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Abstract

Accurate gene or protein function prediction is a key challenge in the post-genome era.

Most current methods perform well on molecular function prediction, but struggle to provide

useful annotations relating to biological process functions due to the limited power of

sequence-based features in that functional domain. In this work, we systematically evaluate

the predictive power of temporal transcription expression profiles for protein function predic-

tion in Drosophila melanogaster. Our results show significantly better performance on pre-

dicting protein function when transcription expression profile-based features are integrated

with sequence-derived features, compared with the sequence-derived features alone. We

also observe that the combination of expression-based and sequence-based features leads

to further improvement of accuracy on predicting all three domains of gene function. Based

on the optimal feature combinations, we then propose a novel multi-classifier-based function

prediction method for Drosophila melanogaster proteins, FFPred-fly+. Interpreting our

machine learning models also allows us to identify some of the underlying links between bio-

logical processes and developmental stages of Drosophila melanogaster.

Author summary

Despite painstaking experimental efforts and the extensive sequence similarity based

annotation transfers, less than a half of the fruit fly protein sequences in UniProtKB have

some functional annotation. To help fill in this gap, we test the usefulness of publicly avail-

able temporal gene expression profiles and their combination with many biophysical attri-

butes that can be effectively derived from the corresponding protein sequence. We find

that such an integrative function prediction method provides more accurate predictions

than using sequence data alone and we expect these predictions to help narrow down

the number of experimental assays required to characterise fly protein function. We
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demonstrate by highlighting correlations between predicted biological process functions

and known facts about fly developmental stages.

Introduction

Protein or gene function prediction is a difficult computational challenge which has received

increasing attention in the previous decade, with one major goal being to assist experimental

biologists in making testable hypotheses about the role of uncharacterised proteins in biologi-

cal systems. Ab initio prediction of gene function using in-silico methods has made great

strides in the recent years, with the best methods typically making use of various protein

sequence-based features in a Machine Learning framework [1–4]. FFPred is one such method,

as the main component method used by the Jones-UCL team, consistently ranked near the top

in independent benchmark challenges [5, 6].

The most common method for predicting protein function is to rely on simple homology-

based transfer, where function annotations are transferred from a well characterised protein to

a target protein on the basis of clear common ancestry between the two. In contrast to methods

exploiting direct homology-based information, FFPred predicts protein function using intrin-

sic features directly derived from protein sequence, such as amino acid composition, intrinsi-

cally disordered regions, signal peptides and so on. By using a wide variety of sequence

features, FFPred shows better performance when making functional predictions for proteins

where direct homology information provides little or no predictive power. However, while

FFPred and other similar methods tend to perform well in molecular function prediction, the

prediction accuracy for biological process function is frequently poorer. To assist in predicting

biological process terms, it may be useful to integrate data that go beyond the features that can

be derived solely from the protein sequence, such as RNA-seq data.

Drosophila melanogaster is a well-studied organism that is a common model used to investi-

gate the complex biological mechanisms of development, such as cell migration, nervous sys-

tem development and so forth. Therefore, there is value in developing a protein function

prediction method, which aims to not only accurately predict protein function, but also be

able to identify key biological processes associated with each developmental stage. To the best

of our knowledge, there is no published work which systematically studies Drosophila-specific

protein function prediction, except one relevant work done by Costello, et al. (2009) [7]. The

authors proposed predicting Drosophila gene function by relying on gene networks that are

constructed by integrating different data sources, such as microarray expression data, genetic

interaction and protein-protein interactions. However, the authors did not study the addi-

tional predictive power of sequence information, which is the main data source in protein

function prediction. They also only discuss the prediction of biological process terms, rather

than terms from all three domains of function covered in this work. In addition, although

some other existing protein function prediction methods, e.g. [8–10], show capacity to predict

Drosophila protein function, all of them use models trained by integrating other species’ data,

rather than specifically focusing on Drosophila, and none of them investigates the relationship

between protein function and various developmental stages of the organism.

High coverage temporal transcription expression profile data already exists for Drosophila
through modENCODE [11, 12]. The data include the time-course RNA expression informa-

tion during the whole life-cycle of Drosophila. In contrast to the majority of tissue-specific [13,

14] or certain developmental stage-specific (such as embryo stage-specific [15, 16]) microarray

gene expression data, this type of RNA-seq data provides the most complete gene expression

Temporal transcription expression profiles and protein function in Drosophila melanogaster
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information to help investigate the role of proteins played during the life-cycle of Drosophila.

Using these datasets, we show we can improve the performance of protein function prediction

in Drosophila and further discover informative links between protein function itself and Dro-
sophila development.

In this work, we systematically evaluate the predictive power of temporal transcription

expression profile data for protein function prediction. We firstly create FFPred-fly by re-train-

ing our standard FFPred model using Drosophila-specific sequence information, and then show

how FFPred-fly can be combined with an RNA-seq dataset to significantly boost its performance

in biological process function prediction. We choose Drosophila development as our exemplar

RNA-seq dataset, so as to focus on a well-characterised developmental system, the results of

which can be more readily interpreted. However, the framework we present is quite generic and

could be easily extended to integrate FFPred with any organism specific RNA-seq dataset.

Results

To carry out this study, we firstly generate new types of features according to the time-course

transcription expression profiles obtained during the developmental stages of Drosophila
melanogaster, i.e. the number (Num) of differently expressed transcripts on individual time-

points, the average (Ave) expression profile on individual time-points over all transcripts of

an individual gene, and the expression profile for the main-transcript (Main) of individual

genes on individual time-points, and their different combinations, i.e. Num+Ave, Num+Main,

Ave+Main and Num+Ave+Main. Note that, in this work, the main-transcript of one gene is

defined as the protein isoform having the longest sequence among all isoforms, as suggested in

[17]. In cases where more than two isoforms existing with the same length sequence, the tran-

script having the maximum expression value is selected as the main-transcript. We adopt the

pre-processed source data that are identical to the ones used in [18].

Each type of feature consists of 30 individual variables denoting the transcription expres-

sion profile at 30 time-points, covering the four main developmental stages, i.e. embryo (T1—

T12), larva (T13—T18), pupa (T19—T24) and adult (T25—T30). Fig 1 shows an example of all

the transcripts’ expression profiles for gene FBgn0067864, i.e. the black line for FBtr0072779,

the blue line for FBtr0301625 and the brown line for FBtr0072781. It is obvious that the expres-

sion profiles for all three transcripts are different at all individual time-points. Therefore, the

values of Num type features are all equal to 3, since there exist three different transcripts for

gene FBgn0067864 over all 30 time-points. The red line displays the values of the Ave type of

features (i.e. average expression profile) for gene FBgn0067864 over three transcripts’ expres-

sion profiles; while the black line displays the values of the Main type of features, i.e. expression

profile of the main-transcript FBtr0072779 for gene FBgn0067864.

Then we further combine these seven types of expression-based features with the conven-

tional protein sequence-based (Seq) features, namely Seq+Num, Seq+Ave, Seq+Main,

Seq+Num+Ave, Seq+Num+Main, Seq+Ave+Main and Seq+Num+Ave+Main. In order to

evaluate the performance of these newly-generated features, we create protein sets for predict-

ing 301 individual GO terms by adopting the consistent procedure described in [2]—see Mate-

rials and methods. Briefly, a set of proteins is created for each GO term, where a protein is

labeled by a class denoting whether it is annotated with that GO term. We then conduct exper-

iments on two types of protein sets: a) 7 protein sets exploiting only expression-based features

to characterise the proteins; b) 7 protein sets exploiting the combination of expression-based

and sequence-based features to characterise the proteins. The results of both types of protein

sets are compared with the one obtained a protein set exploiting only the protein sequence-

based features.

Temporal transcription expression profiles and protein function in Drosophila melanogaster
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We firstly report the results for those datasets using four different classification algorithms,

i.e. Random Forests (RF) [19]; Adaptive-Boosting (AdaBoost) [20]; k-Nearest Neighbours

(KNN) [21]; and Linear Discriminant Analysis (LDA) [22] (see S1 Text). Note that, we also

report the results obtained by the best-performing classification algorithm (Opt-Classifier) for

each GO term, in order to alleviate the bias on choosing different classification algorithms.

Then we report the results for evaluating our newly-proposed Drosophila-specific protein

function prediction method, FFPred-fly+, exploits the best-performing types of features for

individual GO term domains.

Transcription expression profile-based features show improved

accuracy for predicting biological process function

We firstly evaluate the predictive power of individual types of expression-based features by

comparing with the sequence-based features. Tables 1 and 2 report the mean MCC and

AUROC values obtained by predicting different domains of GO terms using four different

Table 1. Mean MCC values obtained by different expression-based feature groups and the sequence-based feature group over cross validation.

Feature Group RF AdaBoost KNN LDA Opt–Classifier

BP MF CC BP MF CC BP MF CC BP MF CC BP MF CC

Num 0.065 0.119 0.081 0.044 0.082 0.049 0.060 0.085 0.070 0.029 0.019 0.029 0.092 0.129 0.095

Ave 0.254 0.301 0.354 0.186 0.240 0.250 0.229 0.267 0.327 0.048 0.062 0.114 0.268 0.309 0.364

Main 0.236 0.270 0.340 0.163 0.214 0.231 0.224 0.244 0.319 0.045 0.059 0.115 0.254 0.281 0.350

Num+Ave 0.249 0.295 0.349 0.190 0.249 0.249 0.231 0.266 0.321 0.069 0.072 0.130 0.267 0.310 0.359

Num+Main 0.228 0.278 0.333 0.169 0.223 0.241 0.220 0.252 0.308 0.067 0.067 0.134 0.248 0.293 0.340

Ave+Main 0.247 0.285 0.347 0.190 0.245 0.252 0.232 0.261 0.325 0.055 0.068 0.128 0.264 0.297 0.360

Num+Ave+Main 0.247 0.292 0.345 0.192 0.245 0.250 0.229 0.264 0.314 0.076 0.077 0.139 0.264 0.308 0.355

Seq 0.196 0.485 0.366 0.173 0.466 0.367 0.203 0.449 0.365 0.177 0.454 0.381 0.239 0.519 0.411

https://doi.org/10.1371/journal.pcbi.1005791.t001

Fig 1. Expression profiles of three transcripts for gene FBgn0067864; the average expression profile over three transcripts (i.e. the red line);

and the expression profile for the main-transcript (i.e. the black line).

https://doi.org/10.1371/journal.pcbi.1005791.g001
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classification algorithms and additionally the Opt-Classifier. The bold-type figures denote the

highest mean MCC or AUROC value for each column.

In general, for predicting biological process function, expression-based features give the

higher accuracy compared with the sequence-based features. Three of the four classification

algorithms obtain the higher mean MCC values by adopting expression-based features (i.e. RF

with Ave, AdaBoost with Num+Ave+Main and KNN with Ave+Main), while all four types of

classification algorithms obtain the higher mean AUROC values by using Num+Ave features.

In addition, the highest result obtained by the Opt-Classifier (i.e. 0.268 of the mean MCC

value obtained by Ave and 0.712 of the mean AUROC value obtained by Num+Ave) also sug-

gests the better predictive performance of expression-based features.

In terms of predicting molecular function and cellular component terms, sequence-based

features give higher mean MCC values and AUROC values, when using all four types of classi-

fication algorithms. This fact is further confirmed with the results obtained by the Opt-Classi-

fier, i.e. 0.519 and 0.411 of the mean MCC value, 0.855 and 0.817 of the mean AUROC value,

respectively for MF and CC terms.

We then report the MCC and AUROC values obtained by all different types of features

when predicting all 301 GO terms. The scatter plots in Fig 2.a, 2.b, 2.c, 2.d, 2.e and 2.f respec-

tively display the MCC and AUROC values obtained by the Opt-Classifier for predicting three

individual domains of protein function. In each scatter plot, the x axis represents the MCC or

AUROC values obtained by the sequence-based features, while the y axis represents the MCC

or AUROC values obtained by different types of expression-based features. The red diagonal

indicates the case when the MCC or AUROC values obtained by the sequence-based features

and individual type of expression-based features are equal. The different colours of dots denote

the pairs of MCC or AUROC values obtained by different types of expression-based features

and the sequence-based features.

In terms of predicting biological process function, as shown in Fig 2.a, the dots in different

colours (except blue) drop on both sides of the diagonal, while the blue dots almost all fall into

the area below the diagonal. In Fig 2.d, the majority of dots in different colors (except blue) fall

on the area above the diagonal. This fact indicates that all types of expression-based features

(except Num) obtain better performance than the sequence-based features. For predicting

molecular function, as shown in Fig 2.b and 2.e, almost all dots drop in the area below the diag-

onal, indicating the consistent fact that all types of expression-based features perform worse

than the sequence-based features. For predicting cellular component function, as shown in Fig

2.c and 2.f, all dots in different colours (except blue) drop on the both sides of the diagonal. It

suggests that expression-based features (except the Num) show similar predictive performance

against the sequence-based features.

Table 2. Mean AUROC values obtained by different expression-based feature groups and the sequence-based feature group over cross validation.

Feature Group RF AdaBoost KNN LDA Opt–Classifier

BP MF CC BP MF CC BP MF CC BP MF CC BP MF CC

Num 0.583 0.598 0.596 0.580 0.589 0.592 0.555 0.571 0.568 0.578 0.593 0.589 0.597 0.612 0.608

Ave 0.698 0.743 0.785 0.683 0.713 0.763 0.692 0.731 0.771 0.632 0.678 0.723 0.709 0.750 0.795

Main 0.678 0.720 0.777 0.654 0.692 0.751 0.671 0.711 0.761 0.619 0.668 0.715 0.688 0.728 0.786

Num+Ave 0.700 0.741 0.787 0.684 0.717 0.766 0.695 0.730 0.774 0.636 0.675 0.708 0.712 0.749 0.794

Num+Main 0.681 0.723 0.774 0.663 0.700 0.753 0.681 0.719 0.763 0.630 0.670 0.704 0.695 0.734 0.782

Ave+Main 0.698 0.736 0.788 0.680 0.710 0.763 0.689 0.721 0.771 0.629 0.677 0.724 0.707 0.742 0.796

Num+Ave+Main 0.699 0.738 0.784 0.682 0.712 0.764 0.693 0.725 0.772 0.635 0.677 0.709 0.710 0.745 0.793

Seq 0.666 0.849 0.801 0.649 0.821 0.792 0.665 0.819 0.803 0.632 0.813 0.784 0.653 0.855 0.817

https://doi.org/10.1371/journal.pcbi.1005791.t002
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We conduct the Wilcoxon signed-rank test (two-tailed at 5% of significance level) on each

pair of the MCC or AUROC values obtained by the individual types of expression-based fea-

tures and sequence-based features. The results are included in Tables A and B in S1 Text.

Overall, the significance test results confirm the findings. To begin with, one type of expres-

sion-based features—Num, performs significantly worse than the sequence-based features

when predicting all three domains of protein function. Moreover, for predicting biological

process function, all types of expression-based features (except Num) significantly outperform

the sequence-based features, with one exception of the Num+Main features obtaining non-sig-

nificantly better MCC values than the sequence-based features. Furthermore, for predicting

molecular function, all types of expression-based features perform worse than sequence-based

features. For predicting cellular component function, almost all types of expression-based fea-

tures (except Num) perform non-significantly differently to sequence-based features, with

exceptions of the Main and Num+Main features. The former obtains a significantly lower

MCC value, while the latter obtains significantly lower MCC and AUROC values, compared

with the Seq type of features.

Combining expression-based and sequence-based features further

improves the accuracy for predicting all three domains of protein function

We further evaluate the predictive power of the combination of expression-based and

sequence-based features. We report the mean MCC and AUROC values obtained by different

types of feature combinations in Tables 3 and 4. Overall, the combinations of expression-based

Fig 2. Expression-based features show competitive performance against the sequence-based features for predicting the biological

process domain of protein function. (a,d) the MCC and AUROC values obtained by different features for predicting the biological process

domain of GO terms over cross validation. (b,e) the MCC and AUROC values obtained by different features for predicting the molecular function

domain of GO terms over cross validation. (c,f) the MCC and AUROC values obtained by different features for predicting the cellular component

domain of GO terms over cross validation.

https://doi.org/10.1371/journal.pcbi.1005791.g002
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and sequence-based features obtain higher mean MCC and AUROC values when predicting

all three domains of protein function. Almost all of the four classification algorithms obtain

higher mean MCC and AUROC values by exploiting the feature combinations for predicting

the three domains of protein function, except the KNN classification algorithm, which obtains

better results by only adopting sequence-based features for molecular function and cellular

component function prediction.

The Opt-Classifier also obtains the highest mean MCC and AUROC values for predicting

the three domains of function by exploiting the combinations of feature types (i.e. MCC of

0.287 and AUROC of 0.726 for predicting BP terms with Seq+Num+Ave+Main features;

MCC of 0.530 with Seq+Ave+Main features and AUROC of 0.862 with Seq+Num+Ave fea-

tures for predicting MF terms; MCC of 0.463 with Seq+Ave+Main features and AUROC of

0.848 with either Seq+Ave+Main or Seq+Num+Ave+Main features for predicting CC terms).

We also report the MCC and AUROC values obtained by predicting all GO terms with the

Opt-Classifier. Analogously to Fig 2, the scatter plots in Fig 3 display the comparison of MCC

and AUROC values obtained by the sequence-based features and its combination with differ-

ent types of expression-based features. For predicting biological process function, as shown in

Fig 3.a and 3.d, the majority of dots drop in the area above the diagonal. This suggests the fact

that merging expression-based features with sequence-based features improves the predictive

performance, compared with only adopting the sequence-based features. For predicting

molecular function, as shown in Fig 3.b and 3.e, almost all dots drop on both sides of the diag-

onal, indicating similar predictive power of sequence-based features and its combinations with

expression-based features. For predicting cellular component function, the combinations of

Table 3. Mean MCC values obtained by different combinations of expression-based and the sequence-based feature groups over cross validation.

Feature Group RF AdaBoost KNN LDA Opt–Classifier

BP MF CC BP MF CC BP MF CC BP MF CC BP MF CC

Seq 0.196 0.485 0.366 0.173 0.466 0.367 0.203 0.449 0.365 0.177 0.454 0.381 0.239 0.519 0.411

Seq+Num 0.202 0.497 0.369 0.180 0.470 0.369 0.173 0.369 0.313 0.181 0.457 0.384 0.235 0.516 0.408

Seq+Ave 0.230 0.498 0.400 0.214 0.486 0.410 0.226 0.305 0.336 0.189 0.466 0.394 0.279 0.527 0.452

Seq+Main 0.217 0.499 0.407 0.201 0.484 0.411 0.218 0.287 0.339 0.189 0.466 0.394 0.274 0.522 0.449

Seq+Num+Ave 0.234 0.507 0.400 0.216 0.488 0.408 0.228 0.288 0.331 0.194 0.467 0.395 0.285 0.528 0.452

Seq+Num+Main 0.224 0.497 0.402 0.206 0.487 0.405 0.220 0.278 0.324 0.192 0.466 0.397 0.279 0.526 0.447

Seq+Ave+Main 0.239 0.502 0.410 0.217 0.490 0.418 0.230 0.290 0.336 0.193 0.472 0.397 0.286 0.530 0.463

Seq+Num+Ave+Main 0.244 0.493 0.409 0.218 0.490 0.417 0.227 0.282 0.322 0.197 0.471 0.399 0.287 0.526 0.461

https://doi.org/10.1371/journal.pcbi.1005791.t003

Table 4. Mean AUROC values obtained by different expression-based feature groups and the sequence-based feature group over cross validation.

Feature Group RF AdaBoost KNN LDA Opt–Classifier

BP MF CC BP MF CC BP MF CC BP MF CC BP MF CC

Seq 0.666 0.849 0.801 0.649 0.821 0.792 0.665 0.819 0.803 0.632 0.813 0.784 0.653 0.855 0.817

Seq+Num 0.671 0.848 0.804 0.654 0.823 0.796 0.648 0.769 0.776 0.636 0.814 0.786 0.685 0.852 0.814

Seq+Ave 0.696 0.856 0.835 0.679 0.831 0.819 0.693 0.743 0.778 0.642 0.821 0.791 0.721 0.860 0.845

Seq+Main 0.687 0.856 0.828 0.665 0.830 0.815 0.678 0.727 0.771 0.641 0.820 0.791 0.712 0.860 0.840

Seq+Num+Ave 0.701 0.858 0.835 0.679 0.832 0.819 0.692 0.734 0.777 0.645 0.821 0.793 0.679 0.862 0.845

Seq+Num+Main 0.692 0.855 0.830 0.668 0.831 0.816 0.682 0.724 0.770 0.644 0.820 0.793 0.716 0.858 0.841

Seq+Ave+Main 0.703 0.857 0.842 0.680 0.831 0.819 0.690 0.731 0.776 0.646 0.824 0.792 0.722 0.861 0.848

Seq+Num+Ave+Main 0.709 0.855 0.842 0.682 0.831 0.820 0.692 0.730 0.775 0.649 0.824 0.794 0.726 0.859 0.848

https://doi.org/10.1371/journal.pcbi.1005791.t004
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expression-based and sequence-based features outperform sequence-based features, since the

majority of plots drop in the area above the diagonal.

The Wilcoxon signed-rank test results also confirm that all combinations of expression-

based and sequence-based features (except Seq+Num) obtain significantly higher accuracy

than only sequence-based features for predicting both BP and CC domains of protein function.

In the case of predicting molecular function, almost all combinations of expression-based

and sequence-based features show non-significant differences except feature combinations

Seq+Num+Ave and Seq+Ave+Main which both show significantly higher MCC values, while

all feature combinations obtain significantly higher AUROC values except Seq+Num and

Seq+Num+Ave+Main.

The optimal features and best performing classification algorithm for

predicting three domains of protein function

We further compare the predictive accuracy obtained by all 15 different types of features

over the cross validation procedure. The results are shown in the boxplots in Figures A and B

in S1 Text. Overall, the Seq+Num+Ave+Main type of features obtains the best accuracy (also

obtains the best ranking by considering both MCC and AUROC values, as shown in Table C

in S1 Text) for predicting biological process function, whereas both the Seq+Num+Ave

and Seq+Ave+Main features performs best for predicting molecular function terms.

Seq+Ave+Main features also performs the best for predicting cellular component function.

We then further compare the predictive performance of different types of features using a

larger training protein set, i.e. adopting the whole 70% of the protein set for training, then

Fig 3. Combining expression-based features with sequence-based features boosts the predictive accuracy when only adopting sequence-

based features for predicting all three domains of protein function. (a,d) the MCC and AUROC values obtained by different features for predicting

biological process domain of GO terms over cross validation. (b,e) the MCC and AUROC values obtained by different features for predicting molecular

function domain of GO terms over cross validation. (c,f) the MCC and AUROC values obtained by different features for predicting cellular component

domain of GO terms over cross validation.

https://doi.org/10.1371/journal.pcbi.1005791.g003
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testing on the remaining 30% of protein set. The results show that Seq+Num+Ave+Main

features perform best for predicting BP and MF domains of protein function, while the

Seq+Ave+Main features obtain the highest accuracy on predicting cellular component func-

tion, since Seq+Num+Ave+Main and Seq+Ave+Main features respectively obtain the best

ranking for predicting corresponding domains of protein function, by considering both

MCC and AUROC values, as shown in Table D in S1 Text.

We also compare the predictive performance of different classification algorithms. The pie-

charts in Figures C and D in S1 Text display the proportion of GO terms for which individual

classification algorithm obtains the best performance. In general, the RF is the best performing

classification algorithm. For predicting biological process function, KNN and RF are the best

performing classification algorithms, but RF outperforms other classification algorithms on

predicting other two domains of function.

FFPred-fly+, a novel protein function prediction method for Drosophila

melanogaster

We further propose a new Drosophila melanogaster-specific protein function prediction

method, namely FFPred-fly+, by exploiting the optimal combination of expression-based

and sequence-based features w.r.t. corresponding domain of protein function. According to

the results discussed in the previous section, we use Seq+Num+Ave+Main features for pre-

dicting biological process function and molecular function, and Seq+Ave+Main features for

predicting cellular component function. FFPred-fly+ considers 4 different candidate classifi-

cation algorithms (i.e. RF, AdaBoost, KNN and LDA). It firstly selects the single best classifi-

cation algorithm for each GO term according to the predictive performance on cross

validation with varying numbers of splits of the training set, depending on the number of

proteins with that GO term (see [2] for details). Then the selected algorithm is trained on the

whole protein training set. The performance of trained classifier is evaluated by conducting

the prediction on the independent protein test set. Note that, in [2], the performance of

FFPred-fly was evaluated by testing on a 30% split test set. Hence, in this work, we evaluate

the relative performance of FFPred-fly+ by testing on the same 30% test set, while conducting

the classification algorithm selection and training process on a 70% split as the training set.

In other words, the training data is used for both algorithm selection and training, but not

for final testing.

The results are shown in the scatter plots in Fig 4, where the MCC and AUROC values

obtained by both methods are displayed. In each figure, the values on x-axis denotes the MCC

or AUROC values obtained by the FFPred-fly approach, while the values on y-axis denote the

MCC or AUROC values obtained by the FFPred-fly+ approach; the diagonal indicates the

case when the MCC or AUROC values for the prediction on same function obtained by two

approaches are equal; the plots in blue indicate the MCC or AUROC values obtained by the

FFPred-fly+ are greater than the ones obtained by the FFPred-fly. Two dashed lines on both of

sides of diagonal indicate the value of difference on MCC or AUROC values obtained by two

approaches is 0.1.

Overall, for predicting all 301 GO terms on the three different domains of protein function,

as shown in Fig 4.a and 4.b, FFPred-fly+ outperforms FFPred-fly, since more dots drop in the

area above the diagonal. In detail, 187 out of 301 GO terms obtain higher MCC values by

using FFPred-fly+. Among those 187 function, the difference in MCC values obtained by two

approaches is greater than 0.1 for 56 GO terms. Among those 114 of functions obtained higher

MCC values by FFPred-fly, the difference in MCC values obtained by two approaches is

greater than 0.1 for merely 27 GO terms. Analogously, 230 out of 301 GO terms obtain higher
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Fig 4. FFPred-fly+ shows better performance than FFPred-fly when predicting all three domains of

protein function. (a,b) FFPred-fly+ obtains higher MCC and AUROC values on predicting all 301 GO terms;

(c,d) FFPred-fly+ obtains higher MCC and AUROC values on predicting 196 biological process GO terms; (e,

f) FFPred-fly+ obtains similar MCC values but higher AUROC values on predicting 68 molecular function GO

terms; (g,h) FFPred-fly+ obtains similar MCC values but higher AUROC values on predicting 37 cellular

component GO terms.

https://doi.org/10.1371/journal.pcbi.1005791.g004
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AUROC values by using FFPred-fly+. 40 GO terms obtain 0.1 higher AUROC values with

FFPred-fly+, whereas only 3 GO terms obtain 0.1 higher AUROC values with FFPred-fly.

FFPred-fly+ performs better on predicting biological process function, as shown in Fig 4.c

and 4.d, most of the dots in blue drop on the area above the diagonal. In detail, FFPred-fly+

obtains higher MCC values for 135 out of 196 BP terms, while 47 of them have 0.1 higher

MCC values than the ones obtained by FFPred-fly. 157 out of 196 BP terms obtained higher

AUROC values by FFPred-fly+, while 40 of them have 0.1 higher than the ones obtained by

FFPred-fly.

For predicting molecular function, as shown in Fig 4.e and 4.f, FFPred-fly+ and FFPred-fly

show comparable predictive performance, since the numbers of blue and red dots are similar.

The latter obtains higher MCC values on slightly more terms (i.e. 37 out of 68), whereas the

former obtains higher AUROC values on more terms (i.e. 45 out of 68). Among those 37 MF

terms with higher MCC values, 10 terms’ MCC values are 0.1 higher than the ones obtained by

FFPred-fly+. Among those 31 of GO terms with higher MCC values obtained by FFPred-fly+,

4 terms’ MCC values are 0.1 higher than the ones obtained by FFPred-fly.

For predicting cellular component function, as shown in Fig 4.g and 4.h, FFPred-fly+

shows better predictive performance. FFPred-fly+ obtains higher MCC values for 22 out of 37

GO terms and higher AUROC values for 28 out of 37 terms. 5 of 22 terms are 0.1 higher MCC

values to the ones obtained by FFPred-fly. 3 of 15 terms obtain 0.1 higher MCC values by

FFPred-fly, and 2 out of 9 terms higher AUROC values, compared with the ones obtained by

FFPred-fly+.

We also conduct the Wilcoxon signed-ranked test (two-tailed at 5% significance level) on

MCC and AUROC values obtained by the two approaches. The results of significance test on

MCC values suggest that FFPred-fly+ significantly outperforms FFPred-fly when predicting

196 BP function (p-value(BP) = 9.6e-08), whereas no significant difference between the

performance of two approaches when predicting MF and CC function. Conversely, FFPred-

fly+ obtains significantly better AUROC values when predicting all GO terms (p-value(All)<

2.2e-16), but also for predicting the individual domains of GO, i.e. p-value(BP)<2.2e-16,

p-value(MF) = 9.0e-03 and p-value(CC) = 2.8e-02.

Table 5 displays 15 GO terms (5 for each domain of protein function) that obtain the

biggest improvement on predictive performance by FFPred-fly+, compared with FFPred-fly.

The meanings of the first 7 columns are self-explanatory, while the rightmost column of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMCC � IncÞ

p
is a normalised value by simultaneously considering the actual MCC value

and the increase on MCC obtained by FFPred-fly+. All GO terms in Table 5 in each domain

are ranked in descending order according to the values of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMCC � Inc

p
. Generally, for pre-

dicting BP terms, GO:0007051 obtains the highest
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMCC � IncÞ

p
value. The MCC value

obtained for GO:0007051 reaches 0.489 (with Random Forests) with an increase of 0.256,

while the MCC value obtained by FFPred-fly is 0.233. For predicting MF terms, the MCC

value for the top-ranked term, i.e. GO:0003735, reaches 0.930 (which is also the highest among

all MCC values obtained by predicting MF terms shown in this table), with an increase of

0.209. For predicting CC terms, the MCC value for the top-ranked term GO:0005840 reaches

0.924 (which is also the highest among all MCC values obtained by predicting CC domain of

terms shown in this table), with an increase of 0.262.

We then further evaluate the reliability of prediction confidence score estimation by

FFPred-fly+. Here we define the prediction confidence score as the posterior probability of the

predicted GO term annotation for each protein. The higher the confidence score, the higher

the likelihood that the annotation is correct. We calculate the correlation coefficient between

the varying confidence score thresholds and the corresponding precision values. In more
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detail, we define a positive prediction if the prediction’s confidence score is greater than the

given confidence score threshold. Then the precision value is calculated by TP
TPþFP, where TP

denotes the numbers of corrected predicted annotations and TP + FP denotes the numbers of

all predictions, where the confidence score is greater than the threshold. As shown in Fig 5, the

confidence score for predicting all three domains of GO terms shows a positive correlation

with the precision value (the r values are nearly equal to 1.00). For example, the precision val-

ues are all greater than 0.8 for predicting BP terms when the threshold is greater than 0.8. This

further confirms that FFPred-fly+ is able to make good confidence score estimates for the pre-

dicted GO term annotations.

We then further verify the predicted protein-GO term annotations by screening the false

positive predicted proteins by FFPred-fly+. The new protein-GO term annotations are gen-

erated by adopting new versions of the data (GOA.gaf 03-10-2016 & go.obo 08-10-2016).

Table 6 displays 5 examples of predicted proteins included in Swiss-Prot and annotated

with the GO terms by merely experimental evidence codes (e.g. IMP). The rightmost

Fig 5. Correlation coefficient between the predictive confidence score and precision value for predicting BP (a), MF (b) and CC

(c) terms.

https://doi.org/10.1371/journal.pcbi.1005791.g005

Table 5. GO terms obtained most improvement on predictive performance by FFPred-fly+.

GO_ID Name Category Opt–Classifier MCC–FFPred-fly+ MCC–FFPred-fly Increase
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMCC� IncÞ

p

GO:0007051 spindle organization BP RF 0.489 0.233 0.256 0.354

GO:0022604 regulation of cell morphogenesis BP KNN 0.440 0.169 0.271 0.345

GO:0008380 RNA splicing BP LDA 0.652 0.482 0.170 0.333

GO:0007268 chemical synaptic transmission BP KNN 0.459 0.227 0.232 0.326

GO:0000278 mitotic cell cycle BP ADB 0.510 0.314 0.196 0.316

GO:0003735 structural constituent of ribosome MF ADB 0.930 0.721 0.209 0.441

GO:0003676 nucleic acid binding MF RF 0.659 0.525 0.134 0.297

GO:0008270 zinc ion binding MF RF 0.663 0.544 0.119 0.281

GO:0015267 channel activity MF RF 0.832 0.738 0.094 0.280

GO:0003677 DNA binding MF RF 0.629 0.507 0.122 0.277

GO:0005840 ribosome CC RF 0.924 0.662 0.262 0.492

GO:0030529 intracellular ribonucleoprotein complex CC LDA 0.661 0.458 0.203 0.366

GO:0005789 endoplasmic reticulum membrane CC RF 0.764 0.647 0.117 0.299

GO:0005615 extracellular space CC RF 0.852 0.774 0.078 0.258

GO:0005634 nucleus CC RF 0.663 0.567 0.096 0.252

https://doi.org/10.1371/journal.pcbi.1005791.t005
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column denotes the number of ancestor layers in the GO hierarchy for individual GO

terms. Note that, according to the GO hierarchy, the more ancestor layers the GO term has,

the more specific the protein function that GO term defines. Our system successfully detects

proteins’ annotations of GO terms with 6 or 7 ancestor layers. For example, protein

RE32936p is successfully predicted as relating to “generation of neurons” (GO:0048699);

“protein Box A-binding factor” is successfully predicted as involved with the process of ani-

mal organ morphogenesis (GO:0009887).

FFPred-fly+ performs better than using InterPro for protein function

prediction

The InterPro database [23] includes functional information on families, domains and other

descriptive information about each protein. In this work, we compare our FFPred-fly+

method with an InterPro-based method for predicting those same 301 GO terms. We firstly

obtain the domain, families and other protein descriptive information for 39855 Drosophila
proteins by accessing the match_complete.xml file (release date 09/07/2014). Then we assign

the GO term annotations to each protein through the interpro2go file (release date 04/07/

2014).

Overall, FFPred-fly+ performs better, especially when predicting biological process and

cellular component function terms, whereas InterPro performs better for predicting

molecular function terms. The results are shown in Fig 6, where the x-axis denotes the

MCC values obtained by using InterPro, and the y-axis denotes the MCC values obtained

by FFPred-fly+. In detail, when predicting all 301 GO terms, FFPred-fly+ obtains higher

MCC values for 197 terms, while 158 of them exceed the MCC score obtained using Inter-

Pro by more than 0.1. Note that, 72 terms obtain zero MCC values by InterPro, due to the

fact that those GO terms were not assigned to any Drosophila proteins or functional

descriptions in the database. For predicting biological process terms, FFPred-fly+ obtains

higher MCC values for 150 out of 196 terms (131 of them by more than 0.1) and 69 terms

are not assigned to any Drosophila protein. For predicting molecular function terms, the

InterPro-based method obtains higher MCC values for 50 out of 68 terms (44 by more than

0.1). For predicting cellular component terms, FFPred-fly+ obtains higher MCC values for

29 out of 37 terms (20 by more than 0.1) and InterPro has a zero MCC for 3 of them. The

statistical significance test results further confirm that FFPred-fly+ performs better when

predicting all 301 terms with p-value(All) = 4.4e-12, biological process terms with

p-value(BP)<2.2e-16 and cellular component terms with p-value(CC) = 2.1e-05, while

InterPro-based method performs better when predicting molecular function terms with

p-value(MF) = 1.4e-06.

Table 6. Validated proteins predicted by FFPred-fly+.

Protein Description Gene GO_ID GO Description No. Π
RE32936p Smyd4-2 GO:0048699 generation of neurons 7

Box A-binding factor srp GO:0009887 animal organ morphogenesis 6

RING finger protein unkempt unk GO:0022008 neurogenesis 6

Chromatin-remodeling complex

ATPase chain Iswi

Iswi GO:0007281 germ cell development 6

Eukaryotic translation initiation

factor 3 subunit B

eIF3-S9 GO:0007292 female gamete generation 6

https://doi.org/10.1371/journal.pcbi.1005791.t006
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Novel protein function prediction made by FFPred-fly+

To gauge the usefulness of the approach, we have looked at the novel GO term assignments

made by FFPred-fly+ for proteins that currently have no meaningful biological process func-

tion annotations according to the latest UniProt-GOA database (version 10-04-2017). In

detail, there are 4359 out of 19834 proteins (22%) that have only biological process root term

annotations (i.e. GO:0008150), which convey no useful information, or don’t have any biologi-

cal process term annotations at all. FFPred-fly+ assigned biological process annotations to

2964 (68%) of the unannotated proteins, with a high confidence (i.e. greater than 80% likeli-

hood). For example, we report the prediction of GO:0030154 annotation for protein M9NEB4

with 90% confidence. All of our predictions are accessible via the following url: http://

bioinfadmin.cs.ucl.ac.uk/ffpred/fly/.

Discussion

Overall, as discussed in previous sections, the Random Forests (RF) method obtains the best

performance when predicting function for the independent 30% protein set. The model

learned by RF is also interpretable for mining meaningful patterns in the data itself. Therefore,

in this section, we illustrate our model’s capacity to reveal links between certain protein

Fig 6. FFPred-fly+ shows higher predictive accuracy comparing with using InterPro database for

predicting biological process and cellular component domains of protein function. (a) FFPred-fly+ obtains

higher MCC values on predicting all 301 GO terms; (b) FFPred-fly+ obtains higher MCC values on predicting 196

biological process domain of GO terms; (c) Using InterPro database obtains better MCC values on predicting 68

molecular function domain of GO terms; (d) FFPred-fly+ obtains higher MCC values on predicting 37 cellular

component domain of GO terms.

https://doi.org/10.1371/journal.pcbi.1005791.g006
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functions and the developmental stages of Drosophila by analysing the relative importance of

time-course expression-based features.

Interpreting the importance of expression-based features for predicting

biological process function

The importance of features indicates the power of the features for predicting target classes by

the given classification algorithm. For Random Forests, the feature importance is evaluated by

bootstrap analysis of the trained model. As shown in Eq 1, the feature importance FIf is defined

as the decrease on impurity (the mean decrease on Gini index between parent node to direct

descendent nodes) among all contained trees (DecImpt
f ) times the proportion of instances

Prop(Instf) used to construct the trees during the bootstrapping process, then normalised by

the total number of trees (No. Tree) in the Random Forests.

FIf ¼

P
DecImpt

f � PropðInstf Þ

No: Tree
ð1Þ

RFIf ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FIf

FIMax global
�

FIf

FIMax local

s

ð2Þ

Note that, the best-performing types of features used for predicting BP, MF and CC terms

are combinations of expression and sequence-based features. Therefore, we discuss the feature

importance of expression-based features by considering two factors, i.e. the relative impor-

tance w.r.t. the feature having the global maximum importance among all expression-based

and sequence-based features, and the relative importance w.r.t. the feature having the local

maximum importance only within the expression-based features. As shown in Eq 2, we calcu-

late the relative importance by obtaining the square root of the product of the proportion of

individual feature importance against the global maximum feature importance and the local

maximum feature importance respectively. The maximum value of RFI is 1.0, indicating that

the feature has both globally and locally maximum importance value. In addition, recall that,

the optimal types of feature combinations consist of three or two types of expression-based fea-

tures (i.e. Seq+Num+Ave+Main for BP and MF terms, Seq+Ave+Main for CC terms). There-

fore, for an individual feature (time-point), we only choose the feature having the maximum

related importance. For example, in Seq+Num+Ave+Main types of feature, if the time-point 1

has 0.2 of importance in features Num, 0.5 of importance in features Ave, and 0.4 of impor-

tance in features Main, we select 0.5 as the importance value for time-point 1 feature of

Seq+Num+Ave+Main. We then further group all 30 time-point features, by selecting the maxi-

mum feature importance among individual main developmental stages, i.e. time-points 0—12

for embryo, time-points 13—18 for larva, time-points 19—24 for pupa, and time-points 25—

30 for adult.

We focus on the GO terms that obtain the highest accuracy by Random Forests when

evaluating on the 30% test protein set (i.e. 100 BP terms, 51 MF terms, and 20 CC terms). The

distribution of RFI values for all those GO terms is shown in Fig 7, where each colour of dots

indicates the maximum relative feature importance value for each main developmental stage

of Drosophila melanogaster.

Generally, the majority of expression-based features indicate high importance when pre-

dicting biological process functions. As shown in Fig 7.a, 61 out of 100 BP terms are with the

RFI value being greater than the 0.7 of threshold at least one developmental stage. On the con-

trary, only a few expression-based features show high importance when predicting MF and
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CC terms. As shown in Fig 7.b and 7.c, almost all MF and CC terms have RFI<0.7 on all main

developmental stages. These results further confirm the findings discussed in the previous sec-

tions, i.e. transcription expression profile-based features only show the relevance to predict the

biological process function. Therefore, hereafter, we only further discuss the expression-based

features’ relative importance on predicting biological process function.

Identifying biological processes associated with certain Drosophila

melanogaster developmental stages

We display the relative feature importance values of 30 time-point features for predicting 10

types of specific development-associated biological process function in the heatmap shown in

Fig 8.a. The reddest colour indicates the highest RFI value (i.e. 1.0), while the bluest colour

denotes the lowest RFI value (i.e. 0.0). We also further conduct hierarchical clustering analysis

on those 10 functions, according to their RFI values over 30 time-point features. Note that, we

show the distribution of RFI values for all other 51 BP terms in the S1 Table. Those terms are

either ancestor terms for those 10 specific terms or located in the Gene Ontology hierarchy

with less than three ancestor layers (only denoting relative generic protein function).

In general, the analysis of RFI values of expression-based features successfully identifies the

association between developmental processes and certain developmental stages. It is obvious

that those clustered 4 functions in the top of the heatmap are all relevant to Drosophila melano-
gaster’s nervous system development. According to the heatmap, those functions indicate their

high relevance with more than one developmental stage of Drosophila melanogaster.

Regulation of nervous system development (GO:0051960) shows an active role at the

embryonic and larval stage of Drosophila melanogaster development. In Fig 8.b, the first peak

of RFI value reaches 0.92 at T7-Embryo, along with the highest RFI value being obtained by

T13-Larva. It is known that the formation of the central nervous system (CNS) starts at the

early embryonic stage, in which the region of neuroectodermal cells are determined in order

to form the neuroblasts with the delamination process from the epithelium at later embryonic

stage [24–26]. At larval stage, the CNS vigorously develops as a process of neuronal morpho-

genesis and many adult-specific neurons are also produced with the neuroblasts persisting

into larval life [27, 28]. The peripheral nervous system (PNS) is also active during embryonic

and larval stages, in which the sensory neurons are stereotyped positioned, associating with

Fig 7. Distribution of related feature importance value for features denoting each of main developmental stages for Drosophila. (a) the

distribution of RFI values for predicting biological process domain of GO terms; (b) the distribution of RFI values for predicting moleulcar function

domain of GO terms; (c) the distribution of RFI values for predicting cellular component domain of GO terms.

https://doi.org/10.1371/journal.pcbi.1005791.g007
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Fig 8. The distribution of RFI values for predicting 10 specific development-associated GO terms. (a) The heatmap of relative

feature importance on predicting development-related BP terms by Random Forests classification algorithm; (b) regulation of nervous

system development (GO:0051960); (c) eye morphogenesis (GO:0048592); (d) cell morphogenesis (GO:0000902); (e) cell migration

(GO:0016477).

https://doi.org/10.1371/journal.pcbi.1005791.g008
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many biological processes, such as asymmetric cell divisions and neighbouring neurons inter-

actions [29].

Eye morphogenesis (GO:0048592) is another developmental process that is relevant to

more than one main developmental stage. According to Fig 8.c, the RFI value reaches its peak

value at T7-Embryo, and raises up again at T22-Pupa. It indicates the high relevance of eye

morphogenesis on the embryonic and pupal stages. It has been known that the morphogenesis

of Drosophila eyes commences with the development of eye anlage at the embryonic stage. The

eye anlage is generated after the partition on dorsal head neuroectoderm [30], and then pro-

gresses to be the visual primordium that further derives to the eye-antennal imaginal disc [31].

The formation of adult eye is mainly progressed during the pupal stage, including the events

related with the progression of morphogenetic furrow and pattern formation [32]. Note that,

the pupal stage is also an especially important stage for the tissue morphogenesis of Drosophila,

such as wing and leg morphogenesis [33, 34]. As shown in Fig 8.d, the peak of RFI value for

predicting cell morphogenesis (GO:0000902) is obtained by the time-point T22-Pupa.

The distribution of RFI values for other functions listed at the bottom of the heatmap shows

their relevance to unique developmental stages of Drosophila, such as cell migration, male

gamete generation and so on. Cell migration (GO:0016477) is one function that is detected by

our system as a typical biological process happening on the embryonic stage of Drosophila. As

shown in Fig 8.e, it is clear that the RFI value reaches the peak of 1.0 at T5-Embryo, and it is

obviously higher than the average RFI value of 0.20. Actually, cell migration is a well-studied

area in biology, especially for the Drosophila melanogaster system, since it was found as a com-

plex phenomenon during embryonic stage associates with the body plan of Drosophila [35–

37]. This indicates significant cell movement activities, such as primordial germ cells (PGCs),

phagocytic cells, cells of the tracheal system, etc. PGCs is a well-known group of cells that

shape the gonads of Drosophila. During the germband extension process of the embryo, the

PGCs are moved along the dorsal and then towards the center. After contacting with the

somatic cells, the PGCs form the gonad on either side of embryo, during the retraction process

of the germband.

In this study, we evaluate the predictive power of temporal transcription expression profiles

for the task of novel Drosophila melanogaster protein function prediction. We conclude that

the features generated based on expression profiles obtain better performance on predicting

biological process function, whilst also indicating similar performance for predicting other

domains of protein function, compared with conventional sequence-based features. Further-

more, by combining expression-based and sequence-based features, the performance for pre-

dicting all three domains of protein function can be further improved. Based on the optimal

types of feature combinations, our newly-proposed protein function prediction approach also

significantly outperforms FFPred-fly. With the help of our machine learning models, we fur-

ther illustrate the capacity of our system to help highlight some of the links between protein

function and developmental stages of Drosophila melanogaster.

Materials and methods

Protein sets generated for Gene Ontology term prediction

As our reference data set, we make use of all available Drosophila melanogaster-specific pro-

teins and their corresponding Gene Ontology (GO) annotation data as described below. The

Gene Ontology terms are categorised into the usual three domains of protein function, i.e. Bio-

logical Process (BP), Molecular Function (MF), and Cellular Component (CC). We firstly gen-

erate the protein sets for GO terms by adopting the consistent procedure described in [2]. In

general, for each individual GO term (a.k.a. protein function), a set of proteins is grouped as
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one dataset, according to the annotation information. In that dataset, an instance (protein) is

characterised by a set of features, and assigned to a class, i.e. either annotated with that GO

term or non-annotated with that GO term. The total 258 features generated from the protein

sequence information are the same as the ones used by [2], such as amino acid composition,

transmembrane segments and so on (the full list of sequence-based features is included in

Table E in S1 Text). Then the whole protein set is randomly divided into two subsets, with a

proportion of 7:3. For cross-validation, 70% of proteins are used for classifier training, and the

remaining 30% used for evaluating the performance of the trained classifier. The same 30%

test set is also to compare the performance of our newly proposed Drosophila melanogaster-

specific protein function prediction method with our previous sequence-based method [2]

retrained on Drosophila melanogaster.

The annotations for Drosophila melanogaster proteins were retrieved from the Gene Ontol-

ogy Annotation (GOA) for Drosophila [38] database (version 01-09-2014). The hierarchical

dependency information between terms was retrieved from the Gene Ontology database [39]

(version 12-09-2014). The amino acid sequences information was obtained from the UniProt

Knowledgebase [40] (version 2014_08). In total, 10519 proteins are assigned to 301 GO terms,

including 196 Biological Process terms, 68 Molecular Function terms, and 37 Cellular Compo-

nent terms (see S2 Table).

Evaluating the predictive power of time-course transcription expression

profiles

We evaluate the predictive performance of transcription expression profile-based features in

two ways. Firstly, we evaluate the predictive power of the newly-generated expression-based

features by comparing with the predictive power of the conventional protein sequence-based

features (i.e. Seq), due to its proven success on predicting different eukaryotic organisms’ pro-

tein-GO term annotations [2]. We further generate four more types of expression-based fea-

tures, as the different combinations of those three generated types of expression-based

features, i.e. Num+Ave, Num+Main, Ave+Main or Num+Ave+Main. All those 7 types of

expression-based features plus Seq type of features are compared. The number of features in

those 7 different types of features ranges from 30 to 258. For example, the number of features

in Ave type of features is 30, denoting the average expression profile over 30 different time-

points, and the total number of the conventional Seq type of features is 258.

Moreover, we further evaluate the predictive power of features that simultaneously consist

of both expression-based and sequence-based features. We combine the Seq type of features

with all other types of expression-based features (i.e. Seq+Num, Seq+Ave, Seq+Main,

Seq+Num+Ave, Seq+Num+Main, Seq+Ave+Main, Seq+Num+Ave+Main), while still choos-

ing the predictive performance of Seq features as the benchmark. The number of features in

those types of features ranges from 258 to 348. For example, the Seq+Num+Ave+Main type of

features includes 258 sequence-based features plus 3 types of expression-based features, while

each type of those expression-based features consisting of 30 individual features.

Evaluating the predictive performance of our newly proposed Drosophila

melanogaster-specific protein function prediction method

We evaluate the predictive performance of this newly proposed Drosophila melanogaster-spe-

cific protein function prediction method by benchmarking with the standard FFPred 2.0

method [2]. In this work, we re-train FFPred 2.0 (hereafter denoting FFPred-fly) by training

on the same Drosophila melanogaster-specific source data described in the previous section. In

detail, we re-train the SVM classifiers for GO terms by adopting the 70%-split Drosophila
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melanogaster protein training set, then evaluate the performance on predicting the GO terms

annotation for the remaining 30%. Note that, the grid-search hyper-parameter optimisation

and the backwards feature group elimination processes are also included during the classifier

training.

In this work, we choose the well-known Matthews Correlation Coefficient (MCC) (Eq 3)

and the Area Under Receiver Operating Characteristics Curve (AUROC) as the metrics of pre-

dictive performance [2, 3]. The value of MCC ranges between -1 to 1, where value 0 indicates

that the predictive performance is not better than random prediction. The value of AURCO

ranges between 0.5 to 1.0, where 0.5 denotes the random predictive performance and 1.0

denotes the perfect predictive performance.

MCC ¼
TP� TN � FP� FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTN þ FPÞðTN þ FNÞ

p ð3Þ
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