
1

A Notation for Describing the Steps in Indicator
Expansion
Jonathan M. Spring

CERT® Division; Software Engineering Institute
Carnegie Mellon University
Pittsburgh PA

Abstract—Indicator expansion is a process of using
one or more data sources to obtain more indicators
of malicious activity by identifying those related to
currently known indicators. Due to the many variables
in how the process is carried out, it quickly becomes dif-
ficult to capture the process that leads to an expanded
set of data. Keeping track of this process is important
for description to other analysts. A compact description
of the process is even necessary just for the analysts
doing the work to keep track of their own process
and which paths have been investigated, particularly
in naming files.

This paper proposes a method of succinctly capturing
the process of indicator expansion in a deterministic yet
flexible and extensible manner. The target audience is
analysts and investigators engaged in indicator expan-
sion or directly consuming results therefrom.

I. Introduction

Tracking down malicious actors may involve associating
indicators found to be malicious with indicators suspected
to be malicious. “Indicator” is a general term for an
information item that is available to the security researcher
or a protection process that can be used an an identifier
for a useful set of information. An indicator might be an
IP address, domain name, file hash, file name, registry key,
credit card number, etc. Indicator expansion is the process
of taking in one type of indicator known to be associated
with malicious activity and associating it with a new set
of indicators.

Quality indicator expansion requires careful selection
of various variables to limit spurious associations and
maintain the utility of the process. What malware hashes
attempt to contact google.com, or what domain names
share an IP address with its companions on a virtual
hosting service, are not useful. Such indicators with large
numbers of connections often actively make the process
useless. There are distinct methods for dealing with some
of these difficulties. Some methods exclude a certain list
of known values, others set thresholds for minimum or
maximum results. Additionally, a variety of data types
can be used for indicator expansion, such as IP addresses,
domain names, zone files, and other logs.

The mathematical operations captured by the notation
mostly include set operations and set naming conventions
specific to the use case of indicator expansion. An elegant

technical definition of the captured process is selective
traversal of an undirected graph based on labeling of the
edges and the data type of the vertices. Another benefit
of the introduced notation is that it abstracts away from
these definitions for the analyst not inclined toward these
mathematical constructs.

Section 2 specifies a notation which can capture all of
these aspects of quality indicator expansion and express
them in a condensed form. Section 3 briefly describes how
to use the specification to name computer files. Section 4
explains why this approach is relevant and useful to the
information security and forensics communities.

The notation is agnostic to the method or tools used
to carry out indicator expansion. Some tools may use set
operations in python. Others may use manipulation of
edges and vertices of a graph. Another may use database
operations. Each of these tools could equivalently express
an operation of the indicator expansion notation.

II. Specification

This section specifies the syntax for different aspects of
the indicator expansion algebra. The order of operations
is simply left to right. Expansions can be chained indefi-
nitely using the principles proposed, however examples are
limited to one or two expansions for the sake of simplicity.

A. Data types

Data types are identified by a capital letter from the
Latin alphabet. The appropriate level of specificity is
important. For example, DNS (Domain Name System)
should be considered to have multiple data types, such
as domain names, IP addresses, and name servers. The
identifiers in network flow data are only source and des-
tination IP address, but network flow can also contain
patterns of activity which can be used for indicator ex-
pansion. While network flow and DNS are common data
sources, this algebra can also be used to define custom
or uncommon data sources. For example, consider a data
set that links md5 hashes of malicious code samples to
the domain names they resolve during dynamic analysis.
These hashes are a new identifier, but these domain names
captured during dynamic malware analysis can reuse the
same symbol as domains from DNS analysis. The following
letters are proposed for common data types:

I: IP address, such as the rdata (final) field in a DNS
record of type A.



D: Domain name, such as the rname (initial) field
in a DNS record. Note that this definition is
particular to names that would appear in the
rname or query field (initial) of a DNS record.

N: Name server, the domain name serving in its
capacity as a name server. This comes from either
the rdata of DNS messages of type NS (2), or from
zone files.

M: MD5 hashes, usually hashes of samples of mali-
cious code.

With just these letters, we can specify relatively com-
plex indicator expansions. Some context is necessary to
reproduce the precise results, however the method used
should be clear without such context. In order to describe
an expansion, the letters are juxtaposed, without any
operators or other notation, such as DN or MD. The
space in between letters is the operation performed. This is
important later in specifying variations to that operation.
The expansion DN takes a set of domain names and
returns the name servers which are responsible for them.
The initial set of domains, the limitations of scope and
capture of the data source, and the duration of time
investigated are not included in this shorthand, and would
be necessary information items to precisely determine the
resulting set of name servers. This context can be provided
elsewhere. However, DN uniquely specifies an operation.
The data source must be DNS NS records, where the
rname matched one of the domains in the initial set D.
The operations is not transposable; DN 6= ND.

The capital letters should be sufficiently specified to
avoid confusion or ambiguity. For example, in the example
of DN , the relation of names to name servers could come
from zone files as well as passive DNS. The recommenda-
tion is to specify the source of the data as part of the data
type. Consider the following further specifications:

N: Name server relation derived from passive DNS
observation; refers to names in the rdata of NS
(2) type records.

Z: Name server relation derived from zone files;
relation is derived from the appropriate row the
relevant zone’s text file.

I: IP address which does not contain directionality,
such as from a DNS A (1) record

T: Destination IP address, or the IP address to
which traffic is going, in directed traffic data
sources such as flow and pcap.

F: Source IP address, or the IP address f rom which
traffic originates, in directed traffic data sources
such as flow and pcap.

T and F are used (for to and from, respectively) so that D
for destination does not conflict with D for domain names.

One final data type requires the most specification on
a per-use basis, due to it’s changeable nature. That is
a pattern of activity within a communication protocol
or protocols. Patterns are generally discovered via flow,
pcap, or some other passive network monitoring tool. If a
particular expansion chain involves more than one pattern,

each will have to be specified somehow, but in the simple
case where there is only one pattern of interest, we can
use the following:

P: Pattern of behavior; discovered in passive net-
work monitoring, for example. Usually will re-
quire specification of what the pattern is.

Patterns are almost always the result of human-driven
analysis or forensics. Possible expressions or specifications
of a pattern may be a Snort rule on pcap files or a SiLK
command-line query on netflow.

B. Limiting the expansion

It is often necessary to limit the acceptable responses
from an expansion. Consider for example an operation
DMD, which starts with domain names, checks which are
used by malicious software, and then takes those malware
samples and returns all the domains they attempt to
contact. In many expansion operations a minimum and
maximum number of MD5s that a domain contacts must
be supplied for the operation to be useful. If only one mal-
ware sample resolved the name, it may be an uninteresting
singleton. If the name was resolved by 500,000 samples,
it is probably a connectivity test rather than something
useful, and will result in many false positives.

There are two methods by which to express limits:
absolute and relative. Absolute limits are represented by
integers; they are absolute because they do not change
based on the number of results. Relative limits are repre-
sented by a rational number between 0 and 1 (exclusive).
The precise value of the limit changes with each expansion
because the elements returned are a range of a sorted
ordering of the complete results.

In either case, the precise best limits vary for each
expansion situation.

1) Absolute limits: The following is an example using
syntax to express absolute limits:

DM500
2 D (1)

This equation describes two expansions. The first goes
from domains to MD5s. It is unbounded, which is noted
by the fact that the space between the first D and the M ,
which represents the expansion, has no markings. The sec-
ond expansion, from MD5s back to domains, is bounded.
Each hash must link to between 2-500 domains, inclusive,
for any of the domains it links to to be included in the final
set of domains. These limits are therefore shorthand for
2≤domains-linked-to-MD5≤500. The operators are always
≤, and never <, to avoid possible confusion.

Numerals used in superscript or subscript always define
limits to an expansion in this way. If limits are not written,
the implied values are 1 and infinity. Therefore DM is
equivalent to D∞

1 M .
2) Relative limits: The following is an example using

syntax to express relative limits:

Dp75
p1 MD (2)

2



This expansion is conceptually the same as the absolute
example – it goes from domains, to MD5 hashes of mal-
ware, back to domains. The limit in this example is in the
first operation—DM—rather than the second. The salient
difference is that unlike absolute limits, the elements to
be carried through the operation are chosen dynamically.
Domains are passed through based on the number of
associations per initial item relative to other initial items;
in this example number of malware MD5s associated with
each domain, relative to the value for all the other domains
in question. We can call this property “popularity” or
“relative popularity.” Technically, the notation describes
a quantile for the limitation. The p is notation for the
decimal point. It is used instead of a literal “.” both to call
attention to the different process and to prevent confusion
when naming computer files (see section III).

For example, let’s say that this operation starts with 200
domains. First, find the number of hashes associated with
each domain. Discard the bottom 10% of domains that
are least popular (have the fewest hashes associated) and
the 25% of domains that are most popular; i.e. we keep
the middle section, just as in II-B1. Technically speaking,
we keep a percentile range of the rank-ordered list; in
this example, we discard the bottom decile and the top
quartile. To determine which results to keep, we sort the
list of 200 domains by popularity (number of hashes per
domain). In this case, the top 50 and bottom 20 are
discarded, and the hashes associated with the remaining
130 domains are carried through to the next operation.
One way to visualize the process is Figure 1.

Figure 1. Visualization of popularity (quantile) limitation

It is not possible to determine the absolute limits before
the operation. It depends on the values for each other
domain in the operation and the number of domains in
the initial set.

The notation represents inclusive limits, just as the
absolute limits are. For absolute limits, this means the
comparison operation is ≤ and never <. The percentile
is inclusive in that rows that have the same value for
the tested field, i.e. tie, are all included if any of them
are included. Consider the operation Dp8

p2M on the five
domains in table I.

With 5 input domains, the operation should only keep
3 of them. The 80th percentile value for MD5s is 10; the
20th percentile is 3. Instead of arbitrarily choosing which

Domain MD5s

www.b.c.com 10
�

www.a.b.com 10
q.com 6
r.com 3

�
t.com 3

Table I
Arrows delimit percentile limits on a sample of 5 domains,

given Dp8
p2M .

domain to pass, the operation should use the ranks to
create a numerical range of hash values and substitute this
absolute range for the relative one. In this example, they
would be D10

3 M . This operation is run with ≤ and not <,
so will pass all the domains through. The result will thus
be all the MD5s associated with any of the five domains.

The lowercase p, to mark that the value is a decimal
and not an integer, is the only alphabetic character that
may appear in limiting subscripts or superscripts. The
next section defines the use of alphabetic subscripts to
distinguish between different sets which are of the same
type (e.g. name servers or IPs).

C. Whitelisting and naming sets

It is often useful to remove a set of known names or
IPs from an expansion. The set to be subtracted usually
represents a popular service or services which obscure more
interesting results. For example, there may be a lot of
links to domain names which are very common. One way
to eliminate these names would be to subtract from the
results the set of names in a list like the Alexa top 50 or 127
[1]. This process requires two features. First, it requires set
subtraction, which is defined and notated in the standard
set mathematics fashion. Secondly, it requires a method
for defining particular sets. This is done by appending a
subscript lowercase letter to describe the set to a capital
letter based on the set’s data type. For example:

Da: Domains names indicated by www.alexa.com to
be in the top 127 most popular sites on January
1, 2012.

See Section III for full computer file naming conventions,
however note that in order to preserve a sensible conven-
tion, “e”and“p”may not be selected as the subscript when
naming sets.

These specifications can also be slightly more complex.
Building off the last example, we could define the follow-
ing:

Na: The name servers which result from the following
expansion, using passive DNS as the source of
name servers: DaN

In order to use these in an expansion by white-listing the
contents, we might subtract the set from the results. For
example, DN−Na. However, this is somewhat ambiguous
if we want to continue expanding. The name server set
that is being used should be clearly grouped as one entity
if we continue. Parentheses make this easy. The following

3



line describes an expansion which takes a set of names,
finds their name servers, removes the name servers of the
most popular sites, and then finds the domains that use
the remaining name servers:

D(N −Na)D (3)

Naming sets allows for a complex branching indicator
expansion to be communicated. One can perform multi-
ple expansions of arbitrary complexity and then combine
them. Equation 3 is a simple example.

An investigator could also use named sets to incorporate
indicators obtained from arbitrary sources. The Alexa
domains are one example – the list itself is the result
of a complex analysis. Another example would be the
domain names released by Mandiant as part of its report
on Chinese cyber espionage [2]: Dm for example. This
flexibility in the algebra should allow for incorporating
arbitrary indicator sets, including those obtained from
sources other than network analysis.

D. Unions

Analogously to subtraction for whitelisting, two dis-
parate analysis groups of the same base type can be
unioned and operated on as a unit. This simply uses +
instead of −. Thus if we have two sets of IPs, Ia and Ib,
then an expansion from domains with A records to either
IP would be written as equation 4.

DI(Ia + Ib) (4)

First all the IP addresses are obtained, and then those
IP addresses on either list are passed through as the second
step. To keep the notation descriptive of the requisite pro-
cess, DI is done first to obtain the IPs of the domains, and
then those IPs are filtered by an operation of comparison
to the named list (Ia + Ib).

In some cases, it is useful to compare multiple sources
of the same type of indicator. Say the analyst has three
lists that are of mediocre quality. However, if any IP is
on two of the three lists, it is much more likely malicious.
This can be indicated by a subscript on the + operator
itself. The sign +2 means that an indicator is only carried
through if it is on two of the sets in the operation. If there
are only two sets, this means both. If there are three sets,
it means any two of the three, as in equation 5. All +
operators within one group of parentheses must have the
same subscript.

D(Ia +2 Ib +2 Ic) (5)

Intersection can be captured as long as the subscript of
+ is equal to the number of elements in the operation. For
example, (Ia +2 Ib) is the intersection of two sets of IPs.
Further, (Ia +3 Ib +3 Ic) is the intersection of three sets
of IPs, and so on.

E. Limiting expansion of groups

To limit the expansion when a white-list is involved, the
edges of the parentheses are the space in which to put the
superscripts and subscripts. These are the places where an
expansion takes place — the subtraction operation is not
an expansion, and no limiting notation should surround it.
Therefore, including limits when parentheses are involved
should be done as follows:

D1000
10 (N −Na)3332 D (6)

F. Dealing with multiple instances of a data type1

In the previous sections, some analysts may consider
using T and F for IP addresses excessively confusing. They
may prefer to use lowercase subscripts instead, such as It
or Id as the destination IP address, If or Is for source IP,
and so on. This has some benefits and some draw backs. It
provides clarity to data type and provides a larger name
space for data sources, at the expense of clarity about some
operations, clarity about specific data sets, and to a small
extent clear naming in computer data files.

It provides some clarity to a canonical data type –
IP address – which may be shared across data sources.
The different data sources then must be indicated by
lower case subscripts, and all canonical data types must
be represented by upper case letters. IPs may show up
in passive DNS (as rdata in A records), zone files (only
for name servers the zone knows about), flow source and
destination addresses, routing groupings by Autonomous
System Number (ASN), and so on.

With a small number of items to be described, this
problem is naturally deconflicted by the definition of the
operation between two data types. There is only one data
source that relates domain names to md5s in the above
section, so it is not necessary to specify between a Dd

(rdata in passive DNS) and a Dm (domains collected
as run-time analysis from malicious code). The fact that
DM and MD are unique functions is enough to avoid
ambiguity. The functions DN and DZ are only unique
because we have specified two distinct sources of infor-
mation about name servers – passive DNS and zone files.
The data sources N and Z could instead by specified
as Nd and Nz. However, consider section II-C. These
different data sources would not appear different than a
named data set of a particular composition. Additionally,
this makes an expansion function possibly difficult to
read. For example, DNp70

dp10DN250
z5 D is not easy to read,

as compared to DNp70
p10DZ250

5 D. However, when naming
computer files, some of this ambiguity may actually be less
severe. If we make the convention that any (non ’p’ or ’e’)
lowercase letter immediately following an uppercase letter
is considered to be a subscript describing the canonical

1It is important to make a decision on one side or the other about
the options presented here, and I would appreciate feedback as to
which to go with, or strong reasons to make both options available
(given the potential for possible confusion if the scheme choice is left
unmarked).

4



data type, it does not need a ’ ’ to mark that fact. We
can thus have data elements separated more cleanly as
either every capital letter or parentheses-grouped item. For
example, DNdep70_p10DNze250_5D is not much better or
worse than DNep70_p10DZe250_5D.

G. Lookahead assertions

The name of this technique is taken by analogy to
regular expressions. In some cases, it is valuable to execute
an expansion function not to keep its results, but rather
to use the results to inform limits on the prior set. For
example, let’s say the desired output is a set of domain
names. However, that final list should have benign names
removed before it is passed on to an analyst. A static way
to do this would be with a white-list, as above. In order
to do it dynamically based on properties of the elements
themselves, a lookup can be executed in order to provide
a reference for comparison, even though that expansion
operation is not carried through. That the final expansion
is not returned is expressed by enclosing the target data
type in square brackets, such as [M ]. This operation is
generally used as the final one in a series of expansions,
such as:

D100
2 MDp8

p15 [M ] (7)

The first expansion goes from domains to malware with
absolute limits on the number of hashes each domain may
reference. Then, the resulting hashes are transformed back
to domains without qualification. This produces a list of
domains that we want to return to the analyst. But in
order to prune it further first, we retrieve again the number
of malware hashes that each domain is associated with,
and remove the 20% most used and 15% least used. But
instead of then expanding this reduced list into hashes, the
list of domains is simply returned as is.

The lookahead assertion need not be the final element
of an expansion. One could desire to expand from domain
names to IP addresses, but only use domains that bear
a certain relation to a set of MD5’s. The expansions are
from domains to MD5s and domains to IPs, and you look
ahead to the MD5s to limit the set of domains used in the
domain-IP expansion. The notation for this example is:

Dp8
p15 [M ]2 I (8)

The subscript 2 here represents a limit on the second
expansion, between domains and IPs. By itself, that oper-
ation would be written D2I. Equation 8 is equivalent to
the following series of definitions and operations:

Dm: Dp8
p15 [M ]

Dm 2I

III. Naming files

Computer directories do not have the same ability to
manipulate text as document processors, and so some
modifications to this proposal must be made for naming

files with legal characters. With the simple syntax it
is simple, because the proposal is only capital ASCII
characters and does not include spaces between characters.
In regards to the expanded meanings, it is customary
to use ’ˆ’ and ’ ’ to represent superscript and subscript,
respectively. Since ’ˆ’ is not legal, lowercase e may be used
(commonly used for“exponent” in scientific notation). The
only limitation this imposes is that subscripts denoting
specific sets, such as ’a’ in Na, should not be ’e’ to
avoid possible confusion. It shall be customary to type
superscripts before subscripts. The dash, ’-’, can be used to
indicate subtraction without a problem. Parentheses of all
kinds are reserve characters. Dots, ’.’, can be substituted
for both left and right parentheses without ambiguity. In
the complex and rare case of nested parentheses that do
cause ambiguity, they can be inserted in the file name
escaped by ’\’. Using these conventions, the most complex
operation, D1000

10 (N − Na)3332 D, would be a file named
De1000_10.N-N_a.e333_2D.

For lookahead assertions, a double underscore is used
to represent both left and right square brackets. Looka-
head assertions most commonly appear at the end of
a series of expansions, and so the final double under-
score may be omitted if desired without adding am-
biguity. If not explicit, The brackets are assumed to
close on the final element. Therefore, for the expression
D100

2 MDp9
p1 [M ] there are two acceptable file names. Both

De100_2MDep9_p1__M__ and De100_2MDep9_p1__M are ac-
ceptable.

IV. Relevance

A common language permits clearer and faster com-
munication. The question is then if indicator expansion
is a sufficiently useful concept for security research to
warrant a common parlance. Researchers often present a
known set of indicators in one format or another, often
IPs [3][4] or domain names [5][2]. There are also myriad
publicly available block lists of domains and IPs, such
as those provided by Spamhaus, SURBL, Phishtank, or
Google Safe Browsing, for example, not to mention the
security companies offering commercial lists and private
communities developing indicators to exchange among
peers, such as the REN-ISAC [6].

This example of sharing indicators among peers partic-
ularly requires each peer to be able to understand where
various indicators originated from in order to make a
decision on how much to trust that indicator. A method
for concisely expressing the method for generating the
indicator, such as that described in this paper, would
facilitate this communication.

Likewise, black box machine learning algorithms could
be modeled as just another indicator expansion function.
For example, [7], [8], [9] all take in resource records from
passive DNS and with a defined set of operations produce a
list of domain names that are suspicious. These processes
could also be easily assigned a marker in the expansion
algebra presented above.

5



Acknowledgement

This material is based upon work funded and supported
by the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the oper-
ation of the Software Engineering Institute, a federally
funded research and development center.

References

[1] Alexa, “Alexa internet, inc. - top sites.” http://www.alexa.com/
topsites, January 13, 2012.

[2] Mandiant,“Apt1: Exposing one of china’s cyber espionage units,”
tech. rep., 2013.

[3] abuse.ch, “abuse.ch Palevo tracker,” 2013.
[4] abuse.ch, “abuse.ch Zeus tracker,” 2013.
[5] E. Rodionov and A. Matrosov, “The evolution of TDL: Conquer-

ing x64, revision 1.1,”tech. rep., ESET, Bratislave, Slovakia, June
2011.

[6] W. Young, “Security message standardization: the beginning of
the end.,” in 5th Annual REN-ISAC Member Meeting, April 9,
2011.

[7] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for DNS,” in 19th Usenix
Security Symposium, 2010.

[8] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou II, and
D. Dagon, “Detecting malware domains at the upper DNS hier-
archy,” in 20th Usenix Security Symposium, (San Francisco, CA),
2011.

[9] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “EXPOSURE:
Finding malicious domains using passive DNS analysis,” Pro-
ceedings of the Annual Network and Distributed System Security
(NDSS), February 2011.

6

http://www.alexa.com/topsites
http://www.alexa.com/topsites

