
Systems/Circuits

Assessing the Role of Inhibition in Stabilizing Neocortical
Networks Requires Large-Scale Perturbation of the
Inhibitory Population
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Neurons within cortical microcircuits are interconnected with recurrent excitatory synaptic connections that are thought to amplify
signals (Douglas and Martin, 2007), form selective subnetworks (Ko et al., 2011), and aid feature discrimination. Strong inhibition
(Haider et al., 2013) counterbalances excitation, enabling sensory features to be sharpened and represented by sparse codes (Willmore et
al., 2011). This balance between excitation and inhibition makes it difficult to assess the strength, or gain, of recurrent excitatory
connections within cortical networks, which is key to understanding their operational regime and the computations that they perform.
Networks that combine an unstable high-gain excitatory population with stabilizing inhibitory feedback are known as inhibition-
stabilized networks (ISNs) (Tsodyks et al., 1997). Theoretical studies using reduced network models predict that ISNs produce paradox-
ical responses to perturbation, but experimental perturbations failed to find evidence for ISNs in cortex (Atallah et al., 2012). Here, we
reexamined this question by investigating how cortical network models consisting of many neurons behave after perturbations and
found that results obtained from reduced network models fail to predict responses to perturbations in more realistic networks. Our
models predict that a large proportion of the inhibitory network must be perturbed to reliably detect an ISN regime robustly in cortex. We
propose that wide-field optogenetic suppression of inhibition under promoters targeting a large fraction of inhibitory neurons may
provide a perturbation of sufficient strength to reveal the operating regime of cortex. Our results suggest that detailed computational
models of optogenetic perturbations are necessary to interpret the results of experimental paradigms.
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Introduction
Inspired by experimental observations of a repeated, “canonical”
architecture for cortex (Creutzfeldt, 1977; Rockel et al., 1980;

Muir et al., 2011), several groups of investigators have proposed
that a concomitant canonical function might also exist, compris-
ing a fundamental computational basis common to all cortical
areas (Szentágothai, 1978; Douglas et al., 1989). How can this
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Significance Statement

Many useful computational mechanisms proposed for cortex require local excitatory recurrence to be very strong, such that local
inhibitory feedback is necessary to avoid epileptiform runaway activity (an “inhibition-stabilized network” or “ISN” regime).
However, recent experimental results suggest that this regime may not exist in cortex. We simulated activity perturbations in
cortical networks of increasing realism and found that, to detect ISN-like properties in cortex, large proportions of the inhibitory
population must be perturbed. Current experimental methods for inhibitory perturbation are unlikely to satisfy this requirement,
implying that existing experimental observations are inconclusive about the computational regime of cortex. Our results suggest
that new experimental designs targeting a majority of inhibitory neurons may be able to resolve this question.
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computational principle be discovered? A frequently applied ap-
proach in reverse engineering a complex dynamical system is to
measure the response of a system to a perturbing stimulus. This
technique has been applied to cortex in the past (Douglas et al.,
1989), but recent methodological advances permit targeted stim-
ulation or suppression of chosen neuronal populations through
genetic targeting of light-sensitive ion channels and pumps: op-
togenetics (Boyden et al., 2005; Han and Boyden, 2007; Zhang et
al., 2007; Atallah et al., 2012). Optogenetic stimulation can be
used to drive or suppress the activity of genetically defined cell
classes or cortical populations with particular projection targets.
This approach confers the possibility of using carefully targeted per-
turbations to observe and detect the computational mode of cortex.
However, due to the prevalence of recurrent interactions in cor-
tical networks, the outcome of such a perturbation may be unintui-
tive or difficult to predict. For this reason, computational modeling
of perturbations is required to relate network architectures and op-
erating regimes to the expected result of a particular perturbation
and to guide the choice of an appropriate experimental pertur-
bation to test hypotheses optimally. Here, we take as a specific
example the question of quantifying the excitatory/inhibitory
balance in cortex, with a particular focus on mouse visual cortex.

Network computational mechanisms that rely on recurrent
processing of information within cortex can be flexible and pow-
erful (Hopfield, 1982; Douglas and Martin, 2007; Hopfield,
2015). Many computational models for mammalian cortex re-
quire strong recurrent excitation, which therefore must be bal-
anced by strong local inhibition to maintain stability of the
cortical network (Hahnloser, 1998; Rutishauser and Douglas,
2009; Neftci et al., 2013; Muir and Cook, 2014). Networks with
this property are known as inhibition-stabilized networks (ISNs)
(Tsodyks et al., 1997; Ozeki et al., 2009; Litwin-Kumar et al.,
2016). An alternative configuration of cortical networks could
rely on a weak excitatory population that is intrinsically stable,
which would support different computational mechanisms not
relying on strong excitatory recurrence. The question of which
balanced regime mammalian neocortex operates in is therefore
of experimental interest because this constrains the type of com-
putations that could be supported by cortex. Anatomical and
physiological estimates suggest that recurrent excitation is very
strong, especially in the superficial layers of cortex (Binzegger et
al., 2004; Lefort et al., 2009). Similarly, observations of epilepti-
form activity when inhibition is blocked in cortex suggest that
inhibitory feedback is required for stability of the cortical net-
work (Avoli et al., 1995; Mann et al., 2009). However, an ISN
regime may also be detected functionally by perturbing the dy-
namics of cortical activity experimentally and observing the re-
sponse of the network.

Here, we analyze theoretical and simulation models of cortical
networks to determine the conditions under which an inhibitory
perturbation evokes a measurable paradoxical response in the net-
work, which can be used to infer the computational regime of cortex
(Tsodyks et al., 1997). We then examine whether existing methods
for perturbation of cortical activity such as electrical stimulation by
injecting currents into inhibitory neurons, perfusion of the brain
with chemical agonists or antagonists of inhibitory synaptic recep-
tors (Bowery et al., 1984), or optogenetics will be able to reveal evi-
dence for an ISN regime in cortex.

Materials and Methods
Neuron and network dynamics
We begin by defining a simple model for a cortical network containing
equal numbers of excitatory and inhibitory linear threshold neurons

(Wilson and Cowan, 1973). The activity dynamics of the network evolve
according to the system of equations as follows:

�ȧ � a � W �a�� � i. (1)

Where � is the activation time constant applied to all neurons in the
network; a � �x1, x2, . . ., xN, y1, y2, . . ., yN�T is the vector of instanta-
neous activations (i.e., total input current in amps) of excitatory neurons
xi and inhibitory neurons yi at time t; ȧ � da/dt; i � ��1, �2, . . ., �2N�T is
the vector of instantaneous input currents applied to each neuron; the
notation � � �� indicates the linear-threshold current to firing rate (I/F )
transfer function �x�� � max �x, 0�; and W is the weight matrix of the
network. W is expressed in units of A Hz �1 and includes any required
current/firing rate (I/F ) gain factors.

Homogeneous networks with equal numbers of excitatory and inhibitory
neurons. With the firing rate of each neuron evolving under the dynamics
given in Equation 1 above, we define a network weight matrix W with
dimensions 2 N � 2 N, given by the following:

W � �
wE … wE �wI … �wI

wE wE �wI �wI

� � � �

wE wE �wI �wI

� /N. (2)

In this network, the first N neurons are excitatory and the subsequent N
inhibitory, with homogenous all-to-all connectivity. More cortically re-
alistic network structures will be examined below. Neuron gains are as-
sumed to be incorporated into the weight matrix W.

Stability and fixed-point response analysis. We examine the fixed points
and stability of the network defined in Equation 2 evolving under the
dynamics in Equation 1 linearized in the partition where all neurons are
active (Hahnloser, 1998; Muir and Cook, 2014). The stability of these
networks is determined by examining the eigenvalues and trace of the
system Jacobian J � �W � I�/�, where I is the 2 N � 2 N identity matrix.
Networks of this structure have a trivial eigenvalue �wE � wI � 1�/�
� �1/�. The trace of the Jacobian is given by Tr � J� � �wE � wI

� 2N�/�. To guarantee that the network is stable under any finite input
(i.e., bounded input/bounded output or BIBO stability), the eigenvalue
�1 	 0. We therefore obtain an upper bound on the total weight wE

provided by each excitatory neuron relative to the strength of inhibition,
given by wE 	 1 � wI. The system trace provides an additional stability
constraint wE 	 2 N � wI, which for these networks is always a looser
bound than that imposed by �1 	 0. For the network to require inhibi-
tory feedback for stability, the excitatory network alone must be unstable;
that is, when wI 
 0. This introduces a lower bound on excitatory feed-
back wE � 1. For a stable ISN, we therefore obtain the following con-
straint relating excitation and inhibition:

1 � wE � 1 � wI. (3)

We analyze the response of the network in steady state, where a constant
input is provided and the system allowed to come to rest. The fixed point
response of the network is obtained by solving the system dynamics in
Equation 1 for the condition ȧ � 0 for an input i, and is denoted a�, x� and
y�. For a single neuron j, the fixed point is given by the following:

a� j � �N�1� j � wE�
E

� � wI�
I

��/N�1, (4)

where �
E
� and �

I
� denote a summation of the input currents provided to

all excitatory or inhibitory neurons, respectively, and �1 
 wE � wI � 1
as defined above. We also define the eigenvalue with largest real part ��,
which can differ from �1 if �1 	 0 in the case of sparse connectivity or in
the presence of specific connectivity. For a network to operate in an ISN
regime, the excitatory network must be unstable in the absence of inhi-
bition. We define the eigenvalue �E as the eigenvalue with largest real part
of the excitatory portion of the weight matrix. For an ISN regime to exist,
we have the constraint that �E � 1.

Homogenous networks with unequal numbers of excitatory and inhibi-
tory neurons. We additionally define networks with varying proportions
of inhibitory neurons fI (Muir and Mrsic-Flogel, 2015). In this work, we
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examine networks where fI 
 0.2 while maintaining all-to-all nonspecific
connectivity (i.e., in the notation of Muir and Mrsic-Flogel, 2015: hE, hI 
 1;
M 
 1; 	 
 �). In these networks, NI 
 NfI and NE 
 N(1 � fI) denote
the number of inhibitory and excitatory neurons, respectively. The con-
nections from each neuron are normalized such that the total output
weight from each neuron sums to wE and wI for excitatory and inhibitory
neurons respectively. Stability and fixed point response analysis are per-
formed following the procedures above.

Networks with sparse connectivity. To generate sparse networks, we
followed the procedures in Muir and Mrsic-Flogel (2015). Briefly, fully
connected network weight matrices W are combined with a sparse N � N
boolean matrix D. To generate D, the appropriate number of nonzero
elements for a column are distributed randomly within each column.
This is determined by defining “fill factors” h, which specify the propor-
tion of pairwise connections that should exist out of all possible connec-
tion partners. The network weight matrix is then given by W 
 D � W,
where � denotes the element-wise Hadamard or Schur product and W is
renormalized such that columns of W sum to wE and wI. In the limit as
N ¡ �, the elements of D can be assumed to be independent and there-
fore are approximated by a Bernoulli distribution. This assumption as-
sists in estimating the eigenvalue spectrum radius of W, described
below.

Networks with specific excitatory connectivity. To examine the effect of
specific connectivity on the behavior of ISN networks, we defined net-
works similarly to Muir and Mrsic-Flogel (2015). Briefly, the excitatory
network was divided into M partitions (“subnetworks”). A proportion
fSSN 
 1 of synapses of each excitatory neuron were reserved to be made
with other excitatory neurons within the same subnetwork. The remain-
der of excitatory synapses were distributed randomly across the entire
network with uniform probability. When fSSN 
 0, no specific connec-
tivity was present and the networks were identical to the homogeneous
networks described above. When fSSN 
 1, excitatory synapses were
made exclusively between neurons in the same subnetwork, correspond-
ing to maximally specific connectivity. Connections between excitatory
and inhibitory neurons were made without specific connectivity in all
cases.

Networks with multiple subtypes of inhibitory neurons. To study the
effect of perturbations in networks including multiple inhibitory sub-
types, we modeled networks of linear-threshold units consisting of 400
excitatory neurons, 50 parvalbumin (PV)-positive, 25 somatostatin
(SOM)-positive (SOM), and 25 vasointenstinal peptide-positive (VIP)
inhibitory neurons, with class-specific synaptic connections defined sim-
ilarly to Litwin-Kumar et al. (2016). We defined the interaction between
subpopulations according to the weight matrix W as follows:

W � �
WEE �wEP �wES 0
WPE �wPP �wPS 0
WSE 0 0 �wSV

WVE �wVP �wVS 0
� .

Note that WY X represents the coupling from subpopulation X to Y, and
E, P, S, and V are the excitatory, PV, SOM, and VIP subpopulations,
respectively (cf. Eq. 5 in Litwin-Kumar et al., 2016). As opposed to
Litwin-Kumar et al. (2016), in which these weights defined the coupling
between single nodes, here they determine the total weight between two
subpopulations. Synaptic strength between individual neurons was
therefore drawn from a distribution with mean value of wY X 
 WY X/NX,
where NX is the total number of neurons in the presynaptic subpopula-
tion. The weights in each case were drawn from a zero-truncated Gauss-
ian distribution with mean � 
 wY X and SD � 
 0.2 wY X.

For simulations shown in Figure 9, we chose WEE 
 1.5 to place the
network in the ISN regime and WPE, WEP, and WPP to have a common
value to balance unstable excitation (consistent with dense and strong
recurrent connectivity of excitatory7 PV neurons as reported experi-
mentally; Hofer et al., 2011). Recurrent coupling between excitatory and
SOM neurons (Exc. ¡ SOM and SOM ¡ Exc.) was parameterized by a
weight  (Exc.–SOM coupling). Other weights were chosen similar to
Litwin-Kumar et al. (2016) (cf. their Eq. 7). Our coupling weight matrix
was therefore given by the following:

W � �
1.5 �1.5 � 0
1.5 �1.5 �0.5 0
 0 0 �0.25
1 0 �0.6 0

� .

Estimating the sparsity of connections in cortex
To estimate realistic parameters for the sparsity of local connec-
tions in cortex, we assumed that connections between neurons
are made stochastically according to the overlap of simulated
axonal and dendritic densities, which are modeled as 2D Gauss-
ian fields. The overlap between two 2D Gaussian fields is propor-
tional to the following:

��v, �a, �d� �
exp ��v 2/2��a

2 � �d
2��

2� � �a
2 � �d

2 �1/�a
2 � 1/�d

2�
, (5)

where v is the 2D Euclidean distance between two points and the SDs of
axonal and dendritic fields are given by �a and �d, respectively. Equation
5 is used to compute connection probability fields as a function of axonal
and dendritic spreads.

We define the notation � � ��2 to indicate that the quantity within the
brackets should be normalized such that is forms a probability density
function over 2D space �2; that is, �X��2 � X/���2X. The synapse forma-
tion probability from neuron class A to class B is then given by the
following:

sA,B�v� � rA,B���v, �A
a , �B

d���2,

where A and B are either E or I for excitatory and inhibitory, respectively,
and rA,B is the proportion of synapses from class A that target class B. The
factors rA,B allow us to incorporate class-specific connectivity, which
appears to exist in mouse visual cortex in the connections from excitatory
to inhibitory neurons (Bock et al., 2011; Bopp et al., 2014).

We define the expected number of synapses from class A to class B as
nA,B�v� � SA � sA,B�v�, where SA denotes the number of output synapses
from neurons of class A (Table 1). The connection probability pA,B from
a neuron of class A to a neuron of class B at a distance v is then given by
the following:

pA,B�v� � min��
v

nA,B�v�d�, 1�,

where �v
d� indicates integration around an annulus of distance v from

the origin (Fig. 1). The parameters given in Table 1 result in a proximal
E ¡ I connection probability of pE,I � 90%, and proximal E ¡ E con-
nection probability of pE,E � 25% (Fig. 1).

The sparsity (and equivalently, the fill factor h) of connections from
class A to class B is therefore estimated by the following:

ĥA,B� x� � 	
0

x pA,B���

�
�

� � fBd�

d�, (6)

where Equation 6 should be integrated out to a distance x at which the
connection probability drops to 0. Taking x 
 1500 �m for excitatory
neurons and x 
 750 �m for inhibitory neurons, we estimate

�ĥEE, ĥEI, ĥEI, ĥII� � �0.022, 0.072, 0.084, 0.34�. These low fill factors
make the resulting network instances highly unstable for reasonable net-
work size N due to expansion of the eigenspectrum bulk, even in the
presence of strong inhibitory feedback (Muir and Mrsic-Flogel, 2015; see
Fig. 1). The expected radius qb of the eigenspectrum bulk for a network
with class-dependent fill factors is given by the following:

qb � �N� fE � �E
2 � fI � �I

2��1/ 2, where (7)
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�E � �1 � hEE� fE � �E
2 � �1 � hEI� fI � �E

2

� fE � hEE ��wE /N � hEE� � �E�
2

� fI � hEI ��wE /N � hEI� � �E�
2,

�I � �1 � hII� fI � �I
2 � �1 � hIE� fE � �I

2

� hEI � fI ��wI/N � hII� � �I�
2

� hEI � fE ��wI/N � hEI� � �I�
2,

where �E 
 wE/N and �I 
 wI/N (cf. Muir and Mrsic-Flogel, 2015). To
ensure stability in networks with scale smaller than cortex itself, we there-
fore simulate networks where the radius of the bulk eigenspectrum is
controlled by scaling h� by a common factor, such that qb � 1. Only the
connection fill factors h� were modified to increase the fill factor of the
weight matrix W. The total excitatory and inhibitory weights wE and wI

were unchanged.

Perturbation framework
In general, we introduce a perturbation to a network by defining an input
k(�), where k defines the input currents to all neurons in a network and �
is a small perturbing effect (� � 0 corresponds to a positive perturbation
in input and � 	 0 corresponds to a negative perturbation). For example:

kInh : �j � 
 1 1 
 j 
 N
1 � �H�t� N � 1 
 j 
 2N (8)

defines a scheme where all neurons receive a constant input (“1”) and the
entire inhibitory population (N � 1 
 j 
 2 N) receives an extra per-
turbing input � at t 
 0. Here, H(t) is the Heaviside step function.

We assume that a perturbation is made in a network where every neuron
is active; inactive subsets of the network can be removed entirely from the
system (Hahnloser, 1998; Muir and Cook, 2014). We examine the fixed
point a� (Eq. 4) of the analytical network, linearized in the state partition
when all neurons are active (Muir and Cook, 2014). We assume that the
perturbation � is small enough that no neuron is pushed below threshold.

We assume that a perturbation is only made once the transient re-
sponse of the network has settled and the network has reached a stable
fixed point. We therefore examine the mean-field fixed point response of
these networks under the assumption that the effect of stochastic or
oscillatory dynamics will be removed by averaging. We likewise neglect
the transient effect of a perturbation, and examine only the resulting
fixed point response subsequent to the perturbation (i.e., at t 
 �).

After a perturbation, we examine the difference between perturbed
and unperturbed inhibitory activity k : dy�/d� under a given perturbation
k. Generally, we look for a “paradoxical” response of inhibition such that
k : dy�/d� � 0 for � � 0. For example, under the perturbation of the
entire inhibitory population defined in Equation 8 above, the change in
inhibitory activity in response to the perturbation is given by the
following:

kInh :
dy�N

d�
� �wE � 1�/�1.

For this response to the perturbation to meet the characteristics of a
paradoxical inhibitory response, we require that dy�N/d� � 0. Combin-
ing this requirement with the conditions for a stable ISN (Eq. 3), we
obtain the constraints on network configuration that ensure a paradox-
ical inhibitory response is observed in a stable ISN. By doing so, we find
that the constraints already required by Equation 3 guarantee that a
paradoxical inhibitory response will be observed under the global inhib-
itory perturbation kInh. This result implies that a stable ISN will always
display a paradoxical response when the entire inhibitory population is
perturbed.

Perturbation of a single inhibitory neuron. We examined the other ex-
treme of perturbing a single inhibitory neuron, such that:

k1 : � j � 
 1 1 
 j 
 2N � 1
1 � �H�t� j � 2N . (9)

As before, we computed the change in fixed-point response of a single
inhibitory neuron, when that neuron is perturbed, given by the
following:

k1 :
dy�N

d�
� 1 �

wI

N � �1

.

Under the requirement that a perturbation must lead to a paradoxical
response (i.e., k1 : dy�N/d� � 0), we find an additional constraint on the
excitatory weight wE � 1 � wI�N � 1�/N. This implies that a stable
ISN can exhibit a paradoxical effect when a single inhibitory neuron is
perturbed if 1 � wI�N � 1�/N � wE � 1 � wI. We note that

Figure 1. A, Simulated connection probability pA,B(v) between neuron classes E and I. Parameters given in Table 1. B, Eigenvalue spectrum of W for a sparse network with {wE , wI , hEE ,
hEI , hEI , hII , N} 
 {5.4, 56, 0.022, 0.072, 0.084, 0.34, 1000}. The trivial eigenvalue at � 
 �8 is not shown. Unit circle (red) and expected bulk radius qb (gray; Eq. 7) are shown for reference.

Table 1. Parameters for estimating connection sparsitya

Parameter Value Reference(s)

Axonal width 4�E
a, 4�I

a 1200 �m, 300 �m Holmgren et al., 2003;
Boucsein et al., 2011;
Levy and Reyes, 2012

Dendritic width 4�E
d, 4�I

d 300 �m, 300 �m Hellwig, 2000
No. of axonal synapses

in L2/3
SE, SI 8142, 8566 Binzegger et al., 2004a

Density of neurons
spanning depth
of L2/3

� 36,000 mm �2 Schüz and Palm, 1989

Proportion of neurons
in class A

fE, fI 80%, 20% Gabbott and Somogyi, 1986

Proportion of A¡ B
synapses

rE,I 45% Bock et al., 2011;
Bopp et al., 2014

rE,E 1 � rE,I —b

rI,E 1 � fI —b

rI,I fI —b

E, Excitatory; I, inhibitory.
aIncluding an estimate of double the number of synapses per neuron in mouse cortex compared with cat cortex.
bNon-class-specific connectivity.
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�N � 1�/N ¡ 1 as N ¡ �, and therefore the range for wE that satisfies
this constraint approaches 0 with increasing N.

Perturbation of a subset p of the inhibitory population. We investigated
the effect of perturbing a subset p of the inhibitory population, defined by
the following:

kp : � j � 
 1 1 
 j 
 2N � p � 1
1 � �H�t� 2N � p 
 j 
 2N . (10)

The derivative of fixed point activity is then given for perturbed inhibi-
tory neurons by the following:

kp, j � N � p :
dy� j

d�
� 1 �

p � wI

N � �1
(11)

and for nonperturbed inhibitory and for excitatory neurons by the
following:

kp, j � N � p :
dy� j

d�
�

p � wI

N � �1

. (12)

Under the constraint kp, j � p : dy� j/d� � 0, Equation 11 implies that at
least a proportion p/N � ��1/wI of the inhibitory population must be
perturbed to observe a paradoxical effect in the perturbed neurons.

Note that, in networks with different numbers of excitatory and inhib-
itory neurons, the proportions were measured as a fraction of the actual
number of inhibitory neurons in the network, p/NI. Perturbations
were performed identically in networks with sparse recurrent synap-
tic connectivity.

Perturbation of networks with specific excitatory connectivity. In net-
works with specific connectivity within excitatory subnetworks, we investi-
gated whether subnetwork-specific activation patterns changed the behavior
of a network in response to an inhibitory perturbation. Perturbations under
global network activity were performed as in Equation 10. Under sub-
network-specific activation, we defined a perturbation as follows:

ks,p : �j � �
1 1 
 j 
 NE/2
0 NE/2 � 1 
 j 
 NE

1 NE � 1 
 j 
 2N � p � 1
1 � �H�t� 2N � p 
 j 
 2N

. (13)

Here, the excitatory neurons in the subnetworks comprising half of the
excitatory population (i.e., 1 
 j 
 NE /2) receive an external input drive,
whereas neurons in the second half of the excitatory population (i.e.,
NE /2 � 1 
 j 
 NE) receive no external input. A subset p of the inhibitory
population receives a perturbation, as before.

Perturbation by injecting a global inhibitory current. We examined the
effect of perturbing the entire network by injecting a global inhibitory
current, as might be produced by infusing cortex with a GABA agonist.
The perturbation is defined by kg : � j, �j � 1 � �H�t�. The derivative
of fixed point activity for all neurons is then given by the following:

kg, � j :
dy� j

d�
� �1/�1

. (14)

Because kg : dy� j/d� is always positive for a stable ISN (i.e., satisfying
Eq. 3), no paradoxical response of inhibitory neurons is possible under
the network-global perturbation kg.

Perturbation by modifying inhibitory weight wI. Alternatively, infusion
of GABA agonists or antagonists might result in an divisive rather than
subtractive effect on inhibitory input currents. We therefore computed
the change in fixed point response dy� j/dwI when the total inhibitory
weight wI is perturbed, requiring that, for an increase in inhibitory
weight, the paradoxical response would be for the inhibitory network to
increase its activity: that is, dy� j/dwI � 0. We define the input to the
network as follows:

� j � 
 �E 1 
 j 
 N
�I N � 1 
 j 
 2N

. (15)

The fixed point response of the network under this input is given by the
following:

x� j � � ��1 � wI��E �wI � �I�/�1

y� j � � ��1 �wE��I � wE � �E�/�1, (16)

and the resulting change in fixed point response by the following:

� j :
dy� j

dwI
� ��wE � 1��I �wE � �E�/�1

2. (17)

For a stable ISN, a regime exists such that if the inputs to excitatory and
inhibitory neurons differ (i.e., �E � �I), then the paradoxical response
� j : dy� j/dwI � 0 is evoked when �I � wE � �E/�wE � 1�. Unfortu-
nately, this regime only occurs when � j : x� j, y� j � 0; that is, when the
network is silenced.

Perturbation in networks with multiple subtypes of inhibitory neurons.
We perturbed varying fractions of either the PV subpopulation alone or
in conjunction with other inhibitory subpopulations. When perturbing
more than one inhibitory class, the same fraction of neurons was per-
turbed in the appropriate subpopulations. We then measured the critical
fraction of inhibition needed to be perturbed to see the paradoxical ef-
fect, as for networks with a single inhibitory class. The paradoxical effect
was assayed by an increase in the average activity of perturbed PV neu-
rons in response to negative inhibitory perturbations (i.e., � 	 0).

Spatial perturbation model
We simulated inhibitory perturbations in a neural field model with spa-
tial extent. Two plates of simulated nodes were constructed, correspond-
ing to excitatory and inhibitory fields on a 2D torus. Each node evolved
under the dynamics in Equation 1. The weight matrix W was constructed
using wrapped Gaussian axonal and dendritic fields as follows:

G�u, v, �� � exp
� �u, v �°2

2�2
,

where �u, v �° is the Euclidean distance between node locations u and v on
a 2D torus space T 2 and � is the SD of the field. The neural field was
defined to span f 
 2400 � 2400 �m, with a simulation resolution of 33
�m per mesh point. The “width” of a field was defined as 4�. Individual
weights wji � W between neurons i and j were given by the product:

wji � wA�G(ui, uj, �a,i���2 � �G(ui, uj, �d,j)��2,

where 4�i
a and 4�j

d define the axonal and dendritic fields widths of
neurons i and j; the notation � � ��2 defines a probability density func-
tion as above; and wA defines the total synaptic weight from neurons
of class A. Other parameters for the spatial perturbation model are
given in Table 1.

We simulated activity of the spatial model under a constant input
� j : �j � 1 for t 
 (�10, 0). A subset of inhibitory nodes were subse-
quently perturbed under the following:

ks : � j
E � 1, � j

I � 
 1 � �H�t� �ui, f/2 �� � b/2
1 otherwise

where b is the diameter of the spatial perturbation, within which all
inhibitory nodes are perturbed; f/2 is the center of the simulated field;
and � is the strength of the perturbation as defined previously. The
perturbation stimulus was applied for t 
 (0, 10). The perturbation
was simulated for a range of b 
 (50 �m, 400 �m) in 20 steps and
linear interpolation was used to estimate the threshold perturbation

diameter, b̂p.

Comparison with optogenetic perturbation results from
Atallah et al. (2012)
Atallah et al. (2012) used optogenetic activators and inhibitors expressed
selectively in PV-positive inhibitory neurons to perturb inhibitory activ-
ity in mouse visual cortex (Atallah et al., 2012). They recorded responses
to visual stimuli of varying contrast in the presence of optogenetically
induced inhibitory suppression and activation while recording inhibi-
tory and excitatory synaptic input currents impinging on excitatory neu-
rons. In response to inhibitory suppression using ARCH, PV inhibitory
neurons reduced their activity by 40% and excitatory neurons increased
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their activity to 140% of baseline (see their Fig. 2 D, F ). In response to
inhibitory activation using ChR2, PV inhibitory neurons increased their
activity to 120% of baseline and excitatory neurons reduced their activity
by 30% (see their Fig. 2 E, G). For comparison with these results, we
found combinations of network and perturbation parameters in our
simulated networks that resulted in similar perturbations of inhibitory
and excitatory activity observed by Atallah et al. (2012) (see our Fig. 8).
We included uncertainty of 20% around each target change in excitatory
and inhibitory activity.

We defined a simulated excitatory neuron as displaying a paradoxical
response if the result of an inhibitory perturbation was to shift the net
inhibitory input current by at least 10% of its unperturbed value.

Spiking networks with conductance-based neurons
Neuron model. Spiking neurons were modeled using an exponential
integrate-and-fire model (Brette and Gerstner, 2005), without adapta-
tion. The dynamics of the membrane potential Vm(t) of a single model
neuron evolved under the following equation:

C
dVm

dt
� �gL �Vm � EL� � gL�T exp ��Vm � VT�/�T�

�Ge�t��Vm � Ee� � Gi�t��Vm � Ei�,
(18)

where C is the membrane capacitance, gL is the leak conductance, and EL

is the resting potential. The exponential term describes the activation of
sodium current. The parameter �T is called the slope factor and VT is the
threshold potential. Once the membrane potential Vm reaches the
threshold VT, a spike is emitted and the membrane potential is reset to a
fixed voltage, Vreset, for a refractory period tref.

Ee and Ei are the reversal potentials for excitation and inhibition, re-
spectively. Ge(t) and Gi(t) represent the total excitatory and inhibitory
conductances at time t, given by the following:

Ge�t� � �jge�t � tj� and

Gi�t� � �kgi�t � tk�,
(19)

where the times of occurrence of excitatory and inhibitory synaptic
events are denoted by tj and tk, respectively. ge and gi denote the mem-
brane conductance changes elicited by a single excitatory or inhibitory
synaptic event, which are modeled as �-functions, given by the following:

ge�t� � H�t� � Be � exp �1 � t/�e� � t/�e and
gi�t� � H�t� � Bi � exp �1 � t/�i� � t/�i,

where Be and Bi denote the peak excitatory and inhibitory synaptic con-
ductances, respectively. The integral of the conductances is given by the
following:

ʃge�t�dt � Be�ee
1 and

ʃgi�t�dt � Bi�ie
1. (20)

In these equations, e1 
 exp(1) 
 2.718. The default parameters of the
neuron model are listed in Table 2. Default values of peak synaptic con-
ductances were Be 
 0.1 nS, Bi 
 0.2 nS, and �e 
 1 ms, �i 
 1 ms. Note
that the effective time constant of the synapses, defined as the time from
a spike until the synaptic current decays to the 37% of the peak current, is
much longer (�eff � 3 ms for � 
 1 ms). To simulate the spiking net-

works, we used NEST software (Gewaltig and Diesmann, 2007). The
implementation uses a fourth-order Runge–Kutta–Fehlberg solver with
adaptive step size to integrate the differential equation.

Network simulations. Networks were composed of NE excitatory and
NI inhibitory neurons. Excitatory and inhibitory neurons had the same
properties and parameters as described above. All neurons received a
baseline input. This was modeled as an independent homogeneous Pois-
son process with firing rate rb. The strength of synaptic connectivity is
parameterized by the peak synaptic conductance, which was denoted
as Bb for the baseline input. Connection delays were chosen as the
fixed value of d for the input synapses; synaptic delays for recurrent
connections were drawn from a random exponential distribution
with mean d.

Recurrent connections were drawn from a binomial distribution. The
mean connection probability from the presynaptic subpopulation X �
{ E, I} to postsynaptic subpopulation Y � { E, I} was CX¡Y. The connection
weights between established connections were drawn from a truncated
Gaussian distribution with a mean of BX¡Y and SD of BX¡Y/5. The mean
value for E ¡ E and E ¡ I connections were set to BE¡E 
 BE¡I 
 Be;
similarly, the mean value for I ¡ E and I ¡ I connections were set as
BI¡E 
 BI¡I 
 Bi. The parameter space for the balance of excitation and
inhibition in the network is scanned by changing these two parameters
(e.g., in Fig. 10D).

The stimulation protocol of the network comprised three phases: an
initial transient phase where the spiking activity was not analyzed
(Ttrans); the baseline duration where the normal activity of the net-
work was recorded (Tbase); and the perturbation period during which
a certain fraction of the inhibitory population was perturbed (Tpert).
To obtain reliable estimates of firing rates, simulated perturbations
were repeated for Ntrial trials, with each trial lasting for Ttrial 
 Ttrans �
Tnormal � Tpert. The default parameters of network simulations are listed
in Table 3.

The perturbation was performed by reducing the baseline input to p
inhibitory neurons by � 
 0.4 kHz (i.e., by �4%) and was repeated for a
range of inhibitory fractions p/NI 
 {0.1,0.25,0.5,0.75,1}. For each per-
turbation, the mean firing rates of each subpopulation (excitatory, non-
perturbed inhibitory and perturbed inhibitory) in the normal state (rbase)
and during perturbation (rpert) were computed by averaging over time,
trials, and the subpopulation. The change in the firing rate due to per-
turbation was then computed as rdiff 
 rpert � rbase. Because the pertur-
bation is performed by decreasing the input to a fraction of inhibitory
subpopulation, a positive rdiff for the perturbed inhibitory fraction im-
plies the existence of the paradoxical inhibitory response. We estimated
the minimum fraction of inhibition to see this paradoxical effect for a
given network (i.e., the value of p/NI such that rdiff 
 0) by linearly
interpolating rdiff.

Mean-field approximation. The mean-field analysis of the network dy-
namics was performed by analyzing the average behavior of the network.
Let re and ri denote the mean rates of the excitatory and inhibitory pop-
ulations within a network. Combining Equations 19 and 20, the tempo-
rally averaged excitatory and inhibitory conductances input to an
example neuron can be written as follows:

Ge � ʃGe�t�dt � Bb�ee
1 � rb � NEBe�ee

1 � re and
Gi � ʃGi(t)dt � NIBi�ie

1 � ri.
(21)

Table 2. Parameters of the spiking neuron model

Parameter Value

Membrane capacitance C 120 pf
Leak conductance GL 7.14 nS
Resting potential EL �70 mV
Threshold voltage VT �50 mV
Reset voltage Vreset �60 mV
Reversal potential Ee, Ei 0 mV, �75 mV
Synaptic time constant �e, �i 1 ms
Slope factor �T 2 ms
Refractory period tref 2 ms

Table 3. Parameters of the spiking network simulations

Parameter Value

No. of neurons NE, NI 1600, 400
Connection probability CE¡E, CE¡I, CI¡E, CI¡I 15%, 15%, 100%, 100%
Baseline input rb 9.6 kHz
Strength of baseline input Bb 0.1 nS
Average synaptic delay d 0.1 ms
Simulation time (transient,

baseline, perturbation)
Ttrans, Tbase, Tpert 0.15 s, 0.5 s, 0.5 s

No. of trials Ntrial 5 (Fig. 10D) or 10 (Fig. 10A–C)
Strength of input perturbation � 0.4 kHz
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The total excitatory conductance Ge is composed of two terms: the base-
line external input and recurrent input from presynaptic excitatory neu-
rons. The inhibitory conductance Gi results from presynaptic inhibitory
neurons in the network.

To obtain the effective change in the membrane potential as a result of
these input conductances, we must consider the effective drives from
Equation 18:

C�Vm � ʃ��Ge�t��Vm � Ee� � Gi�t��Vm � Ei�� dt,
and therefore
C�Vm � ��Vm � Ee�ʃ Ge�t�dt � �Vm � Ei�ʃ Gi�t�dt.

(22)

Here, we have made a simplifying assumption that the population
average membrane potential of the network is constant and can be
approximated by the time-averaged membrane potential of the network,
denoted by Vm. Substituting Equation 21 into Equation 22, we obtain the
effective change in membrane potential Vtot, given by the following:

C�Vtot � ��Vm � Ee� �Bb�ee � rb � NEBe�ee � re�
� ��Vm � Ei�NIBi�ie � ri.

(23)

Note that the effective input is similar for any neuron independent of its
subtype identity (excitatory or inhibitory). Furthermore, we make the
ansatz that the rates of excitatory and inhibitory subpopulations are
the same: re 
 ri 
 r. This is based on the fact that both subtypes have the
same single-cell parameters and network connectivity profiles and the
input to both subnetworks is similar in the unperturbed state. Due to this
homogeneity, they have the same mean firing rates. Equation 23 can
therefore be further simplified to the following:

C�Vtot � ��Vm � Ee�Bb�ee
1 � rb

� r ���Vm � Ee�NEBe�ee
1 � �V � Ei�NIBi�ie

1�. (24)

The first term on the right side is a constant external input and the
second term is the recurrent input as a function of the average firing
rate r of the entire network. Both terms depend on the average mem-
brane potential Vm.

We make a final assumption that the firing rate of a neuron depends
linearly on its input (linear input– output transfer function). We take this
linear dependence to be rout 
 �Vinp/�, where � 
 VT � Vreset is the
difference between the reset voltage Vreset and the threshold voltage VT.
Equation 24 can be rewritten as a self-consistent mean-field equation
given by the following:

r�C � ��Vm � Ee� Bb�ee
1 � rb

� r ���V � Ee�NEBe�ee
1 � �V � Ei�NIBi�ie

1� . (25)

By defining the total baseline input as sb � � �Vm � Ee�Bb�ee
1 � rb/�C and

the total recurrent weight as w � � � �Vm � Ee�NEBe�ee
1 � �Vm � Ei�

NIBi�ie
1�/�C, we obtain r 
 sb � w � r and therefore r 
 sb/(1 � w). The

stability of the linearized system can be ensured by constraining the total

recurrent weight by w 	 1. For the full network, this provides a condition
for stability, given by the following:

��Vm � Ee� NEBe�e � �Vm � Ei� NIBi�i � �C/e1. (26)

Note that because the left side of Equation 26 depends on the average
membrane potential Vm of the network, the condition can be evaluated at
different “operating points.” The stability of the excitatory subnetwork in
the absence of the inhibitory subnetwork can be examined by setting the
recurrent inhibitory contribution to 0 in Equation 26. This provides a
constraint that ensures the network requires inhibitory feedback for
stability, given by ��Vm � Ee�NEBe�e � �C/e1; we therefore obtain the
following constraint:

Be �
�C

��V � Ee� NEBe�ee
1
. (27)

This constraint is plotted as the vertical line denoting the boundary be-
tween the ISN and non-ISN regimes in Figure 10D.

Experimental design and statistical analysis
No statistical testing was performed. Models and simulations to reproduce all
results herein are available from FigShare (DOI https://doi.org/10.6084/m9.
figshare.4823212).

Results
Simple ISNs display counterintuitive dynamics when inhibitory
activity is perturbed by increasing or decreasing excitatory input
into inhibitory neurons. If inhibition is reduced by removing
input then the network effect is to increase the activity of inhibi-
tory neurons (Fig. 2A); conversely, if extra input is provided to
inhibitory neurons, then the network responds by decreasing
their activity (Fig. 2B). This has been termed the “paradoxical”
inhibitory response (Tsodyks et al., 1997) and arises through
nonlinear network dynamics introduced by unstable excitatory
feedback. This counterintuitive effect of perturbing inhibition
has been put forward as a signature of ISN dynamics that could be
detected in cortical networks (Tsodyks et al., 1997). This is an
experimentally accessible metric because neurons are often being
recorded and activated at the same time. When the entire inhib-
itory population of an ISN is perturbed simultaneously, then the
paradoxical effect emerges, as shown in Figure 2. However, under
typical experimental conditions, only a fraction of the inhibitory
population can be perturbed. This raises the question of whether
the paradoxical effect will be observed if only portions of the
inhibitory population are perturbed. Recent results based on
direct activation and suppression of the inhibitory network (Atal-

Figure 2. Globally perturbing the inhibitory network gives rise to a paradoxical inhibitory response in ISNs. A, B, Effect on activity of excitatory and inhibitory neurons in an ISN model of 100 fully
connected firing rate neurons of increasing (A) and decreasing (B) excitatory input to the inhibitory population (see Materials and Methods). At 50 ms input is injected to all neurons. At 100 ms, only
the input to the inhibitory population is perturbed. Note that increasing the inhibitory input results in a counterintuitive decrease in overall inhibitory activity and vice versa. Parameters: {wE, wI,
�} 
 {5, 20, 10 ms}. Dashed line is shown for reference to preperturbation activity.
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lah et al., 2012) did not reveal evidence for a paradoxical inhibi-
tory response. Based on these results, some investigators have
inferred that an ISN regime may not exist in the superficial layers
of mouse visual cortex (Litwin-Kumar et al., 2016). It remains
unclear whether experimental methods for perturbing inhibition
will be sufficient to reveal a signature of ISN dynamics.

Perturbations in networks of firing rate neurons in ISN and
non-ISN regimes
To explore the properties of ISNs and non-ISNs and to investi-
gate how they respond to perturbations over a wide range of
parameters, we first developed a simple analytically tractable model
of a cortical network. For this, we used nonspiking linear-threshold
neuron models because they provide a good approximation to the
F–I curves of adapted cortical neurons (Ermentrout, 1998). Net-
works were built using homogeneous synaptic connectivity and
equal numbers of excitatory and inhibitory neurons (see Materi-
als and Methods). In these models, we simulated synaptic inputs
by injecting currents proportional to presynaptic activity.

We analyzed the stability and dynamic properties of this network
model to determine the conditions under which it operates in an ISN
regime. The stability of networks was determined by expressing all
synaptic connections between pairs of neurons as a weight matrix W
and then analyzing the properties of this matrix. Each network has
an associated property known as the trivial closed-loop eigenvalue
�1, which depends on the strength of excitation and inhibition
within the network and the dynamical properties of the network (see
Materials and Methods). If this value is large (i.e., �1 � 0), then the
network can become unstable. This is because a pattern of activity in
the network can become amplified through local recurrent feedback
and the firing activity of the neurons involved could increase without
bound. Alternatively, if �1 
 0, then the activity of all neurons in the
network is guaranteed not to increase without bound; this is defined
as a stable network.

For a network to operate in an ISN regime, the network must be
unstable in the absence of inhibition yet stable with inhibitory feed-
back (Tsodyks et al., 1997). By setting the synaptic strength of inhi-
bition wI to 0, we found that the excitatory network is unstable (i.e.,
the largest real eigenvalue of the excitatory portion of the weight
matrix �E � 1) when the total recurrent synaptic weight contributed
by a single excitatory neuron is �1; that is, wE(1 � fI) � 1. The
interpretation of this value for recurrent excitatory weight is that, in
an active excitatory network with no inhibition, a single spike from
an excitatory neuron leads to at least one extra spike in the rest of the
network on average (i.e., open-loop excitatory gain �1).

To ensure stability in the entire network (i.e., �1 
 1 in the
presence of inhibitory feedback), we found a constraint relating
the strength of excitation and inhibition that guarantees local
inhibition is strong enough to keep recurrent excitation in check.
For networks operating in the ISN regime, the relative strengths
of excitation and inhibition must satisfy 1 	 wE 	 1 � wI (Eq. 3).

Perturbation of entire inhibitory population
For small networks consisting of a single excitatory and a single
inhibitory neuron (Tsodyks et al., 1997; Litwin-Kumar et al.,
2016), perturbing the inhibitory neuron will always result in a
paradoxical response in an ISN. We considered whether this re-
sult holds true for larger networks with many excitatory and
inhibitory neurons. We began by estimating the effect of a per-
turbation to the entire inhibitory population on the activity of a
single inhibitory neuron (Eq. 8). We ignored any transient effect
of a perturbation, comparing only the steady-state response of a

network before and after the perturbation (see Materials and
Methods; Figure 2).

For the paradoxical effect to appear, a positive perturbation
provided to the inhibitory population must result in a counter-
intuitive reduction in the activity of the inhibitory neuron under
measurement. To determine whether this “paradoxical” effect
occurs for a given network and given perturbation, we calculated
the change in firing rate of a chosen inhibitory neuron with re-
spect to a perturbation (see Materials and Methods).

For a stable ISN as defined above (Eq. 3; see Materials and
Methods), we found that a global perturbation of the inhibitory
population will always evoke a paradoxical effect. This result
shows that the dynamics of our large networks are comparable to
previous simplified ISN models (Tsodyks et al., 1997; Litwin-
Kumar et al., 2016).

Perturbation of a single inhibitory neuron
Because not all inhibitory neurons within a cortical region will be
perturbed with electrophysiological or optogenetic approaches un-
der realistic experimental conditions, we investigated how networks
respond when only a fraction of the inhibitory neurons are per-
turbed. Starting with the extreme case of perturbing a single inhibi-
tory neuron (Eq. 9), we found that a narrow range of excitatory
synaptic strength wE exists, within which the paradoxical effect can
be evoked (see Materials and Methods). However, the range for wE

that satisfies this constraint shrinks rapidly to 0 as the size of the
network increases, making this regime unlikely to exist in cortex.

Perturbation of a subset p of the inhibitory population
We then investigated the effect of perturbing a larger subset of the
inhibitory population, as is likely to be the case under experimen-
tal conditions. We injected a positive or negative current into p
inhibitory neurons (see Materials and Methods; Eq. 10). We
found that, for networks in a stable ISN regime, the relative total
synaptic strength of excitatory and inhibitory neurons deter-
mines a minimum proportion p/N � ��1/wI of the inhibitory
network that must be perturbed to observe a paradoxical re-
sponse in the perturbed neurons.

If a smaller proportion of the inhibitory network is stimulated,
then the paradoxical response does not occur in either the perturbed
or nonperturbed inhibitory neurons (Fig. 3). Depending on the op-
erating regime of the network, the proportion of inhibitory neurons
that must be perturbed can be considerable, approaching 100% (Fig.
4). Importantly, this proportion does not depend on the size of the
network N or on the strength of a perturbation �.

Perturbation by injecting a global inhibitory current
Some experimental perturbations, such as infusion of neuro-
transmitters or chemical agonists of inhibition, result in injection
of inhibitory currents across the entire network (i.e., in both
inhibitory and excitatory neurons). We therefore examined the
case of such a global perturbation in our models (see Materials
and Methods; Eq. 14). We found that this mode of perturbation
cannot elicit a paradoxical inhibitory response in a network op-
erating in a stable ISN regime. Experimental methods that mod-
ulate inhibitory inputs to all neurons globally as opposed to
perturbing the inhibitory population alone cannot therefore be
used to demonstrate an ISN regime in cortex.

Perturbation by modifying effective inhibitory synaptic strength
It is possible that some experimental perturbations, such as infu-
sion of a GABA antagonist, may result in a divisive rather than
subtractive effect on inhibitory input. We investigated the effect
of divisive perturbations by scaling the effective inhibitory syn-
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aptic strength wI. We computed the change in neuronal responses
when effective inhibitory synaptic strength is perturbed, requiring
that, for an increase in inhibitory synaptic strength, the analogous
“paradoxical” response would be for the inhibitory network to in-
crease its activity (see Materials and Methods; Eq. 15). We provided
a constant but different input current to excitatory and inhibitory
neurons, �E and �I, respectively.

We found that, for a network operating in a stable ISN regime,
there is no combination of relative excitatory and inhibitory in-
put or synaptic weight that can give rise to a paradoxical inhibi-
tory response when the inhibitory synaptic strength is perturbed.
This result implies that global modulation of inhibitory weights
or other similar divisive modulation of inhibition cannot be used
to demonstrate an ISN regime in cortex.

Networks with realistic proportions of excitatory and
inhibitory neurons
The networks described above have equal numbers of excitatory and
inhibitory neurons, similar to classical ISN networks. However, in

mammalian cortex, �20% of neurons are inhibitory (Gabbott and
Somogyi, 1986). We therefore redefined our network according to
Muir and Mrsic-Flogel (2015) and set the proportion of inhibitory
neurons in the network to 20% while maintaining all-to-all nonspe-
cific connectivity. We computed numerically the proportion of the
inhibitory population that must be stimulated to observe the para-
doxical effect in the stimulated neurons (Fig. 4B; see Materials and
Methods). In general, networks with fewer inhibitory neurons are
less stable. Indeed, an increase in wI is required for stability (cf. Fig.
4A,B; note the different scales of inhibitory strength in A and B).
However, we observed the same trends for evoking a paradoxical
inhibitory response in networks with fewer inhibitory neurons, as
for the networks with equal numbers of excitatory input.

Sparse connectivity does not affect the proportion of inhibition
that must be perturbed
Synaptic connections between neurons in the neocortex are not
all-to-all; neurons connect to their immediate neighbors with an
average probability of only �20% for recurrent excitatory con-

Figure 3. Perturbing only a proportion of the inhibitory population may not give rise to a paradoxical inhibitory response. A, B, Result of increasing (A) and decreasing (B) input to a portion
p 
 50% of the inhibitory population (cf. Fig. 2). Although this network is an ISN with same parameters as in Figure 2, the response of inhibitory neurons to perturbation is starkly different. No
evidence for the paradoxical response is visible, the perturbed inhibitory neurons simply follow the perturbing stimulus. Dashed trace is the response of nonstimulated inhibitory neurons shifted up
for visibility. The response of excitatory neurons (red) and nonstimulated inhibitory neurons (dashed) are identical.

Figure 4. Many inhibitory neurons must be perturbed to evoke a paradoxical inhibitory response. A, Minimum proportion of the inhibitory population p/N that must be perturbed for the
paradoxical effect to appear in the perturbed neurons in a network with equal numbers of excitatory and inhibitory neurons. This analytical result does not depend on the size of the network N.
Parameters: {hI, hE, fI, �} 
 {1, 1, 0.5, 10 ms}. B, Miminum proportion of inhibition p/NI for a network with fI 
 20%. Other parameters: {hI, hE, �, NE, NI} 
 {1, 1, 10 ms, 80, 20}. Note the difference
in scale compared with A. C, Minimum proportion of the inhibitory population p/N that must be perturbed under for the paradoxical effect for networks with sparse synaptic connectivity between
excitatory and inhibitory neurons. Note that this does not affect the overall trend for averaged response of stimulated inhibitory neurons (cf. B), but the stochastic effect of introducing sparse
connections in smaller networks is evident. Parameters: {hEE , hEI , hIE , hII , NE , NI} 
 {0.1, 0.5, 0.5, 0.5, 4000, 1000}. “X” in B and C, estimated nominal parameters for mouse visual cortex {wE , wI} 

{5.4, 56}. This estimate gives p/NI 
 70%. †Non-ISN regime; ‡unstable regime.
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nections (Gabbott and Somogyi, 1986). Connections between
neighboring inhibitory and excitatory neurons are much more
dense, with close to 100% connection probability between neigh-
boring excitatory and PV-positive inhibitory neurons (Bock et
al., 2011; Fino and Yuste, 2011; Hofer et al., 2011; Martin,
2011; Bopp et al., 2014), but connection probabilities fall off
dramatically with distance (Boucsein et al., 2011; see Materials
and Methods).

To examine the effect of sparse connectivity, we expanded
upon the work in Muir and Mrsic-Flogel (2015) by introducing
connection sparsity parameters that describe the number of syn-
aptic connections made between nearby neurons as a proportion
of all possible partners. We estimated separate sparsity parame-
ters for recurrent excitatory, excitatory ¡ inhibitory, inhibitory ¡
excitatory, and recurrent inhibitory connections based on the
assumption of stochastic connections formed between neurons
with overlapping axonal and dendritic arbors and to match re-
ported connection probabilities (Peters’ rule; see Materials and
Methods; Peters, 1979; Reimann et al., 2015).

By computing the proportion p/NI of the inhibitory popula-
tion that must be stimulated to observe the paradoxical effect, we
found that, if one records the average response of stimulated
inhibitory neurons, then p/NI only differs from the fully con-
nected network in terms of stochasticity induced by the random
sparsity structure of individual instances of W (Fig. 4C). Esti-
mates for nominal parameters of total synaptic strength in rodent
cortex are indicated by “X” in Figure 4, B and C, suggesting that
�70% of inhibitory contribution must be perturbed to observe
the paradoxical inhibitory response in cortex. However, due to
the spatial dependence of connectivity and the tendency for local
inhibition to be strong, dense, and class-specific (Bock et al.,
2011; Fino and Yuste, 2011; Hofer et al., 2011; Martin, 2011;
Bopp et al., 2014), inhibition may be even stronger than this

estimate, which is based on uniform connection probabilities.
Our results predict that a large fraction of inhibitory neurons
must be perturbed to evoke a paradoxical response in cortex.

Perturbations in networks with specific
excitatory connectivity
In previous sections, we examined networks in which local excit-
atory connections were made sparsely, but with identical probability
between all excitatory neurons. However, pairwise excitatory con-
nectivity is modulated by neuronal response similarity in both ro-
dent noncolumnar visual cortex (Ko et al., 2011; Cossell et al.,
2015) and in columnar visual cortex (Malach et al., 1993; Bosking
et al., 1997; Muir et al., 2011; Martin et al., 2014). The dynamics of
inhibitory perturbations in stabilized networks with this struc-
ture has not been examined. We therefore considered that the
presence of strongly coupled excitatory subnetworks might affect
network responses to inhibitory perturbation. In addition, the
impact of inhibitory perturbations may depend on whether the
external network drive during a perturbation is random or is
subnetwork specific, such as by stimulating with high contrast
oriented gratings in visual cortex. We therefore studied pertur-
bations in networks where excitatory neurons were partitioned
into subnetworks and made preferential synaptic connections
with members of the same subnetwork (Ko et al., 2011; Cossell et
al., 2015; Muir and Mrsic-Flogel, 2015). These networks were
otherwise identical to those shown in Figure 4. We compared the
proportion of perturbed inhibitory neurons that were required to
evoke a paradoxical effect between the uniform connectivity net-
works in Figure 4 and a network consisting of 10 subnetworks
with selective connectivity (Fig. 5). Our results showed that the
same or an even greater proportion of inhibitory neurons needed
to be perturbed to evoke a paradoxical effect in networks with
feature-specific connectivity (Fig. 5), especially when external

Figure 5. Inhibitory perturbations in networks with specific excitatory connectivity. A, Minimum proportion of inhibition that must be perturbed to observe a paradoxical response is unchanged
by the presence of M excitatory subnetworks (M 
 10; other parameters as in Fig. 4B), under global external input (cf. Fig. 4B). Specific excitatory connectivity leads to instability for excitatory
synaptic strength wE stronger than �6.5. B, When external input is provided instead to half of the excitatory subnetworks (Eq. 13), larger fractions of inhibition must be perturbed. Conventions are
as in Figure 4. Estimate at “X” in A corresponds to p/NI 
 70%; in B, 90%.
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input was not global, but rather was specific to one or several
subnetworks.

Perturbations in networks with spatial extent
Connections between cortical neurons have spatial extent and the
density of connections between neurons is modulated by their
relative locations within cortex (Hellwig, 2000; Holmgren et al.,
2003; Boucsein et al., 2011; Levy and Reyes, 2012). Most experi-
mental perturbations of neuronal activity are also spatially local-
ized. Although a perturbation may target all inhibitory neurons
in a particular location, it is possible that the spatial size of a
perturbation determines whether a paradoxical inhibitory re-
sponse occurs in an ISN. The physical size of a perturbation may
then determine whether an ISN regime can be detected.

We simulated a neural field model with spatial extent and with
neuronal connectivity modulated by Gaussian axonal and den-
dritic fields (Fig. 6A,B; see Materials and Methods). The model
comprised two plates of neurons, one excitatory and one inhibi-
tory, and implemented torus boundary conditions. We per-
turbed inhibitory neurons in circular regions of the model and
measured the presence of a paradoxical effect in the center of the
perturbation zone.

We found that, in networks operating in an ISN regime, nar-
row perturbations did not give rise to a paradoxical inhibitory
response even in the center of the perturbation zone (Fig. 6C).
Broader perturbations led to robust paradoxical responses in the
center of the perturbation zone, with edge effects leading to a
failure of the paradoxical inhibitory response at the limits of the

Figure 6. Physical size of an inhibitory perturbation determines whether a paradoxical effect will be displayed in networks with spatial extent. A, B, Cross-sections of 2D dendritic density fields
(A) and axonal synaptic weight fields (B) for excitatory (red, positive) and inhibitory (blue, negative) neurons. Dots indicate the resolution of the simulation mesh. C–E, Cross-section of spatial
perturbations applied to neural fields in an ISN regime for varying perturbation diameter b. The inhibitory field was perturbed with � 
 �0.2. For narrow perturbations, the perturbed inhibitory
neurons do not show a paradoxical response even in the presence of an ISN regime (C; perturbation suppressed inhibitory activity). For wider perturbations, a paradoxical inhibitory response is
evoked (D,E; perturbation increased inhibitory activity). C–E are shown on a common scale. Parameters are as in Table 1 and {wE, wI} 
 {4, 4}.
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perturbation (Fig. 6D,E). For a wide range of parameters, the
minimum perturbation width needed to evoke a paradoxical in-
hibitory response was 	250 �m.

Inactivating the excitatory network may prevent detection of
an ISN regime
For a network to be in an ISN regime, the excitatory network
must be unstable in the absence of inhibition, which places a
lower bound on the total synaptic output from individual excit-
atory neurons of wE(1 � fI) � 1. However, if only a portion of the
excitatory network is active, then the effective excitatory synaptic
drive available to the recurrent circuit will be lower than wE. This
has two consequences for experimental perturbations: first, the
excitatory network must be in an active state in order for an ISN
regime to be detectable. Second, if an inhibitory perturbation
leads to excitatory inactivation, this may complicate or prohibit
the detection of an ISN regime.

We computed the fraction of the excitatory network that must
be active to place the network in an ISN regime for a given total
excitatory strength wE (Fig. 7, dashed line). Under parameters
estimated for mouse visual cortex (cross, wE 
 5.4), at least 23%
of the excitatory network must be active to permit the detection
of an ISN regime. These results suggest that suppression rather
than activation of inhibitory networks is likely to be the better
strategy for revealing ISNs, particularity in the presence of the
sparse activity states found in cortex.

Measuring inhibitory input currents in excitatory neurons
Litwin-Kumar et al. (2016) proposed that recording the inhibi-
tory current received by excitatory neurons as an experimentally
accessible metric for observing the paradoxical effect of an ISN.
Due to dense connectivity from the inhibitory population onto
excitatory neurons (Fino and Yuste, 2011), recording net inhib-
itory currents provides an estimate of the mean activity of the
local inhibitory population rather than sampling from an indi-
vidual inhibitory neuron. Optogenetic perturbation of the inhib-
itory population while recording from individual excitatory
neurons was performed by Atallah et al. (2012). However, the
behavior of ISNs under simulated optogenetic perturbations is
not known, leaving in question whether the averaging is sufficient
in sparse networks and under what conditions a paradoxical ef-
fect should be visible.

We therefore performed simulated optogenetic perturbations
of the inhibitory population by injecting positive and negative
currents and recording the resulting change in inhibitory input to
excitatory neurons (Fig. 8). We simulated the presence of a stimu-

lus in the network by providing random fixed input currents to each
neuron. This placed the network in a realistic regime where symme-
try is broken by an input stimulus and competition between neurons
can be expressed. We then perturbed a randomly chosen proportion
p/NI of the inhibitory network by providing a common input cur-
rent with amplitude � ranging (�1,1) designed to simulate pertur-
bation by optogenetic activation or suppression.

We recorded the amplitude of inhibitory input currents im-
pinging on each excitatory neuron and defined an excitatory neu-
ron as showing a paradoxical effect if inhibitory input currents
were modified by at least 10% in response to the inhibitory per-
turbation. As shown in Figure 8A, paradoxical effects were only
observed in a substantial proportion of excitatory neurons when
the majority of inhibitory neurons was inhibited. Indeed, regimes
exist for ISN networks with strong excitatory and inhibitory feed-
back, where the paradoxical effect cannot be observed in the
majority of excitatory neurons. Indicated regions in Figure 8 cor-
respond to the effect sizes reported in Atallah et al. (2012), as
determined by comparing the relative change in firing rates of
excitatory and inhibitory neurons after a perturbation (Fig.
8B,C). Under a range of choices for strengths of excitation and
inhibition, the simulated perturbations equivalent in size to those
reported in Atallah et al. (2012) were not sufficient to demon-
strate the paradoxical effect.

Perturbations in networks with multiple
inhibitory subclasses
Our results so far were obtained in network models including
only a single inhibitory class. However, interneurons form mul-
tiple inhibitory subclasses in the neocortex (Pfeffer et al., 2013).
Recently, Litwin-Kumar et al. (2016) examined the role of mul-
tiple inhibitory classes on network stability, with each class im-
plemented as a single simulation node. They found that including
additional inhibitory classes did not change the dynamics of in-
hibitory stabilization with regard to observing a paradoxical net-
work response (their Figs. 1,2).

We therefore investigated how the dynamics of inhibitory
perturbations changes in networks with an elaborated inhibitory
system consisting of many neurons and separate inhibitory pop-
ulations representing PV, SOM, and VIP inhibitory classes. We
chose the parameters of connectivity similar to experimentally
reported values (Pfeffer et al., 2013; Litwin-Kumar et al., 2016; see
Materials and Methods). Because excitatory neurons became si-
lent for strong connections between excitatory and SOM sub-
populations, we varied this connectivity from weak to strong and
evaluated the critical fraction of inhibition needed in each case to
observe a paradoxical effect (for details, see Materials and Meth-
ods).

We found that perturbing a large fraction of PV neurons was
also required to evoke a paradoxical effect in networks with mul-
tiple subclasses of inhibition (Fig. 9A). Moreover, perturbing the
SOM and SOM�VIP subpopulations in addition to PV was more
effective in evoking a paradoxical effect compared with per-
turbing PV alone (Fig. 9 B, C). This was especially the case for
intermediate coupling strength between excitatory and SOM
populations (Exc.–SOM coupling �0.4). The critical fraction of
inhibitory neurons that must be perturbed reduces to �55% for
intermediate Exc.–SOM coupling strengths. For very strong Exc.–
SOM coupling, excitatory activity was strongly suppressed, mak-
ing inhibitory stabilization more difficult to detect.

These results confirm that that perturbation of a large fraction
of inhibitory neurons is required to evoke a paradoxical effect in
the realistic case of multiple inhibitory subclasses and where the

Figure 7. Depending on total excitatory strength wE, a minimum proportion of the excit-
atory population must be active for the network to operate in an ISN regime. For a given wE, the
network will only operate in an ISN regime if the effective excitatory recurrence is strong enough
to lead to excitatory instability (i.e., �E � 1). Dashed line: �E 
 1. Parameters: fI 
 20%. X:
wE 
 5.4 as in Figure 4. Prop., Proportion; exc., excitatory; eig., eigenvalue.
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PV inhibitory population comprises only a subset of inhibition in
cortex. We therefore conclude that networks including multiple
inhibitory classes behave in a qualitatively similar manner to
those with a single inhibitory class.

Perturbations in more realistic networks of spiking neurons
Our results so far were obtained in network models with simpli-
fied firing rate dynamics. However, networks composed of non-
linear spiking units are known to show rich and complex activity
dynamics (Brunel, 2000; Ostojic, 2014), with response properties
depending on the operating regime of activity (Destexhe et al.,
2003; Kuhn et al., 2004; Kumar et al., 2008). To verify that our
results hold in more biologically realistic networks, we investi-
gated the dynamics of paradoxical inhibitory response in net-
works of nonlinear, conductance-based spiking neurons (see
Materials and Methods).

The spiking activity of a sample network of conductance-
based exponential integrate-and-fire neurons is shown in Figure
10A before and after perturbation of two different fractions of the

inhibitory population. The perturbation was performed by de-
creasing input to a subset of inhibitory neurons.

The average activity within each subpopulation (excitatory,
perturbed inhibitory, and unperturbed inhibitory) is shown in
Figure 10A (bottom). When 10% of the inhibitory population
was perturbed, no paradoxical effect was observed: the (nega-
tively) perturbed inhibitory subpopulation decreased its activity,
whereas the unperturbed inhibitory and excitatory subpopula-
tions increased their activity. However, when larger fractions
(75%) of inhibitory neurons were perturbed, the network dis-
played the paradoxical effect by increasing the average activity of
the perturbed neurons despite a decrease in the input to the in-
hibitory network, consistent with the predictions of our firing
rate model (cf. Figs. 10B, 4A).

To quantify the strength and presence of the paradoxical ef-
fect, we measured the average differential firing rate (perturbed
rate minus baseline rate) while varying the fraction of perturbed
inhibitory neurons (Fig. 10C; for details, see Materials and Meth-
ods). The paradoxical effect was present when large fractions of

Figure 8. Paradoxical effects under simulated optogenetic perturbation. A, Responses to perturbation in an ISN regime network indicating the proportion of excitatory neurons that exhibit a
paradoxical effect in the net inhibitory input currents as a function of perturbation strength � and proportion p of inhibitory neurons perturbed. B, C, Relative change in excitatory (B) and stimulated
inhibitory (C) neuron activity for the same simulations as in A. We considered that a paradoxical effect was visible when the input currents changed by at least 10% in the appropriate direction.
Outlined regions in A–C indicate responses to perturbation where changes in excitatory and inhibitory activity are approximately equal to those reported by Atallah et al. (2012) (see Materials and
Methods). *Region where the majority of excitatory neurons are below threshold, leading to failure of excitatory-driven inhibition. Parameters: {wE, wI, hEE, hEI, hIE, hII, NE, NI}
 {4, 100, 6.4�10 �3,
0.21, 0.24, 0.99, 4800, 1200}.

Figure 9. Fraction of inhibitory interneurons required to evoke a paradoxical effect in networks with multiple inhibitory subclasses. A, Minimum proportion of PV subpopulation needed to be
perturbed to evoke the paradoxical effect, as a function of the coupling strength of recurrent connections between excitatory cells (Exc.) and SOM neurons (see Materials and Methods; Eq. 7 in
Litwin-Kumar et al., 2016). For very strong Exc.–SOM coupling values, excitatory activity (red) is completely silenced. No paradoxical effect can be observed in this state. For intermediate values of
Exc.–SOM coupling, large fractions of PV neurons must be perturbed to evoke a paradoxical effect. B, C, Effect of simultaneously perturbing the PV and SOM (B) or PV, SOM, and VIP (C) subclasses.
The same fraction of neurons was perturbed in each inhibitory class.
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inhibitory neurons were perturbed, as indicated by a positive
differential rate. We determined the minimum fraction at which
the paradoxical effect emerged by interpolating the mean differ-
ential rate and inferring the point at which the differential rate
crossed 0 (Fig. 10D; see Materials and Methods). Under these
simulation conditions, �60% of the inhibitory neurons were re-
quired to generate a paradoxical effect.

We next investigated whether the minimum fraction of inhib-
itory neurons p/NI required to evoke the paradoxical effect de-
pended on the relative strengths of excitatory and inhibitory
feedback, as predicted by our nonspiking simulations. To test
this, we fixed all parameters of the spiking network and modified
the strength of excitatory and inhibitory conductances, Be and Bi,
respectively (Fig. 10D). For each combination of synaptic strengths,
we estimated the minimum fraction of inhibition p/NI from the
differential rate curves (analogous to Fig. 10D).

When excitation was too weak (Fig. 10D, left, white), no par-
adoxical effect was visible. For these values of excitation, the net-
work was not operating in an ISN regime because the excitatory
network alone was intrinsically stable (excitatory conductance Be

at and below gray vertical line obtained from the stability analysis
of the linearized network; for details, see Materials and Methods).
For very strong values of excitatory coupling without sufficient
inhibitory feedback (high Be and low Bi), networks underwent a
transition from the stable regime with low firing rates and asyn-

chronous, irregular activity to a regime with high firing rates and
large pairwise correlations. This was consistent with our analysis
of firing rate networks (cf. the unstable regime of network dy-
namics in Fig. 3). No paradoxical inhibitory response was ob-
served in these unstable networks.

For intermediate values of Be, we found a smooth relationship
between network parameters and the minimum fraction of per-
turbed inhibition p/NI required to see the paradoxical effect: net-
works with stronger excitation and weaker inhibition required
smaller perturbations, similar to our results in firing rate net-
works (cf. Figs. 10D, 3). The trend for p/NI mimicked the ten-
dency for the network to become unstable for strong Be. The
results from our spiking simulations therefore agreed well with
those from our analytical and firing rate models.

Discussion
By examining the effects of simulated perturbations of activity in
cortical network models with increasing degrees of realism, we
determined what classes of perturbation could detect the compu-
tational regime of cortical networks successfully. In particular, we
examined the properties of ISNs, which require inhibitory feed-
back to balance strong recurrent excitation (Tsodyks et al., 1997).
This class of networks is particularly important for mammalian
neocortex because many useful computational properties such as
selective amplification, sharpening of tuning, and noise rejection

Figure 10. The paradoxical effect in spiking ISNs depends on the proportion of perturbed inhibitory neurons. A, B, Result of perturbing 10% (A) and 75% (B) of the inhibitory population in a
spiking network model by reducing input to inhibitory neurons. Top, Single-trial spike rasters from the entire population. Bottom, Averaged firing rates over 10 trials (smoothed by a boxcar filter of
100 ms width). Black bar is the perturbation period (cf. Fig. 3). Red are excitatory (Exc.) neurons; black are perturbed inhibitory neurons (Inh. pert.); cyan are nonperturbed inhibitory neurons (Inh.
non-pert.). Parameters for this network: {NE, NI, Be, Bi} 
 {1600, 400, 0.1 nS, 0.2 nS}. For other parameters, see Materials and Methods and Table 3. C, Mean (dots) and SD (shading) of the differential
rates under a range of perturbed proportions for the network shown in A and B. Cross and dashed line in C is the inferred minimum fraction of perturbed inhibition p/NI required to obtain the
paradoxical effect (for details, see Materials and Methods). D, Minimum fraction p/NI for spiking networks while varying Be and Bi (cf. Fig. 4). Dashed line in D: border of the ISN regime according to
a simplified linear analysis of the network (see Materials and Methods). †Non-ISN regime; ‡unstable regime (firing rates �100 Hz).
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require networks to be in an ISN regime (Douglas and Martin,
2007; Rutishauser and Douglas, 2009; Neftci et al., 2013; Muir
and Cook, 2014; Hopfield, 2015).

In simple ISN models where each cell class is represented by a
single unit, perturbation of the inhibitory unit reliably leads to a
“paradoxical” inverse response whereby exciting an inhibitory
neuron results in a net decrease in activity (Tsodyks et al., 1997;
Litwin-Kumar et al., 2016; Fig. 2). We explored whether this
paradoxical response could be used to detect ISNs experimentally
by analyzing larger models with many neurons and with both
homogeneous and sparse synaptic connectivity. We then tested
the predictions arising from simplified firing rate models in more
biologically realistic networks, including those with distance-
dependent and subnetwork-specific connectivity, networks with
multiple subtypes of inhibitory neurons, and conductance-based
spiking network models. We found that, when inhibitory and
excitatory populations are expanded, perturbing single inhibi-
tory neurons only evokes a paradoxical response in very small
networks.

In larger and more realistic networks, we found that eliciting a
paradoxical inhibitory response requires a large fraction of the
inhibitory population to be perturbed (Fig. 4). The proportion of
cells required depends on the relative size and synaptic strengths
of the excitatory and inhibitory populations but, importantly,
not on the total size of the network. For networks with parame-
ters estimated to be similar to mouse visual cortex, we found a
large majority of inhibitory neurons must be perturbed to evoke
a paradoxical response (�70%; Fig. 4B). Interestingly, connec-
tion sparsity does not affect the average minimum proportion of
the inhibitory network that must be perturbed (Fig. 4C). There-
fore, dense inhibitory feedback and sparse excitatory recurrence
as present in mammalian cortex (Bock et al., 2011; Hofer et al.,
2011; Martin, 2011; Bopp et al., 2014) does not imply that an ISN
regime should be straightforward to observe. Our results suggest
that establishing whether cortical networks operate in the ISN
regime requires application of optogenetic strategies that allow
perturbation of the vast majority of inhibitory interneurons in
the circuit.

Factors underlying the paradoxical effect in network models
Simplified network models (as in Tsodyks et al., 1997 and Litwin-
Kumar et al., 2016) display robust paradoxical effects in response
to perturbations of the inhibitory system. Because these networks
use single neurons to represent the entire inhibitory population
or entire inhibitory classes, they assume implicitly that global or
class-global perturbations are made to the network. Our results
demonstrate that this assumption is crucial to their results; we
showed that networks operating in an ISN regime will not display
a paradoxical inhibitory response unless a minimum proportion
of the inhibitory population is perturbed (Fig. 4). Care is there-
fore needed in interpreting these earlier results in light of the
complex inhibitory system in cortex.

We found that including sparsity in local recurrent connectiv-
ity did not change the minimum proportion of the inhibitory
population that must be perturbed to evoke a paradoxical re-
sponse (Fig. 4C). This is because the effects of sparse connectivity
average out as the network size increases. Although the local min-
imum proportion of inhibitory neurons fluctuates across the net-
work under sparse connectivity, we found that, if the average total
excitatory and inhibitory synaptic strength per neuron is held
fixed, then the average minimum proportion is then identical
between fully and sparsely connected networks.

Relationship to other balanced network models
Although instability of the excitatory subnetwork is not a re-
quired component of classical balanced networks (van Vreeswijk
and Sompolinsky, 1996, 1998), they are usually assumed to oper-
ate in a regime where the net excitatory input to a single neuron in
the absence of inhibition is well above its firing threshold; that is,
a regime of unstable recurrent excitatory feedback. Because strong
recurrent excitation is the most important determinant of a par-
adoxical effect in inhibitory stabilized networks, we therefore ex-
pect that our results hold in balanced networks with unstable
excitation.

A more recent model is the stabilized supralinear network
(SSN), which is an extension of classic ISNs to neuron models
using nonlinear transfer functions (Ahmadian et al., 2013; Rubin
et al., 2015). These networks can have multiple operating regimes
depending on the average magnitude of input drive: if the network
is only weakly driven, then its activity is determined by external
input and weak recurrent interactions mediated by sublinear re-
gions of the neuronal transfer function. Recurrent excitation is
intrinsically stable in this mode, which implies the absence of an
ISN regime and thus no paradoxical effect of inhibitory pertur-
bation is expected. Conversely, if the external input is strong
enough, then recurrent excitation is strengthened as a result of
the nonlinear neuronal transfer function. Recurrent excitation is
unstable in this regime, requiring inhibitory feedback for bal-
ance. In this regime, we expect SSNs to behave as we described in
our results for ISNs.

Application to experimental methods for inhibitory
perturbation
Electrical stimulation
The activity of a neuron can be conveniently perturbed electri-
cally by passing positive or negative currents through a recording
electrode. However, because only small numbers of cells can be
perturbed simultaneously using electrophysiological methods,
our results suggest that paradoxical responses will not be ob-
served in cortex using this method even if an ISN regime exists
(Fig. 4).

Chemical stimulation
Several agonists and antagonists of GABA receptors exist, with
varying selectivity for receptor subtypes (Chebib and Johnston,
1999; Krall et al., 2015). If such ant/agonists result in additive or
subtractive modulation of inhibition, their effect is equivalent to
adding or removing activity from both inhibitory and excitatory
neurons. If the ant/agonists instead result in multiplicative or
divisive modulation of inhibitory synaptic currents, the effect is
equivalent to a modification of inhibitory weight. Our results for
network global perturbations of input inhibitory currents or of
inhibitory weight imply that ant/agonists with either mechanism
of action cannot induce a paradoxical inhibitory response regard-
less of the presence of an ISN regime (Eq. 14,15).

Optogenetic perturbation
Optogenetic approaches enable photoactivation or photosup-
pression of specific neuron populations through genetically tar-
geted expression of light-sensitive proteins (Boyden et al., 2005;
Han and Boyden, 2007; Zhang et al., 2007; Aston-Jones and De-
isseroth, 2013). This approach was taken by Atallah et al. (2012)
to stimulate and suppress activity in PV-positive inhibitory neu-
rons, coupled with simultaneous in vivo electrophysiology to
record responses to stimulation in individual excitatory and
inhibitory neurons. Atallah et al. (2012) showed that mild per-
turbation of PV neurons (��40% suppression and �20% acti-
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vation; their Fig. 2) did not modify tuning of stimuli in mouse V1
(Atallah et al., 2012). The resulting changes in excitatory activity
were also mild and inhibitory currents received by excitatory neu-
rons did not show a paradoxical effect, on average (their Fig. 5).

Our findings cast new light on these results by showing that a
large majority of inhibitory neurons must be perturbed to evoke
a paradoxical response (Fig. 4). It is therefore not surprising that
Atallah et al. (2012) did not observe such an effect, especially
considering that PV inhibitory neurons comprise 	50% of in-
hibitory neurons in the superficial layers of cortex (Markram et
al., 2004; Gonchar et al., 2007) and a similar proportion of inhib-
itory synapses (Binzegger et al., 2004), placing a hard upper
bound on the proportion of inhibitory neurons available for per-
turbation in their experiments.

We also showed that measuring inhibitory currents received
by excitatory neurons (Litwin-Kumar et al., 2016) does not guar-
antee that a paradoxical effect will be observed in sparsely
connected ISNs. In Figure 8, white outlines mark regimes of in-
hibitory perturbation that match the effects on excitatory and
inhibitory activity observed by Atallah et al. (2012). In the pres-
ence of strong inhibition and sparse excitatory feedback in cortex,
only a minority of excitatory neurons is expected to show a par-
adoxical effect in inhibitory input currents under this perturba-
tion regime. The lack of a paradoxical change in inhibitory input
currents observed by Atallah et al. (2012) therefore does not rule
out the presence of an ISN regime in rodent cortex.

Our results suggest that optogenetic suppression of inhibitory
neurons can be used to detect an ISN regime, but that optogenetic
transducer proteins must be expressed in a majority of inhibitory
neurons to do so. We found that suppression of inhibition is
preferable to activation of inhibition if the goal is to detect an ISN
regime (Figs. 7, 8). Activating inhibition leads to suppression of
excitatory activity, reducing the effective recurrent excitatory
drive in the network and preventing expression of ISN dynamics.
We also found that the spatial size of a perturbation is expected to
be important in ensuring a paradoxical inhibitory effect is evoked
(Fig. 6), but that perturbations �250 �m in diameter are likely to
evoke a robust paradoxical response.

We also found that, despite complex interactions between
classes of inhibitory neurons in cortex, perturbing SOM and VIP
neurons in addition to PV neurons was likely to lead to a more
robust detection of an ISN regime. This could be achieved using
multiple inhibitory class-specific promoters (e.g., PV-Cre �
SOM-Cre � FLEXed virus) or a global inhibitory promoter such
as glutamate decarboxylase to target all cells that synthesize
GABA. Large area photostimulation could then be used to inhibit
a large fraction of inhibitory neurons, rather than the subpopu-
lation studied in Atallah et al. (2012) and the presence or absence
of a paradoxical effect determined by examining inhibitory drive
onto pyramidal cells (Litwin-Kumar et al., 2016). However, be-
cause our networks did not explore the effects of class-specific
inhibition onto various subcellular compartments, potential net-
work effects arising from differences between dendritic- and
somatic-targeting inhibition must be weighed carefully.

Two recent studies inferred the presence of ISN regimes in the
visual (Adesnik, 2017) and auditory (Kato et al., 2017) cortex of
awake mice by observing an increase in synaptic inhibition to
pyramidal cells as a result of optogenetically suppressing inhibi-
tory neurons (SOM neurons in Adesnik, 2017 and SOM or PV
neurons in Kato et al., 2017). This is generally consistent with the
results of our model including multiple inhibitory subclasses
(Fig. 9). However, an increase in inhibitory drive onto pyramidal
cells could also be caused by disinhibition of PV neurons by

inactivated SOM neurons (Adesnik, 2017). To safely infer the
presence of an ISN regime from these results, future experimental
and theoretical research is needed to rule out disinhibition.

Impact of anesthesia and external stimulation
Many anesthetics act to reduce overall neuronal excitability (Ru-
dolph and Antkowiak, 2004) and effective connection strength
(Campagna et al., 2003). In our models, this effectively leads to
reducing both excitatory and inhibitory synaptic weights. In both
cases, we expect networks to be more stable under anesthesia,
with a weaker or absent expression of ISN properties such as the
paradoxical response. Observing ISN properties is therefore
likely to be easier in awake animals.

Care must also be taken to ensure an appropriate operating
regime for cortex when probing for inhibitory stabilization. We
found that, if the cortex is driven with an external stimulus biased
in a similar way to local excitatory connection specificity, for
example, a visual grating of a single orientation in rodent visual
cortex, then detecting an ISN regime is more difficult. This result
implies that inhibitory stabilization might be easier to detect un-
der spontaneous activity or using stimuli that drive less struc-
tured cortical activity.

Other evidence for the operating regime of cortex
Surround suppression in cat visual cortex is consistent with an
ISN operating regime under the assumption that projections
from the visual surround specifically modulate the inhibitory
population (Ozeki et al., 2009). Robust propagation of oscillatory
activity in several species (Timofeev et al., 2000; Rubino et al.,
2006; Wu et al., 2008; Stroh et al., 2013) suggests that recurrent
excitation is strong enough to regenerate activity (Beurle, 1956;
Compte et al., 2003; Wu et al., 2008). In the rodent, supralinear
amplification of single spikes (London et al., 2010) provides ad-
ditional evidence for strong excitatory recurrence in cortex. More
directly, anatomical and physiological estimates of synaptic con-
tributions from various neuronal classes place both cat and ro-
dent cortex in an ISN regime (Binzegger et al., 2004; Binzegger et
al., 2009; Lefort et al., 2009).

Our results illustrate that emergent dynamics in the highly
recurrent networks of mammalian neocortex can complicate ex-
perimental detection of the network configuration. In particular,
intuitions derived from reduced models about how classes of
neurons interact may not hold in more realistic networks. Our
analysis and simulation of larger scale models show that, al-
though it is possible to test for an ISN regime in cortex using
optogenetics, particular experimental conditions are required to
do so successfully. Computational modeling of cortical dynamics
is therefore an essential tool with which to predict the effect that
perturbations will have under particular hypotheses of cortical
interactions and to guide experimental design to test those hy-
potheses.
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