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Background and purpose. – Visual rating scales have limited capacities to depict the regional distribu-
tion of cerebral white matter hyperintensities (WMH). We present a regional-zonal volumetric analysis
alongside a visualization tool to compare and deconstruct visual rating scales.
Materials and methods. – 3D T1-weighted, T2-weighted spin-echo and FLAIR images were acquired on
a 3 T system, from 82 elderly participants in a population-based study. Images were automatically seg-
mented for WMH. Lobar boundaries and distance to ventricular surface were used to define white matter
regions. Regional-zonal WMH loads were displayed using bullseye plots. Four raters assessed all images
applying three scales. Correlations between visual scales and regional WMH as well as inter and intra-
rater variability were assessed. A multinomial ordinal regression model was used to predict scores based
on regional volumes and global WMH burdens.
Results. – On average, the bullseye plot depicted a right-left symmetry in the distribution and concen-
tration of damage in the periventricular zone, especially in frontal regions. WMH loads correlated well
with the average visual rating scores (e.g. Kendall’s tau [Volume, Scheltens] = 0.59 CI = [0.53 0.62]). Local
correlations allowed comparison of loading patterns between scales and between raters. Regional mea-

surements had more predictive power than global WMH burden (e.g. frontal caps prediction with local
features: ICC = 0.67 CI = [0.53 0.77], global volume = 0.50 CI = [0.32 0.65], intra-rater = 0.44 CI = [0.23 0.60]).
Conclusion. – Regional-zonal representation of WMH burden highlights similarities and differences
between visual rating scales and raters. The bullseye infographic tool provides a simple visual repre-
sentation of regional lesion load that can be used for rater calibration and training.

© 2017 The Authors. Published by Elsevier Masson SAS. This is an open access article under the CC BY
Abbreviations: BG, basal ganglia; CI, confidence Interval; FLAIR, fluid attenuated inver
egions; JC, juxtacortical; K� , Kendall’s tau; MR, magnetic resonance; PV, periventricular;
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after. Once the local quantitative values are extracted, they are
C.H. Sudre et al. / Journal of N
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White manner hyperintensities (WMH) in the cerebral white
atter on T2-weighted spin echo and FLAIR magnetic resonance

MR) images are commonly part of the spectrum of imaging
ndings in cerebral small vessel disease and normal aging. How-
ver, their precise etiology is still a subject of debate and likely
ultifactorial [1]. Histological findings in WMH include thinning

r disruption of the myelin sheath, axonal loss and gliosis [2].
lose to the ventricles, increased water content in the extracel-

ular spaces has been reported when the ependymal lining is
amaged [2]. WMH are very prevalent and are associated with
arious clinical symptoms such as a decreased processing speed,
ltered gait, incontinence and depression [3]. Studies have demon-
trated a link between the burden of WMH and cortical blood
ow [4] as well as with cardiovascular risk factors such as hyper-
ension [5] or diabetes [6]. In addition, the extent of WMH was
ecently shown to be an independent risk factor for periproce-
ural stroke in patients undergoing stenting of a carotid artery
tenosis [7] and an indicator of prognostic outcome after ischemic
troke [8].

The majority of studies relating clinical findings with the bur-
en of WMH have used visual rating scales. Such scales provide
semi-quantitative way to describe the burden and distribution

f WMH in the brain without manual lesion delineation, a task
hat is cumbersome, time consuming and subject to inter- and
ntra-rater variability. A number of visual rating scales with var-
ous levels of complexity have been developed [9–14]. Compared
o automatic global volumetric assessments, they remain popular
specially when incorporating local burden information. The spa-
ial information of WMH distribution, incorporated in the rating
cales ranges from whole brain assessment (Manolio [9], simplified
azekas [15]) to specific lobar lesion burden (Scheltens [16]). While
patial determination allows for differential clinical and patho-
hysiological explanatory pathways, the definition of the regional
orders can be ambiguous and varies from one scale to another.
ith respect to the separation of periventricular and deep WMH,
ost methods are based on absolute distance to the ventricles and

o not take into account additional age-related changes such as
entricular expansion [17]. Finally, few scales have been specifi-
ally defined for the longitudinal assessment of the WMH burden,
hereas most are only intended to be applied cross-sectionally

18].
With the recent advances in the automated identification of

MH, lesion volume has been shown to be associated with clin-
cal outcomes, sometimes allowing for a better differentiation
etween clinical subgroups than visual rating scales [19]. The corre-

ation between visual scales is considerable [20] but heterogeneity
etween visual rating systems has also been put forward as a poten-
ial explanation for contradictory findings [21]. Methods involving
he creation of voxelwise lesion maps have been proposed to
nvestigate WMH spatial distribution across populations [22] or in
elation to specific risk factors [23]. These strategies suffer how-
ver from a high noise level due to the sparsity of the lesions. In
ontrast, region based strategies generally consider a separation
etween zones based on the absolute distance to the ventricles and
hus cannot account for the variability in atrophy across subjects
24].

This work presents a novel approach to analyze regional-
onal WMH burden. We used it to deconstruct the spatial loading
f visual rating scales and determine in an objective manner
imilarities and discrepancies between such scales, but also to for-
ally address interobserver variability. The bullseye infographic
rovides a simple visual tool to train raters or display disease
ffects.
adiology 45 (2018) 114–122 115

Material and methods

Cohort imaging study

We used an imaging data subset of the SABRE study (UK Clini-
cal Trials Gateway DRN 841, local ethical approval by Fulham REC
ref: 14/LO/0108) comprising the first 84 consecutive participants a
tri-ethnic population based study [mean (SD) age = 71.4 (5.7) years;
61.7% male]. This cohort study aims to assess the risks of diabetes
and cardiovascular disease, including small vessel disease in the
brain, in European, Indian Asian and African Caribbean men and
women [25]. Surviving participants of 4972 individuals recruited
in 1988–1990 from general practices in the London boroughs of
Southall and Brent were all invited for this third round of investi-
gations. Spouses of the participants were also invited to take part.
Participants were excluded from the study on clinical ground if they
were at a stage of terminal illness or if severe comorbidities affected
their attendance and/or participation to the investigations.

All participants gave informed written consent and underwent
MRI according to a standard protocol on a Philips Achieva 3.0-Tesla
scanner. Imaging included the following pulse-sequences:

• 3D sagittal T1-weighted FFE: TR 6.9 ms; TE 3.1 ms; voxel size
1.0 × 1.0 × 1.0 mm3;

• 3D sagittal T2-weighted FLAIR: TR 4800 ms; TI 1650 ms; TE
125 ms; voxel size 1.0 × 1.0 × 1.0 mm3;

• 3D sagittal T2-weighted TSE: TR 2500 ms TE 222 ms; voxel size
1.0 × 1.0 × 1.0 mm3.

All images were reviewed for incidental pathology and scan
quality. Two participants’ scans were discarded from the analysis
due to severe motion artifacts.

Regional-zonal WMH burden quantification

WMH were automatically segmented using a previously devel-
oped algorithm [26]. In brief, this iterative model selection
framework uses simultaneously the three MRI pulse sequences
to model both normal and outlier observations as a multivariate
Gaussian mixture informed by anatomical atlases and constrained
to ensure neighborhood consistency. Once the data model is fitted,
the actual lesion segmentation is performed by voxelwise compar-
ison to normal appearing white matter.

A patient-specific coordinate frame was created to localize the
WMH burden. This coordinate frame considered radially the rela-
tive distance between the ventricles and the cortical grey matter
discretized into four equidistant layers. As described by Yezzi and
Prince [27], this distance was derived from the solution to the
Laplace equation applied here between the ventricular surface and
the white matter/cortical gray matter interface. By design, such dis-
tance is made agnostic to the level of observed atrophy. A division
of the white matter into lobes provided the angular information.
The division into lobes was based on the Euclidean distance maps
resulting from the cortical parcellation obtained through the appli-
cation of a label-fusion method [28]. Frontal, parietal, temporal and
occipital lobes were delineated on the right and left side, while the
basal ganglia, thalami and infratentorial regions from both sides
were combined (BGIT region). By combining the 4 layers and the 9
lobar zones, 36 regions were defined in total.

The proportion of each region affected by WMH was used as
a local feature and is referred to as regional WMH load here-
summarized as an infographic in a bullseye plot: the 4 layers are
represented concentrically, the closest to the center being the most
periventricular. The lobes are referred to by their first letters (Front,
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Fig. 1. Representation of the building blocks of the local WMH lesion loads. The first column reflects the lesion segmentation. The second column refers to the separation
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ccording to the lobar regions and the last column to the distance based layer sepa
efined local region is then summarized in the bullseye plot. Most central parts cor
o the angular position and referred to by their first letters. The subject is male, 75

ar, Occ, Temp, BGIT). Fig. 1 illustrates the definition of the regional
MH loads and their bullseye representation for a typical subject.

isual rating scales

The FLAIR scans were rated by four different raters with different

evels of expertise (CHS 2y, BGA 23y, ID 10y, AS 3y). Each rater
cored the scans according to three well-established visual rating
cales that range from a global impression to more fine-grained
egional scores [20]. The scales are summarized as follows:
from the ventricular surface towards the cortical sheet. The lesion frequency per
d to the most periventricular regions. The lobar regions are represented according
ld.

• Manolio scale [29]: designed for the Cardiovascular Health study.
The scale characterizes the WMH burden globally and ranges
from 0 (absence) to 9 (highest degree) by matching to a template;

• Fazekas scale [15]: designed for aging subjects in a dementia
study. The WMH rating is dichotomized between periventricular
and deep WMH, assessed on a 4 point scale from 0 (absence) to 3

(highest degree) and a composite score is obtained by summing
the subscales;

• Scheltens scale [16]: designed for aging subjects probably
affected by Alzheimer’s disease. The WMH rating is defined
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urden frequency per zone represented in bullseye plot.
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Table 1
Summary of Kendall’s tau correlation results between global scale scores.

Mean SD Min Max CI

Volume – Manolio 0.61 0.01 0.60 0.61 [0.57 0.64]
Volume – Fazekas 0.58 0.02 0.56 0.60 [0.54 0.61]
Volume – Scheltens 0.59 0.03 0.55 0.62 [0.55 0.62]
Manolio – Fazekas 0.72 0.02 0.71 0.75 [0.70 0.75]
Manolio – Scheltens 0.64 0.02 0.62 0.67 [0.60 0.67]
Fazekas – Scheltens 0.61 0.02 0.58 0.63 [0.57 0.65]
Fig. 2. Median (left) and IQR (right) of the WMH b

differently according to global regions: periventricular lesions
(score range: 0–6), deep white matter per lobe (total score range:
0–24), basal ganglia per nucleus (total score range: 0–30) and
infratentorial regions (score range: 0–24) themselves separated
in subregions. Periventricular and deep regions are dichotomized
based on the absolute distance (10 mm) to the ventricular surface.

tatistical analysis

The scores given by the different raters were averaged to pro-
uce mean scores. The average scores were correlated with the
utomated regional WMH burden to illustrate the spatial cor-
espondences between scores on the different scales and the
requency of WMH.

In a next step, the individual visual scores for each rater were
orrelated with the automated regional WMH loads. With the aim
f studying the degree of consistency/bias between each rater and
he average, the degree of regional interactions for each rater was
ompared to the degree of regional interactions of the average rat-
ngs.

The global WMH burden and scale-specific aggregate regional
urden estimates were used as features to predict the rating scales.
multinomial ordinal regression model was used in a stratified 2-

old cross-validation procedure with 50 repeats. Predictions were
btained for the average of two, three or four raters. The ability to
redict the rating scales was tested using either the global relative
MH burden or the scale-specific aggregate WMH loads.
Inter-rater variability was estimated as the average pairwise

ntraclass correlation (ICC) between raters. Intra-rater variability
as estimated by the ICC of repeat measurements of one single

ater on a subset of 20 subjects (2 measurements with a 6 months
ime interval).

esults

opulation WMH distribution

The extracted total WMH burden for the 82 subjects with avail-
ble MR scans ranged from 0.38 mL to 25.28 mL (median 1.71 mL,

QR [0.81 mL 4.57 mL]). Fig. 2 represents the median WMH distribu-
ion across all subjects and the corresponding IQR. It illustrates the
ight-left symmetry as well as the prevalence of WMH in periven-
ricular zones compared to deeper layers [30], the sparing of the
All correlations were statistically significant with P-values < 0.0005. There was no
significant difference between the correlations except for the Manolio–Fazekas cor-
relation that was significantly stronger than all the others.

infratentorial regions and the tendency towards greater WMH bur-
dens in the frontal regions [31] described in the literature.

Global comparison between volumes and visual scales

The Kendall’s tau (K�) correlations between quantitative vol-
umes and visual rating scales (global scores) across all raters are
gathered in Table 1. All correlations were statistically significant
with P-values < 0.0005 and only the correlation between Manolio
and Fazekas was significantly higher than any other.

In line with the literature [12,32], there was a good agreement
between the various scales. In addition, visual scales and WMH
volumes were strongly correlated with Kendall’s tau coefficients
of 0.59 (CI = [0.53 0.62]), 0.58 (CI = [0.54 0.61]) and 0.61 (CI = [0.57
0.63]) for the Scheltens, the Manolio and the Fazekas scales respec-
tively. The intra-rater ICC evaluated in a subset of 20 subjects were
0.70 (CI = [0.19 0.89], 0.68 (CI = [0.34 0.86], 0.70 (CI = [0.01 0.91]
while the mean pairwise inter-rater ICC were 0.70 (CI = [0.26 0.86])
0.80 (CI = [0.67 0.87] and 0.64 (CI = [0.38 0.79] for the Scheltens,
Manolio and Fazekas scales respectively.

Visual scale local deconstruction

Using a similar representation as the one used in Fig. 1, the cor-
relations between the average Scheltens subscales and the regional
descriptors are illustrated in Fig. 3.

The observed correlations were stronger for the subscales
related to easily defined regions such as the frontal and posterior

periventricular regions. Correlation patterns were in accordance
with subscale definitions. For instance, the frontal periventricu-
lar (ScheltensFC) scale was significantly more correlated with the
frontal most periventricular region (FPV) than with the frontal most
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Fig. 3. Kendall’s tau correlation between the regional WMH lesion loads and each Scheltens subscale. See plot titles for the corresponding evaluated region. On the bottom
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oads in the bullseyes and at the periphery of the plot for lobar scores. The bigger p
requencies, showing that the frontal lobe had the highest overall loading.

uxtacortical (FJC) one (p-value < 0.01, K�(FPV, ScheltensFC)–K�

FJC, ScheltensFC) = 0.23, CI = [0.19 0.28]). The clear difference in
bserved patterns when comparing the frontal lobe and the pari-
tal lobe further supports the assumption that certain local features
rive the visual rating process. Areas with a low probability of
MH (e.g. temporal lobe) were found to be less associated with

ny of the scales. Finally, a high degree of correlation was found
cross all regions when correlating with the Scheltens global
cale.

nterpreting raters’ behaviour

For every scale, the correlation between each of the 36 auto-
ated local burden measures and the raters’ individual scores
as calculated. Subsequently, the average scores for every possible

ombination of three raters was calculated in order to be compared
ith the individual scores of the fourth rater. Fig. 4 demonstrates

he differences between the correlation obtained with one rater
nd with the average of the three remaining ones. In this figure,
pink color represents a numerically stronger and a blue color a
umerically weaker interaction between a given rater’s individ-
al score and the regional lesion volume in comparison to the one
ound for the average score of the three other readers. Colloqui-
lly, this can be interpreted in the following way: the pink regions
ave relatively stronger influence on the individual rater’s score,
hereas the blue regions have a weaker influence. For example,

n the Manolio scale grading, the influence of the three first layers
f the parietal and frontal regions on rater #4’s scores was lower
han that of the average of the remaining raters, indicating that this

ater could benefit from paying more attention to these areas when
rading. However, the same rater appears to be comparatively more
ensitive to WMH in the juxtacortical (4th layer) frontal and parietal
egions.
the higher correlations between the periventricular subscales and central WMH
the left represents the correlations between the global score and the local lesion

Local comparison between visual scales

The correlations between local measures and the average of
4 raters are presented for each scale in Fig. 5. The three global
scores show relatively similar patterns in the degree of regional
loading, with a predominant effect of periventricular zones. Com-
pared to both the Fazekas and the Manolio scales, the Scheltens
scale appears to be more homogenously reflecting WMH loads
across all brain regions. In particular, correlations with the juxta-
cortical regions (JC) are higher for the Scheltens than the Manolio
and Fazekas scales, the difference reaching significance in both
cases (K� (JC, Scheltens)–K� (JC, Manolio) = 0.036 CI = [0.004 0.068];
K� (JC, Scheltens)–K� (JC, Fazekas) = 0.11 CI = [0.07 0.15]). In turn,
the Manolio scale presents highest loading by the periventricular
regions (PV), the difference reaching significance when compared
to the Fazekas scale (K� [PV, Manolio]–K� [PV, Fazekas]) = 0.11
CI = [0.06, 0.15].

Explanatory power of local measurement

The ability to explain the local and global scales based on the
consensus ratings is presented in Table 2. For all studied visual
scales and subscales, the intraclass correlation between the pre-
dicted and the actual values when training on an average of 2, 3 or
4 raters and using either the designed local features or the global
value were calculated. When appropriate (2 or 3 raters) the results
are given under the form mean (SD). The correlations are com-
pared to the average inter-rater ICC when correlating each rater
with an average of complementary raters. Results show the fol-
lowing: firstly, when predicting subscales, the use of regional WMH
burdens from the same anatomical location as the subscale allow

for better predictions than using global features; secondly, the abil-
ity to predict the rating scale scores appears to increase with the
number of raters used to establish the training average. The correla-
tion between average scores and predictions, based on volumetric
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ig. 4. Plots of the rating discrepancies between one rater and the average of the
easures of WMH burden with one rater and with the average score given by the t

o a different individual rater.

egional predictors was higher than the inter-rater variability for
ost scales, except in regions with a low prevalence of WMH (e.g.

emporal lobe, BGIT – Fig. 3). For all subscales, the inter-rater cor-
elation confidence interval was also found to be larger than for the
utomated prediction model.

reation of an online training tool in WMH visual grading scales

With the recent advance in knowledge dissemination technolo-
ies, a web-based training suite was created to help improving

he precision and accuracy of raters that is now available at
cmictig.cs.ucl.ac.uk/vrt/) For each of the twenty FLAIR scans of a
raining session, the participant can use an online viewer to scroll
hrough the images and determine a score for each of the rele-
rs calculated as the difference between the Kendall’s tau correlations of the local
emaining raters. Each column corresponds to a visual scale. Each row corresponds

vant subscales (cf. Fig. 6). After a training session is completed,
color-coded regional performance metrics are provided through
the bullseye representation, along with a textual interpretation of
the training. This is to enable a local adjustment of the evaluation
in a subsequent training.

Discussion

We developed a novel regional-zonal analysis tool to represent
WMH volume distribution and summarize it in a single bulls-

eye infographic. We demonstrate the relevance of the new tool
in deconstructing visual rating scales and evaluating rater perfor-
mance, for which an online training tool for visual rating has been
made available. Further applications may include comparison of
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Fig. 5. Plots of the correlations between local burden measures and the average of the four raters for each of the visual scales.

Table 2
Explanatory value of the local WMH loads.

Prediction using local features Prediction using global volume Raters

Pred4 Pred3 Pred2 Pred4 Pred3 Pred2 Ave3 Ave2 IR

Scheltens PV FC 0.67 0.66 0.61 0.50 0.53 0.48 0.53 0.51 0.44
[0.53 0.77] [0.51 0.76] [0.45 0.73] [0.32 0.65] [0.36 0.67] [0.29 0.63] [0.30 0.69] [0.29 0.67] [0.23 0.60]

LB 0.46 0.43 0.38 0.43 0.41 0.36 0.40 0.38 0.32
[0.27 0.61] [0.24 0.59] [0.17 0.55] [0.24 0.59] [0.21 0.57] [0.16 0.54] [0.14 0.59] [0.14 0.57] [0.11 0.50]

PC 0.69 0.66 0.59 0.65 0.62 0.55 0.43 0.40 0.33
[0.56 0.79] [0.53 0.77] [0.43 0.71] [0.51 0.76] [0.47 0.74] [0.38 0.68] [0.21 0.60] [0.19 0.57] [0.13 0.51]

Lobes F 0.66 0.64 0.62 0.60 0.59 0.57 0.73 0.71 0.64
[0.52 0.77] [0.50 0.75] [0.47 0.74] [0.44 0.72] [0.42 0.71] [0.40 0.70] [0.42 0.85] [0.42 0.84] [0.37 0.79]

P 0.60 0.58 0.56 0.65 0.64 0.61 0.71 0.69 0.63
[0.44 0.72] [0.42 0.71] [0.39 0.69] [0.51 0.76] [0.49 0.75] [0.46 0.73] [0.46 0.84] [0.43 0.82] [0.35 0.78]

O 0.55 0.46 0.37 0.47 0.42 0.35 0.22 0.19 0.15
[0.38 0.69] [0.28 0.62] [0.17 0.54] [0.28 0.62] [0.22 0.58] [0.15 0.52] [0.02 0.41] [−0.02 0.39] [−0.06 0.35]

T 0.35 0.33 0.28 0.35 0.34 0.28 0.45 0.43 0.35
[0.14 0.52] [0.13 0.51] [0.07 0.46] [0.15 0.53] [0.13 0.52] [0.07 0.47] [0.26 0.61] [0.23 0.59] [0.15 0.52]

Partial Tot 0.82 0.81 0.79 0.82 0.81 0.79 0.76 0.75 0.69
[0.73 0.88] [0.72 0.87] [0.69 0.86] [0.73 0.88] [0.73 0.88] [0.70 0.86] [0.27 0.90] [0.34 0.89] [0.26 0.85]

BGIT 0.50 0.50 0.47 0.48 0.48 0.45 0.71 0.69 0.62
[0.32 0.65] [0.31 0.64] [0.29 0.62] [0.30 0.63] [0.29 0.63] [0.26 0.61] [0.52 0.82] [0.50 0.81] [0.44 0.75]

Tot 0.83 0.82 0.80 0.83 0.82 0.81 0.77 0.75 0.70
[0.74 0.88] [0.73 0.88] [0.71 0.87] [0.75 0.89] [0.74 0.88] [0.71 0.87] [0.24 0.90] [0.32 0.89] [0.26 0.86]

Manolio 0.84 0.84 0.82 0.83 0.83 0.81 0.86 0.84 0.80
[0.76 0.89] [0.76 0.89] [0.73 0.88] [0.75 0.89] [0.75 0.89] [0.72 0.87] [0.76 0.91] [0.74 0.90] [0.67 0.87]

Fazekas PVWM 0.82 0.79 0.74 0.81 0.78 0.72 0.58 0.55 0.50
[0.74 0.88] [0.69 0.86] [0.62 0.82] [0.73 0.88] [0.68 0.85] [0.60 0.81] [0.33 0.73] [0.32 0.71] [0.29 0.65]

DWM 0.68 0.66 0.62 0.67 0.65 0.61 0.65 0.62 0.54
[0.55 0.78] [0.52 0.76] [0.47 0.74] [0.54 0.78] [0.50 0.76] [0.46 0.73] [0.43 0.78] [0.38 0.76] [0.32 0.70]

Tot 0.81 0.80 0.77 0.80 0.79 0.76 0.72 0.69 0.64
[0.72 0.88] [0.70 0.86] [0.66 0.84] [0.71 0.87] [0.69 0.86] [0.65 0.84] [0.47 0.85] [0.40 0.83] [0.38 0.79]

The notation Pred4 indicates that the prediction was trained with the average of 4 raters. Ave3 indicates the comparison between the left out rater and the average of the
three other raters. Bold font corresponds to results for which the prediction had a numerically higher ICC to the training average than the mean inter-rater variability with the
average using the same number of raters. Underlined values reflect higher correlation of the prediction with the training average than the mean pairwise ICC (last column).
For the scales, the partial total refers to the sum of the Scheltens subscales related to the periventricular (PV) and lobes while BG stands for basal ganglia. PV: periventricular;
D ater. P
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WM: deep white matter; BGIT: basal ganglia and infratentorial region; IR: inter-r
f 3 raters; Pred2: prediction using the average of 2 raters; Ave3: comparison of 1 r
others.

opulations, e.g. based on ethnicity, vascular risk factors or clinical
ode of presentation.
The regional WMH burden features developed in this work

ere shown to characterize both spatial similarities and differences
etween visual rating scales, effectively deconstructing them.
The Manolio and the Fazekas scores showed similar spatial cor-
elation patterns with an emphasis on the periventricular regions,
hile the Scheltens scores were shown to correlate in a more

alanced fashion across brain regions. Our data-driven approach
red4: prediction using the average of 4 raters; Pred3: prediction using the average
the average of the 3 others; Ave2: comparison between 1 rater and the average of

reveals the source of discrepancies between visual rating scores
previously underlined [17,21] with for instance the stronger impact
of periventricular regions in the Manolio compared to the Scheltens
scale. It can be used to better inform the choice of rating scales for a
clinical study or to improve the implementation of rating protocols.
Secondly, our new tool can illustrate the spatial source of bias
between a single rater and the consensus standard. We show
that during the rating process, some readers paid more attention
to a particular region than others. The regional maps reveal the
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ig. 6. Screen-shot of the training system at the outset of the process to rate the pe
s always made available to the trainee.

natomical locations that bias the rating behavior of a particular
ater, which can be used to provide objective feedback.

Our model could therefore be used as a tool for training radio-
ogists in order to improve their rating performance and calibrate
he application of visual rating scales, reducing inter and intra-rater
ariability. Note that the presented maps estimate the per-region
ater bias without modeling the associations between regions.

Thirdly, the regional loads were shown to be predictive of the
ocal and global consensus rating scales. In order to test the ability to
eproduce a consensus rating, both the automated algorithm and
ach human rater were compared to the consensus ratings. The
utomated prediction model performed similarly for most regions
ith a reduced variance, outperforming human raters for several

egions.
Various factors can be put forward as limiting the model’s abil-

ty to predict the consensus rating scores: first, an explicit choice
as made regarding the regions relevant to each scale; second,

he WMH burden feature used in this work (volume fraction) does
ot account for the size and count criteria of the Scheltens scale, a

imitation that could be mitigated by including other local WMH
eatures. The proposed predictive model performed better than
uman raters in subscales with a large degree of rater disagree-
ent, possibly due to disagreements among raters with regards to

he regional definitions [17].
One of the main strengths of this study is the number of raters

nvolved in the visual grading of white matter hyperintensities in
hree different scales. This allows for an exhaustive comparison
etween raters and scales and an unbiased assessment of the utility
f regional features and their ability to predict the average ratings.
his study also has some limitations. The proposed method relies
eavily on the accuracy of the automatic WMH segmentation and
arcellation of the lobes, with segmentation errors directly impact-

ng the analysis outcome. Also, due to ceiling and flooring effects
n visual scale assessment, the correlation coefficient does not fully
escribe the relationship with regional WMH influence. Finally, the
elevant regions used for feature extraction were selected empir-
cally based on the literature descriptions, possibly affecting the
bility to predict some outcomes.

The quality of clinical neuroimaging has continuously improved
n the recent years, with the move to higher field strength (3T) and
he use of more advanced sequences. For instance, the designs of the
hree visual rating scales mentioned in this study were based on 2D
2 spin echo or proton-density weighted images obtained on 1.5T

r 0.35 T MR systems whereas clinical practice has evolved towards
he use of T2 FLAIR imaging and volumetric data acquisition with-
ut slice gaps. With the known increase in sensitivity, specificity
nd correlation with clinical outcome when using 3T images [33],
ricular subscales in the Scheltens scale. An explanation of the subscales description

changes in rating scales are expected. At higher loads, the non-
linear relationship between scores and volumes [19] contributes
to a ceiling effect of the rating scales that may explain the high
inter-rater correlation observed in this work compared to the liter-
ature [12]. In those cases, using volumes rather than scales appears
more relevant and automated classification methods are therefore
even more necessary.

Conclusion

In conclusion, this work shows how the regional-zonal repre-
sentation of WMH loads contributes to the deconstruction and
comparison of visual rating scales, as well as the evaluation
of raters. A web-based training suite has been made available
(cmictig.cs.ucl.ac.uk/vrt/) that will expand the training potential of
the local WMH assessment, aiming at helping the rater to perform
local adjustments in their evaluation. Future work will evaluate
the benefit obtained by using this training tool. Accurate semi-
quantitative or quantitative assessments of WMH burden are likely
to gain importance in the near future as WMH are biomarkers,
which can be used for assessing disease progression, therapeu-
tic intervention (such as blood pressure lowering drugs) or risk of
intervention (carotid stenting). The bullseye plots will not only help
train raters, but also visualize regional associations with risk factors
or differences between populations.
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