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Abstract 27 

Enhanced weathering of mafic and ultramafic rocks has been suggested as a carbon sequestration 28 

strategy for the mitigation of climate change. This study was designed to assess the potential 29 

drawdown of CO2 directly from the atmosphere by the enhanced weathering of peridotites and 30 

basalts in seawater. Pulverized, and ball milled dunite, harzburgite and olivine basalt were 31 

reacted in artificial seawater in batch reactor systems open to the atmosphere for two months. 32 

The results demonstrate that the ball-milled dunite and harzburgite changed dramatically the 33 

chemical composition of the seawater within a few hours, inducing CO2 drawdown directly from 34 

the atmosphere and ultimately the precipitation of aragonite. In contrast, pulverized but unmilled 35 

rocks, and the ball-milled basalt, did not yield any significant changes in seawater composition 36 

during the two-month experiments. As much as 10 weight percent aragonite was precipitated 37 

during the experiment containing the finest-grained dunite. These results demonstrate that ball 38 

milling can substantially enhance the weathering rate of peridotites in marine environments, 39 

promoting the permanent storage of CO2 as environmentally benign carbonate minerals through 40 

enhanced weathering. The precipitation of Mg-silicate clay minerals, however, could reduce the 41 

efficiency of this carbon sequestration approach over longer timescales. 42 

 43 

Keywords: Enhanced weathering; Basalts; Peridotites; Carbon capture and storage (CCS); 44 

Mineral carbonation; Clay minerals 45 

 46 

 47 

 48 

1. Introduction 49 
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Human activities over the past century, particularly fossil fuel consumption, have caused a 50 

dramatic increase of CO2 concentration in the atmosphere (e.g. IPCC, 2007; Oelkers and Cole, 51 

2008). This anthropogenic impact on the global carbon cycle is considered to be the main reason 52 

for the observed climate change over the past decades (IPCC, 2005; Solomon et al., 2009). 53 

Global climate change has been linked to various other phenomena, including hurricanes, 54 

droughts, floods, glacier retreat, and rising sea levels (Emanuel, 2005; Rignot, 1998; 55 

Schiermeier, 2011; Trenberth et al., 2014). As such, large efforts have been made to develop 56 

effective carbon capture and storage (CCS) methods that remove CO2 from the atmosphere (e.g. 57 

Gerdemann et al., 2007; Gislason and Oelkers, 2014; Lackner et al., 1995; Matter and Kelemen, 58 

2009; Matter et al., 2016; Michael et al., 2010; Oelkers et al, 2008; Power et al., 2013, 2016; 59 

Wilson et al., 2014). 60 

Chemical weathering is a slow process that controls atmospheric CO2 concentrations over 61 

geological time scales. A number of scientists have proposed accelerating chemical weathering 62 

to counter global climate change (Griffioen, 2017; Hartmann et al., 2013; Köhler et al., 2010, 63 

2013; Lackner, 2003; Montserrat et al., 2017; Schuiling and De Boer, 2011; Schuiling and 64 

Krijgsman, 2006; Seifritz, 1990; Taylor et al., 2016). The goal of enhanced weathering is to 65 

hasten silicate mineral weathering rates to accelerate the removal of CO2 from the atmosphere as 66 

dissolved inorganic carbon and/or as carbonate minerals. Because of their relatively rapid 67 

dissolution rates, enhanced weathering has focused on mafic and ultramafic rocks (Hartmann et 68 

al., 2013; Hauk et al., 2016; Moosdorf et al., 2014; Renforth, 2012; Taylor et al., 2016). 69 

Experimentally measured dissolution rates of Wolff-Boenisch et al. (2011) suggest that ground 70 

mafic and ultramafic rocks could lead to the efficient carbon dioxide mineralisation in seawater. 71 

One method to accelerate weathering rates is to increase rock surface area by crushing, grinding, 72 
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and/or milling (Renforth, 2012). The grinding process can increase specific dissolution rates 73 

through “mechano-chemical activation” (Balaz et al., 2008; Gerdemann et al., 2007). Past studies 74 

have also demonstrated that milling can dramatically increase the reactivity of Mg-silicates by 75 

reducing particle size to > 1 µm (e.g. Haug et al., 2010; Rigopoulos et al., 2015, 2016a, 2016b; 76 

Turianicová et al., 2013). The effect of mechanical activation on the carbon sequestration 77 

efficiency of ultramafic rocks/mine waste materials has been reported by Li and Hitch (2016a, b; 78 

2017a, b). Schuiling and De Boer (2011) suggested that even relatively large olivine grains might 79 

completely dissolve within 1-2 years in high-energy shallow marine environments. In contrast, 80 

Hangx and Spiers (2009) estimated that olivine particles of 10 µm need approximately 23 years 81 

to completely dissolve, although Renforth (2012) suggested this estimate was 30% too high. 82 

Moreover, Köhler et al. (2013) suggested that only olivine particles with a grain size on the order 83 

of 1 µm would sink slowly enough to enable their nearly complete dissolution. 84 

The goal of this study is to assess the potential for the enhanced weathering of peridotites 85 

and basalts in seawater to facilitate the drawdown of atmospheric CO2. Towards this goal, we 86 

reacted two ultramafic rocks and one mafic rock in artificial seawater in open system reactors.  87 

The rock samples were subjected to different degrees of ball milling to produce powders of 88 

distinct sizes and surface area. The purpose of this communication is to report the results of this 89 

experimental study and to use these results to illuminate the potential role of enhanced ultramafic 90 

and mafic rock weathering in seawater as a viable CCS technique. 91 

 92 

2. Materials and methods 93 

2.1. Sample selection, preparation and characterization 94 
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The rocks used in this study were collected from the Troodos ophiolite complex; this 95 

complex was formed in a supra-subduction zone environment around 92-90 Ma ago (Mukasa 96 

and Ludden, 1987; Robertson, 2002; Robinson and Malpas, 1990). In the present study, two 97 

peridotites were collected from the Troodos mantle section: one dunite and one harzburgite, 98 

both of which are partially serpentinized. Additionally, an olivine basalt was collected from the 99 

“Upper” Pillow Lava unit of the Troodos ophiolite. The mineralogical and textural 100 

characteristics of these rock samples were determined by petrographic analysis of representative 101 

thin sections using a polarizing microscope (Figs. S1-S3 in the electronic supplement). Whole-102 

rock chemical analyses were also performed using a combination of lithium 103 

metaborate/tetraborate fusion inductively coupled plasma (ICP), inductively coupled plasma 104 

mass spectroscopy (ICP-MS) and instrumental neutron activation analysis (INAA) techniques 105 

(Tables S1 and S2 in the electronic supplement). Fine-grained samples were initially prepared 106 

using a stainless steel pulverizer and then sieved to obtain the 104-150 µm size fraction. This 107 

fraction was cleaned ultrasonically ten times in ethanol to remove fine particles; and then dried 108 

overnight at 50 ºC. The specific surface area of this fraction for each rock sample was measured 109 

by the BET method (Table 1). A portion of this size fraction was used directly in the 110 

experiments, while the remainder was ball-milled to further reduce its grain size as described in 111 

section 2.2. The non-ball-milled size fraction is henceforth referred to as “unmilled”. Additional 112 

enhanced weathering experiments were performed using selected ball-milled samples. 113 

 114 

2.2. Ball milling 115 

Ball milling (BM) was performed using a Fritsch Pulverisette 6 planetary mono mill. The 116 

optimum milling conditions for basaltic and ultramafic rocks were applied, based on the results 117 
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of previous studies (Rigopoulos et al., 2015, 2016a). The peridotites and basalt were wet-milled 118 

in an 80 mL tungsten carbide bowl using ethanol as process control agent (PCA). The selection 119 

of this PCA is based on recent experimental results (Rigopoulos et al., 2015, 2016a), which 120 

demonstrated that the use of ethanol during ball milling promotes the formation of smaller, more 121 

uniform and rounded particles compared to H2O. In our experiments, the ball-to-powder mass 122 

ratio was 20:1 w/w, the fluid-to-powder mass ratio was 1:2 and the rotation speed was 300 rpm. 123 

The process was performed using 30 tungsten carbide balls with a 10 mm diameter. Tungsten 124 

carbide bowl and balls were used to avoid possible contamination due to the hardness of 125 

ultramafic and mafic rocks. Ball milling was automatically interrupted every 5 min for 5 min to 126 

avoid sample heating. This periodic interruption avoids phase transformations and reduces the 127 

evaporation of the PCA. After milling was complete, the recovered rock powders were dried 128 

overnight at room temperature. The enhanced weathering experiments described below were 129 

performed using the ball-milled samples with the highest BET specific surface area (see Fig. 1). 130 

For the dunite, an additional ball-milled sample was used to clarify the role of ball milling 131 

duration on chemical weathering rates. The correlations between the specific surface area and the 132 

ball milling duration for each rock type are shown in Fig. 1. Initially, an increase of milling time 133 

yields higher specific surface areas; however, these positive trends may become negative with 134 

additional milling (Fig. 1). This behavior can be attributed to particle agglomeration occurring 135 

after a few hours of milling (Rigopoulos et al., 2015, 2016a, 2016b). The milling conditions and 136 

specific surface areas of the studied rock materials are summarized in Table 1. 137 

[Insert Fig. 1 approximately here] 138 

 139 

2.3. Experimental design 140 
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Experiments were performed in 1000 mL polypropylene batch reactors at ambient 141 

temperature and pressure conditions (T: 23.5±1.5 ºC, P: 1 atm; Fig. 2). Initially, each reactor was 142 

loaded with 1.6 g of rock material and 800 mL of artificial seawater (rock/fluid ratio: 2 g/L). The 143 

artificial seawater was prepared based on the composition of Millero et al. (2006) (Table S3 in 144 

the electronic supplement). Artificial seawater was to used in this study to exclude any potential 145 

biological processes that would increase the complexity of the results. Prior to the experiments, 146 

laboratory air was bubbled through the artificial seawater solution for ~24 h to reach equilibrium 147 

with respect to atmospheric CO2, as confirmed by dissolved inorganic carbon measurements of 148 

the initial solution. The reactors were continuously shaken using orbital shakers (KS 260 basic 149 

IKA ®) with a rotational speed of 200 rpm to mimic wave action. The rock materials remained 150 

largely in suspension throughout the experiments due to the relatively low rock/fluid ratio. The 151 

goal was to mimic the coastal ocean, where the rock material would be in suspension due to the 152 

action of waves and currents. Each experiment lasted 2 months, and each reactor was open to the 153 

atmosphere during the experiments (Fig. 2). The sampling outlet of each reactor was loosely 154 

covered to prevent dust entry, but allowing gas exchange with the atmosphere. A total of 16 fluid 155 

samples (volume of each sample: ~8 mL) were collected from each experiment using filtered 156 

polypropylene syringes, at selected times. Consequently, ~16% of the reactive fluid was removed 157 

via sampling by the end of the experiment. As the solids largely remained in suspension during 158 

sampling, there was not a significant change in the rock/fluid ratio in the reactors. The fluid 159 

samples were subsequently filtered using 0.02 µm alumina based membrane filters. An aliquot 160 

was acidified to 2% HNO3 prior Si, Mg and Ca concentration analysis, while the remainder was 161 

stored with no headspace for dissolved inorganic carbon (DIC) analysis. At the end of the 162 
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experiments, the solids were collected using vacuum filtration and dried for a few days at room 163 

temperature. 164 

[Insert Fig. 2 approximately here] 165 

A total of eight experiments was performed: one control experiment containing only 166 

artificial seawater, three experiments with unmilled rock materials, two experiments with ball-167 

milled dunite after distinct ball milling durations, one experiment with ball-milled harzburgite, 168 

and one experiment with ball-milled olivine basalt (see Table 1 for further sample details). 169 

 170 

2.4. Fluid and solid sample analyses 171 

The reactive fluid pH was measured in the reactors using a Metrohm 913 pH-meter and a 172 

Metrohm combined electrode (6.0234.1000). Before each use, the electrode was calibrated using 173 

three NIST buffer solutions (pH 4.008, 6.865, and 9.180 at 25 ºC, Fluka). The concentrations of 174 

total dissolved inorganic carbon (DIC) in all fluid samples were measured using a Shimadzu 175 

TOC-VCSN analyzer, in combination with an ASI-V automatic sampler. The dissolved Si, Mg 176 

and Ca concentrations were determined on the acidified samples using inductively coupled 177 

plasma atomic emission spectroscopy (ICP-AES). Mineral saturation states of the reactive fluids 178 

were determined using measured pH, and DIC, Si, Mg, and Ca concentrations, together with 179 

PHREEQC V3 and its llnl database (Parkhurst and Appelo, 2013). Detection limits and 180 

uncertainties of these analyses are provided in section 4 of the electronic supplement. 181 

The precipitation of carbonate minerals during the experiments was investigated by 182 

measuring the total inorganic carbon in the solids before and after the experiments using a 183 

Horiba EMIA-320V Carbon/Sulfur analyzer. Furthermore, the solids were characterized by 184 

powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and energy dispersive 185 
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spectroscopy (EDS). In addition, conventional transmission electron microscopy (TEM), as well 186 

as high-resolution transmission electron microscopy (HRTEM) studies were performed (see 187 

electronic supplement for detailed methods). 188 

 189 

3. Results and discussion 190 

3.1. Fluid chemical compositions 191 

The initial pH of the artificial seawater in equilibrium with atmospheric CO2 was 8.06, 192 

within the pH range of natural seawater (Marion et al., 2011). Fig. 3 illustrates the evolution of 193 

pH during the 2-month experiments (see also Table S4 in the electronic supplement). The pH of 194 

the fluids containing the three different unmilled rock materials did not show any significant 195 

changes over time (Fig. 3a and b). In contrast, the ball-milled dunite and harzburgite induced a 196 

substantial increase of pH near the beginning of the experiments (Fig. 3a and b). This pH 197 

increase could be attributed to the dissolution of olivine and other Mg-silicate minerals (e.g. 198 

Casey and Westrich, 1992; Declercq et al., 2013; Hänchen et al., 2006; Johnson et al., 2014; 199 

Oelkers, 2001; Oelkers et al., 2015; Pokrovsky and Schott, 2000; Wang and Giammar, 2013). 200 

After 6 hours, the most milled dunite provoked the greatest pH increase, followed by the milled 201 

harzburgite and the less milled dunite. The pH then decreased over time in these experiments. 202 

This pH decrease occurred earlier in the experiment with the less milled dunite compared to that 203 

with the most milled dunite (Fig. 3a), indicating an impact of milling duration on the reactivity of 204 

ultramafic rocks in seawater. In addition, the earlier decrease of pH in the milled harzburgite 205 

experiment compared to that with the most milled dunite (Fig. 3a and b) could be attributed to 206 

the higher olivine content and lesser degree of serpentinization in the dunite (see Petrography in 207 
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the electronic supplement). In contrast, little change in fluid pH was documented for either the 208 

milled or the unmilled basalt sample (Fig. 3b). 209 

[Insert Fig. 3 approximately here] 210 

The DIC concentrations of the fluids in the unmilled peridotites and basalt experiments did 211 

not exhibit any significant variations over time (Fig. 4; Table S5 in the electronic supplement; 212 

see also the calculated total alkalinity in Table S6). Note that the DIC values of the reactive 213 

fluids in the unmilled sample experiments are close to the initial DIC concentration (~25 ppm) 214 

(see Table S3 in the electronic supplement) throughout the experiments. In contrast, the fluid 215 

samples collected from the milled dunite and harzburgite experiments first show a decrease in 216 

DIC followed by an increase towards the initial DIC concentrations (Fig. 4a and b). The highest 217 

DIC values for these experiments were attained from fluid samples collected after over 500 hours 218 

of reaction. The initial decrease of DIC from the fluids collected from the most milled peridotite 219 

experiments suggests that precipitation of carbonate minerals began within the first few hours. 220 

The fluids collected from the milled harzburgite and the less milled dunite experiments attained 221 

their lowest DIC values after 24 h (Fig. 4a and b). Note that the most milled dunite experiment 222 

attained a substantially lower DIC value than any other experiment (Fig. 4a and b), suggesting 223 

that this ultrafine sample facilitated the greatest precipitation of carbonate minerals. On the other 224 

hand, the DIC concentrations in the reactive fluids collected from the unmilled and milled 225 

olivine basalt experiments do not show any noticeable temporal evolution, with similar DIC 226 

concentrations as the control throughout the experiment (Fig. 4b). Such results are coherent with 227 

the observation that the milled peridotites caused a sharp increase of seawater pH within the first 228 

few hours of the experiments, whereas the basalt did not (see Fig. 3). 229 

[Insert Fig. 4 approximately here] 230 
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The temporal evolution of Si, Mg and Ca concentrations in the reactive fluids can be seen 231 

in Fig. 5, and the results are summarized in Tables S7 and S8 in the electronic supplement. The 232 

Si trends indicate a large difference between the dissolution rate of the unmilled and ball-milled 233 

rocks. This observation is consistent with Hangx and Spiers (2009), who concluded that the 234 

dissolution rate of olivine is markedly enhanced when its grain size is <10 µm. Meysman and 235 

Montserrat 2017) argued that the dissolution rates could be further enhanced under natural 236 

conditions through various forms of biological activity in marine sediments, despite the fact that 237 

a number of studies suggest that microbes tend to slow rather than accelerate Mg-silicate 238 

dissolution reactions (Shirokova et al., 2012; Garcia et al., 2013; Oelkers et al., 2015). The 239 

milled basalt experiment exhibited lower reactive fluid Si concentrations compared to the milled 240 

ultramafic rocks, indicating its lower reactivity. The aforementioned difference between 241 

peridotites and basalts is in agreement with their corresponding pH and DIC trends (see Figs. 3 242 

and 4). Nevertheless, there is a significant difference in the reactive fluid Si concentrations 243 

between the unmilled and ball-milled basalt experiments (Fig. 5a), implying that ball milling 244 

enhanced the dissolution rates of this sample. However, this is not accompanied by a noticeable 245 

increase of pH (Fig. 3b), suggesting that the increased Si concentrations in the milled basalt 246 

experiment are not only attributed to the enhanced dissolution of olivine, but also of other silicate 247 

minerals (e.g. augite, chlorite; see Petrography in the electronic supplement), which may limit 248 

the pH increase. As illustrated in Fig. 5a, the reactive fluids become more concentrated in Si over 249 

time; however, the fluids in the experiments with the most milled dunite and the milled 250 

harzburgite show a sharp decrease of Si during the first 73 and 50 hours, respectively. This 251 

decrease is most pronounced for the most milled dunite. In both experiments, a second stage of 252 
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decrease can be observed later. This suggests that Si is being removed from solution due to 253 

precipitation of Si-bearing secondary phases. 254 

The Mg concentrations do not exhibit clear temporal trends, presumably due to the high 255 

initial Mg concentration of the artificial seawater (see Table S3 in the electronic supplement). 256 

Nevertheless, a moderate increase in Mg concentrations can be observed over time, primarily in 257 

the milled sample experiments (Fig. 5b). In addition, a decrease in Mg concentration is observed 258 

in the most milled dunite and milled harzburgite experiments after 819 and 437 hours, 259 

respectively. These reduced Mg concentrations are coherent with the reduced Si concentrations 260 

after 819 and 437 hours in the same experiments (see Fig. 5a), suggesting the precipitation of a 261 

Mg-silicate phase. 262 

The reactive fluid Ca concentrations collected from the experiments with the unmilled 263 

rocks and the milled basalt remained relatively unchanged during the 2-month experiments (Fig. 264 

5c). In contrast, the reactive fluids from the experiments with the milled dunite and harzburgite 265 

show an appreciable Ca concentration decrease with time. This decrease is coincident with the 266 

initial negative DIC trends of these fluids (see Fig. 4). These observations suggest that the milled 267 

ultramafic rocks promote the reaction between the Ca2+ pre-existing in the artificial seawater and 268 

the dissolved inorganic carbon, leading to CaCO3 precipitation. This Ca concentration decrease 269 

is most pronounced in the most milled dunite experiment (Fig. 5c). 270 

[Insert Fig. 5 approximately here] 271 

According to mineral saturation state calculations (Tables S9-S15 in the electronic 272 

supplement), aragonite and calcite were supersaturated in all reactive fluid samples, consistent 273 

with natural seawater. However, the saturation index values of these minerals were not 274 

substantially elevated. Notably, the temporal pH, DIC and aqueous Ca trends (see Figs. 3, 4 and 275 
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5c) of the milled dunite and harzburgite experiments are consistent with CaCO3 precipitation 276 

(Fig. 6). In addition, speciation calculations suggest that magnesite [MgCO3] was supersaturated 277 

during all experiments (Tables S9-S15 in the electronic supplement), though consistent with past 278 

studies (e.g. Saldi et al., 2009) it was not found to form during any experiment. Moreover, 279 

sepiolite, a Mg-silicate clay mineral, was supersaturated in the experiments with the milled 280 

samples, and especially in the experiments with the most milled dunite and milled harzburgite 281 

(Fig. 6f and i). Similarly, Okland et al. (2014) reported that sepiolite was supersaturated in the 282 

reactive fluids of low temperature dunite dissolution experiments, implying that its precipitation 283 

was thermodynamically possible. 284 

[Insert Fig. 6 approximately here] 285 

 286 

3.2. Solid compositions 287 

The total inorganic carbon content of the solids before and after the experiments was 288 

measured. These results, as well as the calculated weight percent of CaCO3 are listed in Table 2. 289 

The unmilled samples show only small changes in total inorganic carbon during the experiments. 290 

This is in agreement with Montserrat et al. (2017), who performed similar enhanced weathering 291 

experiments using forsteritic olivine. In contrast, the milled ultramafic rocks exhibit a large 292 

increase of total inorganic carbon during the experiments, with the most milled dunite having the 293 

highest amount of CaCO3 (i.e., 10 wt%), consistent with observed fluid compositions (Table 2). 294 

This result clearly shows that carbonation increases notably with increasing milling time for 295 

ultramafic rocks. This is also consistent with the results acquired through CO2 chemisorption 296 

followed by temperature-programmed desorption (CO2-TPD) experiments in dunites 297 

(Rigopoulos et al., 2016a). The substantial reduction of particle size (see Fig. 7) and the 298 
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distortion of the mineral structure as evidenced by the XRD patterns shown in section 7 of the 299 

electronic supplement after ball milling is likely the reason for the enhanced carbonation rates. 300 

Note also that the absence of carbonate minerals in the ultramafic rocks before the experiments 301 

(see Table 2), excludes the idea of a seeded precipitation due to the availability of carbonate 302 

surface area (Renforth and Henderson, 2017). The presence of Mg-rich minerals, however, has 303 

been shown to enhance the nucleation of CaCO3 from mildly supersaturated aqueous solutions 304 

(Stockmann et al., 2014).  Although the formation of CaCO3 in this system does fix securely CO2 305 

as a stable mineral phase, its formation in seawater releases protons thereby lowering the overall 306 

efficiency of enhanced weathering compared to just the addition of alkalinity.  It seems likely 307 

that this process could be optimized by changing the mineral surface area to seawater ratio to 308 

alter the degree of supersaturation of secondary phase in the fluid.   309 

The results obtained for the milled olivine basalt show that the content of total inorganic 310 

carbon increased only to a small extent during the experiment, consistent with the minor change 311 

of the reactive fluid composition of this experiment. Although milling led to an increased rate of 312 

Si release from the basaltic sample, its dissolution did not drive an increase in fluid pH, likely 313 

due to the dissolution of other silicate phases (e.g. augite or chlorite), rather than olivine. This 314 

observation is in agreement with the results reported by Taylor et al. (2016), who reported that 315 

the CO2 consumption induced by terrestrial weathering of dunites and harzburgites is about twice 316 

that of basalts.  317 

[Insert Fig. 7 approximately here] 318 

Note that the measured total carbon contents of the recovered solids are in good agreement 319 

with corresponding CaCO3 contents calculated from the temporal reactive fluid compositional 320 

evolutions (Fig. 8; Table 2). Furthermore, these fluid composition trends indicate that most 321 
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carbonate mineral precipitation occurred within the first hours of the experiments containing 322 

milled ultramafic rocks, while subsequently the rates slow dramatically (Fig. 8). The rapid 323 

precipitation of CaCO3 in the most milled dunite and milled harzburgite experiments is also 324 

accompanied by a sharp decrease of the reactive fluid pH (Fig. 3). The abrupt reduction of 325 

CaCO3 precipitation rates could be attributed to the rapid Ca2+ removal from solution during the 326 

first hours of the experiments, which decreases the saturation index of CaCO3 phases towards 327 

equilibrium (see Fig. 6). Note also that the solids exhibited a rusty color after the experiments, 328 

suggesting that minor Fe-hydroxide precipitation could be an additional reason for the slower 329 

carbonation rates over time. Although the carbonate mineral precipitation almost stops near the 330 

beginning of the experiment with the less milled dunite (Fig. 8a), the most milled dunite 331 

experiment shows a continuous, albeit slow, increase of CaCO3 over time (Fig. 8b), thus 332 

confirming the positive effect of milling duration on mineral carbonation. In addition, the fast 333 

CaCO3 precipitation near the beginning of the experiments results in a reduced DIC 334 

concentration (Fig. 4), indicating that mineral carbonation rates may be limited by the supply rate 335 

of CO2 from the atmosphere to the aqueous solution. This is consistent with observations of 336 

accelerated carbonation in mine tailings (Harrison et al., 2013; Wilson et al., 2010, 2014) and 337 

field-scale experimental basalt weathering (van Haren et al., 2017).  338 

[Insert Fig. 8 approximately here] 339 

XRD patterns of the rock materials were acquired before and after ball milling. Milling 340 

caused a substantial reduction in the intensity of all XRD peaks and led to the disappearance of 341 

some smaller peaks (Figs. S4-S6 in the electronic supplement). These observations suggest the 342 

structural disordering of the constituent silicate minerals, which is considered as one of the most 343 

important factors for enhancing carbonation reactions (Kleiv and Thornhill, 2006; Li and Hitch, 344 
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2016a; Munz et al., 2012; Rigopoulos et al., 2016b; Turianicová et al., 2013). The reduction in 345 

peak intensity due to ball milling is less evident in the milled basalt compared to the milled 346 

dunite obtained after the same milling duration (compare Figs. S4a, b and S6a, b in the electronic 347 

supplement); this is consistent with the substantially lower reactivity of the milled basalt 348 

compared to the milled peridotites. The distinct behavior of basalt could be attributed to the 349 

presence of an appreciable amount of chlorite (see Petrography in the electronic supplement), 350 

which is flexible and tends to absorb the applied stress (e.g. see Rigopoulos et al., 2013), thereby 351 

increasing the resistance of the rock material to mechanical deformation. Although the dunite 352 

and harzburgite contain serpentine, the mechanical behavior of which is similar to chlorite, its 353 

amount is smaller compared to that of chlorite in basalt. 354 

In addition, XRD analyses were performed for each solid sample before and after the 355 

experiments. The results confirmed that the CaCO3 in the milled ultramafic solids during the 356 

experiments was aragonite (Fig. S7 in the electronic supplement). Note that aragonite has a 357 

higher solubility compared to calcite and for a given pCO2 it may sequester less carbon than 358 

calcite (Sun et al., 2015). Nevertheless, this is not expected to affect the carbon sequestration 359 

efficiency of the enhanced weathering approach described here, as aragonite is relatively stable 360 

over geologic time. The formation of aragonite in our experiments is consistent with previous 361 

observations of CaCO3 precipitation from Mg-rich fluids; a Mg/Ca fluid concentration ratio 362 

greater than 2 favors aragonite precipitation (De Choudens-Sánchez and González, 2009; Morse 363 

et al., 1997, 2007; Sun et al., 2015). In our experiments, the Mg/Ca ratios of all reactive fluid 364 

samples range between 3.09 and 5.35 (see Tables S7 and S8 in the electronic supplement). The 365 

saturation index of aragonite was found to decrease to ~0.2 in the milled dunite and milled 366 

harzburgite experiments after ~400 h (Fig. 6a,d,g), coincident with the decrease of pH, recovery 367 
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of DIC concentrations towards the initial values, and reductions in the rate of Ca2+ removal from 368 

solution (Figs. 3, 4 and 5c). This suggests that the extent of carbonate precipitation was 369 

controlled by the aragonite saturation state; as the saturation index of aragonite declines towards 370 

equilibrium, precipitation rates slow to negligible values. Thus, although the short-term (hours to 371 

days) precipitation rates may be limited by the rate of CO2 uptake into fluid, the longer-term 372 

(weeks to months) rates are limited by the rate of mineral dissolution to release cations and 373 

increase fluid pH.  374 

Chemical mapping by SEM/EDS confirmed that Ca was abundant and fairly 375 

homogeneously distributed in the milled ultramafic solids recovered at the end of the 376 

experiments (Fig. S8 in the electronic supplement). However, it was not possible to obtain clear 377 

images of individual aragonite crystals using SEM, due to their small size. Consequently, TEM 378 

and HRTEM studies were also performed, which revealed that aragonite exists in the form of (i) 379 

up to 300 nm crystals (Fig. 9a), and (ii) nanocrystals with sizes in the range of 5-16 nm (Fig. 9b). 380 

The larger aragonite crystals are highly crystalline, as illustrated by HRTEM imaging (inset in 381 

Fig. 9a). EDS point analysis results confirmed that the newly formed aragonite is pure CaCO3. 382 

The HRTEM images also show that the olivine in the ball-milled rock samples was structurally 383 

disordered (Fig. 9c); this disordering is likely responsible for the fast mineralization that took 384 

place near the beginning of the milled peridotite experiments. In addition, TEM/EDS 385 

observations revealed that a small amount of sepiolite [Mg4Si6O15(OH)2·6H2O] precipitated 386 

during the most milled peridotites experiments (Fig. 9d). The precipitation of this poorly 387 

crystalline secondary Mg-silicate (see the diffuse intensity rings of the selected area diffraction 388 

(SAD) pattern inset of Fig. 9d), is consistent with the decreasing Si concentration observed 389 

during the most milled dunite and milled harzburgite experiments (see Fig. 5a), as well as with 390 
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the calculated sepiolite saturation state (Fig. 6f,i). Although sepiolite remains supersaturated 391 

throughout the experiments (Fig. 6f,i), its precipitation is followed by a recovery of Si 392 

concentrations towards the initial values (Fig. 5a). This is coincident with the fast pH decrease 393 

(Fig. 3), suggesting that the precipitation of this secondary mineral is favored in seawater with 394 

high pH values. These results are also in agreement with previous studies, which report that 395 

sepiolite is found in marine environments with olivine-rich ultramafic rocks (Bonatti et al., 396 

1983). Recently, Griffioen (2017) concluded that sepiolite precipitation is unfavourable for CO2 397 

storage during enhanced olivine weathering in marine environments, as its formation reduces 398 

significantly the consumption of CO2 per unit olivine. Although only a small amount of sepiolite 399 

was precipitated during our experiments, its formation would reduce the efficiency of this carbon 400 

sequestration approach by consuming protons and lowering pH, particularly over the longer term 401 

as clay minerals have far slower precipitation rates than carbonate minerals. 402 

[Insert Fig. 9 approximately here] 403 

 404 

4. Implications for carbon capture and storage 405 

One of the major challenges of enhanced weathering is the scale of mining and milling of 406 

rock materials. Several studies focused on the total energy requirements of enhanced weathering 407 

(Hangx and Spiers, 2009; Moosdorf et al., 2014). In general, CO2 emissions and the associated 408 

costs increase with decreasing grain size. According to Hangx and Spiers (2009), for final grain 409 

sizes larger than ~40 µm, the CO2 sequestration efficiency is reduced by less than 2%. However, 410 

the CO2 emissions resulting from mining, crushing and milling to achieve a final grain size on 411 

the order of 10 µm, comprise between 5 and 11% of the total amount of sequestered CO2. In 412 

addition, Köhler et al. (2013) concluded that the energy consumption for milling to a 1 µm grain 413 
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size can reduce carbon sequestration efficiency by ~30%. Furthermore, the transportation of the 414 

rock material from the mine to the enhanced weathering site will further reduce the efficiency by 415 

1.6-11.0 kg CO2/100 km/tonne CO2 sequestered or by 0.1-1% (Hangx and Spiers, 2009). This 416 

indicates that carbon sequestration via enhanced weathering in seawater would be more efficient 417 

by using rocks located near coastlines. As such, the high cost and CO2 emissions related to the 418 

production and transportation of ultrafine rocks may limit the large-scale implementation of this 419 

enhanced weathering approach. The efficiency of this approach could be further reduced by the 420 

potential intense wear of the ball milling equipment (Haug et al., 2010). Additionally, the 421 

efficiency of comminution processes is very low (e.g., Radziszewski, 2013). All of these studies 422 

indicate that the mining, crushing, milling and transportation steps related to enhanced 423 

weathering must be optimised before its large-scale application. 424 

Despite the energy required to produce ultrafine powders, our results suggest that the 425 

enhanced weathering of milled ultramafic rocks in seawater could facilitate CO2 storage through 426 

mineralization. Note that mineral carbonation in our experiments occurred at ambient conditions. 427 

Although carbon storage via dissolved bicarbonates (i.e. increase of seawater alkalinity) may be 428 

more efficient as it requires less rock material per mole of CO2 stored (e.g. Hangx and Spiers, 429 

2009), mineral carbonation insures a long-term and more secure CO2 storage. Once CO2 is 430 

transformed into carbonate minerals, leakage risk is eliminated and any monitoring program can 431 

be reduced, potentially rendering this CCS approach more cost-effective. In addition, our 432 

experiments were not performed using pure olivine but partially serpentinized peridotites that, 433 

although less reactive compared to fresh ultramafic rocks, are readily available on the Earth’s 434 

surface (e.g. see the peridotite distribution map in Matter and Kelemen, 2009). This potentially 435 

reduces the transport distances from the mine to the enhanced weathering site and therefore 436 
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facilitates the potential application of this approach on a global scale. Note also that the energy 437 

required to reduce the grain size of altered peridotites is substantially lower compared to that 438 

required for harder fresh ultramafic rocks. Furthermore, this enhanced weathering process 439 

removes carbon directly from the atmosphere, providing capture and storage in a single step. 440 

The enhanced weathering of ultramafic rocks in seawater may also help avert ocean 441 

acidification, which has drastic consequences for marine ecosystems (Doney et al., 2009; Hoegh-442 

Guldberg et al., 2007; Orr et al., 2005). Ocean acidification also entails a reduced saturation of 443 

surface seawater with respect to CaCO3, threatening coral reefs with extinction (Caldeira and 444 

Wickett, 2003; Ricke et al., 2013). Here, we demonstrated that the distribution of milled 445 

peridotites in marine environments favors aragonite precipitation, thereby potentially helping to 446 

maintain the viability of coral reef ecosystems (see also Taylor et al., 2016). Enhanced 447 

weathering approaches may also affect marine life in unanticipated ways. The dissolution of 448 

olivine leads to an increase in dissolved Si. This process would alter marine biology because Si 449 

is the limiting nutrient for diatom growth over large sections of the oceans (Dugdale and 450 

Wilkerson, 1998; Ragueneau et al., 2006). Such a process could shift phytoplankton species 451 

composition towards diatoms, thus altering the biological carbon pumps (Köhler et al., 2013). 452 

Note that our experiments were performed in the absence of biological activity, which may 453 

influence, somewhat the rates and reactions paths of the studies reactions. 454 

Note also that the geoengineering of the marine environment has been controversial. For 455 

example, in 2008 the United Nations Convention on Biological Diversity put a moratorium on all 456 

ocean fertilization activities apart from small coastal projects (Tollefson, 2008). Application of 457 

enhanced weathering on a global scale would require large amounts of ultramafic rocks (Hangx 458 

and Spiers, 2009; Taylor et al., 2016). Further efforts, therefore need to be made to assess the 459 
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environmental impacts of enhanced wreathing in marine environments towards the potential 460 

public acceptance of this approach. 461 

 462 

5. Conclusions 463 

This experimental study demonstrates that the “enhanced weathering” of ball-milled 464 

peridotites in seawater can induce the drawdown of CO2 directly from the atmosphere. In 465 

contrast, the ball-milled basalt did not yield many significant changes in seawater composition 466 

due to its distinct mineralogy and higher resistance to mechanical deformation compared to 467 

peridotites. In the ball-milled dunite and harzburgite experiments, the precipitation of carbonate 468 

minerals began within the first few hours. The results confirmed that the newly formed CaCO3 in 469 

these experiments was aragonite. The observation that the greatest amount of aragonite formed 470 

during the most milled dunite experiment suggests a positive impact of ball milling duration on 471 

the carbon sequestration efficiency through enhanced weathering of peridotites. All results 472 

indicate that ball milling can substantially enhance the weathering rate of peridotites in marine 473 

environments, promoting the immobilization of CO2 as carbonate minerals. However, the 474 

precipitation of sepiolite could reduce the efficiency of this carbon sequestration approach over 475 

the longer term. 476 
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 710 
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 712 

 713 

FIGURE CAPTIONS 714 

 715 

Fig. 1. BET (m2 g-1) specific surface area versus ball milling time for the studied rock materials 716 

(red circles show the milled samples used during the experiments). The BET values for the 717 

milled basalt and dunite samples were acquired from Rigopoulos et al. (2015) and Rigopoulos et 718 

al. (2016a), respectively. 719 

 720 

Fig. 2. Experimental design used for the enhanced weathering experiments. 721 

 722 

Fig. 3. Temporal evolution of the reactive fluid pH: (a) Control experiment, and experiments 723 

with unmilled and milled dunite; (b) Control experiment, and experiments with unmilled and 724 

milled basalt and harzburgite. 725 

 726 

Fig. 4. Temporal evolution of the reactive fluid dissolved inorganic carbon (DIC) concentration: 727 

(a) Control experiment, and experiments with unmilled and milled dunite; (b) Control 728 

experiment and experiments with unmilled and milled basalt and harzburgite. 729 

 730 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 29

Fig. 5. Temporal evolution of the reactive fluid Si (a), Mg (b), and Ca (c) concentrations in all 731 

experiments. 732 

 733 

Fig. 6. Temporal evolution of the aragonite, calcite and sepiolite saturation indices, for the 734 

experiments with the milled (a-f) dunite, and (g-i) harzburgite. Saturation indices were 735 

determined using PHREEQC V3 and its llnl database (Parkhurst and Appelo, 2013). 736 

 737 

Fig. 7. SEM images showing the significant reduction of particle size after ball milling: (a) 738 

unmilled (SM15), and (b) milled (BM46) dunite; (c) unmilled (SM17), and (d) milled (BM72) 739 

harzburgite; (e) unmilled (SM1), and (f) milled (BM7) basalt. The unmilled rock samples were 740 

cleaned ultrasonically in ethanol, thus they are free of fine particles. The magnification in (a,c,e) 741 

is significantly lower compared to (b,d,f). 742 

 743 

Fig. 8. Temporal evolution of solid CaCO3 content for the experiments with the milled (a,b) 744 

dunite, and (c) harzburgite. 745 

 746 

Fig. 9. Transmission electron microscopy images (clockwise from top left) of the most milled 747 

dunite (sample BM46) after the experiment, depicting: (a,b) the precipitated aragonite. Moiré 748 

fringes, such as these pointed by black arrow in (a) were usually observed and prove that 749 

aragonite crystals are highly crystalline. White arrows in (b) denote aragonite nanocrystals (also 750 

circled); (c) the structural disordering of olivine, due to the amorphous-like contrast of the 751 

nanoparticle, and (d) the precipitated sepiolite (the black arrows show the crystal boundaries). 752 
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The SAD pattern inset confirms both its chemical composition [Mg4Si6O15(OH)2·6H2O] and its 753 

low crystallinity. 754 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
Table 1 
Ball milling conditions and specific surface area values of the unmilled and milled rock materials (data for the milled 
samples of basalt and dunite acquired from Rigopoulos et al. (2015a) and Rigopoulos et al. (2016a), respectively). 

Sample code 
 Ball milling conditions  BET (m2 g-1)  

Specific surface area  Milling time (h) Type of milling  

SM15 (Unmilled Dunite)  - -  0.4 

BM38 (Milled Dunite)  4 Wet (50 wt% Ethanol)  35.7 

BM46 (Milled Dunite)  20 Wet (50 wt% Ethanol)  64.6 

SM17 (Unmilled Harzburgite)  - -  0.5 

BM72 (Milled Harzburgite)  16 Wet (50 wt% Ethanol)  53.1 

SM1 (Unmilled Basalt)  - -  2.0 

BM7 (Milled Basalt)  4 Wet (50 wt% Ethanol)  58.9 
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Table 2 
Calculations of CaCO3 abundance in the studied rock materials based on (i) the content of total inorganic carbon in the solid phase (the 
sequestration efficiency of each rock material during the 2-month experiments is also given), and (ii) mass balance from the fluid phase 
assuming no change in total solids mass due to dissolution. 

Sample code/rock material 
 

CaCO3 wt% based on the measured total 
inorganic carbon in solids   

CaCO3 wt% calculated at 
the end of the experiment 
based on mass balance 
from the fluid phase  

Before the 
experiment 

After the 
experiment 

CaCO3 formed 
during the 
experiment 

Sequestration 
efficiency  
(g CO2/ g rock) 

 

SM15/Unmilled Dunite 
 

0.1 0.7 0.6 0.003 
 

2.1 

BM38/Milled Dunite 
 

0.8 7.4 6.6 0.029 
 

10.7 

BM46/Milled Dunite 
 

1.2 11.2 10 0.044 
 

16.6 

SM17/Unmilled Harzburgite 
 

0.3 0.6 0.3 0.001 
 

1.6 

BM72/Milled Harzburgite 
 

0.9 7.6 6.7 0.029 
 

10.6 

SM1/Unmilled Basalt 
 

0.4 0.4 0 0.000 
 

0 

BM7/Milled Basalt   0.6 2.1 1.5 0.007   0 
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Highlights 

 

• Enhanced weathering of ultrafine peridotites and basalts in seawater was studied. 

• Open system experiments were performed in batch reactors at ambient conditions. 

• Peridotites induced CO2 drawdown directly from the atmosphere via mineralization. 

• The basalt did not yield any significant changes in seawater composition. 

• The precipitation of sepiolite could reduce the carbon sequestration efficiency. 


