTS
and for which both the symptoms profiles and WBC counts have been pro-
vided. More than half of the patients present WBC counts equal to 0, forcing
a modelling strategy that could take this into account. Thus, we propose a
ZIP model for the WBC with cluster-specific parameters. We employ a prior
distribution on the possible partitions of the observations that includes also
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clustering information within the covariates. Covariate information is incorpo-
rated by modelling the covariates as random and deriving the distribution of
the partition given the covariates.

The proposed model strategy, called BNP-ZIP, builds on existing literatures
about covariates dependent random partition models and zero-inflated (or de-
flated) distributions. BNP-ZIP allows estimating the probability of having UTI
and the level of UTI (measured in number of WBC in the urine) given the pa-
tients symptoms. Thus, it identifies the combinations of covariates related with
the largest probability of having UTI as well as those connected with the largest
counts of WBC. Furthermore, the covariate dependent partition can model the
over-dispersion in the data by including a larger number of clusters leading to
robust estimates. BNP-ZIP can be specified also as a DPM of the response vari-
able and the covariates jointly. This property, which has already been widely
used in the Bayesian literature, simplifies posterior computations, allowing also
the use of convenient MCMC samplers for numerical approximations.

The results show the importance of the urgency and stress incontinence
symptoms. Patients with these symptoms activated are often clustered together
and have probability close to 0.9 to have WBC equal to 0, which is equivalent to
the absence of the infection. On the other hand voiding symptoms are highly
related with a large probability of having UTI. Furthermore, a large number
of WBC is predicted for the combinations of covariates including voiding cat-
egory together with the urgency and stress incontinence symptoms, which un-
derlines the importance of voiding symptoms in evaluating UTI. In fact, this
has strong clinical impact since in clinical practice pain symptoms are generally
considered related with infection and voiding symptoms are instead treated as
consequences of structural obstruction of the urinary tract. In this sense, the
estimated predictive distributions may offer an interesting tool for clinicians to
support diagnosis.
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Chapter 3

Variable selection in covariate
dependent random partition models

LUTS can indicate the presence of UTI, a condition that if it becomes chronic requires
expensive and time consuming care as well as leading to reduced quality of life. Detect-
ing the presence and gravity of an infection from the earliest symptoms is then highly
valuable. Typically, WBC measured in a sample of urine is used to assess UTI. We con-
sider clinical data from 1341 patients at their first visit in which UTI is diagnosed (i.e.
WBC≥ 1). In addition, for each patient, a clinical profile of 34 symptoms is recorded.
In this paper we propose a BNP regression model based on the DP prior aimed at pro-
viding the clinicians with a meaningful clustering of the patients based on both the
WBC (response variable) and possible patterns within the symptoms profiles (covari-
ates). This is achieved by assuming a probability model for the symptoms as well as for
the response variable. To identify the symptoms most associated to UTI, we specify a
spike and slab centre measure for the regression coefficients: this induces dependence
of symptom selection on cluster assignment. Posterior inference is performed through
MCMC methods. The material included in this chapter is based on the works of Barcella
et al. [2015] (model specification and data analysis) and Barcella et al. [2017] (literature
review on variable selection).

3.1 Introduction

In medical settings, individual level data are often collected for the relevant
subjects on a variety of variables; these typically include background character-
istics (e.g. sex, age, social circumstances) as well as information directly related
to the interventions being applied (e.g. clinical measurements such as blood
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pressure or the results of a particular test). This set up applies for both exper-
imental and observational studies — perhaps even more so in the latter case,
when data are often (although not always) collected using registries or admin-
istrative databases.

Arguably, the most common use of such data involves some form of regres-
sion analysis where the main “outcome” variable is related to (some of) the
covariates (or “profiles”) that have been collected. More specifically, clinicians
may be interested in identifying suitable subgroups of patients presenting sim-
ilar features; this categorisation can be used, for example, to suitably apply the
optimal treatment for the (sub)population that will benefit the most. Alterna-
tively, the focus may be on finding the covariates that best describe the variation
in the outcome, for example in order to determine which symptoms should be
measured to better characterise the chance that a new (as yet unobserved) pa-
tient is affected by a particular disease. The first of these tasks can be framed in
the broader statistical problem of clustering, while the second one is an example
of model selection (also called variable selection).

More interestingly, because complex and heterogeneous data are increas-
ingly often collected and used for the analysis, a further connection between
clustering and model selection can be considered, i.e. that one (set of) covari-
ate(s) may be relevant in explaining the outcome variable for a subset of sub-
jects, but not for others. In other words, the two tasks can be mixed in a more
comprehensive analysis strategy to produce cluster-specific model selection.

For example, the dataset motivating this chapter includes records of LUTS
and WBC for a number of patients affected by UTI (i.e. WBC≥ 1). For each
individual, the set of LUTS constitute the patient’s profile, while WBC can be
considered as an indicator of UTI, the actual condition being investigated; the
clinical objective is to assess the potential relationship between the symptoms
and the infection. Section 2.1 presents background information and relevant
references about LUTS and UTI.

A standard approach to deal with these problems is to employ generalised
linear models, including random effects (usually modelled using a Normal dis-
tribution) to account for heterogeneity between patients. This is clearly a re-
strictive assumption in many applications as often the distribution of the ran-
dom effects is non-Normal, multi-modal, or perhaps skewed. In our analysis,
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we move beyond the traditional parametric hierarchical models, in order to ac-
count for the known patient heterogeneity that cannot be described in a simple
parametric model. This heterogeneity is a common feature of many biomedical
data and assuming a parametric distribution or mis-specifying the underlying
distribution would impose unreasonable constraints; this in turn may produce
poor estimates of parameters of interest. It is therefore important to use non-
parametric approaches to allow random effects to be drawn from a sufficiently
large class of distributions. That is the modelling strategy we adopt in this
chapter.

In order to take into account the heterogeneity among the patients, it is
convenient to study the relationship between the covariates and the response
within groups of patients having similar symptoms profiles and similar levels
of WBC (i.e. in a clustering setting). In addition, it is crucial to evaluate which
symptoms are explanatory of the level of WBC within each group (i.e. in a
variable selection setting). The goal is to develop a method for assessing the
relationship between a response variable (in our case WBC) and a set of covari-
ates (the profile) within clusters of patients with similar characteristics, in order
to make prediction about the response for a new patient. This will ultimately
provide valuable information on the mechanisms of action of the underlying
disease being investigated.

To this aim, we develop a modelling strategy based on BNP methods that
allows us to accomplish both tasks at once. We propose a (potentially infinite)
mixture of regression models to link the response with the covariates, where
also the weights of the mixture can depend on the covariates. In this way,
observations will be clustered based on the information contained in both the
clinical profiles and the outcome variable. Within each cluster, variable selec-
tion is achieved employing spike and slab prior distributions that assign posi-
tive probability to the regression coefficients being equal to zero. The Bayesian
framework allows us to perform both tasks simultaneously in a probabilisti-
cally sound way, so that clustering and variable selection inform each other.
The results of the application on LUTS data show that our formulation leads to
improved predictions, in comparison to other existing methods.

The rest of the chapter is organised as follows. In Sections 3.2 we review
the variable selection techniques for covariate dependent clustering. Then in
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Section 3.3 we introduce the details of our proposed approach and briefly ex-
plain how to perform posterior inference while in Section 3.5 we show how to
summarise posterior inference output in a meaningful way. In Section 3.6 we
present an application of our model to the LUTS dataset mentioned above. Fi-
nally, in Section 3.7 we discuss our results and draw conclusions. In addition, a
simulation study is presented in Appendix B.2.

3.2 Covariate dependent clustering and variable se-

lection

The two main topics of this chapter are covariate dependent clustering and variable
selection. For the former, a review of the relevant literature on Bayesian non-
parametric methods has been presented in Section 1.4. This has highlighted
different ways of incorporating flexibly covariate information in a DPM (Lo
[1984]) model or in the corresponding RPM.

Increasing research interest has been devoted to develop variable selection
strategies in covariate dependent DPM models. Bayesian methods for vari-
able selection have a long history and a variety of different techniques have
been proposed to achieve this task (see O’Hara et al. [2009]). Within the regres-
sion framework, this corresponds to evaluate the uncertainty about the selec-
tion of covariates to include in the model. One of the most common ways to
perform Bayesian variable selection in a regression framework consists in spec-
ifying prior distributions favouring shrinkage toward zero on the regression
coefficients. Similarly, indicators can be included in the model to select which
covariates are active. Alternatively, a prior distribution directly over the model
structure can be specified. In this section we describe exclusively variable se-
lection techniques proposed for covariate dependent DPM models and related
models. We divide available tools for augmented response models and DDP.

3.2.1 Variable Selection for Augmented Response Models

Product Partition Model with Covariates (PPMx)

A variable selection strategy for the PPMx was proposed by Müller et al. [2011]
and described in details by Quintana et al. [2015b]. Without loss of generality
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we start our discussion by considering the PPMx from the RPM point of view. It
is possible to rewrite the similarity function in (1.4.3) as the product of the sim-
ilarity functions of each individual covariate, i.e. f(Xρn

j ) =
∏D

d=1 f(xρnjd ), where
xρnjd is the sub-vector of elements of column d ofX which includes the elements
corresponding to cluster j. Variable selection is then introduced employing bi-
nary indicators γ∗jd for j = 1, . . . k and d = 1, . . . , D within the distribution of
the partition:

p(ρn |X,γ) ∝
k∏
j=1

c(Sj)
D∏
d=1

f(xρnjd )γ
∗
jd . (3.2.1)

The presence of the binary indicators allows the probability of the partition to
depend on a subset of covariates within each cluster. In fact, γ∗jd = 0 eliminates
the effect on the distribution of the partition of covariate d in cluster j. The
authors described a local (cluster specific) summary of the importance of each
covariate which requires the identification of the clusters, whose labels are ar-
bitrary and suffer from the label switching problem. A global measure is also
derived as the cluster-wise average of the posterior means of γ∗jd, weighted by
the relative cluster cardinalities.

In this setting, extra care is required for the specification of f(·). In order to
perform variable selection, f(·) must always take values larger than 1 (other-
wise excluding a covariate always increases the prior probability). The authors
discuss convenient choices of f(·). The model is completed by introducing in
the hierarchy a prior distribution for the indicators. In particular, the authors
propose to use a Bernoulli prior distribution assuming a logistic link for the
probability of success.

Another example of variable selection in PPMx framework is the work of
Kunihama and Dunson [2014]. They propose a method for testing conditional
independence of the response and a specific covariate given all the other covari-
ates. This method is based on the conditional mutual information to measure
the strength of the dependence and to select relevant covariates.

Profile Regression (PR)

Papathomas et al. [2012] investigated the problem of performing variable selec-
tion within the Profile Regression framework when all the covariates are cate-
gorical (see also Papathomas and Richardson [2014]). Let us recall that PR can
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be decomposed into two sub-models: a model on the covariates and one on the
response. These are linked by using a joint DP prior on the set of parameters
common to both the submodels. In order to introduce variable selection we
need to rewrite (1.4.7) in the following way:

xi | ζ∗j1, . . . ζ∗jD ∼
D∏
d=1

p(xid | ζ∗jd).

Variable selection is then performed by replacing the distribution of each co-
variate with:

pVS(xid | ζ∗jd, πd) = (1− πd)p(xid | ζ∗jd) + πdrd(xid), (3.2.2)

where the superscript VS indicates that the implied probability has been modi-
fied to perform variable selection, πd ∈ (0, 1) is a continuous weight and rd(xid)

indicates the proportion of times covariate d takes value xid. From (3.2.2), the
posterior distribution of πd can be used to study the global importance of d-th
covariate in terms of clustering. In this setting a Beta hyperprior distribution
for each πd or alternatively a mixture of a Beta distribution and Dirac measure
(with Bernoulli distributed indicators) may be preferred to induce extra spar-
sity. The authors compared their approach that uses continuous weights to a
version that employs cluster specific binary indicators for each covariate. The
latter idea can be represented in the following way:

pBVS(xid | ζ∗jd,γ∗d) = p(xid | ζ∗jd)
γ∗jdrd(xid)

(1−γ∗jd),

where γ∗jd = 1 indicates that covariate d is informative with respect to cluster j.
This approach is a generalisation to Profile Regression of a solution proposed
by Chung and Dunson [2009]. In contrast with the continuous case, the natu-
ral choice of prior distribution for each γ∗jd is Bernoulli with mean distributed
as a Beta distribution. Extra sparsity can be achieved substituting the latter
Beta distribution with a mixture of a Beta distribution and Dirac measure (with
Bernoulli distributed indicators). In this setting, a global summary of the im-
portance of each variable can be obtained from the posterior distribution of the
hyperparameters governing the distribution of the γ∗jd’s. A local (cluster spe-
cific) measure based on γ∗jd’s is not straightforward and requires an approach



3.2. Covariate dependent clustering and variable selection 81

similar to the one employed for PPMx.
The results presented by Papathomas et al. [2012] and obtained employ-

ing the extra sparsity alternative of both variable selection methods described
above show a comparable performances of the two methods in terms of vari-
able selection, although preference is given to continuous weights due to faster
MCMC convergence.

An extension of the methods above was proposed by Liverani et al. [2015]
to deal with continuous covariates. This consists in modifying (3.2.2) by sub-
stituting rd(xid) with a suitable summary statistics, for example the observed
mean of the d-th covariate.

3.2.2 Variable Selection for DDP

To the best our knowledge, general variable selection strategies have not been
implemented in the DDP framework. However, in the case of the dependent
stick-breaking process Chung and Dunson [2009] showed how to perform co-
variate selection when the weights of the random probability measure are con-
structed by a Probit link stick-breaking. Recalling the stick-breaking procedure
in (1.4.8) the following specification is proposed:

ψh(x) = Φ (νh(x))
∏
r<h

[1− Φ (νr(x))] (3.2.3)

Gx =
∞∑
h=1

ψh(x)δθh ,

where Φ(·) is the standard Normal cumulative distribution functions and νk(·)
is a predictor which can be specified for example as νh(x) = ξhx. Variable
selection is then achieved by introducing binary indicators:

ξh ∼
D∏
d=1

p(ξhd | ad)γhd(δ0(ξhd))
(1−γhd), (3.2.4)

where ad denotes the covariate specific parameters of the distributions of ξkd
for all k. Considering a regression sampling model p(yi | xi,β∗k), it is possible
to link the results of the variable selection performed in (3.2.4) directly to the
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parameters βkd in the regression model for the response so that when γkd = 0

both βkd and ξkd are set equal to 0.

3.2.3 Remarks

In this section we have reviewed the available methodologies for performing
variable selection in covariate dependent random partition models. The idea
behind these methods is to select the important covariates for their role in terms
of clustering. This is because most RPMx include covariate information within
the distribution of the partition of the observations. This is for example the
case of the variable selection methods proposed for the PPMx or for PR, which
in principle do not exclude the covariates from affecting the response variables
(e.g. when a regression model is included in the sampling distribution), but they
exclude the covariates which do not contribute in separating the observations
into different clusters. The main limitation of this methods is that the clustering
structure contained in the covariates may not be connected to a corresponding
separation of response variables. This implies that selected covariates can be
important for clustering the covariates, but not the response.

Furthermore, in mixture models the clusters of observations are directly
connected to the mixture components. When variables are dependent, mix-
ture components can be inferred to include this dependence. This strategy im-
plies that covariates may be selected as important because highly dependent on
other covariates and independent from the response, which is not an appealing
property.

A more elaborate solution which links variable selection in terms of clus-
tering and association with the response level has been presented by Chung
and Dunson [2009]. This proposal employs common binary indicators for each
covariate in both the sampling model and the model of the weights. This im-
plies that if a covariate is excluded from the model of the weights is automat-
ically excluded from the model of the response, potentially overcoming both
of the above limitations. However, the results of the variable selection can be
unstable given that covariates may be important for mixture components with
negligible weight. This problem can be partially mitigated using a truncated
version of the random measure. More details about these final considerations
are reported in Chapter 6.
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3.3 Random Partition Model with Covariate Selec-

tion

In this section we develop the Random Partition Model with Covariate Selec-
tion (RPMS) and briefly explain the MCMC algorithm employed to perform
posterior inference.

3.3.1 Regression Model

We use a linear regression model to explain the relationship between the re-
sponse and the covariates. Let y = (y1, . . . , yn) denote the response variable.
Then, we assume

yi | xi,βi, λi ∼ Normal(yi | xiβ′i, λi).

Here, we assume that xid ∈ {0, 1} for every i = 1, . . . , n and d = 1, . . . , D.
Thus, we can interpret X as the matrix containing the information about the
presence of D symptoms for each of the n patients; these symptoms are as-
sumed to have a potential effect on the response y. We focus on binary covari-
ates, because in clinical settings symptoms are often recorded as binary indi-
cators (in fact, that is the case in our motivating example). Extensions to other
type of covariates is however trivial.

The goal is to specify a prior structure that allows detecting a possible clus-
tering structure based on symptoms profiles and then identifying which vari-
ables most influence (globally or in some clusters) the response variable.

3.3.2 Model on the Covariates and Prior Specification

To allow for covariate dependent clustering, we exploit ideas in Müller et al.
[1996] assuming a probability model for the vectors of covariates:

xi | ζ1, . . . , ζD ∼
D∏
d=1

Bernoulli(xid | ζid).
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In addition, we specify a joint DP prior distribution on ζi = (ζi1, . . . , ζiD) and
βi = (βi1, . . . , βiD) :

(β1, ζ1), . . . , (βn, ζn) | G ∼ G (3.3.1)

G ∼ DP(α,G0)

where α is the precision parameter and G0 is the centre measure of the process.
Recalling Section 3.1, the DP in (3.3.1) assigns a positive probability for two
observations i and i′ to have the same values (βi, ζi) = (βi′ , ζi′). We denote with
(β∗, ζ∗) = ((β∗1, ζ

∗
1), . . . , (β∗k, ζ

∗
k)) the unique values for the parameters. This

construction implies that observations are clustered on the basis of both their
covariates profile and the relationship between covariates and responses.

The model is completed by specifying a conjugate Gamma prior on the re-
gression precision assuming λ1 = . . . = λn = λ and modelling λ ∼ Gamma(λ |
aλ, bλ), as well as using a Gamma hyperprior on the concentration parameter
of the DP (Escobar and West [1995]): α ∼ Gamma(aα, bα). These are common
prior choices as they enable easier computations.

The Spike and Slab Base Measure

The choice of the centre measure of the DP is crucial. We assume that βi and
the ζi are independent in the centre measures. We choose a spike and slab
distribution as centre measure for the regression coefficients to perform variable
selection (see George and McCulloch [1993] and Malsiner-Walli and Wagner
[2011] for a review on spike and slab distribution for variable selection). Thus
we define:

G0 =
D∏
d=1

{[πdδ0(βhd) + (1− πd) Normal(βhd | md, τd)] Beta(ζhd | aζ , bζ)},

which is simply the product measure on the space of the regression coefficients
and of the parameters defining the distribution of the covariates. The notation
βhd and ζhd highlights the fact that the centre measure is assumed to be the same
across the observations. In G0, the first term in the square brackets is the spike
and slab distribution, where δ0(βhd) is a Dirac measure that assigns probability
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1 to the value 0. Thus a spike and slab distribution is a mixture of a point mass
at 0 (in correspondence of which, βhd = 0) and a Normal distribution, with
weights given by πd and (1− πd), respectively.

A conjugate centre measure is employed for the covariate specific param-
eters ζhd for ease of computations. We assume the same hyperpriors for the
parameters in G0 as in Kim et al. [2009]. In particular we set a spike and slab
hyperprior for each πd:

π1, . . . , πD | ω1, . . . , ωD ∼
D∏
d=1

{(1− ωd)δ0(πd) + ωd Beta(πd | aπ, bπ)}

ω1, . . . , ωD ∼
D∏
d=1

Beta(ωd | aω, bω)

The latter solution has been proposed by Lucas et al. [2006] to induce extra
sparsity on the regression coefficients, encouraging those associated with the
covariates with no effect on the response variable to shrink toward zero. As
shown in Kim et al. [2009], it is possible to integrate out πd from the centre
measure, obtaining:

G0 =
D∏
d=1

{[ωdrπδ0(βhd) + (1− ωdrπ)Normal(βhd | md, τd)]Beta(ζhd | aζ , bζ)}

where rπ = aπ
(aπ+bπ)

.
We set m1 = . . . = mD = 0; in addition, we use a Gamma prior for the

precision parameter of the Normal component of the spike and slab prior:

τ1, . . . , τD ∼
D∏
d=1

Gamma(τd | aτ , bτ ).

3.4 Posterior Inference

MCMC algorithms have been largely employed in similar settings for approx-
imating posterior and predictive inference. Since our model can be rewritten
using a DPM formulation on the response and the covariates jointly, efficient
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Gibbs sampler schemes are available. We follow the auxiliary parameter al-
gorithm proposed in Neal [2000]. This procedure updates first the vector of
cluster allocations s and then separately all the cluster-specific parameters and
the parameters that do not depend on the cluster allocation. The update of the
partition s is performed after G has been integrated out. A detailed description
of the algorithm is reported in Appendix B.1. We present below a summary:

(i) Update the membership indicator s = (s1, . . . , sn) using the Gibbs sam-
pling procedure for non-conjugate centre measure based on the auxiliary
variable algorithm presented in Neal [2000].

(ii) Update the precision of the DP, α, exploiting the method introduced in
Escobar and West [1995], setting α ∼ Gamma(α | aα, bα) a priori.

(iii) Update ζ∗ = (ζ∗1 , . . . , ζ
∗
k) from the full conditional distribution, given the

new configuration of s in (i).

(iv) Update β∗ = (β∗1, . . . ,β
∗
k) from the full conditional posterior distribution,

given the new configuration of s in (i).

(v) Update ω = (ω1, . . . , ωD) from the full conditional distribution. To draw
from this distribution we implement the algorithm described in Kim et al.
[2009].

(vi) Update τ = (τ1, . . . , τD) from the full conditional distribution.

(vii) Update the precision of the regression λ from the full conditional distri-
bution.

3.5 Summarising Posterior Output

The choice of a spike and slab centre measure implies that the coefficients β∗jd
have positive probability to be equal to zero. We propose here two ways of
summarising the MCMC output that highlight the effect of using a spike and
slab prior distribution. These two methods are then applied to the real data
example in the following section.

In our framework a covariate can be explanatory for one cluster and not
for another. Thus, a first method to analyse the results would be to compute
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the probability that the d−th covariate has explanatory power in cluster j, i.e.
p(β∗jd 6= 0), given a partition of the observations in clusters. The literature
proposes a variety of methods for extracting a meaningful partition from the
MCMC output (Dahl [2009], Molitor et al. [2010]). In our application we have
decided to report the partition obtained by minimising the Binder loss func-
tion (Binder [1978]), which has been described in (2.4.1). Then, conditioning on
the selected partition, we can compute the posterior distribution of the regres-
sion coefficients for each cluster, together with the probability of inclusion of a
certain covariate, i.e. 1− p(β∗jd = 0 | ŝ), where ŝ is the Binder configuration.

A second way of summarising the posterior output from a variable selec-
tion perspective is based on predictive inference. Let us consider the situation
in which a new patient enters the study with profile x̃. Using the proposed ap-
proach, the posterior distribution of the regression coefficients depends on the
structure of the patient’s profile. This is due to the fact that the cluster alloca-
tion depends on it. In fact, in RPMS the predictive distribution of the cluster
allocation is:

p(s̃ | x̃, . . .) ∝


nj

D∏
d=1

gjd(x̃d) for j = 1, . . . , k

α
D∏
d=1

g0d(x̃d) for j = k + 1

(3.5.1)

where x̃ = (x̃1, . . . , x̃D) and s̃ are the profile for the new patient and its cluster
allocation, respectively. In addition, gjd(x̃d) = ζ∗x̃djd (1 − ζ∗jd)(1−x̃d) and g0d(x̃d) =

(
∫ 1

0
q(x̃d+aζ−1)(1− q)(bζ−x̃d)dq)/(

∫ 1

0
u(aζ−1)(1− u)bζ−1du) are the likelihood for the

new observation to belong in cluster j and the prior predictive distribution
of the new observation, respectively. The probability in (3.5.1) comes directly
from the predictive scheme of the DP in (1.2.1). Hence, we focus on p(β̃d =

0 | x̃,y,X). This probability can be approximated using the MCMC samples.
Moreover, it is possible to look at the predictive distribution of the response,
namely ỹ, that by construction depends on the variable selection.

Alternatively, we could compute the posterior probability of p(β∗1d = . . . =

β∗kd = 0 | ·) to summarise the overall importance of the d−th covariate. This
posterior probability can be approximated empirically by calculating the pro-
portion of iterations in the MCMC run in which the regression coefficient for
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the d−th covariate is equal to zero in all the clusters: β∗1d = . . . = β∗kd = 0. How-
ever, this summary of the variable selection can be very sensitive to the number
and cardinalities of the clusters.

3.6 Lower Urinary Tract Symptoms data

In this section we present the results of the application of the RPMS to the LUTS
database. First, we briefly describe the database, then we give details of the
choice of the hyperparameters and MCMC settings. We briefly introduce the
competitor model and finally we report the results for clustering and variable
selection.

3.6.1 Data

We consider data on 1341 patients extracted from the LUTS database collected
at the LUTS clinic, Whittington Hospital Campus, University College London.
The patients are women, affected by LUTS. We consider data at the first atten-
dance visit.

For each patient, the presence of 34 LUTS has been recorded together with
the WBC count in a sample of urine. Differently from the study in Chapter 2,
we consider a more detailed characterisation of LUTS profile which was de-
scribed in Khasriya et al. [2017]. These symptoms are stored as binary variables
(1 indicates the presence of the symptoms and 0 the absence). We report the
frequency distribution of the symptoms in the 1341 patients in Table 3.1. The
symptoms can be grouped into the four categories described in Chapter 2: ur-
gency symptoms (symptoms from 1 to 8), stress incontinence symptoms (9 to
14), voiding symptoms (15 to 21) and pain symptoms (22 to 34).

It is of clinical interest to investigate the relationship between LUTS and
UTI, where the latter is measured by the number of WBC. In particular, a value
of WBC ≥ 1 is indicative of the presence of infection, and high value of the
WBC count indicate an high degree of inflammation and can be considered as
a measure of the severity of the infection.

In this paper we focus only on patients with UTI (WBC≥ 1). We consider
a logarithmic transformation of the WBC data and model the log-transformed
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TABLE 3.1: Lists of the 34 symptoms with the frequency of occur-
rence.

Symptom Frequency Symptom Frequency
1) Urgency incontinence 0.4146 18) Straining to void 0.0828
2) Latchkey urgency 0.4280 19) Terminal dribbling 0.1641
3) Latchkey incontinence 0.2304 20) Post void dribbling 0.0820
4) Waking urgency 0.5496 21) Double voiding 0.1193
5) Waking incontinence 0.2595 22) Suprapubic pain 0.1611
6) Running water urgency 0.2901 23) Filling bladder pain 0.2148
7) Running water incontinence 0.1365 24) Voiding bladder pain 0.0567
8) Premenstrual aggravation 0.0515 25) Post void bladder pain 0.0723
9) Exercise incontinence 0.1462 26) Pain fully relieved by voiding 0.0634
10) Laughing incontinence 0.1536 27) Pain partially relieved by voiding 0.1260
11) Passive incontinence 0.0783 28) Pain unrelieved by voiding 0.0164
12) Positional incontinence 0.0850 29) Loin pain 0.2081
13) Standing incontinence 0.0895 30) Iliac fossa pain 0.0895
14) Lifting incontinence 0.1104 31) Pain radiating to genitals 0.0865
15) Hesitancy 0.1797 32) Pain radiating to legs 0.0649
16) Reduced stream 0.1909 33) Dysuria 0.1484
17) Intermittent stream 0.1514 34) Urethral pain 0.0507

WBC using a Normal distribution. Figure 3.1 displays the kernel density esti-
mation of the log-transformed WBC.
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FIGURE 3.1: Kernel density estimate of the response variable
log(WBC). The vertical lines correspond to the quartiles.
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3.6.2 Prior Specification

The hyperparameters of the spike and slab prior in the centre measure are set as
follows: aπ = aω = 1, bπ = bω = 0.15, aτ = bτ = 1 and aζ = bζ = 1. We note here
that we set vague prior beliefs on the distribution of the parameters, except
for the prior on πd and ωd to make computations more stable and encourage
sparseness in the regression coefficients. The hyperparameters aλ, bλ for the
precision λ in the regression density are set both to be equal to 1. Finally, for the
prior on concentration parameter of the DP we use aα = bα = 1.

We run the MCMC sampler for 10 000 iterations with a burn-in period of
1 000 iterations. Details on the algorithm are given in Appendix B.1. To update
the membership indicator, we use the auxiliary variable approach described in
Neal [2000] that requires the choice of a tuning parameterM . In our experience,
M = 100 gives a good trade-off between execution time and efficiency of the
Gibbs sampler. The convergence of the chains is assessed by trace plots and by
the Gelman and Rubin’s convergence diagnostic (Gelman and Rubin [1992]),
the latter for the parameters that do not depend on the cluster assignment.

3.6.3 The competitor model: SSP

In order to highlight the potential and advantages of RPMS, we compare its
results with the model described in Kim et al. [2009], which we believe is the
closest competitor. For simplicity, we refer to this model as SSP (Spike and Slab
Prior). This assumes the same Normal specification for the WBC counts and a
DP prior on the regression coefficients with a spike and slab centre measure for
the regression coefficients.

The difference with our own specification consists in that the the SSP treats
the covariates as given, instead of associated with a probability distribution.
This implies that in the SSP the centre measure of the DP prior reduces to:

G0 =
D∏
d=1

{πdδ0(βhd) + (1− πd)N(βhd | md, τd)}.

We follow the same strategy adopted for the RPMS of integrating out from
each part of the centre measure the πd. The model described in Kim et al. [2009]
involves also the use of a DP prior on the precision in the regression model, but



3.6. Lower Urinary Tract Symptoms data 91

for a fair comparison with the RPMS we use a version of the model without this
further complication. Moreover, the results obtained by the SSP with or without
the DP prior distribution on λ have not shown to be significantly different. In
the MCMC algorithm, we use the same initial values, tuning parameters and
number of iterations utilised for the RPMS to obtain the posterior distributions.

3.6.4 Clustering outputs

The proposed method, as explained above, employs a DP prior for the regres-
sion coefficients and for the parameters governing the profile distribution. The
main consequence is that the implied clustering is influenced by both the dis-
tribution of the y and by possible patterns within the profiles.

Figure 3.2 reports the posterior distribution for k, i.e. the number of clusters,
from the RPMS model. The configuration involving 14 clusters is clearly the one
with the highest probability. This is the first significant difference with the SSP
model that has a clear mode at k = 1. This is due to the fact that the SSP takes
into account only the variability in the regression coefficients. In the RPMS the
covariates contribute to inform the partition of the observations.
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FIGURE 3.2: Posterior distribution of the number of clusters k for
RPMS and for SSP models.

To summarise the posterior inference on the clustering we report the parti-
tion which minimises the Binder loss function (Binder [1978]) in (2.4.1). In our
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case this leads to a configuration with 14 clusters, with the 9 largest clusters
containing 92.5% of the observations.

Figure 3.3 displays the presence of the 34 symptoms (on the columns) for the
patients assigned to each of the nine largest clusters. Recalling that the symp-
toms can be grouped into four main categories, i.e. urgency, stress incontinence,
voiding and pain symptoms, we can see that the largest cluster contains pa-
tients with a small number of symptoms belonging to all the four categories. In
the second largest cluster, almost all patients present the fourth class of symp-
toms and almost none the third one. A high frequency of the other urgency
symptoms is also evident. The third largest cluster includes patients with a high
frequency of pain symptoms together with urgency symptoms (even though
with a lower probability). The fourth cluster is characterised by a high fre-
quency of urgency symptoms; the fifth cluster by a high frequency of voiding
symptoms; the sixth cluster by a high frequency of incontinence symptoms; the
seventh cluster by a high frequency of urgency and incontinence symptoms;
the eighth cluster by a high frequency of urgency and pain symptoms and the
ninth cluster by a high frequency of urgency and voiding symptoms.

This distribution of the symptoms across the Binder configuration suggests
that the symptoms classes are informative for the partition. Consequently, it is
likely that each combination of symptoms has a particular effect on the WBC
counts distribution: this is because cluster specific regression coefficients are
associated to cluster specific probabilities of having the symptoms.

3.6.5 Variable selection outputs

Our proposed model performs simultaneously clustering and variable selec-
tion. It is of clinical interest to check which symptoms have a significant impact
on the response variable. In our case, this means checking which symptoms are
more likely to be predictive of the underlying severity of the infection.

In this section we will use the two ways of summarising the variable selec-
tion information produced by the RPMS that have been described in section
3.5. The first one is based on the Binder estimate of the clustering configura-
tion, while the second focusses on the predictive distribution for a new patient.
We first report the posterior probability of each symptom to be included in the
model, conditional on the Binder estimate of the clustering configuration.
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FIGURE 3.3: Symptom indicators (black) for the 9 biggest clusters
of the partition obtained by minimising the Binder loss function.
The horizontal axis of each panel (corresponding to a cluster) dis-
plays the index of the symptoms, whereas the index of the patients
in each cluster is on the vertical axis. For each cluster the cardinal-

ity is also displayed.

Figure 3.4 displays the probability of inclusion, i.e. 1 − p(β∗jd = 0 | ŝ,y,X)

for the 9 largest clusters according to the Binder estimate ordered by size. For
example, let us consider the fifth row (which refers to the fifth cluster). From
Figure 3.3, we see that this cluster contains mainly the symptoms from 15 to
22 (cfr. the list in Table 3.1). Consequently, in Figure 3.4 the probability that
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symptoms 15, 16, 17, 19 are included in the regression model is close to 0.9. On
the contrary, for symptoms 18, 20, 21 and 22 the probability of being included
is low. Figure 3.4 also suggests the importance of the symptoms in the urgency
class and of dysuria and loin pain within the pain class.
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FIGURE 3.4: Probability of inclusion, i.e. β 6= 0, for each symptoms
in the 9 biggest clusters of the partition estimated by minimising

the Binder loss function.

The second way of presenting variable selection results is by considering
predictive inference. Recall that for a new patient entering the study the distri-
bution of the regression coefficients depends on her profile, i.e. x̃, through the
cluster assignment. This does not happen in the SSP, in which the predictive
probability for the cluster assignment depends exclusively on the cardinality of
the clusters.

To illustrate the last considerations, we take x̃ including the presence of
symptoms 1, 2 and 4 from Table 3.1. Figure 3.5 shows the density estimation
of the posterior distribution of the regression coefficients related to the three
symptoms in x̃. We present the output from both the RPMS and the SSP. The
evident differences between the distributions are due to the fact that in the SSP
the regression coefficients do not depend on the individual’s profile, which they
do in the RPMS. Consequently, in the SSP the posterior distribution of the re-
gression coefficients is the same for every (new) patient, while in the RPMS it
can vary, depending on the covariates. Moreover, in the RPMS the spike and
slab prior distribution can be seen as a within–cluster prior.

The different posterior distributions of the regression coefficients for the SSP
and the RPMS have obviously an impact on the predictive distribution of ỹ.
Figure 3.6 displays the predictive distribution of the response given a profile
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1. The first row refers to the RPMS model, while the second row
refers to the SSP model. For SSP the posterior distribution for the

regression coefficients does not depend on x.

x̃ (we assume these are the same as those considered in Figure 3.5) and for
a different profile x̃′, which is characterised by a large number of symptoms:
x1 = x2 = x3 = x4 = x5 = x6 = x7 = x22 = x23 = x27 = x28 = x32 = x33 = 1.

In the first case, the distributions obtained from the SSP and the RPMS have
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similar means, but the one estimated by the RPMS seems to have smaller vari-
ance. On the other hand for x̃′ the predictive distributions seem more substan-
tially different.

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RPMS
SSP

1 2 3 4 5 6 7 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

RPMS
SSP
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FIGURE 3.6: Kernel density estimation of the predictive distribu-
tion of ỹ given profile x̃ with x1 = x2 = x4 = 1 and of ỹ′ given
profile x̃′ with x1 = x2 = x3 = x4 = x5 = x6 = x7 = x22 = x23 =

x27 = x28 = x32 = x33 = 1

In order to determine whether the proposed model leads to improved pre-
dictions we employ the Brier statistic (Brier [1950]), similarly to what has been
done in Section 2.4. Each response variable has been discretised in correspon-
dence of the quartiles of the empirical distribution of the log(WBC) and the
probability for an individual to have a response value larger than a given quar-
tile has been calculated. We denote with Brier(q) the Brier statistic calculated
using the q-th quartile as threshold. For all three thresholds the posterior ex-
pectation of Brier(q) is lower for the RPMS model, indicating better predictive
power compared to SSP. A simulation study is included in Appendix B.2, which
clarifies the reason for the improvement of predictions.

Evidence in favour of the hypothesis that WBC ≥ 1 indicates the presence
of UTI is given in Kupelian et al. [2013]. This recent result extends the analo-
gous one by Dukes [1928], where WBC ≥ 10 was considered. All patients in
our study have WBC ≥ 1 and thus it is very likely they are affected by UTI.
However, if on the one hand a large number of WBC in a sample of urine will
increase the confidence about the presence of UTI, on the other hand no work
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has been published that describes the severity of infection in relation to higher
values of WBC. Nevertheless, specialists consider fully reasonable to associate
high degree of inflammation to large values of WBC.

Hence, discretising the response variable to make prediction is reasonable
both to assess the likelihood of having an infection and to evaluate the gen-
eral status of the disease (in terms, for example, of the degree of inflammation).
Moreover, discretising the response variable transforms the problem into a clas-
sification one, which links our model to the very important area of risk predic-
tion models. A review of these models can be found in Gerds et al. [2008], who
highlight the most common techniques to perform model selection in this con-
text.

3.7 Discussion

In this work we have proposed the RPMS, a DPM of Normal regressions with
covariate dependent weights, capable of simultaneously performing clustering
and variable selection. This is achieved employing a DPM on the joint distri-
bution of the response and the covariates, together with spike and slab prior
distributions on the regression coefficients within the clusters of the partition.
The latter allows performing variable selection and therefore identifying co-
variates with high explanatory power on the response. The proposed method
is designed to handle binary covariates, due the dataset motivating this work,
even though it is straightforward to include other types of covariates (and also
mixed types). Although we have presented the model for Normally distributed
response data, it is possible to extend it to the generalised linear model frame-
work.

The main feature of the model lies in the fact that the RPMS takes into ac-
count also possible patterns within the covariate space. The results of the anal-
ysis highlight the diagnostic power of the symptoms. On the other hand, the
SSP focuses on the variability within the response. The results of the poste-
rior inference show that in the partition generated by the RPMS the clusters are
characterised by the presence of certain classes of symptoms or combinations
of classes, revealing that these classes are informative and further investigation
might lead to the identification of disease sub-types.
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The results of the variable selection has been summarised in two ways: fix-
ing a meaningful partition (we have opted for the Binder estimate) or fixing a
specific profile in a predictive fashion. In the first case, the analysis of the pos-
terior distribution of the regression coefficients conditional to the Binder parti-
tion shows the overall importance of the urgency symptoms, and the cluster-
specific importance of certain particular symptoms. The second way to display
the variable selection output is from a predictive perspective. We have assumed
that a new patient’s profile has been collected. The distribution of the regres-
sion coefficients for the new patient depends on the profile and this permits
an individual-based assessment of the important symptoms that determine the
distribution of WBC. The SSP’s estimated posterior distributions of the regres-
sion coefficients instead do not depend on the patient profile. This difference
allows the RPMS to achieve more accurate prediction of the WBC compared to
the SSP.

We believe that the use of Bayesian nonparametric methods, although com-
putationally more expensive, offers the flexibility necessary to capture the com-
plexity of modern clinical data and consequently improved predictive power,
especially in cases where the use of parametric approaches would impose un-
realistic assumptions on the data generating process.
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Chapter 4

Dependent generalised Dirichlet
process priors

We propose a novel Bayesian nonparametric process prior for modelling collections
of random discrete distributions. This process is defined by combining a Generalised
Dirichlet Process with a suitable Beta regression framework that introduces dependence
among the discrete random distributions. This strategy allows for covariate depen-
dent clustering of the observations. Some advantages of the proposed approach include
wide applicability, ease of interpretation and efficient MCMC algorithms. The method-
ology is illustrated through two real data applications involving acute lymphoblastic
leukaemia and London primary schools quality evaluations. The material included in
this chapter is based on the work in Barcella et al. [2016b].

4.1 Introduction

Very often real world applications involve observational data that are collected
in groups or clusters. These can be characterised, for example, by spatial or
temporal coordinates, as samples from the same experimental unit, or more
generally by shared levels of covariates. In such settings, a common strategy is
to model the data by introducing random effects to account for the correlation
of the observations within each group. This approach allows robust estima-
tion of the parameters shared by all clusters. Generalised linear mixed effects
models are examples in the regression framework.

Common distributions for random effects are e.g. normal distributions or
Student-t distributions, but these may be too restrictive in some circumstances.
A variety of solutions have been presented as more flexible alternatives. Among
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these proposals, nonparametric techniques, such as infinite mixture models,
are gaining popularity. The most general proposals for random effects’ distri-
butions assume an infinite mixture model for groups of observations and intro-
duce dependence among the parameters of the mixture models (i.e., the weights
and/or the locations). Each infinite mixture model is a convolution of a para-
metric density kernel with a discrete random probability measure that has (a
priori) an infinite number of locations and weights. Thus, the problem of induc-
ing dependence among the infinite mixture models can be rewritten in terms of
the dependence among the discrete random probability measures indexed by
the different groups or clusters of observations.

A seminal contribution in this field is the extension of the DP (Ferguson
[1973]) called the DDP (MacEachern [1999] and MacEachern [2000]; see also Ci-
farelli and Regazzini [1978]). The DDP is constructed in such a way that each
group of observations is distributed as a DP. The random effects distributions
thereby become DPM (Lo [1984]) as in (1.3.2). Dependence among the different
DP probability measures is induced by specifying convenient stochastic pro-
cess priors indexed by the groups of observations, leading to group-specific
weights and locations. One can specify such models by enriching the structure
of the stick-breaking representation of the DP presented by Sethuraman [1994]
reported in (1.2.5). A review of the most relevant contributions in this area is
presented in Section 1.4.2.

In this chapter, we propose a novel approach that generalises the DDP of
MacEachern [2000] by assuming that the discrete random measure associated
with each group of observations is distributed according to a Generalised Dirich-
let Process (GDP, Hjort [2000]) prior. The GDP employs a richer parametrisation
compared to the usual DP and, for this reason, allows for more flexibility. The
dependence among the different random measures is induced by specifying a
convenient prior for the weights of the measures, while assuming the locations
to be the same across all groups of observations (although alternatives with also
covariate dependent locations can be easily specified). We call the resulting pro-
cess the Dependent Generalised Dirichlet Process (DGDP).

The DGDP has a better control of the implicit partition of the observations
defined by the different mixture components compared to the DDP case, in
terms of the distributions of number and size of the clusters. The law of the
partition induced by samples from a GDP can be derived analytically allowing
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for a better interpretation of that quantity and an increased number of compu-
tational strategies compared to other processes where this cannot be derived.
Furthermore, including the covariates within the weights of the process, the
DGDP leads to improved predictive power compared to processes including
covariate information only within the locations (Cruz-Marcelo et al. [2013]).

We illustrate the use of the DGDP in two real data applications, one related
to the analysis of Acute Lymphoblastic Leukaemia (ALL), and the other one on
London primary schools quality evaluations. In the first application, we model
trajectories of triglycerides quantities as a function of the treatment adminis-
tered to patients affected by leukaemia. The increase in triglycerides quantity
given by leukaemia’s treatments can lead to osteonecrosis. We estimate the dis-
tribution of the triglycerides using the DGDP indexed by different risk levels
(high and low risk) of developing osteonecrosis. The results highlight the abil-
ity of the DGDP to capture the interaction between the exposure to treatment
for leukaemia and the risk of developing osteonecrosis. In the second applica-
tion we model the scores of the quality of primary schools in London. We use
DGDP mixtures of continuous latent distributions indexed by different London
boroughs in order to estimate flexibly the baseline probabilities for the different
scores. We induce spatial dependence across boroughs through a convenient
stochastic process prior within the DGDP. We then add linear regression com-
ponents of the main school features with common coefficients across all mixture
components: this allows us to estimate interpretable effects of the school fea-
tures on the scores. In these illustrations, we use the DGDP in order to consider
potential (latent) groupings of observations over and above groupings based
on measured covariates including less restrictive prior distributions, while pre-
serving computational simplicity.

The chapter is organised as follows. Section 4.2 reviews the main properties
of the GDP and presents new results. In Section 4.3, we introduce the DGDP,
and we present possible MCMC algorithms for posterior inference in Section
4.4. The real data examples analysed using the DGDP are in Section 4.5. We
conclude with a discussion in Section 4.6. Proofs are deferred to Appendix C.



102 Chapter 4. Dependent generalised Dirichlet process priors

4.2 Generalised Dirichlet Process

4.2.1 Definition

Let us consider a measurable space (Θ,A) and an associated probability mea-
sureG. We say thatG is distributed according to a Generalised Dirichlet Process
(GDP, Hjort [2000], Ishwaran and James [2001]) with parameters φ = {φh}∞h=1

(with each element belonging to R+), µ = {µh}∞h=1 (with each element belong-
ing to (0, 1)), and center measure G0 (a non-atomic probability measure on Θ) if
it admits the following stick-breaking representation:

G =
∞∑
h=1

whδθh , (4.2.1)

where {θh}∞h=1
iid∼ G0 and {wh}∞h=1 are constructed via the stick-breaking pro-

cedure. This involves a sequence of random variables {vh}∞h=1 taking values
on (0, 1). Common practice is to assume that the random variables are Beta
distributed, which we do here. We parameterise the Beta density function as

p(vh | φh, µh) =
Γ(φh)

Γ(φhµh)Γ(φh(1− µh))
vφhµh−1
h (1− vh)φh(1−µh)−1,

where µh = E[vh] and φh = µh(1 − µh)/V[vh] − 1, with E[·] and V[·] denot-
ing the expectation and variance operators, respectively. Thus, we assume
{vh}∞h=1

ind∼ Beta(vh | φhµh, φh(1−µh)), independent from {θh}∞h=1, and we spec-
ify the infinite sequence of weights setting w1 = v1 and obtaining the other
weights as

wh = vh
∏
r<h

(1− vh), h = 2, 3, . . . . (4.2.2)

The resulting measure, G, is a proper random distribution function. Indeed
it can be easily verified that

∑∞
h=1 E[log(1 − vh)] = −∞, which is a necessary

and sufficient condition for
∑∞

h=1wh = 1. (See Ishwaran and James [2001] for a
detailed proof). We write G ∼ GDP(φ,µ, G0).

A more parsimonious formulation of the GDP, described by Hjort [2000],
assumes {φh}∞h=1 = φ and {µh}∞h=1 = µ; we denote it as GDP(φ, µ,G0). Figure 4.1
depicts some realisations from a GDP with a standard Normal centre measure
G0 and different (constant) values for parameters φ and µ.
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FIGURE 4.1: Cumulative distributions functions of samples ob-
tained from a GDP with different combinations of the parame-
ters and G0 being a standard Normal distribution (red line in each

panel).

As the name suggests, the GDP generalises the well-known DP (Ferguson
[1973]), which can be specified by a GDP with {φh = µ−1

h }∞h=1 and {µh}∞h=1 = µ.

4.2.2 Moments

If G ∼ GDP(φ,µ, G0), we have that

E[G(A)] = G0(A).

The variance of G(A) is given by

V[G(A)] = (1−G0(A))G0(A)E

[
∞∑
h=1

w2
h

]
. (4.2.3)
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The expectation in the last equation cannot be computed explicitly, unless we
consider the constant-parameter case GDP(φ, µ,G0). With constant parameters,
Hjort [2000] showed that

E

[
∞∑
h=1

w2
h

]
=

E[v2]

2E[v]− E[v2]
,

where v is a Beta random variable with parameters (φµ, φ(1−µ)). Thus, E[v] = µ

and E[v2] = µ(1− µ)/(φ+ 1) + µ2.
The third central moment of the random quantity G(A) in the constant pa-

rameter case when G ∼ GDP(φ, µ,G0) is

E[(G(A)−G0(A))3] = G0(A)(1−G0(A))(1− 2G0(A))
E[v3]

3(E[v]− E[v2])− E[v3]
.

As suggested by Hjort [2000], this allows to appreciate the extra flexibility in-
troduced by having three parameters, i.e. φ, µ and G0, compared to the DP case
which employs only two, i.e. µ and G0. In fact, after matching the first two mo-
ments of G(A), setting a common G0 and a specific value for φ, it can be shown
that the ratio of the third central moments under a GDP and a DP ranges in a
set of values that includes 1 (the case in which the GDP is a DP, i.e. φ = µ−1),
demonstrating the extra flexibility given by the additional parameter.

4.2.3 Distributional sampling properties

We now derive some properties of the GDP. Consider G as in (4.2.1). Because
G is discrete, a sample (θ1, . . . , θn) from G induces a random partition of the
set N = {1, . . . , n} into k blocks with frequencies (n1, . . . , nk). We denote by
p(n1, . . . , nk) the probability of any particular partition of {1, . . . , n}, with k

blocks and block-specific frequencies (n1, . . . , nk). In Definition 4 of Pitman
[1995] this is referred to as the partially exchangeable partition probability func-
tion. Under the GDP with constant parameters, an application of Corollary 7 of
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Pitman [1995] leads to an explicit expression for p(n1, . . . , nk), i.e.

p(n1, . . . , nk) (4.2.4)

= E

[(
k∏
j=1

w
nj−1
j

)
k−1∏
r=1

(
1−

r∑
p=1

wp

)]

=
(φ(1− µ))k−1

(φ)(n−1)

k−1∏
r=1

(φ(1− µ) + 1)(
∑k
j=r+1 nj−1)

(φ)(
∑k
j=r+1 nj−1)

k∏
j=1

(φµ)(nj−1),

where (a)(b) = a(a + 1) · · · (a + b − 1) is the rising factorial number. We note
that if we set φ = µ−1, then the first product over i in (4.2.4) cancels, leading to
the Ewens partition probability function (Ewens [1972]) induced by a sample
drawn from a DP (Blackwell and MacQueen [1973]).

According to the theory of partially exchangeable random partitions devel-
oped in Pitman [1995], (4.2.4) characterises the predictive probabilities of the
GDP with constant parameters. See Proposition 10 in Pitman [1995]. In particu-
lar, consider a sample of size n from a GDP(φ, µ,G0) and assume that it induces
a partition of {1, . . . , n} into k blocks, labelled by θ∗1, . . . , θ∗Kn , with correspond-
ing frequencies (n1, . . . , nk). Then

Pr[θn+1 /∈ {θ∗1, . . . , θ∗k}] =
φ(1− µ)

φ+ n− 1

k−1∏
i=1

φ(1− µ) +
∑k

j=i+1 nj

φ+
∑k

j=i+1 nj − 1
(4.2.5)

and

Pr[θn+1 = θ∗r ] =
φµ+ nr − 1

φ+ n− 1

r∏
i=1

φ(1− µ) +
∑k

j=i+1 nj

φ+
∑k

j=i+1 nj − 1
. (4.2.6)

for any r = 1, . . . , k. Unfortunately, due to the cumbersome dependency on
k and the frequencies ni, the predictive probabilities (4.2.5) and (4.2.6) neither
allow us to obtain moments of the distribution of k nor moments of the distri-
bution of the number of blocks with certain frequencies.

We now determine the asymptotic behaviour of k as n grows. Using results
in Karlin [1967], one can show that

k

log(n)
→ 1

ψ(0)(φ)− ψ(0)(φ(1− µ))
(4.2.7)

almost surely, as n → +∞. In (4.2.7), ψ(0)(x) denotes the polygamma function,
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i.e., the first derivative of the logarithm of the Gamma function with respect
to x. Details of the derivation of this result are in Appendix C.1. If φ = µ−1,
then the large n asymptotic result in (4.2.7) reduces to the well-known large n
asymptotic behaviour of k under the assumption of the DP. Indeed, ψ(0)(1/µ)−
ψ(0)(1/µ − 1) = (1/µ − 1)−1 and, hence, k/log(n) → (1/µ − 1) almost surely, as
n→ +∞.

The richer parameterisation of the GDP allows controlling simultaneously
different important features of the partition (see Rodriguez and Dunson [2014]).
For instance, fixing E(k), the parameters of GDP can control quantities such as
the cardinality of the largest clusters, the average cluster size for different val-
ues or the number of clusters with cardinality equal one. This is in contrast
with what happens using the DP, where the precision parameter governs all
this quantities at once. Figure 4.2 and 4.3 show the extra flexibility of GDP
compared to DP in terms of the probability of having clusters with cardinal-
ity equal one and expected size of the largest cluster for different values of the
expected number of clusters. Similarly, the additional flexibility can be appre-
ciated also by looking at the distribution of k under the GDP and the DP, after
matching the first moment, as in Figure 4.4.

4.2.4 Truncated GDP

We next consider a modified version of (4.2.1) that includes a finite number H
of atoms. We write:

GH =
H∑
h=1

whδθh . (4.2.8)

As in the infinite dimensional case, the locations are iid samples from G0. The
weights are constructed with the same stick-breaking procedure presented above,
with the exception of the last weight, wH , which is set to the value that makes
the weights sum to 1. We denote this truncated process GDPH(φ,µ, G0).

Truncated versions of the DP and other random probability measures have
been employed in the literature, because they allow simplified computation
when used as prior mixing distributions. Obviously, the use of a truncated
process introduces an approximation error. The most common way to control
this error was proposed by Ishwaran and James [2001] (Theorem 1) and has
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FIGURE 4.2: Probability of clusters with size one for dif-
ferent expected number of clusters in samples of size n =
{100, 200, 500, 1000} from a GDP. Dots are obtained by different
combinations of the parameter values (colours correspond to dif-
ferent values of µ). Dashed lines are obtained using DP with dif-

ferent values of the precision parameters.

been adapted for many other processes. Consider the model

yi | θi
ind∼ f(yi | θi) i = 1, . . . , n

and compute the marginal density

kH(y) =

∫ ( n∏
i=1

∫
f(yi | θi)dGH(θi)

)
dF (GH),
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FIGURE 4.3: Expected size of the largest clusters for dif-
ferent expected number of clusters in samples of size n =
{100, 200, 500, 1000} from a GDP. Dots are obtained by different
combinations of the parameter values (colours correspond to dif-
ferent values of µ). Dashed lines are obtained using DP with dif-

ferent values of the precision parameters.

where F (·) is the distribution of GDPH . Then, the following result holds

‖kH(y)− k(y)‖ ≤ 4

(
1− E

[(
H−1∑
h=1

wh

)n])
,

where ‖·‖ denotes the L1 norm, and k(y) is the the marginal density computed
under the GDP in (4.2.1). A proof of this result is in Ishwaran and James [2002].
The L1 distance of the two marginal densities tends to 0 as H increases, as we
might expect. The result above allows us to set an upper bound to the approxi-
mation error, leading to a specific number of components, H .
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In mixture models, it is common to truncate the mixing measure to a spe-
cific level for computational purposes. This is particularly true when the mix-
ing measure is not distributed as a DP for which simple and efficient Gibbs
samplers are available. When the mixing measure is a GDP (consequently, also
a DP), however, the joint distribution of the truncated sequence of weights,
namely w = (w1, . . . , wH), has a known distribution. This distribution is the
Generalised Dirichlet Distribution (GDD; Connor and Mosimann [1969], Ish-
waran and Zarepour [2000]) and has the following density function,

p(w | φ,µ) (4.2.9)

=

(
H−1∏
h=1

Γ(φh)

Γ(φhµh)Γ(φh(1− µh))

)
wφ1µ1−1

1 · · ·wφH−1µH−1−1
H−1

× wφH−1(1−µH−1)−1
H (1− w̃1)φ1(1−µ1)−φ2 · · · (1− w̃H−2)φH−2(1−µH−2)−(φH−1),

with w̃k =
∑k

h=1wh. This distribution is conjugate with the multinomial distri-
bution, which simplifies the design of an algorithm for posterior sampling. The
posterior distribution of w under the GDD can be sampled via stick-breaking
with updated parameters. This leads to simple calculations in the case GDPH
with constant parameters when we want to sample from the posterior of φ and
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µ, encouraging the use of parsimonious models. Discussion of this point con-
tinues in Section 4.4.

Other useful results may be obtained when considering a random trunca-
tion level for the GDP (see Muliere and Tardella [1998]). Consider the GDP
with (vh)h≥1 being independent and identically distributed Beta random vari-
ables with parameters (φµ, φ(1− µ)). We define the following random discrete
probability measure

Gε =
Hε∑
h=1

whδθh +Rεδθ0 (4.2.10)

where thewhs follow the usual stick-breaking construction, i.e.,wh = vh
∏

r<h(1−
vr);

Hε = inf

{
H ∈ N :

H∑
h=1

wh > 1− ε

}
;

Rε = 1−
Hε∑
h=1

wh =
Hε∏
h=1

(1− vh);

and θ0 is a random variable with distribution G0 that is independent of (vh)h≥1

and (θh)h≥1. Using similar arguments as for Lemma 2 in Muliere and Tardella
[1998], one can verify that the truncated random discrete probability measure
Gε converges weakly to the random discrete probability measure G, with re-
spect to the Prohorov metric, as ε → 0. A fundamental role in the definition
(4.2.10) is played by the truncation level Hε. In fact, knowing the distribution
of the random variable Hε allows us to sample Gε as close to G as we wish. In
case G follows a GDP, it can be shown that Hε converges in distribution to a
Gaussian random variable, as ε tends to 0. This follows by a direct application
of the Central Limit Theorem for renewal processes. An extended description
of the latter result is in Appendix C.2.

4.3 Dependent GDP

Recalling the definition of the GDP in (4.2.1), a realisation from a GDP is an al-
most surely discrete probability measure. While the discreteness ofGmay seem
unappealing, the use of such objects as random prior distributions is common
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in BNP, such as when dealing with density estimation. The most famous exam-
ple is the DPM, which results from convolving a density kernel parameterised
by some quantity with a random prior distribution that is distributed accord-
ing to a DP. One may adopt an equivalent strategy using a GDP. The resulting
model is represented by the following hierarchy:

y1, . . . , yn | G
iid∼

∫
f(yi | θ)dG(θ) (4.3.1)

G | φ,µ, G0 ∼ GDP(φ,µ, G0),

where the quantities φ = {φh}∞h=1 and µ = {µh}∞h=1 require the specification
of suitable hyperprior distributions. According to the hierarchical formulation
(4.3.1), the resulting sampling model is equivalent to an infinite mixture model
with weights constructed as in (4.2.2).

Using a similar argument to the one presented in MacEachern [1999] and
MacEachern [2000], the model in (4.3.1) can be enriched when covariates are
available, assuming the observations are generated by a collection of infinite
mixture models indexed by the covariate space and sharing hyperparameters.
We achieve this result by modifying the GDP in such a way that the sequence
{wh}∞h=1 is a function of the covariates. Given the parameterisation of the Beta
distribution that we used as the prior for the sequence {vh}∞h=1, we can ex-
press the expectations of the latter quantities as functions of the covariates. We
call the resulting process the Dependent GDP (DGDP). More specifically, for a
generic point x ∈ X , where X is the covariate space, a sample from DGDP is

Gx =
∞∑
h=1

wh,xδθh ,

where {θh}∞h=1
iid∼ G0, w1,x = v1,x and

wh,x = vh,x
∏
r<h

(1− vr,x), h = 2, 3, . . .

Each vh,x is independently distributed following a Beta(vh,x | φhµh(x), φh(1 −
µh(x))), where µh(·) is a random mean function mapping into the set (0, 1). Us-
ing the DGDP, the hierarchical model in (4.3.1) can be rewritten as
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y1, . . . , yn | Gx1 , . . . , Gxn
ind∼

∫
f(yi | θ)dGxi(θ) (4.3.2)

Gx1 , . . . , Gxn | φ,µ(·), G0
ind∼ DGDP(φ,µ(xi), G0),

where φ = {φh}∞h=1 and µ(·) = {µh(·)}∞h=1. In case X is a dense set, each yi

is associated with an individual random measure, i.e. Gxi . If X is not dense,
then there may be ties in the vector (x1, . . . , xn), which leads to ties in the corre-
sponding random measures (Gx1 , . . . , Gxn), i.e. groups of observations having
the same covariates share the same random measure. Furthermore, it is triv-
ial to generalise the DGDP to the case with non-common location parameters,
which can be obtained substituting G0 with a stochastic process indexed by
x ∈ X .

A key aspect of the construction above is the infinite sequence of random
functions {µh(·)}∞h=1, which incorporates the dependence of the random mea-
sures on the covariates and the association between random measures indexed
by different covariate values in X . One way to evaluate the dependence be-
tween random distributions is by considering a measurable set A ∈ A, two
locations x, x′ ∈ X , and the covariance C[Gx(A), Gx′(A)]. Considering location-
specific mean functions and precisions, the covariance is equal to

C[Gx(A), Gx′(A)] = (1−G0(A))G0(A)E

[
∞∑
h=1

wh,xwh,x′

]
,

which converts to V[Gx(A)] when x = x′ (compare to (4.2.3)). Assuming a con-
stant mean function and precision across locations simplifies the calculations,
as it was the case with such an assumption for the moments of the GDP. In
particular, considering {µh(·)}∞h=1 = µ(·) and {φh}∞h=1 = φ allows one to write

E

[
∞∑
h=1

wh,xwh,x′

]
=

E[vxvx′ ]

E[vx] + E[vx′ ]− E[vxvx′ ]
,

where vx is a Beta random variable with parameters (φµ(x), φ(1− µ(x))).
Hatjispyros et al. [2015] argued that another convenient way to learn about

similarities among to dependent random measures is to look at the distance be-
tween the infinite mixture models induced by two random measures indexed
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at two different locations in the covariate space. We apply this to two ran-
dom measures distributed according to a DGDP. In particular, defining fx(y) =∫
f(y | θ)dGx(θ) and fx′(y) =

∫
f(y | θ)dGx′(θ) to be two sampling mixture

models indexed at x, x′ ∈ X , respectively, with G· ∼ DGDP(φ,µ(·)), the ex-
pected L2-distance (denoted ‖·‖2) between fx(y) and fx′(y) is given by

E[‖fx(y)− fx′(y)‖2] = (a− b)E

[
∞∑
h=1

(wh,x − wh,x′)2

]
,

where a = E
[∫
f(y | θh)2dy

]
and b = E

[∫
f(y | θh)f(y | θj)dy

]
. The latter equa-

tion shows that using covariate-dependent weights allows one to set mixture
models to be arbitrarily close, despite the fact that the mixture models share
common locations. This could be an argument in favour of using a stochastic
process with only the weights indexed by the covariates.

Using the same approach we employed for calculating the moments of the
GDP and assuming {φh}∞h=1 = φ and {µh(·)}∞h=1 = µ(·), we can write

E

[
∞∑
h=1

(wh,x − wh,x′)2

]
= (4.3.3)

E[v2
x]

2E[vx]− E[v2
x]

+
E[v2

x′ ]

2E[vx′ ]− E[v2
x′ ]
− 2E[vxvx′ ]

E[vx] + E[vx′ ]− E[vxvx′ ]
.

We can derive expressions for the latter expectations for different choices of µ(·)
and φ. We can gain some insight into the distance measure represented by the
previous equation by assuming

µ(x) =
exp(xµ)

1 + exp(xµ)
,

which is the usual link function for logistic regression. We consider x = {0, 1}
for simplicity and evaluate the expectation in (4.3.3) for different values of µ and
φ. The results are shown in Figure 4.5. We note that as φ tends to infinity, the
DGDP defined for this example becomes the Logit stick-breaking process intro-
duced in Ren et al. [2011]. Similarly, assuming µ(·) to be a Probit regression and
letting φ tend to infinity leads the DGDP to become the Probit stick-breaking
process introduced in Rodriguez and Dunson [2011].
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4.4 Posterior Inference via MCMC

In this section, we discuss posterior inference under the DGDP mixture model.
We use the blocked Gibbs sampler presented by Ishwaran and James [2001],
which provides an approximate inference based on the process in (4.2.8). An
alternative approach, based on the slice sampler described by Walker [2007], is
presented in Appendix C.3. In practice, the latter is equivalent to blocked Gibbs
sampler but involves a random truncation of the GDP. Another possibility for
carrying out posterior inference for the DGDP is via the retrospective sampler
of Papaspiliopoulos and Roberts [2008]. Additionally, the result in Equation
(4.2.4) makes it possible to design a Gibbs algorithm for sampling the underly-
ing partition of the observations, if the DGDP has non-common locations across
different levels of the covariates.
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Consider the following parameterisation of the DGDP mixture model in
(4.3.2)

yi | θi ∼ f(yi | θi)

θi | Gxi ∼ Gxi =
∞∑
h=1

wh,xδθh

Gxi | φ, µ(·), G0 ∼ DGDP(φ, µ(xi), G0)

φ, µ(·), G0 ∼ g(φ)q(µ(·))r(G0),

where, for i = 1, . . . , n, yi represents the response variable, xi is a covariate, and
θi is the individual-specific parameter. We also introduce the latent indicator si
that takes positive integer values, with si = h indicating θi = θh.

The main assumption for performing inference using the blocked Gibbs al-
gorithm is that

Gx ≈ Gx,H =
H∑
h=1

wh,xδθh ,

whereGx,H is constructed as the truncated GDP for each observed level x. Once
the approximating process is assumed and an appropriate truncation level H is
set, the following steps are necessary for posterior inference.

i) Resample si, for i = 1, . . . , n. After the approximation of the process to a
finite number of atoms, resampling is based on

Pr[si = h | ·] ∝ wh,xif(yi | θh), for h = 1, . . . , H.

ii) Resample θh, for h = 1, . . . , H . Given the latent assignment variables s1, . . . , sn,
we have a number of independent models characterised by model-specific
parameters. Specifically, the full conditional densities can be written as

p(θh | ·) ∝ g0(θh)
∏

{i:si=h}

f(yi | θh), for h = 1, . . . , H,

where g0(·) is the density function of G0. If the set {i : si = h} is empty for
any h, sample from G0 in this step.

iii) Resample wh,x, for h = 1, . . . , H and all observed x in the data set. This step
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comes from the fact that for a specific covariate value x, the joint distribu-
tionw1,x, . . . , wH,x follows the GDD, which is conjugate to the multinomial
distribution and can be sampled using a stick-breaking procedure with

vh,x | · ∼ Beta

vh,x | φµ(x) +
∑
{i:xi=x}

(I(si = h)),

φ(1− µ(x)) +
∑
{i:xi=x}

(I(si > h))

 ,

for h = 1, . . . , H .

iv) Resample φ, µ(·). We consider resampling φ and µ(·) when these are con-
stant across locations. The extension to location-specific parameters is
straightforward. This step of the algorithm depends largely on the type
of problem considered, particularly for µ(·). The step involves sampling
from

p(φ, µ(·) | ·) ∝
∏
x

p(wx | φ, µ(·))p(φ, µ(·)),

where the density of the weights associated with different locations comes
from the GDD in equation (4.2.9), modified for constant parameters.

v) Resample G0. This step depends on the nature of the problem under con-
sideration. It is only needed when G0 is not known or, more commonly,
when its parameters are unknown.

4.5 Applications

4.5.1 Acute Lymphoblastic Leukaemia and Dyslipidemia

Childhood Acute Lymphoblastic Leukaemia (ALL) is a cancer that affects the
production of blood cells. The bone marrow produces an excess of lymphoblasts,
which are immature white blood cells. Children affected by ALL are currently
treated with combinations of chemotherapies, and the drug regimens include
a class of steroids called glucocorticoids, such as dexamethasone. While this
therapy has improved cure rates for patients, it is associated with a number of
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side effects. One adverse side effect is osteonecrosis, a disease that is associ-
ated with reduced blood flow to bones and joints, leading to bone cell death
and possible fractures. The pathogenesis of osteonecrosis and its relationship
with treatments for childhood ALL are described by Kawedia et al. [2011]. In
particular, poor metabolism of the glucocorticoids included in the treatment of
ALL may lead to this disease. The association between these steroids and the
risk of osteonecrosis is thought to be through the glucocorticoid’s effect on lipid
levels. The effect leads to an increase in the size of lipocytes (fat cells) and sub-
sequent marrow ischemia and apoptosis. These complications often result in
bone necrosis, pain, and inability to use the joint.

Recent studies have shown that other drugs that are part of ALL therapy,
such as asparaginase, may lead to osteonecrosis by a different mechanism than
that of steroids. The objective of this analysis is to model the change of lipid
measures over time (in particular triglycerides) during ALL therapy as a func-
tion of a biomarker of the pharmacological activity of asparaginase. We use al-
bumin level as this biomarker, since higher asparaginase activity leads to lower
albumin levels.

This study includes n = 198 ALL patients who have been classified by clini-
cians into two risk groups based on expected outcome. Children in the low-risk
group (LR) have a better chance of cure than children in the standard/high-
risk group (SHR). Factors at baseline that determine a patient’s risk group are
age (younger children tend to have better outcomes than older children), initial
white blood cell (WBC) count (very high counts require more intensive treat-
ment), sex (females have a somewhat greater chance of cure than males), race
(Caucasian children tend to have better outcomes), and subtype of the disease,
to name a few. The data set includes 93 ALL patients in the SHR group and 105
patients in the LR group.

Because the LR group tends to have a better prognosis than the SHR group,
the treatment regimens for the risk groups differ. The SHR group receives
more intensive therapy than the LR group. The different treatment regimens
include different doses and schedules of dexamethasone and asparaginase, the
two drugs that are associated with risk of osteonecrosis. The analysis consid-
ers each patient’s measurements of triglycerides (mg/dL) and albumin (g/dL)
from blood samples at baseline (t = 0), week 7 (t = 7), week 8 (t = 8), and week
12 (t = T = 12) of treatment. Patients received both drugs at the start of weeks
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7 and 8 but not at baseline or week 12.
We denote the log2 transformation of the triglyceride level for the i-th patient

at time t by yi,t. We assume the following model for the triglyceride trajectories,
yi = (yi,0, . . . , yi,T ),

yi | Bi,Ωi ∼MNormalT


yi,0

...
yi,T

∣∣∣∣∣∣∣∣
xi,0βi,0

...
xi,Tβi,T

,Ωi

 ,

where MNormalT (· | ·, ·) denotes the T−dimensional Normal distribution,Bi =

(βi,0, . . . ,βi,T ) is a matrix of coefficients, and Xi = (xi,0, . . . ,xi,T ) is a matrix of
time-dependent covariates that includes the measured albumin levels at differ-
ent times, along with an intercept. Ωi is the variance-covariance matrix, and we
assume

Ωi = σ2
iH(ρi).

As in Quintana et al. [2015a], we specify the matrix H(ρi) such that the covari-
ance C[yi,t, yi,s] = σ2

i ρ
|t−s|
i . This choice induces a correlation structure among

the elements in yi that is equivalent to one implied by an autoregressive model
with time lag of one.

We account for possible heterogeneity between patients by assuming a pri-
ori that the trajectories come from a mixture of distributions. We also assume
different but correlated mixing measures for patients belonging to the two risk
groups (LR and SHR). This assumption allows us to control for information
implied by being in a certain risk group, making more realistic the linear de-
pendence of the triglyceride values on the albumin levels. The latter argument
is similar to one described in Papageorgiou et al. [2015]. We formalise this as-
sumption through the following hierarchical structure for the patient-specific
parameters.

(Bi, σ
2
i , ρi) | Gzi ∼ Gzi

Gzi | φ, µ(·), G0 ∼ DGDP(φ, µ(zi), G0),

where zi = (1, zi) and zi is equal to 1 if the i-th patient belongs to the LR and
0 if SHR. We assume that the hypermean for the stick-breaking sequence is a
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Logistic regression on zi,

µ(zi) =
exp(ziη)

1 + exp(ziη)
.

The regression parameters in the hypermean function are multivariate Normal,

η ∼MNormal2(η | 02, σ
2
ηI2),

where 0N is a N-dimensional vector of zeros, and IN denotes the identity matrix
of dimension N × N . Finally, we specify a gamma hyperprior distribution for
the precision of the DGDP

φ ∼ Gamma(φ | aφ, bφ)

and the following for the prior mean measure of the process,

G0 = U(σ | aσ, bσ)U(ρ | 0, 1)
T∏
t=0

MNormalT (βt | 02, σ
2
βI2).

We fix σ2
β and σ2

γ to 100; set σ2
η , aφ, and bφ to 1; and let aσ and bσ equal 0 and 5,

respectively. We run the blocked Gibbs sampler discussed in Section 4.4 with
truncation level H = 30 and 50 000 iterations after a burnin period of 30 000,
saving every tenth sample.

The expectations of the posterior predictive distributions for the triglyc-
erides are depicted in Figure 4.6, showing different trajectories corresponding
to different risk groups and different values of albumin at baseline and weeks
7, 8, and 12. Overall, the SHR-specific trajectories are higher than those cor-
responding to the LR patients with the same albumin levels. The predicted
triglyceride values at each time point, as a function of albumin, indicate a nega-
tive relationship between albumin and triglyceride levels for both risk groups.
This relationship suggests that a reduction in the asparaginase activity, which
is in turn related to an increase in albumin level, leads to a reduction in triglyc-
erides in both risk groups, with a stronger effect among the SHR patients.

The largest difference in the values of the triglyceride trajectories is observed
between the t = 7 and t = 8, when patients receive both the glucocorticoid and
asparaginase. Figure 4.7 shows marginal density estimates of the distributions
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FIGURE 4.6: Posterior predictive mean triglycerides for the two
risk groups and different albumin values at baseline and weeks 7,

8, and 12.

of triglycerides at week 8, where the different type of lines and colours corre-
spond to the legend in Figure 4.6. Figure 4.7 shows the posterior predictive
densities for week 8 triglycerides, which are mixtures with weights that vary
across risk group. The curves corresponding to the SHR group assign high
probability to a mixture component located around 9 log2(mg/dl). This com-
ponent is centred at a relatively high value and leads to the differences seen in
the expectations observed in Figure 4.6. The other apparent mixture component
has a roughly equivalent location for both risk groups and is centred around 6.5
log2(mg/dl). This observation suggests that the risk group-specific differences
in triglyceride values evident at week 8 are driven by a subset of the SHR pa-
tients, whereas the other SHR patients show similar triglyceride values as the
LR risk group. An equivalent, although less evident, pattern can be seen in the
marginal density distributions for the triglycerides at weeks t = 7 and 12.

In Figure 4.8, we show the posterior marginal densities for the effects of al-
bumin on triglycerides at each of the four time points under analysis (i.e., the



4.5. Applications 121

4 6 8 10 12

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

ỹ8 | y

FIGURE 4.7: Marginal posterior predictive densities of triglyc-
erides at week 8. The different lines correspond to the legend in

Figure 4.6.

time and group-specific regression coefficients). While the relationship between
albumin and triglycerides at baseline (top-left panel) seems similar for the risk
groups, the densities diverge at t = 7. That is, after the start of treatment, a
group of patients (mostly SHR patients) shows a stronger negative relation be-
tween albumin and triglycerides, while a number of other patients (mostly be-
longing to the LR group) exhibit a weaker negative effect of albumin on triglyc-
erides. This pattern also appears at week 8, although the albumin effect is less
negative than at week 7 for the majority of LR patients. At week 12, the major-
ity of the mass corresponding to the albumin effect on triglycerides among the
LR patients is centred a little to the right of zero. The effect for the SHR group
at t = 12, however, remains bimodal, with the left-hand component remaining
strongly negative and the right-hand component looking much like the density
corresponding to the majority of the LR patients. These observations suggest
that a subset of the SHR patients may be at higher risk of osteonecrosis, perhaps
because of greater sensitivity to the drugs.
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FIGURE 4.8: Posterior densities of the regression coefficients re-
lated to albumin at times t = 0, 7, 8, and 12. Red lines indicate the
posterior densities for SHR patients, and black lines the posterior

densities for LR patients.

We compare the performance of the DGDP mixture model described above
for the data analysis in this section with those obtainable with related and more
standard alternatives. The first competitor model is a parametric mixed-effect
model, which is specified by a sampling model equivalent to the one in (4.5.1)
where the individual effects, namely Bi and Ωi, have been replaced with pa-
rameters shared by all patients. In addition, information regarding the risk
groups is included via random effects within the model of the mean. Borrow-
ing strength across groups is favoured by a suitable hierarchical structure. The
second competitor is a DDP mixture model which is specified as the DGDP
mixture model above, except for the distribution of the mixing weights which
follows marginally (for each value of z) a DP with precision parameter equal
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α(z) = exp(zη).
The competitor models are assessed using Pseudo Bayes Factor (PSBF, Geisser

and Eddy [1979], Gelfand and Dey [1994]). When two models, Ml and Mr, are
considered, the PSBF is defined as

PSBF(Ml,Mr) =

∏n
i=1 pMl

(yi | Y−i)∏n
i=1 pMr(yi | Y−i)

,

where pMl
(yi | Y−i) and pMr(yi | Y−i) are posterior predictive densities of yi

under Ml and Mr, including the information of Y−i, the matrix containing all
observations except for yi. All these posterior predictive densities, often called
conditional predictive ordinates, have been approximated using MCMC sam-
ples. PSBF is preferred to the common Bayes factor or posterior Bayes factor
(Aitkin [1991]) because less sensitive to prior choices and more simple from a
computational point of view.

The results of the comparison show evidence in favour of proposed DGDP
mixture model against the two competitors models. In particular, log(PSBF) of
the DGDP mixture model and the mixed-effect model is equal to 39.16. Instead,
the same quantity calculated using the DGDP and DDP mixture models is equal
to 10.85.

4.5.2 Ofsted Evaluation of London Primary Schools

In the UK, state maintained schools are periodically evaluated by the Office
for Standards in Education, Children’s Services and Skills (Ofsted), using pub-
licly available data about each school as well as proper inspections in order to
gather evidence about the quality of the schools. Ofsted assesses the overall
quality of the teaching, achievements of the pupils and, more generally, the
level of each school’s environment. The main summary result of the Ofsted
analysis is the overall effectiveness, which is a four-point ordinal scale where
1 indicates an outstanding quality, 2 a good quality, 3 the need of improve-
ments and 4 inadequacy. More details about Ofsted, the inspections and evalu-
ation methods can be found at www.gov.uk/governemnt/publications/
school-inspection-handbook-from-september-2015.

In this analysis we focus on London primary schools and we control for

www.gov.uk/governemnt/publications/school-inspection-handbook-from-september-2015
www.gov.uk/governemnt/publications/school-inspection-handbook-from-september-2015
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possible indicators of a school quality among the most common characteris-
tics of the schools. These include the percentage of missed sessions (authorised
and non authorised absences), the percentage of pupils with a Special Educa-
tion Needs (SEN) statement or on School Action Plus (SAP), the percentage of
pupils with English not as first language, the percentage of pupils eligible for
free school meals, the pupils-teachers ratio and religious denomination. All
data can be downloaded from www.gov.uk.

The most intuitive way to model similar observations includes ordinal re-
gression of the Ofsted scores over the school features. This allows one to deter-
mine which among the school characteristics is a predictor of the school quality
and the marginal impact of each predictor. Similar regression models involve
the use of continuous latent variables and cut-offs that relate the latent vari-
able to a discrete random variable and give the probability of each score (see
Albert and Chib [1993] and Chib and Greenberg [1998]). The typical choice for
the distribution of the latent variable is the Gaussian that often incorporates
a regression model on the mean when covariates are available. However, the
Normal distribution can be overly restrictive in many situations and for this
reason mixture models are often employed (examples are Chib and Greenberg
[2010],Gill and Casella [2009] and Kottas et al. [2005]). We follow the idea of
employing a mixture model for the latent variable. More specifically, in our
analysis we would like to model the observations as coming from Normal lin-
ear regressions that have random effects and variances distributed according to
nonparametric mixtures that vary across boroughs, allowing for spatial depen-
dence.

With these motivations we introduce a spatial version of DGDP and we use
it as a prior for the intercept and variance of a Normal density kernel. We also
include a regression model of the school-specific characteristics on the mean
of the Normal kernel. This is a latent variable representing the school quality
which, when discretised according to fixed thresholds, gives the likelihood of
the Ofsted evaluations. Let us define the vector y1, . . . , yn containing ordered
univariate observations corresponding to the Ofsted evaluation for each of the
schools. Obviously, yi ∈ {1, . . . , C}, for i = 1, . . . , n, with {1, . . . , C} being the

www.gov.uk
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ordered set of possible scores. As mentioned previously, we model similar ob-
servations using a set of latent variables, z1, . . . , zn, such that:

yi = 1 if zi ≤ γ1,

yi = c if γk−1 < zi ≤ γc, for c = 2, . . . , C − 1

yi = C if zi > γC−1,

with {γ1, . . . , γC−1} being a set of cutoffs. In order to achieve our desiderata, we
assume the latent variables to be distributed as a DGDP mixture of regressions
as follows

zi | Gli ∼
∫

Normal(zi | β0 + xiβ
′, σ2)dGli(β0, σ

2)

Gli | φ, µ(·), G0 ∼ DGDP(φ, µ(li), G0),

where li ∈ {1, . . . , L} indicates the borough of the i−th school, while xi is the
collection of individual features for the same school. A similar idea for mod-
elling the latent variable with covariate-dependent weights has been proposed
by DeYoreo and Kottas [2014], where in order to include covariate information
in the mixture weights the authors model jointly the covariates and the latent
variable and derive the conditional distribution of the latent variable given the
covariates. The idea presented here, however, is closer to the one in Gill and
Casella [2009], but we specify a nonparametric prior also for the variance of the
latent variable to allow more flexibility in the latent variable distribution.

In this setting, the choice of fixing the cut-offs γ1, . . . , γK−1 to arbitrary values
allows identification of all parameters and does not prevent the approximation
of all possible distributions of the latent variable. Details about both identi-
fiability (in the sense of the likelihood) and the flexibility of mixture of latent
distributions with fixed cutoffs can be found in DeYoreo and Kottas [2014] and
Kottas et al. [2005]. In this chapter the robustness of the model to the choice
of the cut-offs have been studied without finding relevant differences for the
tested choices of values.

φ, µ(·), G0 represent the parameters of the DGDP. First, we assume the pre-
cision parameter of the DGDP follows

φ ∼ Gamma(φ | aφ, bφ).
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A crucial role is played by the µ(·). This has to incorporate the spatial informa-
tion within the process. We assume

µ(li) =
exp(α1 + α2ηli)

1 + exp(α1 + α2ηli)
,

which is the usual logistic regression function. We model η = (η1 . . . , ηL)

η ∼MNormalL(η | 0L,M−1
η ).

In the latter equation, 0L is a vector with components all equal to 0 and length
L andMη is a precision matrix that governs the spatial correlation. We assume
Mη = τA + IL, with τ being a positive scalar, IL is an identity matrix with
dimension L×L andA is an L×L matrix with entries al,l equal to the number
of neighbours of borough l and al,l′ equal to 0 if boroughs l and l′ are not neigh-
bours and −1 otherwise. The idea of using a Gaussian Markov Random Field
(Fernández and Green [2002]) follows a similar objective to the one described
in Papageorgiou et al. [2015].

Finally, we assume the center probability measure, G0, to be the product of
a Normal distribution with mean 0 and variance σ2

β0
and a Gamma distribution

with parameters equal to aσ2 and bσ2 . We also assume a Normal distribution
with 0 mean and σ2

β variance for each regression coefficient in β.
For the data analysis, we set the following hyperparameters: aφ = 1, bφ =

1, σ2
β = σ2

β0
= 100, aσ2 = bσ2 = 0.1. We select α1 = −1, α2 = 2.5 and τ = 2 from a

grid of values minimising the misclassification prediction error. Although there
are four possible Ofsted grades, we aggregate the worst two levels, so that in
our example C = 3. We then fix γ1 = −1 and γ2 = 1. The number of school-
specific features is D = 6 and the number of schools that have been considered
in our analysis is n = 1043. The covariates entering the regression model of the
latent variable have been centred (except for the indicator of religious denom-
ination which is binary, equal to 1 when a religious denomination is present).
We run the Blocked Gibbs sampler algorithm discussed in Section 4.4, using
truncation level H = 20 and 100 000 iterations, after a burnin period of 10 000.
We save every tenth sample from the MCMC.

We begin the analysis of the results by looking at the posterior distribution
of β0, which is the intercept of the latent variable distribution. This distribution,
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depicted in Figure 4.9, is a collection of mixture distributions, whose weights
are indexed to the 32 boroughs of London and are correlated. The intercept,
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FIGURE 4.9: Posterior density of the β0. Different colours corre-
spond to different borough locations.

together with the variance of the latent variable (which has been modelled sim-
ilarly by a collection of correlated mixture distributions), characterises the dis-
tribution of the latent variable and consequently the baseline probabilities of
the different Ofsted evaluations in different boroughs.

In Figure 4.10, we show the probability of having poor, good, and outstand-
ing quality schools across different boroughs. We set all covariates equal to
their mean, except for the indicator of religious denomination which is set equal
to zero (i.e. no religious denomination). This figure highlights the presence
of three areas of London that show similar patterns. These are the boroughs
belonging to inner London, and, among those of outer London, the western
and eastern boroughs. The most evident pattern is that the western and in-
ner London boroughs tend to have higher probability of having outstanding
schools and consequently lower probability for poor quality schools. Further-
more, within the three areas defined above it also is possible to notice similar
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FIGURE 4.10: Posterior predictive probability for poor quality
(top-left panel), good quality (top-right panel) and outstanding
quality (bottom-left panel) for school with individual features set

to observed mean values and no religious denomination.

probabilities among neighbouring boroughs (e.g. Croydon, Bromley and Bexley
or Enfield and Haringey).

Once a flexible baseline probability is estimated, we check the effect of school
features on the overall quality of the schools. These effects are estimated through
the vector β, which captures systematic changes in the probabilities of observ-
ing different Ofsted scores explained by variations in the school-specific covari-
ates. In Figure 4.11, we show the posterior distributions of the regression coeffi-
cients for the different covariates, together with the limits of 95% and 68% per-
cent credible intervals (blue dashed lines and violet dashed lines, respectively).
The covariate with the strongest effect is the percentage of pupils eligible for
free school meals. The respective posterior distribution has mean around -0.1,
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which implies a negative impact on the school quality. This variable is gener-
ally considered as an indicator of the social class of the pupils. Another variable
that has a similar impact on the quality is the percentage of pupils which do not
speak English as first language. This covariate negatively affects the probability
of high Ofsted score, but the relative posterior distribution has larger variance
and the 95% credible interval contains 0, although the 68% credible interval
does not. Finally, having a religious denomination positively affects the quality,
with a posterior mean around 0.1. Also for this coefficient the 95% confidence
interval contains 0 and the 68% credible interval does not. All other variables
have negligible effect on the outcome.

We compare the DGDP mixture model of this application with a similar
DDP mixture model for which the precision parameter of the stick-breaking is
specified as α(li) = exp(α1 + α2ηli). For the competitor model we set τ = 1,
α1 = −1 and α2 = 2.5, using an equivalent strategy as the one employed for
the DGDP. All other specifications are equivalent for both models. As for the
previous examples, competitors models are assessed using PSBF. The result of
log(PSBF)= 2.33 shows similar performance of the competitor models, but in
favour of the proposed approach.

4.6 Discussion

In this chapter we introduce the DGDP, a stochastic process over discrete ran-
dom probability measures. The DGDP has GDP distributed marginals. This
process directly generalises the famous DDP, which instead has DP distributed
marginals. The generalisation allows more flexibility at the marginal level, as
well as better interpretability of the parameters. The DGDP can be constructed
using sequences of correlated stick-breaking weights indexed by covariate lev-
els. Random functions of the covariate levels can be included in the means of
the Beta random variables included in the stick-breaking process. When Probit
or Logit regression models are employed, the DGDP can be seen as a stochastic
version of the Probit stick-breaking or Logit stick-breaking processes, respec-
tively.

The first part of this chapter describes the main properties of the GDP and
introduces new distributional properties of samples generated by realisations
from a DGDP, along with results about random truncation of the process. In the
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second part, we define the DGDP and present different criteria for assessing the
strength of dependence between DGDP marginals that are indexed by different
points in the covariate space. We discuss different MCMC algorithms for the
posterior inference of DGDP mixture models and give details for two of them
(one contained in Appendix C.3). The last part of the chapter illustrates two ap-
plications of the DGDP. First, we use the the DGDP for modelling longitudinal
data to assess the effect of asparaginase activity on triglyceride levels when the
former is used to treat patients affected by ALL. Inference is based on albumin
levels, which served as surrogate for asparaginase activity. The second appli-
cation includes the study of the effect of various school features on the Ofsted
evaluation of effectiveness. We control for the borough in which each school
is located and for the spatial dependence across neighbouring boroughs using
the DGDP.
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FIGURE 4.11: Posterior density of the regression coefficients rela-
tive to the percentage of missed sessions, percentage of pupils for
which English is not the first language, percentage of pupils eligi-
ble for free school meals, percentage of pupils under SEN or SAP
programs, pupils-teachers ratio and religious denomination. Blue
dashed lines indicate 95% credible intervals, while violet dashed

lines indicate 68% credible intervals.
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Chapter 5

Dynamic nonparametric Probit
model for correlated binary
variables

We present a semi-parametric model for modelling time-evolving vectors of correlated
binary variables. This relies on the introduction of continuous latent variables which
are discretised to obtain the sampling model. We assume the distribution of the latent
variables to be an infinite mixture of distributions with weights that vary across some
covariate space and with mean and covariance matrix being component-specific. This
distribution includes also an autoregressive term that captures the time evolution of
the latent variables and therefore of the binary observations. The proposed method is
motivated by the study of LUTS observed at subsequent attendance visits. In particular,
we evaluate the temporal dependence among the symptoms controlling for the presence
of UTI. The results show that the most recurrent symptoms are stress incontinence and
voiding, which are also the most related with presence of pyuria, the best biomarker
of infections. Furthermore, we observe that the correlation among symptoms changes
over time. The pair of symptoms which appear to be the most correlated are pain and
voiding. The material included in this chapter is based on the work in Barcella et al.
[2016c].

5.1 Introduction

LUTS represent a group of signs which appear as the consequence of a number
of possible diseases. These symptoms are commonly classified into four cate-
gories: urgency, stress incontinence, voiding and pain symptoms. LUTS affect
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a very large proportion of the population, especially elderly people, and they
contribute significantly to the costs of the health systems. In fact, the diseases
that lead to the presence of LUTS can often become chronic, as such requiring
expensive and time consuming treatments (see Section 2.1 for more details). A
relevant example is represented by UTI.

In this chapter we investigate the temporal evolution of LUTS as recorded at
subsequent clinic attendance visits. We do so accounting for covariates and for
correlations among symptoms. In particular, we are interested in controlling
for the presence of pyuria in the urine, which is the best biomarker for UTI, in
order to obtain robust estimates of the parameters which govern the temporal
evolution of the symptoms. For this purpose we analyse a dataset recording
the presence of at least one symptom within the four categories of LUTS via
binary indicators in 1015 patients at 4 different attendance visits (the full list
of symptoms is in Table 3.1). Data have been collected at the Lower Urinary
Tract Service Clinic (Whittington Hospital, London, UK). Furthermore, at each
attendance visit indicators for the presence of pyuria have been also recorded
together with the age of the patients.

From a statistical point of view, the task above can be framed in terms of
modelling correlated binary variables, where the correlation is among symp-
toms. The problem of modelling correlated binary variables is frequent in ap-
plications and a number of different solutions have been proposed in the liter-
ature. One of the most common strategies involves the introduction of contin-
uous latent variables, which are related to the binary variables via thresholds.
The success of this class of models is given by the possibility of including com-
plex structures in the latent variables whose distributions are chosen to facilitate
posterior inference. Examples are represented by the Probit and Logit models
(Albert and Chib [1993]), for which multivariate extension are available (Ash-
ford and Sowden [1970], Chen [2004], Chib and Greenberg [1998], O’Brien and
Dunson [2004]). In this chapter we focus on the Probit model, which involves
Gaussian latent variables discretised at 0: positive and negative values of the
latent variables correspond to 1 and 0, respectively, at binary level.

When covariates are available, they can be accommodated in the mean of
the latent variables using a simple linear regression, which facilitates the inter-
pretation of covariate effect. This simple structure can be generalised also when
the latent variable is multivariate, i.e. when the objective is to model vectors of
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binary variables. This can be achieved by imposing a seemingly unrelated re-
gressions (SUR, Zellner [1962]) structure on the latent variables. SUR involves
a set of univariate regression models with distinct parameters, but correlated
error structure. Once again, time dependence can be incorporated in the model
through autoregressive components within the latent variable distributions. An
example for univariate binary time series is the work by Giardina et al. [2011].

Recently, assumptions on the latent variables distribution have been relaxed
by introducing nonparametric distributions (see Jara et al. [2007]). These often
involve DPM models, for which a review is presented in Section 1.3. DPM of
latent distributions have been employed to model vectors of binary variables
(Jara et al. [2007]) and univariate binary time series (Di Lucca et al. [2013]). In
this setting covariates can be included as fixed regression effects (as shown in
Jara et al. [2007]) in all mixture components favouring the interpretability of the
regression coefficients or within the weights of the mixture components mod-
elling jointly the latent variables and the covariates (see DeYoreo et al. [2015]).
Other related solutions can be found for multicategorical discrete outcomes,
e.g. Kottas et al. [2005] and DeYoreo and Kottas [2014]. A relevant contribution
for this chapter is in DeYoreo and Kottas [2015], where a model for time se-
ries of univariate ordinal categorical variables is proposed including covariate
information through an appropriate model and capturing the time evolution
through a time-evolving version of the DDP.

In this work we propose a model for LUTS which employs latent variables,
whose distributions are assumed to be semi-parametric. Risk factors for LUTS
and a lagged latent components are included in the latent variables distribution
via a SUR model, where the different levels of SUR are indexed to the different
symptoms. Intercepts of the regressions and the covariance matrix included in
the joint distribution of the error terms are assumed to be component-specific
in an infinite mixture model where the mixture weights vary (and are corre-
lated) across different pyuria states and for first visits and follow-ups. This
produces the effect of a non-linear regression of the pyuria and visit indicators
in the mean and covariance matrix of the latent variables. This also allows us
to achieve more robust estimates for the other linear regression coefficients in-
cluded in the model, especially for the autoregressive coefficients, in a fashion
similar to what has been described by Papageorgiou et al. [2015]. The results
of the data analysis highlight the different behaviours of the symptoms, both
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in terms of correlations with other symptoms and in terms of recurrence. A
relevant connection has been found between the presence of pyuria and the
probability of observing voiding symptoms, which in turn is highly correlated
with stress incontinence and pain symptoms. In addition, correlations between
pairs of symptoms do not seem constant for all patients and in some case they
are affected by the presence of pyuria.

The rest of the chapter is organised as follows. In Section 5.2 we present
the detail of the proposed model, while in Section 5.3 we present a MCMC
algorithm for sampling from the posterior distributions of the parameters. The
results of the application on the LUTS data set are shown in Section 5.4. We
conclude with a discussion in Section 5.5.

5.2 A semi-parametric model for binary variables

We consider a study involving N patients, for which a D−dimensional binary
vector is recorded at T subsequent time points. We denote the collection of all
binary records with Y , an array having dimensions N ×D×T . Let yi,d,t and yi,t
denote a single entry and a row of binary variables of Y for patient i at time t,
respectively.

5.2.1 Dynamic multivariate Probit model

We model Y introducing an array of correlated continuous latent variables,
which we denote with Z, having entries zi,d,t ∈ R and such that:

yi,d,t = 1 if and only if zi,d,t ≥ 0.

Given the condition above, we can write the likelihood of Y as

Pr(Y | Θ) =

∫ ∏
{yi,d,t=1}

I[0,+∞)(zi,d,t)
∏

{yi,d,t=0}

I(−∞,0)(zi,d,t)F (dZ | Θ),

where F (Z | Θ) is the joint distribution of Z, parameterised by Θ.
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We recall that T represents the time dimension of Y and we assume for the
density of F (Z | Θ), which we denote by f(Z | Θ), the following factorisation

f(Z | Θ) =
N∏
i=1

{
f(zi,1 | Θi,1)

T∏
t=2

f(zi,t | zi,t−1,Θi,t)

}
, (5.2.1)

where zi,t = (zi,1,t, . . . , zi,D,t), i.e. the row ofZ corresponding to the i−th patient
at time t. The latter equation imposes a Markov structure to the distribution of
the latent variables, which directly determines the distribution of Y .

A computationally convenient assumption is to assume f(·) to be a mul-
tivariate Normal distribution. This has a number of implications. First, at any
given time t, the probability of observing yi,t can be calculated as an integral un-
der a multivariate Normal distribution, as in multivariate Probit models. Sec-
ondly, the Markov structure assumed in (5.2.1) can be easily accommodated
within the model using appropriate autoregressive terms. Furthermore, co-
variates can be easily included in the model. Finally, the Normal assumption
simplifies the calculations, allowing the use of standard algorithms such as the
one proposed by Albert and Chib [1993] for posterior inference.

LetX denote an array of dimensionN×P×T , containing records of P time-
dependent covariates. We write xi,t to indicate the row of X corresponding to
the i−th patient at the t−th time. Recalling (5.2.1), we specify the following
distribution for the latent variable at time 1:

f(zi,1 | Θi,1 = (αi,1,Λ,Σi,1)) = MNormalD(zi,1 | αi,1 + Λx′i,1,Σi,1), (5.2.2)

where MNormalD(·) is theD−dimensional Normal distribution,αi,1 is a vector
of intercepts of length equal to D and Λ is a D × P matrix of regression coeffi-
cients. Equivalently, we specify the following transition density for t = 2, . . . , T :

f(zi,t | zi,t−1,Θi,t = (αi,t,Λ,Γ,Σi,t)) = MNormalD(zi,t | αi,t+Λx′i,t+Γz′i,t−1,Σi,t),

(5.2.3)
where Γ is a D ×D matrix containing the autoregressive coefficients.

The model described above is connected with SUR models in that at a cer-
tain time point, given all parameters and lagged latent components, the distri-
butions above implyD distinct regressions on the means of the latent variables.
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The latter are linked together via the error distributions governed by the covari-
ance matrix Σi,t.

Λ and Γ are assumed to be constant across time. This simplifies interpretabil-
ity of the coefficients. In particular, simple Bayesian hypothesis testing on tem-
poral dependence among the binary variables can be performed and this is an
important requirement for our motivating application. However, extensions in-
cluding temporal dependent versions of the matrices of coefficients Λt and Γt

can be easily specified.

5.2.2 Nonparametric prior model

The quantities αi,t and Σi,t characterise the baseline probability of observing
yi,t. We want to employ a prior distribution which is flexible enough to capture
possible heterogeneity across patients at different time point.

Let us introduce an additional array of covariates, U . This is an N × R × T
array, where ui,t is a row of U which encodes the information about the i−th
patient at time t, such as treatment arm, risk group and other common indica-
tors which may evolve overtime. This is not uncommon in biostatistics where
clinicians classify patients into different classes of risk for developing a specific
disease based on clinical history and characteristics. We consider the case in
whichU contains binary indicators. Consequently, the yi,t’s are implicitly clus-
tered according to the various combinations of the binary covariates contained
in ui,t.

We include via a flexible model the information contained in U in the base-
line probability of yi,t. Using an approach similar to the one employed in
mixed-effect modelling, we assume each group defined by U to have a specific
random prior distribution as follows

(αi,t,Σi,t) | Gui,t ∼ Gui,t ,

where Gui,t is a discrete distribution of the form

Gui,t =
∞∑
h=1

wh,ui,tδαh,Σh , (5.2.4)
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where, for each ui,t,
∑

hwh,ui,t = 1, and δa denotes a unit point mass at a. The
use of such random prior distribution implies that the latent variable density
can be written as

f(zi,t | zi,t−1,Λ,Γ, Gui,t)

=

∫
f(zi,t | zi,t−1,Λ,Γ,αi,t,Σi,t)dGui,t(αi,t,Σi,t)

=
∞∑
h=1

wh,ui,tMNormalD(zi,t | αh + Λx′i,t + Γz′i,t−1,Σh),

which is an infinite location-scale mixture of multivariate Normal distributions,
having weights which vary according to the components in ui,t.

Specifying a prior of Gui,t is equivalent to find suitable prior distributions
for the collection of the weights, wh,ui,t , and for the locations, αh and Σh.

Starting from the weights, we need a stochastic process prior indexed at
various levels of ui,t, whose realisations are distributions over an infinite di-
mensional simplex. Furthermore, it is desirable to borrow strength across the
different groups of observations implied by U . Different solutions for these
tasks have been developed in the field of RPMx and a survey of the major alter-
natives is in Section 1.4.

In Chapter 4 we have introduced the Dependent Generalised Dirichlet Pro-
cess (DGDP), a process over collections of distributions which can be consid-
ered as an extension of the DDP. We opt for using the same idea of the DGDP
also in this chapter, but we discuss alternative solutions in the next paragraphs.
DGDP assumes a particular stick-breaking process prior for the weights of (5.2.4)
where w1,ui,t = v1,ui,t and

wh,ui,t = vh,ui,t
∏
l<h

(1− vl,ui,t), for h = 2, 3, . . .

with

v1,ui,t , v2,ui,t , . . . | µ, φ ∼ Beta(vh,ui,t | φlogit−1(µui,t), φ(1− logit−1(µui,t))),

for all combination of ui,t. In the latter equation, φ is a positive parameter andµ
is vector of real parameters. The almost sure discreteness of DGDP realisations
imposes a clustering structure of the attendance visits: observations sharing
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the same value of α∗h and Σ∗h can be interpreted as a cluster. Compared to DDP
(which will in principle produce an equivalent clustering effect of attendance
visits), the DGDP assumes extra flexibility to the distribution of the partition of
the observations especially in terms of number and size of clusters as a conse-
quence of the richer parameterisation of the GDP compared to the traditional
DP (see Section 4.2.3).

Independently from the generation of the weights, the locations, which are
shared among all Gui,t for different values of ui,t, are generated as follows. We
first assume

αh ∼MNormalD(mD, σ
2
αID), for h = 1, 2, . . .

Σ∗h requires likelihood identifiability conditions imposed by the thresholding of
the latent variables. In order to avoid over-restrictive constraints on the covari-
ance matrix, we follow the works by Jara et al. [2007] and Pourahmadi [1999]
where the conditional variances are constrained. We write Σ∗−1

h = L∗
′

h IDL
∗
h,

where L∗h is a lower triangular matrix, with ones on the diagonal and uncon-
strained values on the non-zero entries. Collecting these entries in the vector
ν∗h, which has Dν = D(D − 1)/2 components, we assume

νh ∼MNormalDν (mDν , σ
2
νIDν ), for h = 1, 2, . . .

In this chapter we assume shared locations for all ui,t, following the argument
discussed in Chapter 4. However, it is possible to extend this construction in-
cluding also covariate dependent locations. This requires the use of suitable
stochastic process priors indexed by the covariates.

5.2.3 Prior distribution specification

The model described above requires the specification of prior (and hyperprior)
distributions for the remaining unknown parameters. Let λd,p and γd,d′ denote
a single entry in matrix Λ and Γ respectively. We assume

λd,p
iid∼ Normal(λ | mλ, σ

2
λ)

γd,d′
iid∼ Normal(γ | mγ, σ

2
γ).
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The hyperprior distributions for the values of µ and φ are set as follows

µ ∼MNormalR(µ | mµ, σ
2
µIR)

φ ∼ Gamma(φ | aφ, bφ),

where the latter is a Gamma distribution with expectation aφ/bφ.

5.3 Posterior inference

Posterior inference can be performed using MCMC methods. For the model de-
scribed in Section 5.2, samples from posterior distribution of the parameters can
be approximated using a Metropolis-within-Gibbs algorithm. We summarise
below the main parts of the algorithm.

i) Resample Z given all other parameters. In the proposed model there are
N ×D × T latent variables, which can be resampled sequentially starting
at t = 1 using the algorithms for binary Probit models described in Albert
and Chib [1993] and Holmes and Held [2006].

ii) Resample Λ given all other parameters. These parameters are shared by all
i = 1, . . . , N and t = 1, . . . , T and can be resampled directly from the full
conditionals.

iii) Resample Γ given all other parameters. These parameters are shared by all
i = 1, . . . , N and t = 2, . . . , T and can be resampled directly from the full
conditionals.

iv) Resample {(αi,t,Σi,t),∀i, t} given all other parameters. This step is based on a
finite truncation of the process in (5.2.4), that include only a large enough
number H of atoms, which we denote with GH

ui,t
. For details on the fi-

nite approximation of (5.2.4) see Section 4.2.4. Then, the full conditional
follows:

Pr((αi,t,Σi,t) = (αh,Σh) | . . .) ∝ wh,ui,tf(zi,t | α∗h,Σ∗h, . . .), for h = 1, . . . , H.

v) Resample GH
ui,t

for all ui,t given all other parameters. This step consists of re-
sampling the locations {(αh,Σh), h = 1, . . . , H} and weights {wh,ui,t , h =
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1, . . . , H and all ui,t}. For location parameters, full conditionals can be de-
rived using the likelihood of the observations associated to each location
and the prior distribution ofαh and Σh (for the latter update see Jara et al.
[2007]). Resampling the weights uses the joint distribution of the weights
(marginally for each ui,t) which follows a GDD (Connor and Mosimann
[1969]). We augment the parameters space with indicators si,t taking value
in {1, . . . , H} telling to which location of GH

ui,t
the observation i, t is as-

signed in step iv). This produces a conjugate update using a Multinomial
distribution for si,t.

vi) Resample (µ, φ) given all other parameters. This step requires a Metropolis
scheme for sampling from the following full conditional

p(µ, φ | . . .) ∝
∏
u

p(wu | µ, φ)p(µ, φ),

where wu = (w1,u, . . . , wH,u) and p(wu | µ, φ) is the GDD.

The algorithm described above is based on the truncation of the prior distri-
bution in (5.2.4) up to H atoms. Different strategies have been discussed in the
literature to determine a value of H in case the random distribution follows a
DP or more general processes. Examples are the works of Ohlssen et al. [2007]
and Ishwaran and Zarepour [2000]. A simple strategy that can be adapted to
the case of DGDP consists in checking that the expectation and variance of the
weight wH,u are adequate for the values of µ and φ explored by the MCMC.

An alternative approach for posterior sampling which does not involve an
approximation of the nonparametric prior can be designed based on the slice
sampling algorithm presented in Kalli et al. [2011] and Walker [2007] and de-
scribed in Appendix C.3.

5.4 Application: Lower Urinary Tract Symptoms

In this section we present background information, exploratory analysis and
results of the application of the model described in the previous sections for the
study of the evolution of LUTS.
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5.4.1 Dataset

The dataset employed in the analysis contains information on 1015 female pa-
tients affected by LUTS, who have attended at four subsequent visits the Lower
Urinary Tract Service Clinic (Whittington Hospital, London, UK). At each at-
tendance visit the following information is collected: the date of the visit, the
age of the patient, the presence of urgency symptoms (binary), presence of pain
symptoms (binary), presence of stress incontinence symptoms (binary), and the
count of white blood cells (WBC) in sample of urine.

The most frequently observed symptom is urgency, which affects 72.32%
of the patients at the first attendance visit and in 61.77% at follow-up visits.
The least frequent symptom is stress incontinence, which is observed in 37.14%
of first visits and in 34.93% of follow-ups. Pain and voiding symptoms are
observed in 54.68% and 40.00% of the first visits and 44.83% and 34.93% of the
follow-ups, respectively.

WBC counts are used to assess the presence of pyuria, which is considered
the best biomarker for UTI (see Section 2.1). While evidence have been collected
that relates WBC count larger than or equal to one to the presence of infection,
the threshold of ten WBC in a urine sample is the sensitivity of common dip-
stick tests used to assess the presence of pyuria. Following these thresholds we
generate two binary indicators from WBC and we refer to them as mild pyuria
in the case of 1 ≤WBC ≤ 9, and to severe pyuria for WBC ≥ 10. These indica-
tors can be interpreted in terms of severity of the infection: in fact, large WBC
counts indicate a high degree of inflammation which may lead to complica-
tions. Mild pyuria has been observed in 17.86% of the attendance visits, while
severe pyuria has been recorded in 18.74% of the cases. Considering the first
attendance visits exclusively, these become 18.62% and 21.97%, respectively.

The average number of days between attendance visits is approximately 91
(standard deviation equal to 143.22), where the shortest period is observed be-
tween the first two visits with an average of 85 days (standard deviation equal
to 147.58) and the longest one is recorded between the last two visits with an
average of 95 days (standard deviation equal to 135.07). Finally, the age of the
patients at first attendance visits is on average 54, with a sample standard de-
viation of 17.27.
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In terms of treatment regimes, all patients have been treated with a combi-
nation of antimuscarinic and bladder retaining after the first attendance visits
until the fourth one. Furthermore, patients diagnosed with mild and severe
pyuria have been treated with antibiotics.

5.4.2 Notation and choice of hyperparameters

We denote the array containing information on the presence of the symptoms
as Y . Given the information above this has dimension 1015 × 4 × 4 (corre-
sponding to the number of patients, the number of symptoms and the number
of attendance visits, respectively), and contains binary observations. The symp-
toms appearing in a row yi,t of Y are abbreviated as U, P, S, and V, standing for
urgency, pain, stress incontinence and voiding symptoms, respectively. Conse-
quently, in the following sections the indexes d and d′ take value in {U,P, S,V}.

We denote with X the array containing information about the age of the
patients and the time in days from the first attendance visits of all subsequent
visits. In this application we only consider the age at the first attendance visits
instead of the age when each attendance visit takes place: in fact, the latter can
be derived using the time between visits. Therefore, X has dimension 1015 ×
2×4 corresponding to the number of patients, the number of covariates and the
number of attendance visits. Across attendance visits, the first covariate (Age)
remains constant, while the second one (Days) has entries equal to zero for the
first attendance visits. For each attendance visit, the two covariates have been
centred and rescaled to have mean and variance equal to 0 and 1, respectively.

The indicators for mild and severe pyuria together with an indicator for
first attendance visits and intercepts have been included in U , which is then an
array with dimension 1015× 4× 4. Consequently, considering the row vectors
ui,t of U and all possible values they can take, we can identify six groups of
attendance visits which are all observed in our data set.

BothX andU are used as covariates, however their effect on the latent vari-
ables are different. In particular, the effect of U is non-linear via the intercepts
α and the covariance matrix Σ. Differently, the entries of X , similarly to the
autoregressive terms, affect the latent variables linearly. The decision of which
covariates to assign to U and to X has been driven by the specific application.
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In particular, U induces a natural clustering of the observations based on the
levels of the UTI and first attendance visits and follow-ups.

We set the following hyperparameter values: mα = 0D (where 0a denotes
a vector with a components all equal to zero); mν = 0Dν ; mλ = mγ = mµ = 0;
σ2
α = σ2

ν = σ2
λ = σ2

γ = 100, σ2
µ = 1 and aφ = bφ = 1. We use the algorithm

described in Section 5.3 for performing posterior inference. We initialise the al-
gorithm drawing random values from the prior distribution of each parameter
and we run the algorithm for 100 000 iterations, with a burning period of 20 000,
and we save every tenth sample. Convergence of MCMC has been assessed us-
ing trace and autocorrelation plots.

5.4.3 Results

Before discussing the results of the application, we notice that the marginal
probability of observing a certain symptom is equal to

Pr(yi,d,t = 1 | αi,d,t,λd,γd, σi,d,t, zi,t−1) = Φ

(
αi,d,t + λdx

′
i,t + γdz

′
i,t−1

σi,d,t

)
,

where λd and γd are the d-th rows of Λ and Γ, respectively. This shows that αi,d,t
controls the baseline probability of the symptom d at visit t, together with σi,d,t,
the square root of the d-th diagonal component of Σi,t. When the covariates
xi,t and zi,t have components equal to zero, the sign of αi,d,t determines if the
probability of observing the symptoms is larger than 0.5, which happens when
the parameter is positive. The dependence among symptoms can be evaluated
computing the conditional distributions of components of the latent vector, i.e.
p(zi,d,t | zi,−d,t, . . .), where zi,−d,t is obtained removing zi,d,t from zi,d,t.

We discuss posterior inference for the parameters of the proposed model
distinguishing between the individual effects, αi,t and Σi,t, and the shared ef-
fects (i.e. shared among all patients), Λ and Γ.

Individual effects

We begin by looking at the posterior distribution of the vector αi,t. Its discrete
prior distribution induces ties across different patients and times.

Figure 5.1 shows the posterior distribution of the intercepts for the patients
at first attendance visits for different levels of pyuria. The difference between
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FIGURE 5.1: Posterior density of αi,d,t, d = {U,P, S,V}, when t is
the first attendance visit, for different pyuria levels.

the posterior densities for the patients without pyuria and those with mild or
severe pyuria is evident. On the other hand, densities corresponding to pa-
tients with mild or severe pyuria levels are similar. In particular, the presence
of pyuria (either mild or sever) leads to higher posterior mean for the latent
variables associated with pain and voiding symptoms. The opposite happens
for urgency and stress incontinence symptoms, for which the presence of pyuria
reduces the mean of the associated latent variables.

Recalling that the sign of the αi,d,t controls the probability of a symptom
being larger or smaller than 0.5, we notice that for pain and voiding symptoms
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the presence of pyuria changes the sign of the posterior expectation of αi,d,t. The
largest effect of pyuria is observed for voiding symptoms.

−2 −1 0 1

0
2

4
6

8

No pyuria
Mild pyuria
Severe pyuria

−2 −1 0 1 2

0
2

4
6

8

αi,U,t={2,3,4} αi,P,t={2,3,4}

−2 −1 0 1

0
2

4
6

8

−2 −1 0 1 2

0
2

4
6

αi,S,t={2,3,4} αi,V,t={2,3,4}

FIGURE 5.2: Posterior density of αi,d,t, d = {U,P, S,V}, and t =
{2, 3, 4} for different pyuria levels.

For all attendance visits after the first one the posterior densities are pre-
sented in Figure 5.2. Recall that patients after the first attendance visit have all
been treated for LUTS. In this case the posterior expectations of the αi,d,t’s are
all negative for the cases with no and mild pyuria, which show almost identi-
cal posterior distributions. Differently, the presence of severe pyuria strongly
affects the posterior densities of αi,d,t: positive marginal posterior expectations
are observed for urgency, pain and voiding symptoms.
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The other individual coefficients estimated in the proposed formulation are
the entries of the covariance matrix, i.e. Σi,t. Our focus is on computing the cor-
relations’ coefficients from Σi,t. Similarly to αi,t, the posterior distributions of
these coefficients are indexed by the values of ui,t. Given that we are including
in our model four symptoms, we have six pairwise correlations, which vary
across different pyuria levels and between first attendance visits and follow-
ups. The posterior density estimates for each correlation are reported in Figure
5.3.
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FIGURE 5.3: Posterior densities of the correlation between differ-
ent pairs of latent variables (corresponding to different symptoms)
at first attendance visit (left panel) and at follow-up visits (right

panel), for different levels of pyuria.

We divide in two different panels the correlations estimated for first atten-
dance visits (left panel) and for follow-up visits (right panel), while different
colours correspond to different pyuria levels. On the y-axis, the correlations
between symptoms are abbreviated using the letters indicating the symptoms.

The covariate that has the strongest impact on these posterior distributions
is the indicator of first attendance visit. This can be seen by comparing the
densities reported on the left panel with those on the right panel in Figure 5.3.
Obviously, part of the difference may be due to the fact that correlations for
follow-up visits are estimated using a larger number of observations compared
to those at first attendance visits. In some case the posterior expectation of the
correlations move toward zero after the first visit attendance (S & U and S & P).



5.4. Application: Lower Urinary Tract Symptoms 149

In the other cases, we notice a positive increase of the correlation values (P & U
and V & P).

The proposed model allows identifying clusters of attendance visits having
different correlation patterns between pairs of symptoms. In addition, these
patterns can vary across different pyuria levels. This is the case of S & P where
a group of observations with no pyuria shows negative correlations at first at-
tendance visit, or the case of S & U where a group of visits characterised by
severe pyuria shows higher correlation values at follow-up attendance visits.

Shared effects

We now discuss the estimated posterior distributions of the parameters shared
by all patients. The posterior distribution of Γ is parametric because we want
to preserve simple interpretation of the marginal effects.

TABLE 5.1: Summary of the posterior distributions of γd,d′ , with
d = {U,P, S, V } referring to the latent dependent variables of the
d-th symptoms and d′ = {U,P, S, V } to the latent independent

variables of the d′-th symptoms.

mean sd 2.5% 25% 50% 75% 97.5%
γU,U 0.74 0.04 0.67 0.72 0.74 0.76 0.82
γU,P 0.02 0.03 -0.04 -0.00 0.02 0.04 0.08
γU,S 0.10 0.02 0.06 0.09 0.10 0.12 0.15
γU,V -0.09 0.02 -0.12 -0.10 -0.09 -0.07 -0.06

γP,U -0.03 0.03 -0.09 -0.05 -0.03 -0.01 0.03
γP,P 0.70 0.03 0.65 0.69 0.70 0.72 0.76
γP,S -0.06 0.02 -0.10 -0.08 -0.06 -0.04 -0.01
γP,V 0.01 0.01 -0.02 -0.00 0.01 0.02 0.04

γS,U -0.03 0.03 -0.10 -0.05 -0.03 -0.01 0.04
γS,P 0.03 0.04 -0.04 0.00 0.03 0.05 0.10
γS,S 0.84 0.04 0.78 0.82 0.84 0.87 0.93
γS,V 0.05 0.02 0.01 0.03 0.05 0.06 0.08

γV,U -0.13 0.04 -0.23 -0.16 -0.13 -0.10 -0.06
γV,P -0.01 0.05 -0.10 -0.05 -0.02 0.01 0.09
γV,S 0.05 0.03 -0.01 0.03 0.05 0.06 0.10
γV,V 0.78 0.03 0.71 0.76 0.78 0.80 0.83
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In Table 5.1, posterior summaries for each entry of the matrix Γ have been
reported. These parameters capture the autoregressive effects of the latent vari-
ables for each symptom and are assumed to be time-invariant. We also assume
that the latent variable of each symptom at a specific attendance visit is affected
by the values of the latent variables of all symptoms at the previous attendance
visit. In this way we want to control for the temporal interaction among symp-
toms.

We begin considering the autoregressive effects, i.e. the parameters gov-
erning the dependence between the latent variables at subsequent time points,
namely γU,U , γP,P , γS,S and γV,V . The posterior distributions of these parameters
are concentrated on positive values and the largest posterior expectations are
estimated for stress incontinence and voiding symptoms. The latter symptoms
can be considered as the most recurrent ones. Pain symptoms instead appear
to be the least recurrent having the smallest posterior mean. All posterior 95%
credible intervals for these parameters do not contain zero.

On the contrary, cross-effects, i.e. the parameters governing the dependence
between different symptoms at subsequent attendance visits, are often centred
around zero (considering posterior 95% credible intervals). Exceptions are γU,V ,
γV,U , γS,P , which show a negative effect, and γU,S and γS,V , which show positive
effect.

TABLE 5.2: Summary of the posterior distributions of λd,m, with
d = {U,P, S, V } referring to the symptoms and m = {Age,Days}

to different covariates.

mean sd 2.5% 25% 50% 75% 97.5%
λU, Age 0.07 0.02 0.03 0.06 0.07 0.09 0.12
λP, Age -0.13 0.02 -0.18 -0.15 -0.13 -0.12 -0.09
λS, Age 0.02 0.03 -0.04 -0.00 0.02 0.04 0.07
λV, Age -0.00 0.03 -0.07 -0.02 -0.00 0.02 0.06

λU, Days 0.06 0.03 0.01 0.04 0.06 0.08 0.12
λP, Days 0.06 0.02 0.01 0.04 0.06 0.07 0.10
λS, Days 0.06 0.03 -0.00 0.04 0.06 0.08 0.11
λV, Days 0.05 0.04 -0.02 0.02 0.05 0.07 0.12

Table 5.2 reports posterior summaries for the regression coefficients of Age
and Days. The former has a positive effect on the probability of observing ur-
gency symptoms, while negative effect on the probability of observing pain
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symptoms. Differently from these two cases, posterior 95% credible intervals
for stress incontinence and voiding symptoms are centred around zero.

The period in days from the first visit attendance increases the probability of
observing urgency and pain symptoms while it has no evident effect on stress
incontinence and voiding symptoms as 95% credible intervals contain the value
zero.

Predictive inference

We summarise the main results described in previous sections in Figure 5.4.
This depicts different trajectories of the probability of observing the different
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FIGURE 5.4: Marginal predictive probability for the four cate-
gories of symptoms at four subsequent attendance visits. We con-
sider patients having for all four visits either no pyuria (solid
lines) or mild pyuria (dashed lines) or severe pyuria (dotted lines).
Colours correspond to different categories of symptoms: black
lines correspond to urgency symptoms, red lines to pain, blue

lines to stress incontinence and violet lines to voiding.
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categories of symptoms over time, using marginal predictive distributions. We
derive numerically these predictive distributions over the trajectories fixing Age
equal to the mean observed value, as well as the mean value of Days. We then
explore the probabilities for symptoms in three types of patients: no pyuria,
mild pyuria and severe pyuria for all four the attendance visits.

The trajectories for all symptoms are decreasing over time, the only ex-
ception being voiding symptoms in patients with no pyuria where after a de-
crease in probability at the second attendance visit, the probability of observing
symptoms slightly increase during the last two attendance visits. The group
of symptoms which is mostly affected by the presence of pyuria is voiding,
followed by pain. Both urgency and stress incontinence symptoms are less af-
fected by the presence of pyuria. In particular, while in general both mild and
severe pyuria increase the probability of observing stress incontinence symp-
toms, mild pyuria decreases the probability of observing urgency symptoms
and severe pyuria instead initially decreases the probability of observing ur-
gency symptoms compared to the case of no pyuria, but this probability in-
creases over the subsequent attendance visits, relatively to no pyuria patients.

We conclude by saying that although the predictive distributions show de-
creasing trajectories for almost all symptoms, it is hard to conclude on the ef-
fectiveness of the treatments administered to the patients. This is because this
study include a single treatment arm and it has only been designed to collect
information about dependence among symptoms across time and the relation
of symptoms with the degrees of infection.

5.5 Discussion

In this chapter we propose a method for modelling vectors of correlated binary
variables evolving over time. The motivation for this work comes from a study
of time evolving records of LUTS and connected risk factors. Similar to a tradi-
tional Probit model, we assume the binary variables to be distributed as a dis-
cretised version of continuous latent variables. We assumed the latent variables
to be generated from an infinite mixture model, with weights that vary across
a covariate space. This approach is different from the one proposed by DeY-
oreo and Kottas [2015], where the dependence from the covariates is obtained
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assuming covariates to be random variables. Moreover, the time evolution of
the symptoms is modelled using autoregressive and cross-effect terms.

This specification induces very flexible distributions for vectors of binary
variables while allowing the user to maintain clear interpretation of the param-
eters of interest. Since the resulting model is a mixture of Gaussian distribu-
tions, covariates can be accommodated in the mean of each mixture component
as regression terms. The same applies also for all autoregressive components.

At the latent variable level, the proposed model can be considered a non-
parametric version of a mixed-effect model, where the group specific random
effects are the mixing distributions and the groups are implied by different com-
binations of the binary covariates, similarly to ANOVA models. The choice of
the stochastic process prior for the mixing distribution should reflect the type
of information we want to include from covariates and the available prior infor-
mation. In this work we choose the DGDP, for its flexibility (as demonstrated
in Chapter 4) and the possibility of including an ANOVA model in the stick-
breaking process of the weights. However, when the covariates are continu-
ous the use of DGDP leads inevitably to overparameterised models, suggest-
ing the use of alternative stochastic process priors. Examples are the Probit
stick-breaking (Rodriguez and Dunson [2011]), Logit stick-breaking (Ren et al.
[2011]) and Kernel stick-breaking (Dunson and Park [2008]) processes.

The results of the data analysis show that the different levels of pyuria
strongly affect the probability of observing the symptoms, particularly void-
ing symptoms which seem to be the most probable group of symptoms to ac-
tivate in case of infection. The effect of pyuria on the symptoms correlations is
instead less clear, with some exception. In order to evaluate the temporal de-
pendence among symptoms we summarise the posterior distribution of the au-
toregressive coefficients and we find that the most recurrent symptoms appear
to be stress incontinence and voiding. We also evaluate cross-effects among
symptoms occurring at subsequent times, finding strong interactions between
urgency and voiding symptoms.

Finally, the proposed model formulation has been introduced for dealing
with vectors of binary variables observed for a number of times which is equal
for all individuals, as LUTS data set contains patients visited in four occasions.
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However, the same model formulation can be easily extended to include se-
quences of binary vectors with heterogenous number of components across pa-
tients.
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Chapter 6

Final remarks

We summarise the main contributions of this work to the literature of covariate depen-
dent random measures and mixture modelling. We highlight for each of the previous
chapters the adopted modelling strategy and we discuss the motivating applications
and results. Then, we conclude by presenting open research questions for RPMx when
mixed types of covariate are employed and when the objective is to assess relevant co-
variates. Finally, a possible extension to DGDP is briefly discussed.

6.1 Summary of the main contributions

This work focuses on covariate dependent random probability measures from
a modelling perspective. The literature on this field has rapidly grown over
the last two decades thanks to the development of suitable stochastic processes
over random discrete probability measures indexed by some covariate space
which could be used to specify infinite mixture models with covariate depen-
dent mixing probabilities. The first contributions to this field can be found in
MacEachern [1999] and [2000] (see also Cifarelli and Regazzini [1978]), which
extended the DP to include covariate information in the precision parameter
and in the centre measure, which could be then used to specify infinite mix-
ture models. On the other hand, increasing research efforts have been focusing
on the problem of including covariate information in a mixture model focusing
on enriching the model over the partitions of the observations, i.e. when the
random probability measure used to specify the mixture model is integrated
out. This idea was first developed in the seminal paper of Müller et al. [1996],
where the objective was to specify a flexible non-linear regression model using
mixtures of distributions with covariate dependent weights.



156 Chapter 6. Final remarks

In Chapter 1 we introduce the main ideas of Bayesian inference and BNP,
reviewing in details the DP, which is the main stochastic process over discrete
probability measures used in BNP, and its main application to mixture mod-
elling. In the same chapter we also discuss the relevant literature about covari-
ate dependent random measures and RPMx, highlighting the relation between
these ideas.

Chapter 2 introduces the first contribution of this work which consists of an
adaptation of RPMx to deal with zero-inflated observations, extending ZIP and
ZINB linear regressions to the non-linear case. In particular, we specify a RPMx
where observations are grouped in terms of both response and covariates. The
sampling distribution within each cluster of the response is assumed to be a
zero-inflated distribution. This modelling strategy is motivated by a data set
containing counts of WBC in urine samples of patients suffering from LUTS.
The aim is to infer the relation between LUTS and WBC counts and predict the
WBC levels, which are the the best biomarker for UTI. So, the proposed strategy
models jointly the LUTS and WBC levels as a DPM in order to flexibly estimate
the conditional distribution of the response given the covariates.

Chapter 3 extends the class of RPMx to perform cluster specific variable
selection. In particular, response and covariates are modelled jointly and the
distribution employed for the response includes a linear regression of the co-
variates in the parameter governing the mean. We assume a spike and slab
prior distribution for the regression coefficients within each cluster. The results
of the variable selection are summarised by conditioning on a point estimate of
the partition of the observations. The data set motivating this modelling strat-
egy involves patients affected by UTI (i.e. WBC≥ 1) and suffering from LUTS.
The idea is to stratify the patients in different groups containing individuals
with similar levels of WBC and similar LUTS profiles and to investigate which
symptoms are connected with the various degrees of the infection.

In the remaining chapters we focus on strategies to include covariates di-
rectly into the random probability measures. Chapter 4 is dedicated to intro-
duce a novel stochastic process whose realisations are covariate dependent ran-
dom probability measures which marginally (for each level of the covariates)
follow a GDP. The latter is a generalisation of the DP that employs a richer
parameterisation and shows appealing property in terms of implied partition
of the observations. In particular, the parameters can control simultaneously
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the size and the number of the clusters, resulting in a more flexible partition.
The covariates are included within the GDP parameterising the Beta random
variables of the stick-breaking process of the weights in terms of means and
precisions and including regressions within those means. We apply the result-
ing process, namely DGDP, to a data set involving pediatric patients affected by
ALL in order to study the effect of asparginase treatment to the risk of develop-
ing osteonecrosis. The latter is controlled by the levels of triglycerides during
the continuation period of the treatment. We also apply the DGDP to assess the
most relevant determinants of Ofsted evaluations of primary schools in Lon-
don. In particular, we specified a DGDP that could capture borough specific
effects (treated as confounders) as well as the dependence across neighbouring
boroughs.

In Chapter 5 we extend the latent variables models for correlated binary
variables (such as the Probit and Logit models), assuming the latent distribu-
tion to be a collection of infinite mixture of SUR models with Gaussian errors
and mixture weights that could vary across a covariate space. We use SUR
models in order to account for the time evolution of the latent variables includ-
ing autoregressive terms. The cluster-specific parameters are assumed to be the
intercepts of the latent variables and the covariance matrices. In this way, the
use of covariate dependent random measures implicitly defines a dual regres-
sion, i.e. a regression on the parameters governing the mean and the covariance
of the distribution. Indeed, the covariates could affect both the mean levels of
the latent variables and the covariance. The proposed model is motivated by
a data set containing LUTS observations along with covariates at four subse-
quent attendance visits. The objective is to improve the understanding about
the evolution of LUTS through time, assessing which class of symptoms is more
recalcitrant as well as investigating the correlation among symptoms at each at-
tendance visit and across attendance visits.

6.2 Open research questions

In this section we outline some open research questions which can be relevant in
deepening the understanding and applicability of covariate dependent mixture
models.
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6.2.1 RPMx with mixed covariates

All RPMx models proposed in the literature, included those presented in this
work, can in principle include all types of covariates. When covariates are in-
cluded in the prior distribution over the partition of observations this can be
done by adapting the similarity function in (1.4.3). In particular, when the simi-
larity function is chosen to be the joint density of the covariates in a cluster (e.g.
in PR models), this requires the inclusion of suitable distributions within the
likelihood.

Although the use of density functions to capture the similarity within the
covariates is well established, the literature does not present practical consider-
ations on which types of covariates tend to dominate the clustering structure of
the observations. The latter point becomes even more relevant in light of one
of the main drawbacks of the RPMx constructed by modelling the covariates,
that is the likelihood of the joint model may be dominated by the information
contained within the covariates becoming insensitive to the patterns in the re-
sponse variable. In addition, the literature does not present a way to include
ordinal discrete covariates. Although this should not be problematic, it includes
an extra-level of complexity given that very often discrete distributions for ordi-
nal categorical variables are represented by discretising continuous latent vari-
ables (often Gaussian).

When covariates are included directly into the random measure (in the con-
struction of the weights), there is no reason to think that different types of
covariates should affect differently the clustering of the observations. In this
setting problems arise when covariates are continuous. Indeed, methods like
DDP and DGDP lead to overparameterised models, where each observation is
equipped by a unique random probability measure. Also the PSBP, which in
principle does not suffer from the latter limitation, may encounter difficulties
in estimating parameters in the parts of the covariate space where observations
are sparse.

6.2.2 Variable selection in RPMx

Variable selection in covariate dependent mixture models is an increasing area
of research, but the number of contributions is still relatively limited. For aug-
mented response models solutions are proposed for PPMx and PR. In these
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models the covariates are included within the prior probability over the parti-
tion of the observations, while the sampling models do not include covariates.
The role of the covariates is in favouring a priori observations presenting simi-
lar covariates to be assigned to the same cluster, i.e. to be included under the
same mixture component. This is often achieved by modelling jointly the re-
sponse variable y and the covariates X , reporting inference for the random
quantity y | X , which represents a (non-linear) regression model. Advantages
and drawbacks of modelling covariates jointly with the response are discussed
in Chapter 1.

In such a setting, one would expect that the role of the covariate would be
to identify clusters of observations having similar response values, while being
characterised also by similar covariates. Equivalently, from a variable selection
perspective, relevant covariates should be those relevant in separating the re-
sponse values in different groups. However, the variable selection techniques
introduced for these models select the covariates for their importance in identi-
fying the clustering structure of the observations characterised by response and
covariate values, this being a limitation of the available methodology.

We illustrate a consequence of the latter point with an example. Let consider
a data set containing a univariate response variable and three binary covari-
ates. We assume that the response, yi, with i = 1, . . . , n, is independent of the
covariates and generated according to a Normal distribution with mean and
variance equal to 5 and 1, respectively. Then, we assume one of the covariates,
x1,i, to be independent from the other covariates and generated according to a
Bernoulli with mean equal to 0.5. The remaining covariates, x2,i and x3,i, are
instead dependent. In particular, we assume that p(xi,3 = 1 | xi,2 = 1) = 0.8 and
p(xi,3 = 1 | xi,2 = 0) = 0.3. We generate xi,2 according to a Bernoulli with mean
equal 0.5. We fit the PR in (3.2.2) on the simulated data, including the modifi-
cation of the likelihood in (1.4.7) in order to perform variable selection. The rel-
evant posterior distributions for this discussion are in Figure 6.1. The posterior
distribution of the partition of the observations indicates that the configuration
of the partition of the observations with the highest posterior probability has
two clusters (top-left panel). These are inferred by the model to capture the ef-
fect of the interaction among the covariates. Indeed, neither the response nor
the covariates are generated from mixture of distributions, and additionally the
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FIGURE 6.1: Posterior distributions of the number of clusters, k,
(top-left panel) and of the inclusion probability of the covariates,
1− π1 (top-right panel), 1− π2 (bottom-left panel) and 1− π3 (bottom-

right panel).

response shows similar values in these clusters. The result of the variable selec-
tion, summarised by looking at the probabilities of covariate inclusion 1 − π1,
1− π2 and 1− π3, indicates that the second and third covariate are relevant for
the model (bottom panels). However, we know that this happens because of
the dependence between these two covariates.

An additional problem with these models arises when a regression model
is included in each cluster specific distribution of the response. In fact, both
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variable selection procedures for PR and PPMx remove the effect of the co-
variates on the partition of the observations, while the same covariates are still
present in the model. This problem is circumvented in the modelling strategy
proposed in Chapter 3. In that case, the outcome of the variable selection is
evaluated only in terms of the linear effects of the covariates on the mean of the
response in each cluster, after fixing a relevant configuration of the partition of
the observations according to some criteria.

Both the problems described above have been addressed by the PSBP, i.e.
when covariates are included in the weights of the random measure. For this
method the variable section is induced by the use of latent indicators (see (3.2.4))
which link the results of the selection in terms of clustering and of cluster-wise
linear regressions. However, results are often sensitive to the level of trunca-
tion. In particular, including a large number of components in the truncated
process, which in principle should lead to a better approximation of the authen-
tic nonparametric structure, the variable selection procedure tends to include a
larger number of covariates. Chung and Dunson [2009] stated that this arises
because covariates may become relevant for low probability components of the
covariate dependent mixture model, but this is not a desirable effect.

6.2.3 Extension to the DGDP

The DGDP has been introduced in details in Chapter 4, and demonstrated in
two real world applications. A possible extension is presented in Chapter 5
where we used a DGDP to model multiple longitudinal binary vectprs. This has
been done by including an additional dimension in the covariates correspond-
ing to the labels of each longitudinal series. For a similar applied problem, GDP
was applied in Rodriguez and Dunson [2014] to extend the framework of the
nested DP (Rodriguez et al. [2008]).

An additional extension of the GDP consists in letting the precision param-
eters to vary across the covariate space. This is common in the double-GLM
framework. The stick-breaking process in (4.2.2) then becomes

vh,x ∼ Beta(v | φ(x)µ(x), φ(x)(1− µ(x))),

so that similarly to µ(x), also φ(x) is a random function of x with codomain
being in the positive real numbers. A natural choice for φ(x) is exp(φ1 + φ2x).
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Appendix A

Appendix for Chapter 2

A.1 JAGS code for BNP-ZIP

We provide below the JAGS code for BNP-ZIP.

model{

C <- 10000 # Zero-trick (see Neelon et al, 2010)

for(i in 1:N) {

z[i] <- step(y[i] - 1) # Indicator function for y>0

lambda[i] <- lamj[g[i]] # Parameter for Poisson distribution

p.y[i] <- muj[g[i]] # Parameter for zero-inflation

##### ZIP model #####

pz.y[i] <- p.y[i]*(1 - exp(-lambda[i])) # Probability of y>0

ll[i] <- (1 - z[i]) * log(1 - pz.y[i]) + z[i] * (log(pz.y[i])

+ y[i] * log(lambda[i]) - lambda[i] - loggam(y[i] + 1)

- log(1 - exp(-lambda[i]))) # Log-likelihood

phs[i] <- -ll[i] + C # Zero-trick

zeros[i] ~ dpois(phs[i]) # “zero” is a vector with n zeros

##### Covariate model #####

for(p in 1:P) {

x[i,p] ~ dbern(phi[g[i],p])

}



164 Appendix A. Appendix for Chapter 2

g[i] ~ dcat(psi[]) # distribution over the cluster assignment

}

##### Within-cluster priors ######

for(clus in 1:K) {

muj[clus] ~ dbeta(1,1)I(0.01,0.99)

lamj[clus] ~ dgamma(1,1)

for(p in 1:P) {

phi[clus,p] ~ dbeta(1,1)I(0.01,0.99)

}

}

##### Dirichlet Process Prior #####

alpha ~ dgamma(1,1)

for(clus in 1:(K - 1)) {

V[clus] ~ dbeta(1,alpha)

}

psi[1] <- V[1] # Stick breaking

for(clus in 2:(K - 1)) {

psi[clus] <- V[clus] * (1 - V[clus-1]) * psi[clus-1] / V[clus-1]

}

psi[K] <- 1 - sum(psi[1:(K - 1)])

}

This uses a trick to code the Zero-Inflated Poisson model which was em-
ployed in the WinBUGS code of Neelon et al. [2010] (available at http://
people.musc.edu/~brn200/winbugs/).

http://people.musc.edu/~brn200/winbugs/
http://people.musc.edu/~brn200/winbugs/
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Appendix B

Appendix for Chapter 3

B.1 Posterior inference for RPMS

In this appendix we present the details of the updating steps of the Gibbs sam-
pler scheme adopted.

Membership Indicator

This step follows the updating Gibbs-type algorithm for DPM with non conju-
gate base measure in Neal [2000] called auxiliary parameter approach. Let first
define si to be the membership indicator for the observation i and s(i) to be the
vector of the membership indicator for the n observations but from which si is
removed. Let us also define k− to be the number of clusters when i is removed,
n−j for j = 1, . . . , k− to be the cardinality of the clusters when i is removed. Thus
the full conditional distribution for each indicator is:

p(si | s(i),β
∗, ζ∗,X,y, λ)

∝

{
njp(yi | xi,β∗j , λ)

∏D
d=1 p(xid | ζ∗jd) j = 1, . . . , k−

α
M
p(yi | xi,β∗m, λ)

∏D
d=1 p(xid | ζ∗md) j = k− + 1 and m = 1, . . . ,M

,

where (β∗m, ζ
∗
m) form = 1, . . . ,M are draws from the the base measure in (3.3.2).

Precision of the DP

In order to update the parameter α of the DP we need to introduce an additional
parameter u such that p(u | k, α) = Beta(α + 1, n) (see Escobar and West [1995]
for detailed explanation). We can sample from the full conditional:

p(α | u, k) = ξGamma(aα+k, bα− log(u))+(1−ξ)Gamma(aα+k−1, bα− log(u)),
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where ξ = (aα + k − 1)/(α1 + k − 1 + nbα − n log(u)).

Covariate Parameters

For the update of the parameters of the covariates, we work separately for each
of the D covariates within each of the k clusters. Thus the full conditional pos-
terior distributions are:

p(ζ∗jd | x∗jd) ∝
∏
i∈Sj

Bernoulli(xid | ζ∗jd)Beta(ζ∗jd | aζ , bζ)

ζ∗jd | · ∼ Beta

ζ∗jd | aζ +
∑
i∈Sj

xid, bζ −
∑
i∈Sj

xid + nj

 ,

for j = 1, . . . , k and d = 1, . . . , D.

Regression Coefficients

As for the case of the parameters of the covariates, we consider separately each
of the D covariates and each of the k clusters. It follows that:

p(β∗jd |X,y,β∗j(d)) ∝
∏
i∈Sj

Normal(yi | xi,β∗j , λ)[ωdrπδ0(β∗jd)+

(1− ωdrπ)Normal(β∗jd | md, τd)] =

=
∏
i∈Sj

ωdrπδ0(β∗jd)N(yi | xi,β∗j , λ)+

(1− ωdrπ)Normal(β∗jd | md, τd)Normal(yi | xi,β∗j , λ),

β∗j(d) is the vector β∗j where the dth component is removed. The first part of
the last equation will be 0 with some probability. Let us consider the second
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part of that equation. This is proportional to

exp

{
−1

2
τd(β

∗
jd −md)

2

}
exp

−1

2

∑
i∈Sj

λ(yi − xi(d)β
∗
j(d) − xidβ∗jd)2

 =

= exp

−1

2

β∗2jd (τd + λx2
id)− 2β∗jd

mdτd + λ
∑
i∈Sj

(xidAi)

 ,

with Ai = (yi − xi(d)β
∗
j(d)), xi(d) is the vector xi where the dth is removed.

Thus, the full conditional probabilities for the Gibbs sampler are:

β∗jd | · =

 0 w. p. θjd

∼ Normal
(
mdτd+

∑
i∈Sj

(λxidAi)

τd+
∑
i∈Sj

(λx2id)
, τd +

∑
i∈Sj(λxid)

)
w. p. (1− θjd)

.

Finally the weights θ = (θ1, . . . ,θk) are:

θjd =
ωdrπ

ωdrπ + (1− ωdrπ)C
,

with C:

C =

√√√√√
τd +

∑
i∈Sj

(x2
idλ)

−1

τd

exp

−1

2
τdm

2
d +

1

2

τd +
∑
i∈Sj

(x2
idλ)

−1

·

mdτd +
∑
i∈Sj

(λxidAi)

 .

Weights of the Spike and Slab Prior

Following what was done in Kim et al. [2009] let us call rd = ωdrπ and rπ =

aπ/(aπ + bπ).

p(rd) = Beta
(
rd
rπ
| aπ, bπ

)
1

rπ
=
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1

B(aπ, bπ)

(
1

rπ

)aπ+bπ−1

raπ−1
d (rπ − rd)bπ−1.

The full conditional is the following:

p(rd | β∗d) ∝ p(rd)r
∑
j 1(β∗jd=0)

d (1− rd)
∑
j 1(β∗jd 6=0).

This is an unknown distribution and a draw from it is obtainable computing
the inverse of the cumulative distribution function over a grid of values. We
select the point on the grid that gives the closest value of the inverse cumulative
distribution function to a draw from a uniform distribution on (0, 1).

Precision of the Base Measure

We update the precision of the normal part of the base measure considering
separately each of the D covariates.

p(τd | β∗j , aτ , bτ ) ∝ Gamma(τd | aτ , bτ )
k∏
j=1

[ωdrπδ0(β∗jd) + (1− πdrω)N(β∗jd | md, τd)]

= Gamma(τd | aτ , bτ )
n+
d∏

j=1

N(β+
jd | md, τd),

where n+
d is the number of clusters that have non-zero coefficients in posi-

tion d, whereas β+
jd for j = 1, . . . , n+

d is the list of these non zero coefficients.
Thus, it is possible to draw from the following known distribution:

τd | y,β∗j , aτ , bτ ∼ Gamma

τd | aτ +
n+
d

2
, bτ +

1

2

n+
d∑

j=1

(β+
jd −md)

2

 .

Precision of the Regression

The precision of the regression is updated in a conjugate form as it follows:
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p(λ | y,X,β∗, aλ, bλ) ∝
k∏
j=1

∏
i∈Sj

Normal(yi | xi,β∗j , λ)Gamma(λ | aλ, bλ)

λ | y,X,β∗, aλ, bλ ∼ Gamma

(
λ | n/2 + aλ,

n∑
i=1

(yi − xiβi)2/2 + bλ

)
.

B.2 Simulation Study

We present a simulation study to show the performances of RPMS in terms of
variable selection. Specifically, we discuss the estimated posterior distribution
of the regression coefficients: p(β·d | y,X). We check the ability of the RPMS in
identifying the coefficients which are different than zero within different clus-
ters and we underline the advantages of modelling the covariates as random
variables. We compare the results of the proposed model with those achievable
using the SSP model.

Data Generation

We consider n = 300 observations. We consider a partition of the observations
constituted by two clusters, i.e. ρn = {S1, S2}, and we assign half of the ob-
servations to each cluster (thus, n1 = n2 = 150). A matrix of covariates, X , is
generated assuming each entry xid ∼ Bernoulli(xid | ζid) for i = 1, . . . , n and
d = 1, 2, 3, along with an intercept. The parameters of the covariate model are
assigned according to the following table:

TABLE B.1: Cluster-specific parameters for the covariate model in
the simulation study.

ζi1 ζi2 ζi3
i ∈ S1 0.9 0.2 0.5
i ∈ S2 0.2 0.9 0.5

We generate a response vector with components yi ∼ Normal(xiβid, λ = 1),
for i = 1, . . . , n. We set the intercept equal to zero in both clusters and we
consider the following cluster-specific regression coefficients:
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TABLE B.2: Cluster-specific parameters for the response model in
the simulation study.

βi1 βi2 βi3
i ∈ S1 5 0 8
i ∈ S2 0 -5 0

Results for RPMS

In this section we present and discuss the performance of the RPMS in the sim-
ulation study designed in the previous section. We focus on the performance in
terms of variable section. The latter can be assessed by displaying the posterior
distribution of the regression coefficients. Given the fact that the RPMS models
also the covariates, it is convenient to concentrate on the posterior distribution
of the parameters given the observed combinations of the covariates withinX .

In our simulation X is a binary matrix with three columns and we observe
eight possible combinations of values. The latter is illustrated in Table B.3 in
which labels for different combinations are also given.

TABLE B.3: Observed combinations of values within the covariate
matrixX

x·1 x·2 x·3
l1 1 0 1
l2 1 1 1
l3 1 0 0
l4 1 1 0
l5 0 0 1
l6 0 0 0
l7 0 1 0
l8 0 1 1

In Figure B.1 we present the samples of the posterior distributions for the
three regression coefficients for each combination of the covariates, i.e. l1, . . . , l8.
Using the proposed model the covariates inform the clustering estimation through
their auxiliary model. In particular, observations with similar profile of covari-
ates have a priori higher probability to co-cluster.

The latter has effects which become evident considering, for instance, the
first row of panels in Figure B.1, corresponding to the posterior distributions
associated with the covariates combination l1 = (1, 0, 1). This profile has a large
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FIGURE B.1: Posterior densities of the regression coefficients for
the RPMS for all combinations of the covariates l1, . . . , l8.
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probability to have been generated within cluster S1, because the first covariate
is activated while the second one is not, reflecting the first row of probabilities
in Table B.1. For this reason the panel corresponding to the first regression
coefficients is dominated by a distribution with mean 5, which is equal to the
correct β·1 for cluster S1 in Table B.2. Equivalently, the second panel shows a
spike in correspondence with β·2 = 0 and the third one a component with mean
8, reflecting the true values for β·2 and β·3, respectively, in cluster S1.

Consequently, the possibility of modelling the covariates influences the vari-
able selection within each cluster, resulting in a higher accuracy while selecting
the important covariates. This is evident in Figure B.1, for instance taking the
level l8 = (0, 1, 1). The panel corresponding to β·3 shows a spike in correspon-
dence of 0, which means that the third covariate is not important explaining the
response for observations with profile l8. However we know that the in general
the third regression coefficient could be either 8 or 0. The strong evidence in
favour of excluding the x·3 is given by modelling the level l8: this profile has a
larger probability to have been generated in the cluster S2.

Employing a spike and slab prior allows the user to estimate the probability
for a regression coefficient to be exactly 0. The results relative to this simulation
study are reported in Table B.4.

TABLE B.4: Empirical posterior probability of the regression coef-
ficients to be equal to 0 for different combinations of the covari-

ates.

p(β·1 = 0) p(β·2 = 0) p(β·3 = 0)
l1 0.01 0.93 0.01
l2 0.36 0.59 0.37
l3 0.02 0.92 0.02
l4 0.45 0.50 0.46
l5 0.56 0.39 0.57
l6 0.64 0.32 0.65
l7 0.94 0.01 0.96
l8 0.93 0.02 0.95

In Table B.5 we record the observed frequency (induced by the data gen-
erating process) of the assignment of the different profiles to the two clusters.
From this table, the profile l1 is 98% of the times generated within cluster S1

and consequently we expect the posterior of the regression coefficients given l1
to be different than 0 for β·1 and β·3 whereas equal to 0 for β·2. Indeed, this is
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confirmed looking at the posterior probabilities in Table B.4, which show that
the probability of β·1 and β·3 to be equal to 0 is equal to 0.01 and for β·2 is 0.93.

TABLE B.5: Observed assignment of the different levels of covari-
ates to clusters S1 and S2.

p(l· ∈ S1) p(l· ∈ S2)
l1 0.98 0.02
l2 0.63 0.37
l3 1.00 0.00
l4 0.52 0.48
l5 0.44 0.56
l6 0.40 0.60
l7 0.00 1.00
l8 0.00 1.00

Results for SSP

In order to highlight the advantages of using the RPMS, we compare the results
presented in the previous section with the analogous analysis under the SSP
model. The latter is similar to the RPMS, but it does not employ a model on
the covariates. In other words the covariates do not contribute to the clustering
(and hence to the variable selection). In this section we present the results of
the SSP in terms of variable selection when applied to the same simulated data
that we used in the previous section.

Also for SSP the variable selection output can be summarised exploring the
posterior distribution of the regression coefficients, which are displayed in Fig-
ure B.2. Differently from the RPMS, this does not depend on the covariates
information. This has two main consequences: (i) it presents more uncertainty
in the variable selection and (ii) the posterior distributions are not robust when
interactions within the covariates are present.

The first point can be exemplified considering the posterior distribution of
β·3. In Figure B.2 this corresponds to the right panel, which shows a two com-
ponent mixture of a spike with location in 0 and probability 0.52 and a slab
distribution with mean 8 and probability 0.48. Although this reflects the way
in which we assign the regression coefficients to the observations, it can be a
poor result once a new set of covariate becomes available. This is because we
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FIGURE B.2: Posterior densities of the regression coefficients for
SSP.

assign, independently on the observed combination of new covariates, approx-
imately 50% of the probability to β·3 = 0, leading to limited predictive power.
On the other hand, in Figure B.1 the posterior distribution of β·3 is displayed
across different scenarios determined by different combinations of the covari-
ates. This allows us to identify with less uncertainty when the variable selection
is performed, leading to better predictions.

The second point can be visualised by looking at the left panel in Figure B.2,
corresponding to the posterior distribution of β·1. Surprisingly a third compo-
nent with mean 13 is displayed, which is the sum of the effects of the covariates
in cluster S1. This bias in the posterior distribution is given by that SSP con-
siders also the case in which β·3 is set equal to 0 and the entire effect on the
response is mistakenly attributed to β·1. So, ignoring the interaction within the
covariates (in fact if xi1 = 1 is likely that β·3 is different from 0) leads to a bias
which is not suffered by the RPMS. The latter, modelling the covariates, can
identify profile-specific posterior distributions and thus it is able to assign the
correct effect to the parameters.
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Appendix for Chapter 4

C.1 Asymptotic behaviour of Kn

In this appendix, we study the large n asymptotic behaviour of k, which is the
random number of ties in a sample of size n fromG, assumingG ∼ GDP(φ, µ,G0).
This can be easily characterised by resorting to Karlin [1967]. In particular, k is
the number of boxes occupied by n balls, with probability Pi = vi

∏
1≤j≤i−1(1−

vj) of a ball being in the box i. Here, vi is a Beta random variables with param-
eters (φµ, φ(1 − µ)). Recall that Karlin [1967] considered non-random occupa-
tional probabilities, i.e., non-random Pi for any i ≥ 1. From the strong law of
large number, as i→ +∞

− 1

i
log(Pi) = −1

i
log(vi)−

1

i

i−1∑
j=1

log(1− vj)→ −E[log(1− v)], (C.1.1)

with v ∼ Beta(φµ, φ(1 − µ)). We are using the fact that the values of φµ and
φ(1 − µ), both greater than zero, are such that

∫ 1

0
|log(v)|p(v)dv < +∞. We can

compute explicitly the expectation in (C.1.1), i.e.

−E[log(1− v)] = ψ(0)(φ)− ψ(0)(φ(1− µ))

as i→ +∞, where ψ(0)(x) denotes the polygamma function, i.e. the first deriva-
tive of the logarithm of the Gamma function with respect to x. Then, see Section
2 in Karlin [1967], as n→ +∞,

|{i : Pi > n−1}|a.s.∼ log(n)

ψ(0)(φ)− ψ(0)(φ(1− µ))
.
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Furthermore, by Theorem 8 in Karlin [1967], one has k | (Pi)i≥1
a.s.∼ [ψ(0)(φ) −

ψ(0)(φ(1 − µ))]−1 log(n) as n → +∞ and, hence, also k a.s.∼ [ψ(0)(φ) − ψ(0)(φ(1 −
µ)]−1 log(n) as n→ +∞. That is,

k

log(n)
→ 1

ψ(0)(φ)− ψ(0)(φ(1− µ))
(C.1.2)

almost surely, as n→ +∞.

C.2 Randomly truncated GDP

Consider the stochastic process defined in (4.2.10). When φ = µ−1, Muliere and
Tardella [1998] proved that Nε is a Poisson random variable with parameter
−(µ−1 − 1) log ε. In general, the distribution of Nε is not simple. Specifically,

Nε = inf

{
n ∈ N :

n∑
h=1

wh > 1− ε

}
= inf {n ∈ N : Rε < ε}

= inf {n ∈ N : logRε < log ε}

is the number of arrivals at a time − log ε in a renewal process whose inter-
arrival times have the same distribution as the random variablew = − log(1−v),
where v ∼ Beta(φµ, φ(1− µ)). That is w has the following distribution

p(w) =
Γ(φ)

Γ(φµ)Γ(φ(1− µ))
(1− e−w)φµ−1e−φ(1−µ)wdw

with
E[w] = ψ(0)(φ)− ψ(0)(φ(1− µ))

and
V[w] = ψ(1)(φ(1− µ))− ψ(1)(φ),

where ψ(m)(x) denotes the polygamma function, i.e. the derivative of order
(m + 1) of the logarithm of the Gamma function with respect to x. Note that
if φ = µ−1, then W is a negative exponential random variable with parameter
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(µ−1−1) and, accordingly, Nε becomes the number of arrivals at time− log ε for
a Poisson process with rate (µ−1 − 1).

Although the distribution of Nε does not have a simple expression, we can
say something about the distribution of Nε for small ε. Indeed, according to the
definition (4.2.10), we are interested in small ε so that Gε is a good approxima-
tion of G. Let Z be a standard Gaussian random variable. By the central limit
theorem for renewal processes, as ε→ 0

Nε − − log ε
E[w](

−V[w] log ε
(E[w])3

)1/2
→ Z

i.e.,

Nε ≈
(
−V[w] log ε

(E[w])3

)1/2

Z − log ε

E[w]

for small ε. Note that if φ = µ−1, then E[w] = (µ−1−1)−1 and V[w] = (µ−1−1)−2.
One then recovers the well-known Gaussian approximation of a Poisson ran-
dom variable with parameter−(µ−1−1) log ε as ε→ 0. Figure C.1 depicts some
numerical illustrations of the distribution of Nε for ε = 0.1, 0.01, 0.001, 0.0001,
and for fixed φ = 1 and µ = 0.5.

C.3 Slice sampling for DGDP

In this appendix we present an algorithm for posterior inference that relies on
an extension of the slice sampler presented by Walker [2007], namely the de-
pendent slice-efficient sampler introduced by Kalli et al. [2011]. This algorithm
employs most of the steps presented in Section 4.4, but it does not truncate de-
terministically Gx. Instead, we augment the parameter space with a uniformly
distributed latent variables ui (i = 1, . . . , n) in such a way that the joint distri-
bution of the parameter and the latent variable becomes (for each i = 1, . . . , n)

(θ∗i , ui) | Gxi ∼
∞∑
h=1

I(ui < wh,xi)δθj .

Thus, we replace steps i) and iii) of Section 4.4 with
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FIGURE C.1: Distribution of Nε with ε equal to 0.1 (top-left), 0.01
(top-right), 0.001 (bottom-left) and 0.0001 (bottom-right), under a

GDP with parameters φ = 1 and µ = 0.5.

i) Resample si, for i = 1, . . . , n. This step replaces step i) in Section 4.4 by
including the latent variables

Pr(si = h | ·) ∝ I(ui < wh,xi)f(yi | θh), for h = 1, . . . , H∗

ii) Resample the truncation level H∗, and simultaneously resample wh,x and θh.
As noticed by Walker [2007], introducing u1, . . . , un allows considering
at each iteration only a finite number atoms and weights of Gx, for all
different values of x. In particular, we need only H∗ atoms and weights
for each Gx, where

H∗ = max

(
H∗x : min

(
H∗x :

H∗x∑
h=1

wh,x ≥ 1−min(u1, . . . , un)

)
for all x

)
.

This step is performed together with the generation of new θh and wh,x
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from their respective full conditionals (see step ii) and step iii) in Section
4.4).

In addition, we perform the following step

iii) Resample ui, for i = 1, . . . , n. This is a uniform update of the latent variable:

p(ui | ·) ∝ I(0 < ui < wsi,xi).
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