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Abstract

Background: In healthcare research, outcomes with skewed probability distributions are common. Sample size
calculations for such outcomes are typically based on estimates on a transformed scale (e.g. log) which may
sometimes be difficult to obtain. In contrast, estimates of median and variance on the untransformed scale are
generally easier to pre-specify. The aim of this paper is to describe how to calculate a sample size for a two group
comparison of interest based on median and untransformed variance estimates for log-normal outcome data.

Methods: A log-normal distribution for outcome data is assumed and a sample size calculation approach for a
two-sample t-test that compares log-transformed outcome data is demonstrated where the change of interest is
specified as difference in median values on the untransformed scale. A simulation study is used to compare the
method with a non-parametric alternative (Mann-Whitney U test) in a variety of scenarios and the method is applied
to a real example in neurosurgery.

Results: The method attained a nominal power value in simulation studies and was favourable in comparison to a
Mann-Whitney U test and a two-sample t-test of untransformed outcomes. In addition, the method can be adjusted
and used in some situations where the outcome distribution is not strictly log-normal.

Conclusions: We recommend the use of this sample size calculation approach for outcome data that are expected
to be positively skewed and where a two group comparison on a log-transformed scale is planned. An advantage of
this method over usual calculations based on estimates on the log-transformed scale is that it allows clinical efficacy
to be specified as a difference in medians and requires a variance estimate on the untransformed scale. Such
estimates are often easier to obtain and more interpretable than those for log-transformed outcomes.
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Background
In most clinical studies, sample size calculations are
important at the study design stage [1–3]. A typical objec-
tive of such studies is to test for a difference in the
distribution of some outcome of interest between two or
more groups using a hypothesis test. A sample size calcu-
lation helps to ensure that a study has the correct power
to reject the null hypothesis, thereby providing conclusive
evidence of a true difference between groups, where such
evidence exists. Where a study does not have a high level
of power, the probability of rejecting the null hypothesis
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is low and, as a result, evidence in support of a difference
between groups may not be detected.
For studies in which the outcome of interest has a con-

tinuous distribution, a two-sample t-test is often used to
test the null hypothesis that themean outcome is the same
for two groups. Use of the two-sample t-test relies on an
underlying assumption that this outcome is normally dis-
tributed. The required sample size is then calculated on
the basis of a pre-specified minimum clinically significant
difference in means between groups and an estimate for
the variance of the outcome (or, equivalently, a standard-
ised mean difference), together with a desired hypoth-
esis test power and significance level. However, many
health care outcomes are not normally distributed and
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instead have skewed distributions. For example: quality-
of-life measures [4], tumour size or features in cancer
patients [5, 6] and time outcomes [7, 8], amongst many
others. For such data, non-parametric tests might be con-
sidered (for example, a Mann-Whitney U test) although
such tests may be affected by a reduced power and can
require a substantial inflation of the sample size [9, 10].
Alternatively, outcomes may be transformed to obtain a
normal distribution and enable the use of a two sam-
ple t-test. For positively skewed outcome data, a common
transformation is the natural logarithm of the outcome
[11] with a t-test then used to test the null hypothesis
that mean values on the log-transformed scale are equal.
In this case, standard sample size calculations based on
t-tests or Z-tests are performed for the transformed data,
using pre-specified means and variances on the log-scale.
A potential problem with taking this approach can be

specifying accurate or appropriate values of standardised
mean differences (or, equivalently, group means and stan-
dard deviations) for the log-transformed outcomes. Often,
it may be more natural for health care practitioners or
trialists to have knowledge of such values on the untrans-
formed scale, since these typically represent more clini-
cally relevant or meaningful measures. A natural choice
for summarising skewed data on the untransformed scale
is the median. Unlike the mean, the median is not unduly
influenced by extreme values. Estimates of medians are
likely to be more readily available and interpretable than
the alternative of specifying means on the log-scale. In
addition, specifying variances of untransformed values is
also likely to be easier for a study’s research team and
probably more accurate than the specification of variances
on the log-scale.
Here, we describe how a sample size can be calcu-

lated for a two group comparison of a log-normal out-
come, based on estimates of the median outcome and
untransformed standard deviation in each group and eval-
uate this approach in a variety of settings. The method
is relevant for both randomised trials and observational
studies where we plan to test the null hypothesis that log-
scale means are equal or, equivalently, the null hypothesis
that medians on the untransformed scale are equal. The
approach can be extended using usual methods to incor-
porate other complexities such as clustering, unequal
allocation or adjustments for confounding.

Methods
We assume that we have a study for which the outcome
of interest is positively skewed and that we wish to per-
form a hypothesis test that compares outcomes between
two independent groups, for example, a parallel-group
randomised controlled trial in which outcomes are com-
pared for a placebo group and an active treatment group.
Throughout, we define the two groups as groups 1 and 2.

Furthermore, for simplicity, sample size calculations are
performed assuming that these groups are equally sized.
Assuming that each group has size n, we denote Tij as
the positively skewed outcome value for individual i (i ∈
{1, . . . , n}) in group j (j ∈ {1, 2}). We assume that, in
each group, the primary outcome Tij has a log-normal
distribution. That is

Tij ∼ logN
(
μj, σ 2

j

)

and hence

log(Tij) ∼ N
(
μj, σ 2

j

)
.

To compare groups, the usual null (H0) and alternative
(H1) hypotheses tested would be:

H0 : μ1 = μ2;
versus

H1 : μ1 �= μ2.

In words, this denotes a test of the null hypothesis that
the log-scale means are equal for groups 1 and 2 against
a two-sided alternative. For a log-normal distribution, this
test is equivalent to a test of the null hypothesis that the
medians of the untransformed outcomes are equal for
groups 1 and 2.
This test could be performed using a two-sample t-test

between groups with the log-transformed outcome val-
ues. A standard sample size calculation for such a test
would rely on the specification of a minimal clinically rel-
evant difference in mean log-transformed outcome values
between groups together with an estimate of the vari-
ance of the log-transformed primary outcome values for
each group. For many outcomes, health care researchers
or cliniciansmay not be familiar with their outcome on the
log-scale and may find it difficult to specify the requested
estimates. In contrast, clinicians may have a more precise
idea of the approximate median outcome value for each
group together with an appreciation of the variance of the
untransformed outcome values, perhaps from pilot stud-
ies, clinical observation/expertise or results in relevant
literature. Alternatively, an estimate of the median for the
control group could be specified, together with an antici-
pated difference in the median values between groups for
the other group on conclusion of the study.
Where outcome data have a log-normal distribution,

the mean of the log-transformed outcome can be eas-
ily calculated as the natural logarithm of the median on
the untransformed scale. However, it is more challenging
to recover the variance of the log-transformed outcomes
and, in many cases, pre-specifying variances of log-
transformed outcome data may not be straightforward.
We now demonstrate how the sample size calculation for
a two group t-test comparison of a log-normal outcome
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can be obtained using medians and variances specified for
each group on the untransformed scale. We define

mj = Median of the untransformed primary
outcome for group j;

φ2
j = Variance of the untransformed primary

outcome for group j.

It can be shown (see Additional file 1, or [12]) that

mj = exp(μj),

due to the symmetry of the distribution of log(Ti). In other
words, for a log-normal random variable, the population-
level geometric mean (log-scale mean) is equal to the
population median. As a result, on specification of
approximate median values of the primary outcome for
the two groups, the difference in means on the log-scale
is written

τ = μ1 − μ2 (1)
= log(m1) − log(m2).

Here, τ corresponds to the minimal clinically important
difference in the primary outcome on the log-scale, but
we note that this has been constructed using median val-
ues of the untransformed primary outcome, which may be
easier to pre-specify. The variance of the untransformed
outcome for group j is φ2

j and, as mentioned previously,
it is likely that the variance of an untransformed outcome
is easier and more meaningful to pre-specify than that
of transformed outcome variable. It can be shown (see
‘Additional file 1’) that the variance of the log-transformed
primary outcome for group j, σ 2

j , is related to the variance
of the corresponding untransformed primary outcome as
follows

σ 2
j = log

⎛
⎝1
2

+
√√√√1

4
+ φ2

j

m2
j

⎞
⎠ . (2)

To compare groups, a two-sample t-test is performed
using log-transformed outcome variables. The hypotheses
are given by

H0 : μ1 = μ2; (3)
versus

H1 : μ1 �= μ2.

In other words, the test is of the null hypothesis that the
log-scale means are equal. We note that μj = log(mj) (j ∈
{1, 2}) and, as such, this test may be used to test the null
hypothesis of equal medians on the untransformed scale.
Taking the standard sample size calculation formula for a

two-sample t-test with equal group sizes [13] and using (1)
and (2), the number of patients per group (n) is given by

n =
(
σ 2
1 + σ 2

2
) (

z α
2

+ zβ
)2

(
log(m1) − log(m2)

)2

=

[
log

(
1
2 +

√
1
4 + φ2

1
m2

1

)
+ log

(
1
2 +

√
1
4 + φ2

2
m2

2

)](
z α
2

+ zβ
)2

(log(m1) − log(m2))2
.

(4)

Here, zε denotes the value such that P(Z > zε) = ε for
a standard normal random variable Z ∼ N (0, 1). So z α

2
and zβ denote quantiles pertaining to a significance level
of 100α% and power of 100(1−β)%. To summarise, Eq. (4)
allows a sample size calculation to be performed easily
for a two group comparison of untransformed medians
or log-scale means on pre-specification of untransformed
medians, m1 and m2 and untransformed standard devia-
tions φ1 and φ2.
A common approach taken when conducting sample

size calculations for normally distributed outcomes is to
assume a common standard deviation for the outcomes in
both groups. With the method considered in this paper,
an assumption of common standard deviation values for
the untransformed outcomes (i.e. φ1 = φ2) would still
imply that the standard deviations of the transformed out-
comes (σ1 and σ2 in Eq. (2)) are different, owing to the
expected difference between m1 and m2. In addition, the
formula for the sample size given in Eq. (4) is based on a
normal distribution but where the hypothesis test of inter-
est is a two-sample t-test. As a result, for smaller sample
sizes, it may be sensible to increase the sample size slightly,
in line with other sample size calculation methods for a
two-sample t-test.
The method presented in Eq. (4) is not only applica-

ble to situations where a comparison of medians between
groups is desired. The relationship between the untrans-
formed median and the log-scale mean for a log-normal
distribution also implies that the method is useful for
situations in which linear regression models are fitted
to log-transformed data and used for inference under
an assumption that the log-transformed outcomes are
approximately normally distributed. Suchmodels are used
frequently in medical statistics.
To explore and evaluate the accuracy of Eq. (4) as a

method for sample size calculation, we perform a simula-
tion study in which the power of the hypothesis test can be
estimated in a variety of scenarios and compared to other
common approaches.

Simulation study
To perform the simulation study, pre-specified values of
untransformed median values (m1 and m2) were cho-
sen together with corresponding untransformed standard
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deviations φ1 and φ2. Using these parameters, and for
a chosen power and significance level, a sample size n
was calculated analytically using the method outlined
in “Methods” section, specifically Eq. (4). The aim was
to assess whether or not the analytically derived sam-
ple size would attain the desired level of power when a
two-sample t-test comparing log-transformed outcomes
between groups is performed. The null and alterna-
tive hypotheses for this test were specified in the pre-
vious section (3). In addition, we aimed to compare
this test to a Mann-Whitney U test and a two-sample
t-test that compared untransformed outcomes between
groups. The algorithm for the simulation process was as
follows:

1. At random, draw n values from the distribution
logN

(
μ1, σ 2

1
)
and n values from the distribution

logN
(
μ2, σ 2

2
)
where, for j ∈ {1, 2}:

μj = log(mj);

σ 2
j = log

⎛
⎝1
2

+
√√√√1

4
+ φ2

j

m2
j

⎞
⎠ .

The two sets of drawn values are denoted
(T11, . . . ,Tn1)T and (T12, . . . ,Tn2)T respectively.

2. The corresponding log-transformed values are
computed as Yij = log(Tij), producing two sets of
log-transformed outcomes (Y11, . . . ,Yn1)T and
(Y12, . . . ,Yn2)T . These are compared using a
two-sample t-test of the null hypothesis that
μ1 = μ2 (equivalently,m1 = m2 on the
untransformed scale) against a two-sided alternative
and assuming a 5% significance level. The outcome of
the test is recorded using a binary variable (1 = ‘reject
the null hypothesis’, 0 = ‘retain the null hypothesis’).
In each case, a two-sample t-test is performed to
compare log-transformed outcomes between groups.
In addition a Mann-Whitney U test and a
two-sample t-test are performed using
untransformed outcomes for comparative purposes.

3. Steps 1–2 are repeated N = 100000 times and the
power of the corresponding hypothesis test is
calculated as the proportion of these repeated tests
for which the null hypothesis is rejected.

Results
Table 1 shows results of the simulation study for various
pre-specified median outcome values and standard devi-
ations. The column ‘n’ denotes the analytically derived
sample size calculated using Eq. (4). The columns ‘log
t-test’, ‘M-W test ’ and ‘t-test’ denote the estimated
hypothesis test powers for the t-test on log-transformed
outcomes, the Mann-Whitney U test on untransformed
outcomes and the t-test on untransformed outcomes,

respectively, between groups. Examining Table 1, for
larger sample sizes the two-sample t-test of the log-
transformed outcomes between groups appears to have a
power close to the nominal power value (either 0.8 or 0.9).
For smaller sample sizes the power is sometimes slightly
less than the nominal value. In such situations, it would
be advisable to increase the sample size slightly, perhaps
by one or two individuals in each group, to ensure that
the desired level of power is attained. This issue is likely
to be caused by the fact that the sample size calculation
in Eq. (4) uses normal distribution quantiles z α

2
, zβ but the

hypothesis test that is performed is a two-sample t-test.
This would also affect any sample size calculation where a
normal approximation is used and the sample size is small
and is not specific to the approach taken in this work.
The ‘M-W Test’ column shows that a Mann-

Whitney U test on untransformed outcomes does
not attain the expected power in all situations, being
smaller than the desired level of power in each case.
We would expect this and, consequently, suggest a
suitable adjustment to the sample size calculation if a
Mann-Whitney U test or other non-parametric hypothe-
sis test were used [9, 10]. Furthermore, we note that the
Mann-Whitney U test may be viewed as a test of a shift
in location of the outcome variable’s probability distri-
bution between groups. As such, it may not be desirable
to consider a Mann-Whitney U test in situations where
the untransformed variances differ between groups.
However, in Table 1 estimated powers from the Mann-
Whitney U test are not typically worse for simulation
scenarios where φ1 �= φ2 when compared to scenarios
where φ1 = φ2. Hence, the issue of different variances
between groups does not appear to have been too
problematic here.

When considering the ‘t-test’ column of Table 1, where
the untransformed standard deviation values are equal
for groups 1 and 2 (φ1 = φ2), a two-sample t-test of
untransformed outcomes consistently fails to attain the
desired level of power, even when the sample size is large.
However, where untransformed standard deviation val-
ues are different (φ1 �= φ2) we see that there are some
scenarios where a power greater than the pre-specified
power is attained. We note that the two-sample t-test
tests the null hypothesis that the untransformed popu-
lation mean values are equal. Here, for untransformed
log-normal outcomes, the population mean for group j
is given by mj exp

(
σ 2
j /2

)
and hence if m1 = m2 but

φ1 �= φ2
(
implying that σ 2

1 �= σ 2
2
)
, the null hypothesis for

a two-sample t-test of untransformed outcomes would
never be true. This explains why the estimated power
can be considerably higher than the pre-specified value in
this situation. Naturally, we would not usually recommend
a two-sample t-test on untransformed outcomes where
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Table 1 Simulation study results

Significance level = 0.05, Power = 0.8

Estimated power from simulation study

m1 m2 φ1 φ2 n log t-test M-W test t-test

1 1.5 0.5 0.5 14 0.781 0.755 0.690

1 1.25 0.5 0.5 51 0.797 0.776 0.664

1 1.1 0.5 0.5 303 0.801 0.781 0.639

1 0.5 0.4 0.4 9 0.788 0.724 0.687

1 0.7 0.4 0.4 23 0.794 0.772 0.662

1 0.9 0.4 0.4 204 0.800 0.781 0.669

1 0.6 0.3 0.3 9 0.791 0.728 0.728

1 0.7 0.3 0.3 15 0.800 0.762 0.723

1 0.8 0.3 0.3 32 0.797 0.773 0.713

1 0.75 0.25 0.25 15 0.784 0.747 0.729

1 0.88 0.25 0.25 63 0.797 0.776 0.737

1 0.94 0.25 0.25 250 0.800 0.781 0.741

Significance level = 0.05, Power = 0.9

Estimated power from simulation study

m1 m2 φ1 φ2 n log t-test M-W test t-test

1 1.5 0.5 0.7 23 0.888 0.873 0.847

1 1.25 0.5 0.7 87 0.898 0.883 0.910

1 1.1 0.5 0.7 530 0.900 0.886 0.992

1 0.5 0.6 0.4 14 0.890 0.872 0.800

1 0.7 0.6 0.4 40 0.897 0.882 0.875

1 0.9 0.6 0.4 383 0.900 0.886 0.993

1 0.6 0.5 0.3 16 0.896 0.874 0.867

1 0.7 0.5 0.3 28 0.894 0.877 0.897

1 0.8 0.5 0.3 65 0.896 0.880 0.946

1 0.75 0.4 0.25 29 0.892 0.875 0.906

1 0.88 0.4 0.25 131 0.898 0.882 0.970

1 0.94 0.4 0.25 537 0.900 0.883 0.998

Here,m1,m2 are pre-specified untransformed median values for groups 1 and 2, with φ1,φ2 corresponding untransformed standard deviations. The column ‘n’ denotes the
analytically derived sample size calculated using Eq. (4). Estimated powers are shown for a two-sample t-test of log-transformed outcomes (‘log t-test’), a Mann-Whitney U
test of untransformed outcomes (‘M-W test’) and a two-sample t-test of untransformed outcomes (‘t-test’)

the data have a log-normal or other positively skewed
probability distribution and, in most cases, a histogram of
outcome data would indicate that a suitable transforma-
tion is required prior to using a t-test.
Overall, the results in Table 1 indicate that the ana-

lytical method given in Eq. (4) appears to give correct
sample sizes for desired hypothesis test powers based
on median values and untransformed standard devia-
tions for outcomes of interest. Some adjustment may be
necessary for smaller sample sizes but such adjustment

would be recommended withmost sample size calculation
methods.

Sensitivity to the log-normal distributional assumption
When health outcomes have a positively skewed
distribution, the distribution may not be strictly log-
normal. Here, we simulate some scenarios to consider
the performance of the sample size method where the
distribution is skewed but not log-normal. Specifi-
cally, we examine situations where the outcome has an
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Exponential distribution. We note that it can be easily
shown that the logarithm of an Exponential random
variable is not normally distributed. As an example,
Fig. 1 shows probability density functions of an Exp(2)
random variable and the natural logarithm of an Exp(2)
random variable. If a random variable X ∼ Exp(λ)

then the median of X is equal to log(2)/λ and the
standard deviation is 1/λ. The fact that a closed form
expression for the median exists is desirable here, since
our sample size calculation method (Eq. (4)) relies on
pre-specified median values that, with an Exponential
distribution, can be directly linked to rate parameters. We
perform sample size calculations using Eq. (4) for pre-
specified median and untransformed standard deviation
values under a log-normal assumption, but then simu-
late data from Exponential distributions with the same
median and standard deviation values. The simulation
algorithm is similar to that outlined previously, except
that Exponential distribution rates for groups are calcu-
lated as λj = log(2)/mj (where mj is the pre-specified
median for group j) and then untransformed values are
drawn from an Exp(λj) distribution for group j. This
simulation process allows the evaluation of the sample
size calculation method where the outcome distribution
is not strictly log-normal in that we can assess the
expected level of power when performing various
hypothesis tests.
Results from the simulation study where the out-

come data have an Exponential distribution are shown
in Table 2. Each row of Table 2 denotes a different
simulation scenario and Fig. 2 shows example plots of
the distributions of values and log-transformed values

for each scenario to demonstrate levels of skewness.
Figure 2 shows that the log-transformed outcomes gener-
ally exhibit left skewness.
Examining Table 2 we see that the estimated power

for each method is below the nominal value of 0.9 for
all scenarios. On examining the form of Eq. (4) and the
untransformed variances for the Exponential distribution,
the poor performance of the methods is unsurprising. The
standard deviations used in the sample size calculation in
Eq. (4) are too small to reflect the true variability of the
log-transformed exponentially distributed data, resulting
in sample size calculations that are too small to attain the
deired level of power under the proposed method. For the
Exponential distributions, the untransformed variance in
group j is given by

φ2
j = m2

j

[ log(2)]2

and, therefore, on substitution into the formula for the
log-transformed variance in Eq. 4 we obtain

σ 2
j = log

⎛
⎝1
2

+
√√√√1

4
+ 1

m2
j

m2
j

[ log(2)]2

⎞
⎠

= log
(
1
2

+
√
1
4

+ 1
[ log(2)]2

)

≈ 0.7065.

for all j. It can be shown that the variance of the natural
logarithm of an Exponential random variable is π2/6 ≈
1.645 (see ‘Additional file 1’). This is more than twice the
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Fig. 1 Plots showing the probability density function of an Exp(2) random variable (left-hand plot) and the natural logarithm of an Exp(2) random
variable (right-hand plot)
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Table 2 Results from the simulation study where outcome data have Exponential distributions

Significance level = 0.05, Power = 0.9

Estimated power from simulation study

Scenario m1 m2 φ1 φ2 n log t-test M-W test t-test

1 0.1 0.3 0.1
log(2)

0.3
log(2) 13 0.576 0.600 0.661

2 1 1.5 1
log(2)

1.5
log(2) 91 0.567 0.650 0.769

3 10 7 10
log(2)

7
log(2) 117 0.564 0.649 0.768

4 20 15 20
log(2)

15
log(2) 180 0.565 0.654 0.772

5 60 48 60
log(2)

48
log(2) 299 0.564 0.653 0.775

6 80 70 80
log(2)

70
log(2) 833 0.565 0.654 0.778

Here,mj and φj denote the median and standard deviation of the outcome data for group j. Estimated powers are shown for a two-sample t-test of log-transformed
outcomes (‘log t-test’), a Mann-Whitney U test of untransformed outcomes (‘M-W test’) and a two-sample t-test of untransformed outcomes (‘t-test’)

assumed value of σ 2
j that was used for sample size calcu-

lations given in Table 2 which explains why the estimated
powers in Table 2 are low. To amend the sample size cal-
culation in Eq. (4) for this distribution, we substitute σ 2

j =
π2/6 into Eq. (4) and re-calculate the sample sizes using
the formula

n =
(
π2/6 + π2/6

) (
z α
2

+ zβ
)2

(log(m1) − log(m2))2
. (5)

Table 3 shows results from a simulation study, con-
ducted in the same way as that in Table 2, but where
the analytical sample sizes have been calculated using
Eq. (5). We see that calculation of the sample size using
Eq. (5) results in larger sample size values, which we would
expect asmore accurate estimates of the transformed vari-
ance values have been used. As a result, a power close
to 0.9 is attained for all simulation scenarios in which a
two-sample t-test is performed on the log-transformed
outcomes. However, the power is typically higher for the
Mann-Whitney U test, thereby suggesting that this test
would generally require a smaller sample size than the
two-sample t-test on the log-transformed outcomes. This
might be expected, since we can see in Fig. 2 that the log-
transformed outcomes are negatively skewed and thus the
data are generally more suited to analysis using a Mann-
Whitney U test. Also, we note that in Table 3 the estimated
powers for the t-test using untransformed outcomes are
very high. Naturally, this test would not typically be used
for exponentially distributed outcome data. In summary,
for positively skewed outcomes that are clearly not log-
normal, the sample size calculation presented in Eq. (4)
should not be used without carefully considering the

shape of the distribution of log-transformed outcomes
and its variability.
We now present a real example in which the analyti-

cal method has been used to obtain a sample size for a
two arm randomised controlled trial in epilepsy surgery
for which the outcome of interest is the time taken for the
implantation of electrodes during a surgical procedure.

Application
Some patients with refractory focal epilepsy, a type of
epilepsy that is difficult to control using medication alone,
may be considered for neurosurgery whereby invasive
testing is required to determine the location of epilep-
tic activity in the brain [14]. This procedure is known
as stereoelectroencephalography (SEEG) and involves the
implantation of SEEG electrodes into a patient’s brain
in a surgical procedure. These electrodes are monitored
using continual video and encephalography monitoring to
assess brain activity. A number of different methods exist
for the placement of SEEG electrodes and it is unclear
which placement method is best [15].
A randomised controlled trial of SEEG electrode place-

ment methods has been funded at the National Hospi-
tal for Neurology and Neurosurgery, London (Wellcome
Trust grant number WT106882), in which the operative
time (time taken for electrode implantation procedure) of
the iSYS1 trajectory guidance system is to be compared
with the currently used frameless mechanical arm based
technique for the placement of SEEG depth electrode
bolts in patients undergoing pre-operative evaluation for
drug resistant focal epilepsy. In brief, the iSYS1 trajec-
tory guidance system [16] uses a robot during part of the
surgical procedure for the implantation of the electrodes
into a patient’s brain. It is believed that the robot insertion
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Fig. 2 Plots showing the probability density functions of the Exponential distribution (left-hand column) and log-Exponential distribution
(right-hand column) for each simulation scenario of Table 2. Black lines indicate densities for group 1 and the red lines those for group 2

method will result in a significant reduction in the time
taken to perform SEEG electrode placement [16, 17].
For this randomised controlled trial, the primary out-

come is the time taken (in minutes) for the implantation
of an electrode during surgery. Typically, each patient has
8–12 electrodes implanted during a surgical procedure
and, as such, we note that a degree of patient-level cluster-
ing is to be expected with regard to the primary outcome
in this example. Patients shall be randomised to one of two
groups, with equal allocation, and the two randomised
groups are:

• Group 1: Patients who are randomised to receive
manual SEEG electrode placement;

• Group 2: Patients who are randomised to receive
robot-guided SEEG electrode placement.

The trial investigators aimed to estimate the number of
patients to recruit to the trial so that a reduction of at
least 20% in the median electrode implantation time may
be detected when comparing times for electrode implan-
tation between groups. Clearly, implantation times are
likely to be positively skewed and, as such, analysis of
the primary outcome for this trial shall consist of a two-
sample t-test of the null hypothesis of no difference in
electrode implantation time between groups, by compar-
ing log-transformed implantation times. A 5% significance
level and a power of 90% are assumed. For this trial,
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Table 3 Results from the simulation study where outcome data have Exponential distributions, with analytic sample sizes (n)
calculated using the formula given in Eq. 5

Significance level = 0.05, Power = 0.9

Estimated power from simulation study

Scenario m1 m2 φ1 φ2 n log t-test M-W test t-test

1 0.1 0.3 0.1
log(2)

0.3
log(2) 29 0.890 0.933 0.975

2 1 1.5 1
log(2)

1.5
log(2) 211 0.900 0.948 0.985

3 10 7 10
log(2)

7
log(2) 272 0.898 0.947 0.985

4 20 15 20
log(2)

15
log(2) 418 0.900 0.950 0.986

5 60 48 60
log(2)

48
log(2) 695 0.899 0.949 0.985

6 80 70 80
log(2)

70
log(2) 1939 0.898 0.949 0.985

Here,mj and φj denote the median and standard deviation of the outcome data for group j. Estimated powers are shown for a two-sample t-test of log-transformed
outcomes (‘log t-test’), a Mann-Whitney U test of untransformed outcomes (‘M-W test’) and a two-sample t-test of untransformed outcomes (‘t-test’)

we first perform a sample size calculation using Eq. (4)
where the median electrode implantation time for man-
ual SEEG electrode placement (m1) is specified, together
with estimates of the standard deviation of the implanta-
tion time for an electrode for both groups (φ1,φ2). The
values assumed for the sample size calculation are:

m1 = 20 min;
m2 = 0.8 × 20 = 16 min, since there is an

anticipated 20% reduction.;
φ1 = 5 min;
φ2 = 5 min;
z α
2

= 1.96 (5% significance level);

zβ = 1.28 (90% power).

Ignoring the clustering for now, we use Eq. (4) to com-
pute the number of electrodes required in each arm as

n =

[
log

(
1
2 +

√
1
4 + 52

202

)
+ log

(
1
2 +

√
1
4 + 52

162

)]
(1.96 + 1.28)2

(log(20) − log(16))2

= 30.18.

This would equate to a sample size of 31 electrodes per
group. Since this sample size is fairly small and, in light of
the simulation study results, we increase the sample size
to 32 electrodes per group. However, we note that elec-
trodes are clustered within patients who undergo surgery
and, as such, the effect of within-patient clustering should
be accounted-for in the sample size calculation. Clustering
can be handled easily within our sample size calculation
approach.

Accounting for clustering
In a similar way to other sample size calculation meth-
ods, we can calculate a design effect that is a function the
intra-class correlation coefficient and the average cluster
size and use this to update the sample size calculation to
account for the likely effect of within-patient clustering
[13]. The design effect is calculated as:

def = 1 + ICC(m − 1)

wherem = 10 is the average cluster size and ICC = 0.2 is a
estimated value for the intra-class correlation coefficient.
Here, def = 2.8 and the original sample size is inflated
by this factor to reflect the within-patient clustering [18],
yielding a revised sample size of

n∗ = 2.8 × 32
= 89.6.

This implies that each group should contain 90 elec-
trodes and this would suggest that 9 patients per group
should be recruited to trial, under the assumption of
an average of 10 electrode insertions per patient. In the
protocol for the SEEG Electrode Placement Randomised
Controlled Trial, the number of patients to be recruited
has been increased to 16 per group, to reflect the possibil-
ity of patient drop-out and variable cluster size.

Discussion
We have considered a sample size calculation method
in which clinical efficacy is measured using median val-
ues for a positively skewed outcome that is assumed
to follow a log-normal distribution. We chose this
approach because, particularly in the case of times and
other positively skewed health outcomes, comparisons
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between groups may be specified based on differences
in medians (or, equivalently, differences in geometric
means) rather than differences in arithmetic means.
Furthermore, information on variability of the untrans-
formed outcome variable may be easier to estimate and
more interpretable than that of a transformed outcome
variable. In addition, the approach is applicable to sit-
uations in which interest lies in a direct comparison of
the log-scale means between groups or for situations in
which linear models are fitted to log-transformed out-
come data. The example on SEEG electrode placement
showed that this approach to sample size calculation could
be applicable in clinical practice and also that clustering of
outcome data can be handled within the outlined sample
size method.
The analytical sample size formula presented (Eq. (4))

was accurate when evaluated using extensive simulation
studies. As such, the method appears to be acceptable for
estimation of the required sample size for situations in
which two groups are compared and the outcome of inter-
est is assumed to have a log-normal distribution. We note
that the assumption of a log-normal distribution may not
always be appropriate. A simulation study in which out-
comes had an exponential distribution indicated that the
formula in Eq. (4) provided sample sizes that were gen-
erally too small. However, an adjustment to Eq. (4) that
used a more precise estimate of the untransformed vari-
ance yielded a formula for which the approach outlined
appeared to work well. In general, we recommend that
caution should be taken when using the approach pre-
sented in this paper if it is suspected that outcomes are
not log-normal. In such situations we would recommend
simulation studies to check that the proposed analytical
sample size method is effective. Alternatively, if a differ-
ent distributional assumption is made for untransformed
outcomes, such as a Gamma distribution, then a likeli-
hood ratio test statistic could be constructed based on that
distributional assumption and used to calculate a sam-
ple size [19]. In some cases, it may be more appropriate
to consider a non-parametric hypothesis test of untrans-
formed outcomes, though we note that a parametric test
or other analysis that relies on the specification of a prob-
ability distribution for outcome variables may be useful as
a sensitivity analysis.
Additionally, as with all sample size approaches, the

method depends on the pre-specified values (i.e. the
estimated medians and standard deviations of the
untransformed outcomes). As a result, it is important to
elicit pre-specified values that are applicable to the study
at hand. Here, we note that it may be more appropriate
and perhaps easier for health care researchers to spec-
ify median values and associated standard deviations of
the untransformed (clinically interpretable) outcome vari-
able than to consider estimated values for log-transformed

outcomes. Furthermore, the median may represent a
more robust and intuitive summary of an outcome for
a treatment group where the distribution is positively
skewed, when compared to the sample mean which may
be affected by extreme values.
The sample size calculations were performed on the

assumption of equal numbers of individuals in the two
groups. The calculations could be easily adapted to situa-
tions in which the numbers in the two groups are unequal,
using standard adjustment methods. Overall, we have pre-
sented a simple method for sample size calculation where
the outcome of interest is assumed to have a log-normal
distribution and a hypothesis test is performed using data
from two groups. The method is applicable to problems in
which a difference in median values between the groups is
of clinical interest and untransformed standard deviations
are specified.

Conclusions
The sample size approach that has been outlined is
applicable to situations in which a comparison between
medians or log-transformed means is proposed for pos-
itively skewed data under the assumption that the data
have a log-normal distribution. The method relies on
pre-specified untransformed median and standard devi-
ation values for groups which may typically be easier to
elicit from clinicians and perhaps more interpretable. The
method may be adjusted to account for situations where
the outcome data are positively skewed but not strictly
log-normal.
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