
Crowd Intelligence Enhances Automated
Mobile Testing

Ke Mao∗, Mark Harman∗ and Yue Jia∗
Facebook London, Facebook, 10 Brock Street, London, NW1 3FG, UK

CREST, University College London, Malet Place, London, WC1E 6BT, UK
{kemao, markharman, yuej}@fb.com

Abstract—We show that information extracted from crowd-
based testing can enhance automated mobile testing. We
introduce POLARIZ, which generates replicable test scripts
from crowd-based testing, extracting cross-app ‘motif’ events:
automatically-inferred reusable higher-level event sequences com-
posed of lower-level observed event actions. Our empirical study
used 434 crowd workers from Mechanical Turk to perform 1,350
testing tasks on 9 popular Google Play apps, each with at least
1 million user installs. The findings reveal that the crowd was
able to achieve 60.5% unique activity coverage and proved to
be complementary to automated search-based testing in 5 out of
the 9 subjects studied. Our leave-one-out evaluation demonstrates
that coverage attainment can be improved (6 out of 9 cases, with
no disimprovement on the remaining 3) by combining crowd-
based and search-based testing.

Index Terms—Crowdsourced Software Engineering, Mobile
App Testing, Test Generation

I. INTRODUCTION

There has been much recent progress in automated testing
[1], [2], with recent advances in automated testing of mobile
apps [3]. However, automated test data generation techniques
lack domain knowledge, and may generate either unrealistic
test cases or fail to find test cases that explore aspects of func-
tionality that matter to users [4]. A recent study of open source
Android apps with relatively simple user flows [3] reported
that current state-of-art automated mobile testing techniques
achieve only approximately 50% statement coverage.

Fortunately, Linares-Vásquez et al. [5] recently showed how
app execution usage data can be mined for valuable insights,
while Moran et al. subsequently introduced CrashScope [6]
which supports the discovery of app crashes and their repli-
cation. There has also been considerable recent interest in
the possibilities of crowdsourcing as a means of collecting
such usage data in a cost-effective manner. This recent work
suggests that data mining and extraction, perhaps from crowd
sourced usage, might discover useful cross-app patterns that
improve automated app testing performance.

We explore the complementarity between automated
machine-generated tests and human (crowd-generated) tests.
We specifically focus on the ability of crowd-based tests to

∗This research forms part of the PhD work of Ke Mao, the lead author,
supervised by Yue Jia and Mark Harman while all three were at University
College London. Dr. Mao, Dr. Jia and Prof Harman moved to Facebook full
time in February 2017 and Dr. Jia and Prof. Harman also retain part time
positions at UCL.

assist the state-of-the-art search based testing tool, Sapienz.
An open source research prototype of Sapienz [7] was released
in 2016, and the technology that underpins it has been under
development at Facebook since February 2017. In this paper
we use the open source version of Sapienz to facilitate repli-
cation. The Sapienz approach to search based testing is well-
suited to augmentation with crowd-based tests due to Sapienz’
concept of a motif gene: a sequence of low-level events that
has a (context-sensitive) meaning to the app’s users, thereby
denoting an ‘atomic’ event (to users), although appearing to
be a non-atomic event sequence (to the device and any testing
approach that lacks the necessary context-awareness).

We show that these strands of work on mining, crowd-
sourcing and automated test generation can be combined in a
mutually-complementary hybrid. Our hybrid uses automated
test generation to explore the search space of test cases,
informed by data mined from crowdsourced tests to identify
motif genes. To do this, we introduce a crowd-based approach,
called POLARIZ, which collects and analyses test inputs from
a crowd call to non-technical users with no specific software
testing expertise or experience. That is, the call is open to any
crowd workers to participate, whether or not they have testing
expertise. However, since it is an open call (in the spirit of
crowdsourcing) we cannot guarantee that we do not recruit
any crowd workers with testing expertise.

POLARIZ uses a platform with a mobile device infrastruc-
ture, remote device control and screen streaming, automated
subject distribution, permission control and crowd trace col-
lection. With this approach, a non-professional crowd from
the general public (such as those from Amazon Mechanical
Turk) can contribute to mobile testing from anywhere with
any clients with a web browser (e.g., desktop PC, Android,
iOS or Windows Phone mobile devices).

Following Linares-Vásquez et al. [5], we introduce a novel
data mining algorithm to extract ‘motif’ event sequences;
sequences composed of lower-level events that our approach
infers may denote higher-level atomic units, thereby providing
one source of guidance for automated testing. We define a
‘motif’ event sequence (or ‘motif pattern’) as a common user
interaction pattern that is learned from some apps, and can
be subsequently generalised to other apps, such that the motif
sequence can play the role of a higher-level atomic event that
can be re-used to assist automated mobile testing.

A ‘motif pattern’ may occur multiple times (there may
be many instances of a motif pattern), each occurrence of
which we refer to as ‘motif events’. Our approach thus bridges
the gap between automated mobile test input generation
techniques and human domain/context awareness, using non-
professional crowd testers.

The primary contribution of our work is the scientific
evidence that motifs extracted from crowdsourced tests can
complement and extend state-of-the-art automated test gener-
ation. More specifically, the contributions of our work are as
follows:
1) We introduce and implement the POLARIZ approach for

harnessing crowd intelligence to support mobile testing.
Using our implementation, we report the results of the
first empirical study of crowdsourcing for mobile test
automation. We posted 1,350 tasks on Amazon Mechanical
Turk to test 9 popular Google Play apps, each with at least
1 million user installs. The crowd was able to attain 60.5%
overall (unique) activity coverage.

2) We compare the results of app activities covered by the
crowd with those by the automated search based Android
testing tool, SAPIENZ, revealing complementarity between
the two. We chose SAPIENZ because it has recently [7]
been shown to outperform other state-of-the-art and state-
of-practice tools. Unsurprisingly, the crowd, imbued with
its superior domain knowledge, achieved higher activity
coverage on all but one subject (Google Translate, for
which SAPIENZ produced slightly higher coverage). More
importantly, for 5 the 9 subjects the two techniques ex-
hibited complementary coverage, motivating our goal of
combining them.

3) We introduce a motif-extraction algorithm and demonstrate
its effectiveness, by showing that it can enhance SAPIENZ’
coverage. For 6 of the 9 subjects the coverage is improved
by motif extraction, with the best case improvement in-
creasing coverage obtained from 6 to 12 (of 27 possible)
unique activities.

II. THE POLARIZ APPROACH

The POLARIZ approach is designed to tackle the two main
challenges involved in harnessing the non-professional crowd
to perform remote mobile testing, and further to learn from
crowd intelligence embodied in the crowdsourced manually
constructed tests. The first challenge requires an intermediary
platform, able to harness a general public crowd to work on
remote mobile testing tasks. The second challenge involves
the representation and extraction of useful crowd intelligence.

Figure 1 depicts the high-level POLARIZ workflow. Three
actors are involved in the workflow:
1) App developer/researcher who seeks mobile test automa-

tion enhancement;
2) Crowd workers/testers;
3) The intermediary platform (i.e., POLARIZ platform) on

which the crowd works.

 Motif Events

 Motif Events

 Motif Events

Search-based

Test Generator

Android Test

Replayer

 Test Script

 Test Script

 Test Script

!!!!!!
!!!!!!

Polariz

Platform

" " "
#

#

#" " "

 Bug Reports$ Flow
Optional

Flow
Artefact Component

Crowd

Apps

Fig. 1: Overall workflow of Polariz

POLARIZ uses its own device infrastructure; users do not
execute apps on their own devices. This insulates the user from
security issues, while insulating POLARIZ against Android
device fragmentation. It also gives POLARIZ full control over
real-time data collection and monitoring. However, it means
that POLARIZ can only collect touch-screen events, not device-
specific events such as GPS and accelerometer events. It
also involves a latency (since testing activity occurs over the
network), which we checked and report on. Fortunately, these
results indicate that the latency is acceptable.

The outputs consist of three parts: First, the bug reports
automatically generated during the crowd testing process;
Second, the replicable test scripts generated based on crowd-
sourced test manual traces, which can be replayed via an An-
droid test replayer (such as RERAN [8]); Third, the automati-
cally summarised motif events learned from crowd interaction
traces, which can be further used to enhance existing search-
based mobile test generators (such as SAPIENZ). Both the
Android test replayer and test generator can remotely connect
to POLARIZ’ mobile device infrastructure for test execution.

POLARIZ’ top level consists of its crowd testing platform
(for manual trace collection), and its crowd motif extraction
algorithm (for learning from crowd intelligence). Our platform
uses crashing as an implicit oracle [9], automatically capturing
crash-triggering stack traces, event sequences and witness
videos using the existing SAPIENZ infrastructure [7].

A. The Polariz Platform

The platform is illustrated in Figure 2. Given a set of mobile
apps under test, POLARIZ’ subject dispatcher component auto-
matically instruments, assigns and installs each app on a device
in its mobile device infrastructure. The screen streamer and
device controller provide web services for controlling these
devices. Crowd users simply access the remote devices which
install apps via web browsers from any user platform.

Exposing our hosted mobile devices to the general public
might raise security concerns, so POLARIZ has a permission
control component that monitors crowd interactions, only
permitting testing activities on the specified subjects. During
the the crowd testing process, POLARIZ’ logging components
such as a crash detector and trace collector automatically
collect the information from which POLARIZ generates its
reports.

Motif Miner

Replay Test

Generator

Polariz Platform !!!!!!!!!!!! M
a
n

u
a
l
Te

s
t

T
ra

c
e
s

Mobile Device Infrastucture

Permission

Controller

Subject Dispatcher

State Logger

Crash Detector

Trace CollectorScreen Streamer

Device Controller
Mobile Debugging

Bridge

Fig. 2: Detailed components of Polariz platform

B. The Crowd Motif Extraction Algorithm

Our use of crowd ‘motif’ patterns stems from DNA se-
quence motif. According to D’Haeseleer [10], a DNA se-
quence motif is a short, over-represented pattern with an
assumed biological function. The crowd motif extraction prob-
lem is to find a set of recurring substrings within a set of
strings, which can be described as follows:
Given a set of N crowd-generated test event sequences S =
{S1, . . . , SN}, each formed by events from an event set:

Y = {Swipe,Rotate, F lip, P inch,ClickROI1, ClickROI2, . . . ,

P resskey1, P resskey2, . . .}
(1)

the motif extraction problem is to find a set of instances
M = {m1, . . . ,mn}(n ≤ N), where each mi is a w-
sized subsequence of sequences in S that maximises M ’s
information content (ICM) according to the equation:

ICM =

w∑
i=1

∑
y∈Y

py,i log
py,i
By

, (2)

where py,i is the probability of event y at position i in
M , and By is the probability of event y in the background
distribution. Thus, ICM computes the relative entropy of the
event sequences in M , favouring those sub-sequences that
are prevalent in the crowd’s behaviour, yet are relatively less
prevalent in the overall distribution. Our approach is inspired
by DNA sequence motif discovery [11]–[13].

We use a genetic algorithm to extract crowd motif events for
mobile testing. The adapted crowd motif extraction algorithm
is listed in Algorithm 1. The algorithm extracts multiple motif
patterns from a set of collected log-trace pairs. The log pro-
vides subject execution state information, such as transitions
from one app activity to another, and the trace saves manual
interactions that were used to trigger the app’s state changes.
The log and trace items are linked via their timestamps.

In order to learn from ‘the wisdom of the crowd’, Lines
2-3 extract the minimum trace that enables a transition from
one activity to another. That is, there may exist many ways
(sequences of events) through which the user interactions
trigger the same app activity. We favour the ‘minimum trace’
that requires the fewest operations. The generated minimum
transitional trace collection, S, is represented as a list of
strings, in which each string is a minimum trace that triggers
a specific ‘A to B’ activity transition.

Algorithm 1: Crowd Motif Extraction Algorithm
1 Description: Find m motif patterns from n subject log-trace pairs.

Input: A list of log-trace pairs D = [(L1, T1), (L2, T2) ,..., (Ln, Tn)], where
Li is the app execution state log and Ti is the app event traces for the ith
app; Number of motif patterns to find m.

Output: A list of recurring motif patterns R = [r1, r2, ..., rm].
2 R← [], S ← []; . initialisation

. get the minimum operations to switch from one activity
to another

3 for each (L, T) in D do
4 S ← S ∪ getMinimumActivityTransitionTrace((L, T));

. find m motif patterns by evolving candidate motif
substring locations

5 for i in range(0,m) do
6 generation g ← 0;

. for each individual generate random candidate motif
locations in S

7 P ← initialisePopulation(S);
8 evaluate P by calculating ICM for each individual in Q; . see

Equation 2
9 while g < max generations do

10 P ′ ← tournamentSelection(P);
11 Q← variation(P ′) ; . crossover and mutate motif

locations and length
12 evaluate Q by calculating ICM for each individual in Q;
13 Q← elitismSelection(Q,P);
14 g ← g + 1;
15 P ← Q;

16 r ← getBestIndividual(P); . may contain zero or one
motif location for s ∈ S

17 R← r ∪ R;
. excluding found motif substrings for next motif
pattern

18 S ← removeMotifSubstrings(S, r);

19 return R;

Lines 5-18 use a genetic algorithm to find multiple motif
patterns. At each iteration, the algorithm finds a single motif
pattern and excludes the matched motif substrings from S
(Line 18). Each individual genetic algorithm population mem-
ber represents a candidate motif pattern; a list of candidate
motif locations in S. The individual’s fitness is evaluated based
on the information content score, as described by Equation 2.

The variation operator (Line 11) applies both crossover
and mutation to manipulate the location and length of each
motif substring. The best individuals (with highest information
content score, i.e., their motif substrings are most conservative)
are selected for the next generation. In this way our genetic
algorithm uses elitism in its selection and retention. Evolution
stops after a given maximum number of generations, saving
the best individual found. The overall process repeats until all
m motif patterns have been discovered.

Our implementation consists of the two top level com-
ponents as described in Section II to produce the platform
shown in Figure 2. POLARIZ implementation’s mobile device
infrastructure consists of 9 Nexus-7 tablets, connected to a host
PC via a USB hub. We adapt the Android ‘getevent’ tool for
trace recording, and use the RERAN [8] tool for trace replay:
The ‘getevent’ tool captures a list of low-level Android events
on-the-fly, saving to a script which is subsequently interpreted
by the RERAN tool. For remote device control, we use the
open sourced ‘openstf’ project1, and we deployed the platform
to a server with a proxy service to speed up global visits.

1https://github.com/openstf/stf

https://github.com/openstf/stf

We use the SAPIENZ implementation obtained from the
open source prototype, made available by the SAPIENZ re-
search project [7]. When improving SAPIENZ, we integrate the
learned motifs into SAPIENZ’ MOTIFCORE component, which
combines the motif patterns (which SAPIENZ calls ‘motif
genes’) with atomic ‘genes’. In order to learn the crowd motifs
from the collected event traces, we implement the POLARIZ
motif extraction component in Python, according to Algorithm
1. SAPIENZ can record and replay event sequences and uses
the low-level Android monkey representation of events to go
this. This low level representation is not immediately human-
readable, but since our event sequences (and motifs extracted)
are intended purely for machines this is not a problem.

III. EMPIRICAL EVALUATION OF POLARIZ

We want to investigate the usefulness of POLARIZ, both as a
source of test data, garnered from an untrained and technically
non-specific crowd, and also as a mechanism for augmenting
existing automated techniques for test data generation. In this
section we outline and motivate the four research questions
that we choose to pose and answer in this paper:
RQ1: Demographics and behviour: Before investigating the
nature of test cases generated and analysed from our crowd
workers, we first report on the demographic diversity and
behavioural characteristics of the crowd. We do this to support
comparison and replication and subsequent study, which will
exhibit inherent variability due to the nature of the crowd
recruited for any such subsequent study.
RQ1.1: The demographic diversity of the crowd: RQ1.1
reports on the diversity of the crowd workers recruited in order
to perform the testing activities in our study. In order for the
crowd to denote an affective source of test data, which exhibits
diversity, the crowd itself will need to be diverse. This diversity
is important in order to ensure that the test cases explore app
behaviour exercised by all of the types of users who may use
the application under test. It would also be important for the
motif extraction approach, because this needs to generalise
from a set of instances, observed from crowd behaviour. If we
lack diversity in the crowd, then there is the possibility that
the motif extraction algorithm will overfit.

We report on the diversity of the crowd in terms of de-
mographic distribution, gender, educational background, and
prior experience, both with mobile applications in general, and
software testing in particular. We also report on the level of
returning workers; those who come back to complete further
testing tasks that we set, having already tackled our previous
testing tasks.
RQ1.2: The crowd’s interest level: In order to be sufficiently
motivated to tackle the testing tasks we set, the crowd needs
to feel interested in these tasks. The tasks we set are not
specifically related to testing, but simply involve using the
applications under test. We survey the crowd for their self-
assessed, level of interest, on a standard Lickert scale, in order
to provide some initial evidence relating to the level of crowd
interest.

RQ1.3: The crowd’s response rates: We also investigate
the behaviour of the crowd with respect to response rates,
reporting on the distribution of the number of tasks submitted
per crowd worker, and their performance in terms of speed
of acceptance and completion of tasks. It is impossible to
accurately measure the time a crowd member specifically
devotes to a task, because we cannot know whether they are
solely focused on the task. Nevertheless, we can report on the
time between creation and acceptance of the task, between
acceptance and submission of the task and also the total logged
time that a crowd member spends working on a task.
RQ2: The crowd’s coverage attainment: We use the crowd
as a source of test data in its own right, as well as the ability
of the crowd to provide observations from which we can
extract motif patterns for automated test techniques. In order
to investigate the crowd’s value as a source of test data in its
own right, we report on the coverage obtained by the crowd as
the number of tasks completed increases. We report both the
overall number of unique and non-unique activities covered,
and also the level of activity coverage per subject, for each of
the nine subject apps under test.

Having investigated the demographics and behaviour of the
crowd of their ability to generate test data, we move on to
consider the relationship between crowd-based testing and
automated testing. In particular, we compare crowd testing for
Android, with a recently proposed, state-of-the-art technique,
SAPIENZ [7], for automated test data generation for Android
using search based software testing. We first compare the
crowd’s and SAPIENZ’ coverage attainment, in terms of unique
activities covered, and then investigate the degree to which
motif patterns, extracted from the crowd (using our motif-
extraction algorithm) can improve the coverage performance
of SAPIENZ.
RQ3: The comparative activity coverage achieved by the
crowd and by SAPIENZ: In order to answer this question,
we report on the number of unique activities covered by
the crowd and by SAPIENZ, and their intersection. This
allows us to explore the degree to which the two techniques
are complementary to one another, and also the degree of
overlap between automated testing and crowd-based testing.
Should it turn out that the automated technique subsumes the
human-based technique, then there would be little point in
investigating motif pattern extraction, but if crowd testing can
achieve better or different (complementary) coverage, then this
suggests that there may be scope to improve automated test
data generation with motif pattern extraction from observed
crowd-based tests. The current version of POLARIZ records
coverage but not faults found; future work will extend it to
record detailed fault context.
RQ4: The improvement in SAPIENZ performance when
using motif patterns extracted from crowd-based tests: Fi-
nally, we investigate the degree to which SAPIENZ’ coverage is
improved, for each of the nine apps under test, when SAPIENZ
is imbued with information extracted from the crowd-based
testing in the form of motif patterns.

TABLE I: Nine popular Google Play subject apps (‘#A’ for number of activities; ‘#M’ for number of methods; ‘Installs’ is
measured in millions)

Subject Ver. Category Description #A #M Rating Installs

HP All-in-One Printer
Remote

4.1.18 Productivity Help users scan and print documents with HP
printers.

74 13,616 4.1 10-50M

TuneIn Radio 17.1 Music & Audio Let users listen to radio stations for free. 27 13,474 4.4 100-500M
Trainline 2.5.0 Maps & Navigation A railway information provider. 41 7,497 4.3 1-5M
Power Security 1.0.18 Tools Scan and kill viruses, malware and spyware. 38 5,802 4.4 5-10M
Google Translate 5.6.0 Tools Translate between 103 languages. 17 4,765 4.4 100-500M
Brightest Flashlight 1.35 Productivity A multi-functional flashlight app. 27 6,087 4.3 5-10M
Duolingo 3.39.1 Education Learn multiple languages fast, fun and free. 29 9,949 4.7 50-100M
Clean My Android 1.1.9 Productivity A light phone cleaner and app manager. 16 1,804 4.7 1-5M
Citymapper 6.15 Maps & Navigation A journey planner and route finder. 32 25,998 4.5 1-5M

A. Subject applications

We perform the empirical evaluation on 9 randomly-selected
real-world Google Play apps from top 500 most popular
free/in-app-purchase apps as listed in the Google Play app
store on December 20, 2016. We chose 9 subjects from a
list of all apps, filtered based on their availability for our
hardware resources (9 Nexus-7 tablets in the POLARIZ device
infrastructure), and constraints imposed by a desire to use the
subjects in experiments on the crowd-based testing.

That is, when we perform the random selection, we first
exclude gaming apps that are not based on standard Android
native UI components. Also, to protect the crowd testers’
privacy, we also exclude apps that request user account in-
formation after launching. The crowd was also notified that
they should not disclose any personal information during the
testing process.

The 9 apps that were selected randomly after this filtering
process, are closed-sourced and cover multiple app categories.
Each app has at least 1 million user installs (according to
Google Play). Detailed subject information including version
numbers, sizes, ratings and the number of installs are presented
in Table I.

B. Experimental settings

For each subject, we assign the same app running en-
vironment, i.e., the same software and hardware configura-
tions. These configurations mimic general real-world end-user
testing scenarios, e.g., with real devices that have Google
service framework and WIFI network connection, but without
providing app-specific contexts. For example, the ‘HP All-
in-One Printer Remote’ app may require an HP printer for
testing some of its functionalities. In our experiments, we do
not provide such app-specific equipment for the generalisation
purpose.

We also need to recruit crowd workers and manage pay-
ments by using a third-party intermediary. We report on our
approach to tackling these issues in the remainder of the
section in order to support replication and to give the context
to the results we present for crowd-based testing.

Crowd recruitment: We use Amazon Mechanical Turk2

(AMT) for recruiting non-professional crowd workers from
the general public. AMT is currently one of the most popular
crowdsourcing platforms for micro tasks with general crowd
workers. We recruit AMT workers to perform remote mobile
testing tasks on our POLARIZ platform by posting human
intelligence tasks (HITs) on AMT. Anyone, from any country,
who is eligible to work on AMT is allowed to work on
our HIT assignments. We only disclose the task information
and our POLARIZ web service URL via the AMT HIT for
controlling the worker sources (i.e., only AMT workers are
expected) because this may interfere the recruitment speed and
POLARIZ’ visitor statistics.

To motivate the crowd, we provide 1.5 USD payment for
each approved submission, as the extrinsic incentive to the
crowd workers. We expect each worker will spend 10 minutes
or less on one HIT assignment. The payment rate is higher
than current UK national minimum wage (7.2 GBP/hour) and
also the US standard (7.25 USD/hour). Intrinsic incentives
include the opportunity to experience manual mobile testing,
and maybe, also to test the remote apps for fun (we investigate
the task interest level in the results section).
Task design and quality control: A clear task description
is considered to be one of the most important factors for
successful software crowdsourcing tasks [14]. This motivates
our careful design of our HIT. The general workflow of our
designed HIT task is as follows:
1) The crowd worker views the task assignment description

on AMT and can choose to accept or decline the task.
2) The worker follows the task instruction and works on our

POLARIZ platform via any devices with a browser and
performs manual testing on one arbitrarily selected app.

3) Upon finishing the testing task, the worker copies the
POLARIZ generated app execution log as the proof of task
completion and goes back to the AMT HIT.

4) The worker submits the automatically generated log and
answers a questionnaire which contains 6 brief questions
via AMT.

5) The worker waits for requester’s review and gets paid via
AMT, assuming their submission meets our sanity check
for appropriate engagement.

2https://www.mturk.com

https://www.mturk.com

In the task description, for comprehensive testing, we instruct
the workers that the goal is to explore and trigger as many
functionalities of the subject app as possible. A few detailed
steps for accessing our POLARIZ platform are illustrated using
snapshots. In the questionnaire, we ask 6 short questions
to collect their feedback on the interest level of the task,
and background information regarding the workers, including
their daily mobile usage duration, software testing experience,
country, gender and education level. No personal information
that may reveal the worker’s personal identity is collected.

For quality control, we give three criteria to the workers,
which form our ‘sanity check’ for task approval and con-
sequent payment: First, the worker has tried to explore and
trigger multiple app functions (preferably as many as possible).
Second, the worker has tested the app for at least 3 minutes.
Third, the submitted app execution log contains at least 300
lines. Normally these criteria can be easily satisfied by testing
the app for a few minutes. We review each submission by
checking above three criteria in a semi-automated manner.
We measure these three criteria based on the submitted logs
(for Criteria 1, we use at least two activities as the lower
bound). As a further sanity check, we also manually inspect
the submissions periodically. If a submission is rejected, we
do not repost that assignment.

We posted 1,350 assignments from December 22, 2016 to
January 2, 2017, in a continuous manner, in order to leave time
to perform daily reviews. These 1,350 assignments were split
into 150 HITs, each containing 9 assignments. All HITs and
their assignments are the same. Each HIT may contain one
or more task assignments. Each worker can work on multiple
HITs, but can only work on one assignment in one HIT. Our
quality control filter removed 20.4% of these HITs to leave
1,075 for subsequent testing and motif extraction.
POLARIZ deployment: We deploy POLARIZ as a publicly
accessible web service, at a server located in the UK, plus
a Linode cloud server as a proxy to speed up global visits.
The mobile device infrastructure is hosted at the author’s lab
and connected to the front-end server. Accessing the remote
device does not require authentication but the mobile devices
are monitored and manipulated under POLARIZ’ permission
control component, where changes to environment settings are
prohibited.

The 9 subjects are pre-installed on 9 Nexus-7 tablets;
one per device. User interactions are logged with timestamp
information which can be mapped to the submitted logs. All
subjects are reset to their initial states every half an hour. This
is to avoid the case that one worker drives the app into a state
from which the subsequent workers cannot recover. Of course,
we could have chosen reset app state per worker, but we found
that multiple workers can collectively work on one AUT, by
setting the reset duration to 30 minutes.
Performance metrics: We measure coverage attained, since
this is a fundamental metric for testing [15]–[17]. In terms of
granularity of coverage, we measure app activity coverage; an
approach to coverage measurement that has been adopted in
previous studies on automated mobile testing [7], [18].

U
S
A

In
d
ia

E
st

o
n
ia

S
in

g
a
p
o
re

T
u
rk

e
y

Ir
e
la

n
d

C
a
n
a
d
a

U
K

S
lo

v
a
ki

a

S
w

e
d
e
n

0

200

400

600

800

1000

1200
Top 10 Countries

M
a
le

Fe
m

a
le

O
th

e
r

0

100

200

300

400

500

600

700

800

900
Gender

S
o
m

e
C

o
lle

g
e

B
a
ch

e
lo

r

G
ra

d
u
a
te

H
ig

h
S
ch

o
o
l

O
th

e
r

<
 H

ig
h
S
ch

o
o
l

0

100

200

300

400

500

600
Education Level

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

7
.0

8
.0

9
.0

1
0
.0

1
1
.0

1
2
.0

1
3
.0

1
4
.0

1
5
.0

1
6
.0

1
7
.0

2
0
.0

0

50

100

150

200

250

300

350
Daily Mobile Usage (Hours)

0
.0

1
.0

2
.0

3
.0

4
.0

5
.0

6
.0

8
.0

1
0
.0

1
2
.0

1
4
.0

1
5
.0

1
8
.0

2
0
.0

0

200

400

600

800

1000
Testing Experience (Years)

N
e
w

R
e
tu

rn

0

50

100

150

200

250

300
Returning Workers

Fig. 3: Crowd worker demographic information based on 1,350
submitted assignments

This metric thus gives us a baseline against which to assess
and compare the ability of tests to ‘explore’ the AUT.
Motif extraction: We learn generalised event patterns be-
cause high-level events learned from only a single subject
has already been proved useful in the literature [19]. In our
experiment, we perform a leave-one-out evaluation on the
extracted crowd motifs. That is, when evaluating a subject,
we will use only the motifs extracted from the remaining 8
subjects’ event traces. For each subject, we apply the POLARIZ
motif extraction algorithm to learn three motif patterns.
Improving SAPIENZ: To examine whether the learned gener-
alised motifs are helpful in improving app activity coverage,
we run SAPIENZ without any motif information and compare
results to these obtained from running SAPIENZ with the
learned crowd motifs. On each subject, we run SAPIENZ
for 60 minutes wall-clock time. We set the delay between
each two events to 200 ms so that, given the same amount
of wall-clock time, roughly the same number of events will
be used. This setting aims for a fair comparison between
the two SAPIENZ versions with and without motif patterns.
For SAPIENZ parameters, we use the default settings, as
reported by the authors of the SAPIENZ paper [7]. In all
experiments, the parameters were not tuned, to avoid any
implicit experimental biases that might otherwise arise.

We run all experiments on the same MacBook Pro with
2.3GHz Intel Core i7 CPU and 16G RAM. The mobile side
for app execution is a Nexus-7 real device.

IV. RESULTS

The results show that POLARIZ successfully assisted the
crowd workers to complete all 1,350 AMT tasks, from De-
cember 22, 2016 to January 2, 2017. We also find evidence to
support the claim that there is complementarity between the
crowd-based tests and search based tests found by SAPIENZ.
We further report evidence to support the claim that motif pat-
terns, extracted using or algorithm, can improve the attainment
of activity coverage by SAPIENZ.

A. RQ1: Demographics and behaviour

RQ1 is decomposed into three sub-questions concerning
demographics, interest level and crowd behaviour, each of
which we report on below.

RQ1.1: The demographic diversity of the crowd: According
to visitor tracking data from Google Analytics, from December
22nd. 2016 to January 2nd. 2017, there were 1,931 sessions of
visits to our remote crowd testing service. Of these sessions,
56.9% come from new visitors and 43.1% from returning
visitors. The records show the traffic comes from at least 9
countries, with most coming from the USA (60.90%) and
India (24.91%). Note that there are other countries with large
populations (such as China) whose workers are ineligible to
work on AMT, so there are no visits from these countries.
The average response times (from the 14 global sites accessed
by POLARIZ during the course of our empirical study) range
from 0.465 ms (London) to 295.921 ms (Sydney). This result
indicates a reasonably good connectivity of our distributed
infrastructure for performing remote testing over a wide range
of geographical locations.

During the 12 days of experimentation time, our 1,350
posted HIT assignments were all finished by the crowd
workers. Of all submitted solutions, 1,075 (79.6%) were
approved, according to the criteria for quality control discussed
in Section III-B. We received 1,350 submissions from 434 dis-
tinct workers. Results from our questionnaire show that these
workers come from 24 countries, while 99% submissions are
from the top 10 most frequently submitting countries (as listed
in Figure 3). Note that the number of countries is inconsistent
with the traffic we observed according to Google Analytics;
the questionnaire reveals a far wider country participation than
that would be suggested by the Google Analytics data. Our
interpretation is that a small number of AMT workers may
use proxies to visit the AMT (to overcome the fact that the
service is disabled in their countries).

Figure 3 presents worker demographic information based
on the 1,350 responses submitted by the crowd. This self-
assessment is broadly consistent with the analytics data re-
ported by Google; most workers come from USA (76.7%)
and India (14.1%). However, using the self-assessment ques-
tionnaire, we were able to obtain further demographic infor-
mation: more male workers (64.4%) submitted than female
workers (31.4%). Regarding the educational level, 88.3%
workers at least attended some college education (including
undergraduate students). This generally high educational level
is consistent with previous studies [20], [21], although our
results show that there are more workers with some college
education than those holding a Bachelor’s degree.

Since our remote testing tasks require basic skills for inter-
acting with mobile apps, we expected the crowd to have reg-
ular (daily) mobile usage. Our questionnaire results on ‘Daily
Mobile Usage’ suggest that only 0.9% of the respondents
spend less than 1 hour per day on mobile usage, indicating
that our expectation is reasonable.

1

2

3

4

5

In
te

re
st

 L
e
v
e
l

(L
ik

e
rt

 s
ca

le
)

Fig. 4: Worker feedback on self-assessed interest level of the
task (1 = Very Interesting; 5 = Very Boring)

We also recruit the crowd from the general public rather
than software testing experts. As the distribution presented in
Figure 3 indicates, 72.3% respondents have less than one year
testing experience, and the remaining 27.7% have at least one
year’s experience in software testing. Given that we recruit
from the general public, a proportion of over a quarter having
testing experience was a surprise to us (since testers do not
occupy 1/4 of the world’s population).

Our understanding is that their experience may come from
working on testing tasks posted on AMT or other crowd testing
platforms such as uTest or they may have professional career
experience in software testing. Furthermore, those with testing
experience may favour our HIT, while those without such
experience may have self-selected out. It is interesting to note
that an open call with no pre-requisites for test experience still
ends up recruiting a crowd with higher-than-average testing
expertise.

Finally, we observe that 66.4% of the crowd workers
recruited are ‘new’. That is, they only completed one task,
while the remaining workers completed at least two tasks.
This high rate of returning workers may be correlated with
the interest level of our task: a topic to which we now turn.
RQ1.2: The crowd’s interest level: Figure 4 shows the
feedback from the crowd on the interest levels of our task. The
boxplot suggests a mean rating of 2.3 (between 2-‘Interesting’
and 3-‘Normal’; lower values to note higher interest levels),
and a median rating of 2. This relatively high rating of interest
level may explain the high rate of returning workers revealed
in the results of Figure 3. A detailed distribution of the number
of submitted tasks by each worker is given in Figure 5.
The distribution shows that, although there is a high rate of
returning workers, the total submissions are not dominated by
a small number of ‘super workers’, thereby giving cause for
optimism regarding the crowd’s diversity.
RQ1.3: The crowd’s response rates: We investigated crowd
performance along two dimensions, the speed of task perfor-
mance and the thoroughness of crowdsourced manual testing
in terms of activity coverage. The speed data is extracted
from AMT task records and also the app execution logs
submitted by the crowd. The app activity coverage data is
calculated based on the submitted logs, which are produced
by Android LOGCAT. The log information contains detailed
activity launch, warning and error information.

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
1

2
2

2
3

2
4

2
5

3
2

3
7

5
1

5
2

Number of tasks

100

101

102

103
Fr

e
q
u
e
n
cy

 (
lo

g
 s

ca
le

)

Fig. 5: Task distribution per worker

Many testing scenarios may be sensitive to test speed.
Figure 6 presents three boxplots on the crowdsourced mobile
testing enabled by POLARIZ. The ‘Create-Accept’ time is
the elapsed time from posting a task on AMT to a worker
consenting/accepting to work on the task. In the first boxplot,
the time for the 75th percentile is 61.0 minutes and 73.3%
of the posted tasks were accepted within one hour. The
‘Accept-Submit’ time reports the time from task acceptance
to submission of a solution by the crowd worker. The second
boxplot reveals that all 1,350 posted tasks finished within one
hour, with a median value of 18.1 minutes.

Note that this time cost may not reflect the actual working
time, because the worker may simply accept the task, and work
on something else first. Thus we regard the data presented in
the second boxplot as an upper bound on the working time.
To further examine the lower bound, we check the crowd’s
working time based on the logs submitted. The logged time
may not reflect the time required to become familiar with our
POLARIZ platform, thus we regard it as a lower bound. As
shown in the third boxplot in Figure 6, the interquartile range
(25th to 75th percentiles) area shows a range of 2.3 to 6.2
minutes, which falls into our expectation on the working time,
i.e., within 10 minutes.
RQ2: The crowd’s level of coverage attainment: The
crowd’s performance in terms of test coverage attained is
shown in Figures 7 to 9. First we examine the overall coverage
and then consider the detailed coverage results for each of the
subjects.

Figure 7 shows boxplots that depict the number of covered
unique and non-unique activities per task. For non-unique
activities, the number of triggered activities is 7 to 23 for
the interquartile range, while the number for unique activities
is 3 to 9. Considering the real-world complexity of the
subjects, and the fact that our testing tasks are designed
to be lightweight/micro tasks, this coverage performance is
reasonable and is within our expectation.

Figure 8 shows the crowd’s cumulative coverage over all 9
subjects. The horizontal axis represents tasks in chronological
submission order, while the vertical axis reports activity cov-
erage. In total, 21,440 non-unique activities were manipulated
by the crowd, which covered 182 (out of 301 total) unique
activities over all 9 subjects; 60.5% unique activity coverage.

Creation-Accept Time

0

200

400

600

800

Accept-Submit Time

0

10

20

30

40

50

60

Logged Work Time

0

10

20

30

40

50

60

M
in

u
te

s

Fig. 6: Task acceptance and completion times

Non-unique Activities

0

100

200

300

400

500

600

Unique Activities (Coverage)
0

5

10

15

20

25

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Fig. 7: Number of covered activities per task

Figure 9 reports the coverage achieved on each of the 9
subjects. Each subject is randomly assigned, so the x-axis
for the number of tasks may vary slightly between subjects,
but each subject corresponds to at least 100 tasks. In all 9
cases, the cumulative coverage grows rapidly for the first 10
tasks and subsequently ‘plateaus out’. In a few cases (e.g.,
‘TheTrainline’), the coverage was still able to grow after more
than 100 tasks have been considered.

The highest coverage is achieved on the ‘CleanMyAndroid’
subject (87.5%). While the lowest coverage is on the ‘All-in-
One Printer Remote’ subject (21.6%), which is the only subject
with a coverage below 60%. This low coverage is caused by
the app-specific contexts which require external hardware to be
present, such as connecting to a HP printer. In our experiments,
such external hardware was unavailable.

RQ3: The comparative activity coverage achieved by the
crowd and by SAPIENZ: We map the SAPIENZ coverage
for each subject to the coverage achieved by the crowd,
as the Venn diagrams illustrate in Figure 10. From the 9
Venn diagrams we can see that the crowd covered more app
activities than the fully automated SAPIENZ approach in 8
of the 9 cases. As expected, the superior to main knowledge
of the crowd and the high-level understanding of the purpose
of the apps under test gives them an advantage in covering
activities, compare to (cheaper) fully automated techniques.

0 200 400 600 800 1000 1200

0

5000

10000

15000

20000

Non-unique Activities

0 200 400 600 800 1000 1200

0

50

100

150

Unique Activities (Coverage)

Number of Tasks

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Fig. 8: Overall cumulative crowd test coverage

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70
Tunein Radio (27)

0 50 100 150

0

10

20

30

40

50

60

70

TheTrainline (41)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

Brighest Flashlight (27)

0 20 40 60 80 100 120

0

20

40

60

80

CleanMyAndroid (16)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

Google Translate (17)

0 20 40 60 80 100

0

5

10

15

20

All-in-One Printer Remote (74)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

Power Security (38)

0 20 40 60 80 100 120 140

0

10

20

30

40

50

60

70

80
Duolingo (29)

0 20 40 60 80 100

0

10

20

30

40

50

60

Citymapper (32)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Number of Tasks

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Fig. 9: Crowd test coverage by subject, with total number of
activities (in parentheses).

There is only one case (Google Translate), for which
SAPIENZ triggered more activities than the crowd. However,
Figure 10 also reveals that the two approaches complement
one another in 5 out of the 9 cases, including the Google
Translate case.
RQ4: The improvement in SAPIENZ performance when
using motif patterns extracted from crowd-based tests: We
analyse the effectiveness of the crowd motifs learned by our
POLARIZ motif extraction algorithm. On all 9 subjects, we
confirmed all the learned motif events were, indeed, reused by
Sapienz. In Figure 11, we draw the coverage achieved by both
SAPIENZ with and without the learned motif events, where
the blue (darker grayscale, when viewed in black and white)
lines indicate the performance of SAPIENZ with motifs, and
the red (lighter grayscale) lines denote results for SAPIENZ
without a motif. As suggested by the line charts of cumulative
coverage on each of the subjects, the learned motifs were able
to enhance SAPIENZ in achieving higher test coverage in 6
out of 9 cases.

0 810

Sapienz

Crowd

Tunein Radio

2 237

Sapienz

Crowd

TheTrainline

0 166

Sapienz

Crowd

Brighest Flashlight

0 312

Sapienz
Crowd

CleanMyAndroid

3 111

Sapienz Crowd

Google Translate

0 104

Sapienz

Crowd

All-in-One Printer Remote

1 1217

Sapienz

Crowd

Power Security

2 139

Sapienz

Crowd

Duolingo

1 614

Sapienz
Crowd

Citymapper

Fig. 10: Activities by Sapienz and the crowd

0 10 20 30 40 50 60
0

10

20

30

40

Tunein Radio

0 10 20 30 40 50 60
0

5

10

15

20

25
TheTrainline

0 10 20 30 40 50 60
0

10

20

30

40

Brighest Flashlight

0 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80

CleanMyAndroid

0 10 20 30 40 50 60
0

20

40

60

80

Google Translate

0 10 20 30 40 50 60
0

1

2

3

4

5

All-in-One Printer Remote

0 10 20 30 40 50 60
0

10

20

30

40

50

60
Power Security

0 10 20 30 40 50 60
0

10

20

30

40

Duolingo

0 10 20 30 40 50 60
0

10

20

30

40

Citymapper

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Minutes

C
o
v
e
re

d
 A

ct
iv

it
ie

s
(%

)

Fig. 11: Improvement in coverage. Lower (red/lighter gray)
lines denote Sapienz without motif patterns.

In the remaining 3 cases, the integrated motif patterns
led to neither improvement nor disimprovement in terms of
app activity coverage. However, in the best case (Brightest
flashlight), activity coverage improved by 100%, rising from
6 to 12 unique activities covered out of 27 total possible unique
activities.

The parameters used in the experiments have not been tuned
so our results represent fair lower bounds on the improvement
that could be expected to accrue; parameter tuning and more
‘targeted’ learning might improve the results we report here.

B. Threats to Validity

The primary threat to validity of our empirical studies is the
threat to external validity. Our subject dataset excluded two
types of mobile apps, i.e., games (with non-standard Android
UI components) and those having an initial login activity (for
protecting the crowd’s privacy). Our results may therefore fail
to generalise to these kinds of apps.

To partly mitigate the generalisation issue, we randomly
chose apps, and we note that they did fall into multiple app cat-
egories from widely-installed real-world apps, each of which
has at least 1 million installs. We also cannot be sure that the
improved coverage observed for SAPIENZ would necessarily
be observed for other automated testing approaches. We also
found that our crowd contains a surprisingly high level of
testing expertise for the ‘general public’, a characteristic that
may also fail to generalise to other scenarios

To minimise internal threats to validity, we tested both the
components of POLARIZ and the scripts for data collection and
analysis. One threat to internal validity that we cannot avoid
is related to the permission control component of POLARIZ
platform: To guarantee that the app testing contexts (e.g., WIFI
connection) will not be changed by the crowd workers, the
permission component disallows any call to external activities
that are not part of the app under test.

It is possible that, for certain subjects, such calls to external
activities are a precondition to trigger some of their own activ-
ities. Although the same restriction applies to both techniques
studied, we cannot discount the possibility that such security-
sensitive blocking might have disproportionately affected one
or other of our two treatments.

V. RELATED WORK

Our work is most closely related to previous work on
extraction of useful patterns for app testing, crowdsourcing
and automated test generation, the three areas it combines.
Pattern Extraction: Linares-Vásquez et al. introduced Mon-
keyLab [5]. Like MonkeyLab, POLARIZ extracts patterns
from app usage data. However, unlike MonkeyLab, POLARIZ
exploits a crowdsourced model which is context free (whereas
MokeyLab is concernewd with context in its model building).
Furthermore, while MonekyLab focuses on extraction of value
for a single app under test and is agnostic about its downstream
use, POLARIZ introduces a novel crowdsourcing platform and
extraction algorithm that targets common patterns extracted
from (and for) multiple apps, for subsequent exploitation by
the specific downstream application of automated test data
generation.
Crowdsourced Testing: Crowdsourcing is increasingly popu-
lar in software engineering research [22]–[27]. Previous work
on crowdsourced software testing has formulated the test
design problem as one to be outsourced to the crowd. For
example, Dolstra et al. [28] and Vliegendhart et al. [29]
demonstrated the usefulness of using Amazon Mechanical
Turk workforce to perform continuous GUI testing.

Schneider and Cheung [30] proposed to employ on-demand
crowd users for usability testing. Chen and Kim [31] proposed
a Puzzle-based Automatic Testing (PAT) technique that trans-
forms object mutation problems into puzzles for the crowd
to solve. Pastore et al. [32] used crowdsourcing to tackle
the oracle problem [9]. In this previous work, crowdsourcing
is used as an independent source of test data, whereas our
approach uses the crowd to help guide automated testing.
Automated Test Generation: There exist several mature
semi-automated testing frameworks such as Appium [33] and
Robotium [34] that are widely used in industry, but these
frameworks automate capture and replay, but not test case
design. By contrast, fully-automated mobile test generation
research prototypes have rarely proved able to outperform
random testing [3], [35]. For example, Dynodroid [36] uses
a biased random strategy, while SwiftHand [37] and OR-
BIT [38] and PUMA [39] used model-based approaches.
Other approaches such as ACTEve [40] and TrimDroid [41]
are based on program analysis. Nevertheless, the coverage
achieved by the state-of-practice tool Android Monkey has
tended to achieve higher coverage than all of these research
prototypes, according to recent empirical results [3]. EvoDroid
[42] was the first search-based software testing system for
Android reported in the literature. In this work we chose
to use SAPIENZ [7], partly because it is publicly available
(unlike EvoDroid), but primarily because it has been recently
demonstrated to significantly outperform both the state-of-
the-art automated testing (Dynodroid [36]) and the state-
of-practice (Android Monkey). We thus used SAPIENZ in
order to ensure that our approach can further improve on the
current best-obtainable results for automated Android testing.
This allows us to be sure that our approach advances the
current state-of-the-art in automated testing by hybridising
with mining from crowdsourced usage patterns.

Compared to this previous work POLARIZ is the first to
combine automated (search-based) testing and crowdsourcing
and also the first to leverage cross-app usage patterns for
improved mobile testing. Our results demonstrate that this
combination complements and extends the state-of-the-art in
search based testing.

VI. SUMMARY

We introduced the POLARIZ approach to crowd-based test-
ing, which leverages a non-professional crowd to provide test
cases from which we extract motif patterns to help guide the
SAPIENZ automated testing technique. Our evaluation on 9
popular Google Play apps showed that POLARIZ was able
to harness 434 crowd workers from 24 countries to perform
1,350 testing assignments. The automatically-learned motif
patterns improved SAPIENZ’ activity coverage of 6 out of 9
subjects, leaving it no worse on the remaining 3. We also found
that SAPIENZ and crowd-based approaches complemented
one another in 5 out of 9 subject apps, further motivating
approaches, such as ours, that seek to combine them.

REFERENCES

[1] C. Cadar and K. Sen, “Symbolic execution for software testing: Three
decades later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90,
February 2013.

[2] M. Harman, Y. Jia, and Y. Zhang, “Achievements, open problems and
challenges for search based software testing,” in Proc. of ICST’15, 2015,
pp. 1–12.

[3] S. R. Choudhary, A. Gorla, and A. Orso, “Automated test input gen-
eration for Android: Are we there yet?” in Proc. of ASE’15, 2015, pp.
429–440.

[4] M. Bozkurt and M. Harman, “Automatically generating realistic test
input from web services,” in Proc. of SOSE’11, 2011, pp. 13–24.

[5] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and
D. Poshyvanyk, “Mining Android app usages for generating actionable
GUI-based execution scenarios,” in Proc. of MSR’15, 2015, pp. 111–
122.

[6] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and
D. Poshyvanyk, “Automatically discovering, reporting and reproducing
Android application crashes,” in Proc. of ICST’16, 2016, pp. 33–44.

[7] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective automated
testing for Android applications,” in Proc. of ISSTA’16, 2016, pp. 94–
105.

[8] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “RERAN: Timing-
and touch-sensitive record and replay for android,” in Proc. of ICSE’13,
2013, pp. 72–81.

[9] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
oracle problem in software testing: A survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 2015.

[10] P. D’haeseleer, “What are dna sequence motifs?” Nature biotechnology,
vol. 24, no. 4, pp. 423–425, 2006.

[11] M. K. Das and H.-K. Dai, “A survey of dna motif finding algorithms,”
BMC bioinformatics, vol. 8, no. 7, p. 1, 2007.

[12] H. Huo, Z. Zhao, V. Stojkovic, and L. Liu, “Optimizing genetic
algorithm for motif discovery,” Mathematical and Computer Modelling,
vol. 52, no. 11, pp. 2011–2020, 2010.

[13] M. Kaya, “Mogamod: Multi-objective genetic algorithm for motif dis-
covery,” Expert Systems with Applications, vol. 36, no. 2, pp. 1039–1047,
2009.

[14] B. Fitzgerald and K.-J. Stol, “The Dos and Don’ts of Crowdsourcing
Software Development,” in SOFSEM 2015: Theory and Practice of
Computer Science, ser. Lecture Notes in Computer Science, 2015, vol.
8939, pp. 58–64.

[15] H. Zhu, P. A. Hall, and J. H. May, “Software unit test coverage and
adequacy,” ACM Computing Surveys, vol. 29, no. 4, pp. 366–427, 1997.

[16] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for
gui testing,” ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5,
pp. 256–267, 2001.

[17] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2011.

[18] L. Clapp, O. Bastani, S. Anand, and A. Aiken, “Minimizing gui event
traces,” in Proc. of FSE’16, 2016, pp. 422–434.

[19] M. Ermuth and M. Pradel, “Monkey see, monkey do: Effective genera-
tion of gui tests with inferred macro events,” in Proc. of ISSTA’16, 2016,
pp. 82–93.

[20] J. Ross, A. Zaldivar, L. Irani, and B. Tomlinson, “Who are the Turkers?
worker demographics in Amazon mechanical turk,” Department of
Informatics, University of California, Irvine, USA, Tech. Rep., 2009.

[21] J. Ross, L. Irani, M. Silberman, A. Zaldivar, and B. Tomlinson, “Who
are the crowdworkers? shifting demographics in mechanical turk,” in
Proc. of CHI’10, 2010, pp. 2863–2872.

[22] K. Mao, L. Capra, M. Harman, and Y. Jia, “A survey of the use
of crowdsourcing in software engineering,” Journal of Systems and
Software, vol. 126, pp. 57 – 84, 2017.

[23] F. Chen and S. Kim, “Crowd debugging,” in Proc. of FSE’15, 2015, pp.
320–332.

[24] J. Wang, S. Wang, Q. Cui, and Q. Wang, “Local-based active classifica-
tion of test report to assist crowdsourced testing,” in Proc. of ASE’16,
2016, pp. 190–201.

[25] L. Ponzanelli, A. Bacchelli, and M. Lanza, “Leveraging crowd knowl-
edge for software comprehension and development,” in Proc. of
CSMR’13, 2013, pp. 57–66.

[26] K. Mao, Y. Yang, M. Li, and M. Harman, “Pricing Crowdsourcing Based
Software Development Tasks,” in Proc. of ICSE’13 (NIER Track), 2013,
pp. 1205–1208.

[27] K. Mao, Y. Yang, Q. Wang, Y. Jia, and M. Harman, “Developer
recommendation for crowdsourced software development tasks,” in Proc.
of SOSE’15, 2015, pp. 347–356.

[28] E. Dolstra, R. Vliegendhart, and J. Pouwelse, “Crowdsourcing GUI
tests,” in Proc. of ISSTA’13, March 2013, pp. 332–341.

[29] R. Vliegendhart, E. Dolstra, and J. Pouwelse, “Crowdsourced user
interface testing for multimedia applications,” in Proc. of CrowdMM’12,
2012, pp. 21–22.

[30] C. Schneider and T. Cheung, “The power of the crowd: Performing
usability testing using an on-demand workforce,” in Information Systems
Development. Springer, 2013, pp. 551–560.

[31] N. Chen and S. Kim, “Puzzle-based automatic testing: Bringing humans
into the loop by solving puzzles,” in Proc. of ASE’12, 2012, pp. 140–
149.

[32] F. Pastore, L. Mariani, and G. Fraser, “CrowdOracles: Can the crowd
solve the oracle problem?” in Proc. of ISSTA’13, March 2013, pp. 342–
351.

[33] “Appium: Automation for iOS and Android apps,” http://appium.io.
[34] “Robotium: User scenario testing for Android,” https://github.com/

RobotiumTech/robotium.
[35] X. Zeng, D. Li, W. Zheng, F. Xia, Y. Deng, W. Lam, W. Yang, and

T. Xie, “Automated test input generation for android: Are we really
there yet in an industrial case?” in Proc. of FSE’16, 2016, pp. 987–992.

[36] A. Machiry, R. Tahiliani, and M. Naik, “Dynodroid: An input generation
system for Android apps,” in Proc. of ESEC/FSE’13, 2013, pp. 224–234.

[37] W. Choi, G. Necula, and K. Sen, “Guided GUI testing of Android apps
with minimal restart and approximate learning,” in Proc. of OOPSLA’13,
2013, pp. 623–640.

[38] W. Yang, M. R. Prasad, and T. Xie, “A grey-box approach for automated
GUI-model generation of mobile applications,” in Proc. of FASE’13,
2013, pp. 250–265.

[39] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan, “PUMA:
Programmable UI-automation for large-scale dynamic analysis of mobile
apps,” in Proc. of MobiSys’14, 2014, pp. 204–217.

[40] S. Anand, M. Naik, M. J. Harrold, and H. Yang, “Automated concolic
testing of smartphone apps,” in Proc. of FSE’12, 2012, pp. 59:1–59:11.

[41] N. Mirzaei, J. Garcia, H. Bagheri, A. Sadeghi, and S. Malek, “Reducing
combinatorics in GUI testing of Android applications,” in Proc. of
ICSE’16, 2016, pp. 559–570.

[42] R. Mahmood, N. Mirzaei, and S. Malek, “EvoDroid: Segmented evolu-
tionary testing of Android apps,” in Proc. of FSE’14, 2014, pp. 599–609.

http://appium.io
https://github.com/RobotiumTech/robotium
https://github.com/RobotiumTech/robotium

	Introduction
	The Polariz Approach
	The Polariz Platform
	The Crowd Motif Extraction Algorithm

	Empirical Evaluation of Polariz
	Subject applications
	Experimental settings

	Results
	RQ1: Demographics and behaviour
	Threats to Validity

	Related Work
	Summary
	References

