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Abstract

The kernel mean embedding is known to provide a data representation which pre-
serves full information of the data distribution. While typically computationally costly,
its nonparametric nature has an advantage of requiring no explicit model specification
of the data. At the other extreme are approaches which summarize data distributions
into a finite-dimensional vector of hand-picked summary statistics. This explicit
finite-dimensional representation offers a computationally cheaper alternative. Clearly,
there is a trade-off between cost and sufficiency of the representation, and it is of
interest to have a computationally efficient technique which can produce a data-driven
representation, thus combining the advantages from both extremes.

The main focus of this thesis is on the development of linear-time mean-embedding-
based methods to automatically extract informative features of data distributions, for
statistical tests and Bayesian inference. In the first part on statistical tests, several
new linear-time techniques are developed. These include a new kernel-based distance
measure for distributions, a new linear-time nonparametric dependence measure, and
a linear-time discrepancy measure between a probabilistic model and a sample, based
on a Stein operator. These new measures give rise to linear-time and consistent tests
of homogeneity, independence, and goodness of fit, respectively. The key idea behind
these new tests is to explicitly learn distribution-characterizing feature vectors, by
maximizing a proxy for the probability of correctly rejecting the null hypothesis. We
theoretically show that these new tests are consistent for any finite number of features.

In the second part, we explore the use of random Fourier features to construct
approximate kernel mean embeddings, for representing messages in expectation
propagation (EP) algorithm. The goal is to learn a message operator which predicts
EP outgoing messages from incoming messages. We derive a novel two-layer random
feature representation of the input messages, allowing online learning of the operator
during EP inference.
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Chapter 1

Introduction

We address the problem of finding computationally efficient, and informative features
of data distributions, while making as few assumptions as possible on the underly-
ing generating distributions. We consider two different contexts: 1) nonparametric
statistical tests for comparing distributions, and 2) approximate Bayesian inference.

1.1 Informative Features for Statistical Tests

The task of nonparametric comparison of distributions is broad, and encompasses long-
standing problems such as two-sample testing, independence testing, and goodness-of-
fit testing. These will be the three problems that we consider in the first part. The three
problems can be rephrased as finding the differences between two distributions P and
Q by testing the null hypothesis H0 : P = Q against the alternative H1 : P 6= Q for
some distributions P and Q. Two-sample testing aims to test H0 : P = Q on the basis
of two samples drawn from the two unknown distributions P and Q. Independence
testing tests statistical dependence of two random vectors X and Y. Equivalently,
this can be cast as testing H0 : Pxy = PxPy using only the joint sample drawn from
the unknown joint distribution Pxy, where Px and Py are the respective marginal
distributions of X and Y. Goodness-of-fit testing examines whether a given sample
follows a known probability distribution (model): given a sample from an unknown
distribution Q, and a known model P, it tests H0 : P = Q. The knowledge of P is what
distinguishes goodness-of-fit testing from the two-sample testing.

We consider only nonparametric testing, meaning that the assumptions made on
the distributions P and Q are mild. Importantly, we do not assume any parametric
family to which P and Q belong, in any of the three problems. By contrast, the well
known t-test can be seen as a form of restrictive two-sample test, where the two
samples are represented by their empirical means. In this case, the difference between
P and Q can be detected only when there is a difference between the means, a strong
implicit assumption which may not hold in practice. Many modern nonparametric
tests are based on the use of positive definite kernels whose corresponding reproducing
kernel Hilbert spaces (RKHSs) are of infinite dimensional [Gretton et al., 2005b,c,
Moulines et al., 2008, Gretton et al., 2012a, Chwialkowski et al., 2014, Chwialkowski

11



12 CHAPTER 1. INTRODUCTION

and Gretton, 2014, Chwialkowski et al., 2015, 2016]. The central idea is based on the
representation of empirical distributions with the so called kernel mean embeddings
[Berlinet and Thomas-Agnan, 2004, Smola et al., 2007].

Given a distribution P, its mean embedding is defined as the expectation of the
feature map implicitly defined by the kernel, resulting in a representation of P as a
point in the RKHS. It can shown that if the kernel is characteristic [Sriperumbudur et al.,
2011], then the mean map is injective, so that the distance between two distributions
as measured in the embedded RKHS defines a distance in the original space of distri-
butions. The use of such RKHS distance has led to the maximum mean discrepancy
(MMD) test [Gretton et al., 2006, 2012a], a modern state-of-the-art nonparametric
two-sample test. Measuring the distance between Pxy and PxPy by the MMD leads to
the so called Hilbert Schmidt Independence Criterion (HSIC) [Gretton et al., 2005a,b]
which can be used to construct a consistent independence test. For goodness-of-fit
testing, to the best of our knowledge, a multivariate, nonparametric (i.e., the model
P is not restricted to a parametric family) test has not been studied in the literature
until the recent works of Liu et al. [2016] and Chwialkowski et al. [2016]. The tests
in these two works rely on a kernelized Stein operator to define the test statistic.
Briefly, these tests rely on a test statistic given by the empirical expectation under Q
of a P-dependent function (constructed by a Stein operator of P). It was shown that
asymptotically the expectation of such a function is zero if and only if the sample
follows P, allowing one to conduct a nonparametric goodness-of-fit test without the
need of a sample from P. Further, the dependency on P in the constructed function
is only through the gradient (with respect to the input variable) of the log density.
This means that the normalizer of P does not need to be known, and the test can be
applied to a complex model whose normalizer may be computationally intractable.

Motivations and Contributions Despite strong theoretical properties, a bottleneck
common to all the kernel-based tests is their high runtime complexity, which is
quadratic in the sample size. This high cost means that these tests can be applied to
only problems of small size. In the followings, we briefly describe three commonly
used techniques to reduce the computation.

1. Random Fourier Features [Rahimi and Recht, 2007, Zhao and Meng, 2014,
Zhang et al., 2017]: this approach aims to approximate evaluation of the kernel
with a dot product in a finite-dimensional space, constructed by randomly
sampling from the spectral density of the kernel. The test statistic can then be
rewritten in its “primal form” so that the dominant term in the computational
complexity is the number of features, rather than the sample size. While this
approach allows the test to be applied to larger problems, the use of a finite-
dimensional kernel implies that the test is no longer consistent. That is, since
only finitely many statistics can be captured, there exists a pair of P, Q that
cannot be distinguished by the test. To ensure test consistency, as sample size
increases, a growing number of features is needed. However, this defeats the
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purpose of reducing the runtime in the first place.

2. Incomplete Cholesky Factorization and Nyström Method [Williams and Seeger,
2001, Zhang et al., 2017]: incomplete Cholesky factorization and the Nyström
method approximate the kernel Gram matrix with a low-rank factorization by
taking advantage of the fact that the kernel has a rapidly decaying spectrum (e.g.,
the Gaussian kernel). The test statistic can be rewritten in terms of the low-rank
factors of the Gram matrix, thus reducing the computation. The asymptotics
and consistency of a test based on the Nyström method or incomplete Cholesky
factorization remain a challenging open question. Further, when the kernel
spectrum does not decay sufficiently rapidly, the reduced rank may still need to
be large to accurately approximate the Gram matrix.

3. Incomplete U-Statistic [Gretton et al., 2012a, Zaremba et al., 2013, Zhang et al.,
2017]: many kernel-based test statistics can be written as a second-order U-
statistic (Section A.1: U-Statistics), taking the form Tn = 2

n(n−1) ∑i<j h(zi, zj)

for some function h, where n is the sample size, and {zi}n
i=1 is the observed

sample. Computational complexity of Tn is O(n2). The idea of an incomplete
U-statistic is to subsample summands in Tn so that the number of terms left is
of order O(n). The result is a test statistic which can be computed in linear-
time, and is still unbiased. An advantage over the previous two approaches
is that test consistency still remains (if the original Tn yields a consistent test).
A disadvantage is that it tends to give a test with low test power (i.e., the
probability of rejecting H0 when it is false) for finite n, due to the increase in the
variance of the statistic.

An equally pressing issue is the choice of the kernel itself. Of all the aforementioned
kernel tests, apart from the MMD two-sample test for which kernel optimization has
been investigated [Gretton et al., 2012b, Sutherland et al., 2016], there is no principled
way of optimizing kernels in the HSIC test of independence, and the kernelized Stein
test of goodness of fit. These are the motivations for our proposals. Our goals are to
develop new kernel tests for the three types of testing which address the drawbacks
of existing kernel tests, while maintaining their advantages:

1. The new tests have a principled way of choosing kernels and all other hyperpa-
rameters.

2. The new tests, including the parameter tuning procedure, run in linear-time
(with respect to the sample size).

3. The new tests can be used with multivariate random variables, are nonparametric
and consistent.

The key idea behind these new tests is to learn explicit features (points in the same
domain as the input data) so as to maximize the rate of detecting the differences
between the two distributions i.e., the test power. The features not only allow one to
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avoid the expensive (quadratic in the sample size) computation of the distance in the
RKHS, but turn out to also pinpoint and indicate where the two distributions differ.
For instance, in the goodness-of-fit test, the latter property makes the test interpretable:
it uniquely gives evidence indicating the region in which the model P fails to fit the
data. All hyperparameters can be automatically tuned so as to maximize the (lower
bound on the) test power. This series of works thus simultaneously addresses a number
of long-standing issues in kernel-based hypothesis testing, namely, unavailability of a
parameter tuning procedure, and high runtime complexity. Importantly, our linear-
time tests are consistent for any finite number of features. To reiterate, the commonly
used random Fourier features [Rahimi and Recht, 2007] to speed up kernel-based tests
requires a growing number of features to guarantee test consistency.

Our new two-sample test, independence test, and goodness-of-fit test are described
in Chapter 3, Chapter 4, and Chapter 5, respectively.

1.2 Informative Features for Learning to Infer

Given a graphical model consisting of factors (non-negative functions e.g., condi-
tional probability densities) capturing how neighboring variables interact, the goal of
Bayesian inference is to infer the posterior distribution of some variables of interest,
conditioning on observed realizations of others. A commonly used approximate
inference scheme is expectation propagation (EP), which recursively passes evidence
from the observed variables in the form of outgoing messages (i.e., functions or distri-
butions), to the variables to be inferred. Each message can be computed locally at a
factor as a function of incoming messages from the neighbors.

Goals A major challenge is that computing a message typically involves an intractable
integral over a complicated factor, and may require an expensive numerical integra-
tion. A typical approach is to manually compute (or approximate) the integral for
each considered factor, and implement accordingly in the inference engine. This is
the approach taken by Infer.NET [Minka et al., 2014], a probabilistic programming
framework which supports EP. While the modeler can freely compose their model
from supported factors known to the inference engine, using a customized factor still
requires manual implementation of the outgoing messages. Our goal is to automate
the computation of outgoing messages in EP for arbitrary factors, so that no manual
derivation is needed. Further, we also require that the overhead resulting from such
automation be kept minimal.

An approach due to Barthelmé and Chopin [2011] is to compute the messages
via importance sampling. Although this approach eliminates the need of manual
derivation of message computation, it suffers from high computational complexity.
Heess et al. [2013] use neural networks to predict outgoing messages from incoming
messages, replacing the expensive numerical integration. The neural networks are
trained offline on importance sampled instances of incoming/outgoing message pairs.
While there is a large gain in runtime, this approach requires training data that cover
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the relevant regions of input messages to be encountered during the inference. In
practice, such relevant regions are unknown during the training phase. Eslami et al.
[2014] address this problem by considering online learning (during the EP inference)
of a random forest based message predictor. Whenever the random forest decides it
is uncertain of the input messages, it queries the importance sampling oracle for the
outgoing message, and updates itself. Otherwise, the outgoing message is efficiently
predicted by the random forest. A disadvantage of random forests is that uncertainty
estimation relies on unproven heuristics, and is highly non-smooth. This means that
the random forest can be uncertain of even a tuple of input messages which is in the
region populated by the training messages. As a result, the importance sampling
oracle is queried more frequently than necessary.

In our collaborative work [Jitkrittum et al., 2015] with Google DeepMind, we
use the kernel mean embedding to represent incoming messages, and construct a
Gaussian process regression function that learns to send EP messages. Two-layer
random Fourier features for distributional input are developed and used to further
improve the speed, making the overall complexity linear in the sample size. The
result is an automatic inference engine (implemented in Infer.NET [Minka et al., 2014])
which quickly learns to send messages for any factor that can be sampled, eliminating
the need of manually deriving message computation. We show empirically that the
inference quality matches that of Infer.NET which relies on handcrafted factors. This
work addresses simultaneously both the model expressiveness (i.e., automatically
handling complicated factors) and computational tractability. The developed tool can
be useful in probabilistic programming, since it makes inference fast and practical for
complex models. This study is described in Chapter 6.

1.3 Structure of the Thesis

We start in Chapter 2 with some brief background on kernel methods for learning on
distributions. Chapter 3 describes the new linear-time two-sample test, which relies
on explicit difference-characterizing features. The technique developed in this chapter
is further extended in Chapter 4 to construct a new linear-time independence test,
where the learned features indicate the regions in which the joint distribution and
the product of the marginal distributions differ most. In Chapter 5, the test based on
the kernelized Stein operator is discussed and extended, leading to a new linear-time
goodness-of-fit test that also gives features indicating where the model fails to fit the
data. A brief background on Bayesian inference is given in the beginning of Chapter
6, followed by our contribution to automate the expectation propagation algorithm.
This is possible due to the developed two-staged Fourier feature representation of the
incoming messages. We end the thesis with conclusions and remarks on a number of
potential future studies in Chapter 7.

The four main thesis chapters are based on the following publications which were
published over the course of this thesis. Source code for all proposed methods in this
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thesis is publicly available.
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Chapter 2

Kernel Methods for Learning on
Distributions

The use of kernel mean embeddings to measure the distance between two distributions
is at the core of all our contributions. In this chapter, we provide a brief review of the
theory of reproducing kernel Hilbert spaces (RKHSs), and kernel mean embeddings.
In the following chapters, we will assume the background knowledge described in
this chapter. For rigorous treatment of the theory of RKHSs, see Berlinet and Thomas-
Agnan [2004], Steinwart and Christmann [2008]. A broad overview of kernel methods
can be found in Muandet et al. [2017].

2.1 Reproducing Kernel Hilbert Space

There are a few equivalent definitions of a reproducing kernel Hilbert space (RKHS).
We will present the simplest and the most suitable for our purpose. We first give the
definition of a reproducing kernel.

Definition 2.1 (Reproducing kernel [Berlinet and Thomas-Agnan, 2004, Definition 1]).
Let F be a Hilbert space of real-valued functions defined on a non-empty set X . Write
〈·, ·〉 to denote the inner product associated with F . A function k : X ×X → R is said
to be a reproducing kernel of F if

1. for all x ∈ X , k(x, ·) ∈ F ,

2. for all x ∈ X and for all f ∈ F , 〈 f , k(x, ·)〉 = f (x).

The second property is known as the reproducing property. We will write F (k) for F
when the dependency on k needs to be emphasized.

When the space F on which the inner product 〈·, ·〉 is defined needs to be empha-
sized, we will write 〈·, ·〉F .

Definition 2.2 (RKHS [Steinwart and Christmann, 2008, Section 4.2]). A reproducing
kernel Hilbert space (RKHS) is a Hilbert function space F with a reproducing kernel
k (as defined in Definition 2.1).

17
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Existence of an RKHS does not require other conditions on the domain X besides
that it be non-empty. In an RKHS, convergence in norm implies pointwise convergence.
That is, given f and g in an RKHS F (k),

| f (x)− g(x)| = | 〈 f − g, k(x, ·)〉F |
(a)
≤ ‖ f − g‖F‖k(x, ·)‖F = ‖ f − g‖F

√
k(x, x), (2.1)

where (a) follows from the Cauchy-Schwarz inequality. The inequality in (2.1) implies
that if f converges to g in the RKHS norm, then f (x) = g(x) for all x ∈ X . The
expression k(x, ·) can be interpreted in two different ways. Firstly, it can be seen as a
function v 7→ k(x, v) constructed by fixing one argument of k to x. Secondly, k(x, ·)
can be seen as a vector in F (recall that F is a vector space). The reproducing property
means that the evaluation of f (·) at x (i.e., f (x)) is given by the inner product between
a feature vector k(x, ·) of x, and a feature representation of the function f (·), which is
denoted by f . This second interpretation means that f ∈ F can be seen as a parameter
vector of the function x 7→ 〈 f , k(x, ·)〉, and consequently F is a space of parameter
vectors which can be used to define real-valued functions. We interchangeably write
f (·) (the function itself) and f (the feature representation of the function) when the
distinction is not important.

To illustrate the reproducing kernel, let us consider a simple concrete example. Let
X = R, φ(x) := (x, x2)>, and define

k(x, y) := 〈φ(x), φ(y)〉R2 = xy + x2y2, (2.2)

where 〈·, ·〉R2 is the standard dot product in R2. In this case, the space F is the set of
functions

{
x 7→ ∑2

i=1 αiφi(x) | α1, α2 ∈ R
}

. Alternatively, since (α1, α2) fully specifies

a function (i.e., a function’s parameters), one can see F = R2. It follows that the
reproducing kernel k(x, ·) = φ(x). The function x 7→ φ(x) is called the canonical feature
map [Steinwart and Christmann, 2008, Lemma 4.19], or simply feature map. It can be
seen that the reproducing property as described in Definition 2.1 holds.

Positive Definite Kernel In (2.2), we start with a feature map and define the kernel.
In general, one can define k, a real-valued function of two arguments, directly without
explicitly specifying the underlying canonical feature map. The key question is: what
conditions are required for the function to be a reproducing kernel of some Hilbert
space? The answer and related important properties are summarized in Theorem 2.4.

Definition 2.3 (Positive definite function [Steinwart and Christmann, 2008, Definition
4.15]). A symmetric function k : X ×X → R is called positive definite if for all n ∈N,
α1, . . . , αn ∈ R and all x1, . . . , xn ∈ X , we have ∑n

i=1 ∑n
j=1 αiαjk(xi, xj) ≥ 0.

Theorem 2.4 (Positive definite kernel and RKHSs). Assume that k : X × X → R is
positive definite (see Definition 2.3). The following statements hold.
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1. There exists a map φ : X → F (not unique) such that, for all x, x′ ∈ X , we have
k(x, x′) = 〈φ(x), φ(x′)〉F .

2. (Moore-Aronszajn theorem) There is a unique Hilbert space F of functions on X for
which k is a reproducing kernel.

3. If a Hilbert space of functions on a non-empty set X has a reproducing kernel, then it is
unique [Steinwart and Christmann, 2008, Theorem 4.20].

Henceforth, we will refer to a function k : X ×X → R which is positive definite
simply as a kernel. Theorem 2.4 implies that the key to construct an RKHS is to have a
positive definite kernel. In general, the domain X can be a subset of a non-Euclidean
space. There are kernels for graphs, text, strings, and even probability distributions
[Shawe-Taylor and Cristianini, 2004]. Note that although there is only one unique
reproducing kernel associated with F , the underlying feature map φ may not be

unique. For example, the feature maps φ(x) :=
(

x√
2
, x√

2
, x2
)>

or φ(x) :=
(
x, x2, 0

)>
define the same kernel in (2.2). In general, a kernel may even be associated with an
infinite-dimensional feature map.

A kernel whose underlying feature map is infinite-dimensional can be a powerful
tool for learning. Many learning algorithms relying on a prediction function fθ(x)
which is linear in the parameter vector θ can be kernelized. This means that the
same learning algorithm is applied in the feature space specified by a feature map
φ, as implicitly induced by a kernel. If the underlying Hilbert space F is infinite-
dimensional, the result is a powerful learning algorithm which uses an infinite basis
expansion given by the infinite-dimensional map φ. Although x 7→ φ(x) cannot be
directly computed and stored, it is typically the case that linear learning algorithms
can be reformulated in such a way that the solution requires only evaluations of
the inner product in the feature space F . Since the inner product is given by the
kernel k, the solution can be easily computed. Reformulating the problem so that
the dependency on the infinite-dimensional feature map is only through its inner
product is known as the kernel trick. A commonly used kernel corresponding to an
infinite-dimensional Hilbert space is the Gaussian kernel, also known as the radial
basis function (RBF) kernel

k(x, y) = exp
(
−‖x− y‖2

2
2σ2

)
, (2.3)

where X ⊆ Rd for some d ∈ N, and σ > 0 is the kernel bandwidth. We note that
different choices of σ2 define different kernels, and hence different RKHSs. Successful
learning algorithms which are based on the kernel trick include support vector
machine [Cortes and Vapnik, 1995], kernel principal component analysis [Schölkopf
et al., 1997], as well as the maximum mean discrepancy [Gretton et al., 2012a], a
distance measure between two distributions (described in Section 2.2).
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2.2 Kernel Mean Embedding

Kernel mean embedding is a technique to represent distributions as points in an
RKHS. According to Berlinet and Thomas-Agnan [2004, p. 189], the idea was first
studied in the years 1975-1980 by Denis Bosq and C. Guilbart. Let P be a probability
measure on X , and k be a kernel associated with RKHS F . The mean embedding of P
as induced by k is defined as

µP := Ex∼P[k(x, ·)], (2.4)

which is an element of F (if µP exists). In words, the mean embedding of the
distribution P is the expectation under P of the canonical feature map. Conditions
under which µP exists and is in F are summarized in Lemma 2.5.

Lemma 2.5 (Gretton et al. [2012a, Lemma 3], Sriperumbudur et al. [2010, Theorem 1],
Smola et al. [2007]). If Ex∼P

√
k(x, x) < ∞, then µP ∈ F and Ex∼P[ f (x)] = 〈 f , µP〉F for

all f ∈ F .

The condition Ex∼P
√

k(x, x) < ∞ implies that the mean embedding exists only if
the distribution is a member of Pk := {P ∈ P |

∫
X
√

k(x, x)dP(x) < ∞} where P is
the set of all Borel probability measures. If, however, k is bounded i.e., supx∈X k(x, x) <
∞, then mean embeddings are well defined for any P ∈ P [Sriperumbudur et al., 2010,
Proposition 2]. For instance, this is the case for the Gaussian kernel in (2.3), which is
bounded by 1. Embedding distributions to points in a Hilbert space allows one to use
standard operations in the Hilbert space to manipulate them. One such operation is
that, as seen in Lemma 2.5, the expectation under P of any function f in the RKHS
defined by k can be computed by taking the inner product of µP and f . This property
is convenient for many tasks.

Empirical Estimation Given an independent and identically distributed (i.i.d.) sample
{xi}n

i=1 ∼ P, and a kernel k, the mean embedding can be estimated straightforwardly
with its plug-in estimator µ̂P := 1

n ∑n
i=1 k(xi, ·) i.e., replace P in (2.4) by its empirical

counterpart P̂ := 1
n ∑n

i=1 δxi , where δx denotes a Dirac measure at x ∈ X . By Bernstein’s
inequality in separable Hilbert spaces, ‖µ̂P − µP‖F = OP(n−1/2), where OP denotes
the stochastic big-oh. In other words, the empirical mean embedding is a

√
n-consistent

estimator of µP in F -norm [Tolstikhin et al., 2016]. In machine learning applications, P
is often unknown, and only its sample is observed. The empirical mean embedding µ̂P

is thus the quantity of interest in practice instead of µP. We next describe applications
of mean embeddings.

2.3 Maximum Mean Discrepancy

A useful operation on embedded distributions which has applications in hypothesis
testing is measuring their distance.1 As before, let k : X × X → R be the kernel

1We use “distance” here as a generic, non-technical term. The formal concept of a mathematical
distance will be referred to as a metric.
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associated with the RKHS F . The distance of two distributions P and Q defined on
X , as measured by their mean embeddings is known as the maximum mean discrepancy
(MMD) [Gretton et al., 2006, 2012a]:

MMD(P, Q) := sup
‖ f ‖F≤1

Ex∼P[ f (x)]−Ey∼Q[ f (y)] (2.5)

= sup
‖ f ‖F≤1

〈µP − µQ, f 〉F (2.6)

(a)
= ‖µP − µQ‖F , (2.7)

where we use the reproducing property, and at (a) we use the fact that an inner
product achieves its supremum when the two vectors are parallel. MMD as defined in
(2.5) is an instance of an integral probability metric (IPM) [Müller, 1997], a pseudometric
on the space of probability measures. A general IPM takes the form

IPM(H, P, Q) = sup
h∈H

Ex∼P[ f (x)]−Ey∼Q[ f (y)], (2.8)

and is parametrized by a class H of real-valued bounded measurable functions on
X . The choice H is crucial in making the IPM a metric (it is always a pseudometric
regardless of H). Choices of H which define a metric include Cb(X ), the space of
bounded continuous functions on X [Dudley, 2002, Lemma 9.3.2], and the space of
all functions on X that are bounded, Lipschitz [Shorack, 2000, p. 540, Definition 2.2].
The latter is known as the Dudley metric. More examples of IPMs can be found in
Sriperumbudur et al. [2010, p. 1519]. The MMD considers H = { f | ‖ f ‖F ≤ 1}, a unit
ball in the RKHS F .

Witness Function The RKHS function that attains the supremum in (2.6) is known as
the witness function [Gretton et al., 2012a, Section 2.3]:

f ∗(v) ∝ Ex∼P[k(x, v)]−Ey∼Q[k(y, v)], (2.9)

which is proportional to the difference of the mean embeddings of P and Q. If we
interpret the kernel k in (2.9) as a smoothing kernel for density estimation,2 we see
that the witness function is positive when the density of P exceeds the density of Q,
and negative otherwise. The witness function can be used to visualize regions (in the
domain X ) in which P and Q differ [Lloyd and Ghahramani, 2015] when the input
dimension d is low. The RKHS norm of the witness function is the MMD.

2.3.1 Characteristic Kernels

As in IPMs, MMD is in general a pseudometric, unless k (and hence F ) is characteristic
(Definition 2.6).

2In general a smoothing kernel and a positive definite kernel are two different objects. A smooth-
ing kernel is a non-negative real-valued integrable function K : X → R such that

∫
X K(u)du = 1

(normalized), and K(−u) = K(u).
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Definition 2.6 (Characteristic kernels [Fukumizu et al., 2008, Sriperumbudur et al.,
2011]). A kernel k is said to be characteristic if the mean map P 7→ Ex∼P[k(x, ·)] is
injective on P (the set of all Borel probability measures). Equivalently, k is characteristic
if MMD(P, Q) = ‖µP − µQ‖ = 0 ⇐⇒ P = Q for any P, Q ∈ P .

The injectivity of the mean map P 7→ Ex∼P[k(x, ·)] by the use of a characteristic
kernel implies that distinct distributions are mapped to distinct points in the RKHS
F , allowing the distance in F (i.e., the MMD) to separate different distributions.
Examples of characteristic kernels include the Gaussian kernel in (2.3), the Laplace
kernel k(x, y) = exp

(
− ‖x−y‖2

σ

)
, the B-spline kernel, and the Matérn class of kernels

[Sriperumbudur et al., 2010, Section 3.2].
An example of a non-characteristic kernel is the one given in (2.2) on R×R. Since

the feature map is k(x, ·) = (x, x2)>, the mean map of a distribution P is Ex∼P(x, x2)>,
which captures only the first two moments of P (if exist). If P and Q share the same
first two moments, and differ in higher-order moments, then MMD(P, Q) = 0 even
though P 6= Q. This kernel can be seen as a special case of the degree-D polynomial
kernel kc,D : X ×X → R with X ⊆ Rd, given as

kc,D(x, y) := (x>y + c)D,

where c ≥ 0 and D ∈ N are the two parameters of the kernel. It can be shown that
the feature map kc,D(x, ·) has dimensions indexed by monomials of x. Specifically,
kc,D(x, ·) ∈ R(d+D

D ) such that kc,D(x, ·)a = ∏d
j=1 x

aj
j , a := (a1, . . . , ad), and ∑d

j=1 aj ≤ D
[Shawe-Taylor and Cristianini, 2004, Section 9.1]. The polynomial kernel kc,D for any
c > 0 and D ∈ N is not characteristic. Being characteristic is only one of many
properties a kernel can have. Other useful properties will be discussed in Section 2.5.

2.3.2 Estimation, Convergence, and Asymptotic Distributions

By expanding the square of (2.7), we obtain

MMD2(P, Q) = ‖µP − µQ‖2
F

= 〈µP, µP〉F + 〈µQ, µQ〉F − 2 〈µP, µQ〉F
= Ex∼PEx′∼Pk(x, x′) + Ey∼QEy′∼Qk(y, y′)− 2Ex∼PEy∼Qk(x, y). (2.10)

Given samples {xi}m
i=1

i.i.d.∼ P and {yi}n
i=1

i.i.d.∼ Q, an unbiased estimator of (2.10) is
given by

M̂MD2(P, Q) =
1

m(m− 1)

m

∑
i=1

∑
j 6=i

k(xi, xj) +
1

n(n− 1)

n

∑
i=1

∑
j 6=i

k(yi, yj)−
2

mn

m

∑
i=1

n

∑
j=1

k(xi, yj),

(2.11)

which can be computed straightforwardly. Unlike other divergences or distances for
distributions which require density estimation (e.g., an L2 distance between Parzen
window estimates), the MMD estimator in (2.11) can be directly computed given only
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a kernel k and samples. Assume that m = n. Then, this unbiased MMD estimator is a
one-sample second-order U-statistic (see Section A.1) where its U-statistic core is

h(zi, zj) := k(xi, xj) + k(yi, yj)− k(xi, yj)− k(xj, yi), (2.12)

and zi := (xi, yi)
i.i.d.∼ P×Q [Gretton et al., 2012a, Lemma 6]. The unbiased estimator

can then be written as

M̂MD2(P, Q) =

(
n
2

)−1 n

∑
i=1

∑
j>i

h(zi, zj). (2.13)

Thus, convergence results and asymptotic distributions can be obtained by appealing
to the theory of U-statistics. Directly based on Lemma A.3 and Lemma A.4, the
asymptotic distributions of the unbiased MMD estimator can be derived under two
cases: when P = Q and when P 6= Q. That is, when P = Q, M̂MD2(P, Q) follows
an infinite weighted sum of chi-squares as n → ∞ [Gretton et al., 2012a, Theorem
12]. When P 6= Q, M̂MD2(P, Q) is asymptotically normally distributed with the mean
given by MMD2(P, Q) > 0 [Gretton et al., 2012a, Corollary 16].

A Linear-Time Estimator Assume that m = n. The cost for computing the unbiased
MMD estimator in (2.11) is O(n2) which is expensive for large n. Let n2 := bn/2c
where b·c is the floor function. A linear-time estimator was proposed in Gretton et al.
[2012a, Lemma 14], and is given by

M̂MD2
l (P, Q) =

1
n2

n2

∑
i=1

h((x2i−1, y2i−1), (x2i, y2i)), (2.14)

where h is defined in (2.12). This estimator is an incomplete U-statistic [Janson, 1984],
which considers a subset of the summands of (2.13). It can be seen that M̂MD2

l (P, Q)

is unbiased and can be computed in O(n) time. The central limit theorem implies
that M̂MD2

l (P, Q) is asymptotically normally distributed with the mean given by
MMD2(P, Q). Compared to the quadratic-time estimator, the linear-time estimator
has higher variance.

2.4 Applications of Mean Embedding

Two-Sample Testing A natural application of the MMD is to use it as a test statistic for
two-sample testing [Gretton et al., 2012a]. In two-sample-testing or test of homogeneity,
given samples {xi}m

i=1
i.i.d.∼ P and {yi}n

i=1
i.i.d.∼ Q, the goal is to test the null hypothesis

H0 : P = Q against the alternative H1 : P 6= Q based on only the samples. The test is
achieved by comparing the test statistic to a test threshold. If the statistic exceeds the
threshold, the null hypothesis H0 is rejected. A common choice of the test threshold
is the (1− α)-quantile of the null distribution of the statistic i.e.., the distribution of
the test statistic assuming that H0 is true. The quantity α is known as the significance
level of the test, and is predetermined in advance before observing the samples. This
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choice for the test threshold means that the type-I error (false rejection of H0 when it
is true) will not exceed α.

When the quadratic-time MMD estimator in (2.11) is used, the asymptotic null
distribution is given by an infinite weighted sum of chi-squared random variables,
where the weights are the eigenvalues of an operator defined based on the kernel
[Gretton et al., 2012a, Theorem 12]. The distribution does not have a closed-form
expression. One way to estimate the (1− α)-quantile of the null distribution is by the
permutation testing, using the bootstrap on the aggregated samples [Arcones and Gine,
1992]. This procedure involves repeatedly computing the quadratic-time estimator on
shuffled samples, and can be computationally expensive. An approximation to the
intractable null distribution can be obtained by fitting Pearson curves to the first four
moments of the MMD [Gretton et al., 2012a, Section 5]. Further alternatives include a
consistent estimation of the eigenvalues from the spectrum of the Gram matrix, and
fitting a Gamma distribution to the null distribution [Gretton et al., 2009]. The latter
provides a fast procedure for determining the quantile, but is less accurate compared
to other approaches. Two-sample testing will be discussed in detail in Chapter 3.

Independence Testing Let X ∈ X ⊆ Rdx and Y ∈ Y ⊆ Rdy be two multivariate
random variables. Let Pxy be the joint distribution of (X, Y), and Px, Py be the respective

marginal distributions of X and Y. Given a joint sample {(xi, yi)}n
i=1

i.i.d.∼ Pxy, an
independence test proposes the null hypothesis H0 : Pxy = PxPy (i.e., X and Y are
independent) against the alternative H1 : Pxy 6= PxPy. One way to test the null
hypothesis with mean embedding is by comparing the RKHS distance between the
embeddings of Pxy and PxPy. This requires a kernel k : (X × Y) × (X × Y) → R.
Assume that the kernel k on the joint domain is given by the product of kernels on
the marginals. Then, the population quantity of the test statistic is MMD2(Pxy, PxPy),
which is known as the Hilbert-Schmidt Independence Criterion (HSIC) [Gretton et al.,
2005b]. As in the case of the MMD two-sample test, an empirical estimator can
be computed based on two kernels (one for X and one for Y), and its asymptotic
distributions can be derived. Independence testing and HSIC will be discussed in
details in Chapter 4.

Distribution Regression In distribution regression, we are given a paired sample
{(Pi, yi)}n

i=1 drawn from a meta distributionM, where Pi is a distribution defined on
X , and yi ∈ R is the associated target output, the goal is to learn a map P 7→ y [Poczos
et al., 2013]. One of many applications of distribution regression is, for instance, in
predicting blood pressure (yi) from a set of periodically measured health indicators
(assumed to be represented by a distribution Pi). A flexible approach for distribution
regression is by kernel ridge regression. In kernel ridge regression, regression can
be performed provided that a kernel on the inputs can be defined. In the case of
distribution regression, we require a kernel on distributions. Mean embedding offers
a nonparametric and uniform way of defining a kernel on distributions. Let P and Q
be two distributions, and k : X ×X → R be a kernel associated with RKHS F . The



2.5. PROPERTIES OF KERNELS 25

set kernel

κ(P, Q) = 〈µP, µQ〉F = Ex∼PEy∼Qk(x, y)

is one of the simplest kernels on distributions that can be defined with mean embed-
dings. The set kernel is linear in each of the two mean embeddings, analogous to the
linear kernel k(x, y) = x>y for Euclidean input vectors. A natural extension of the
Gaussian kernel in (2.3) to distributions is

κg(P, Q) = exp
(
−‖µP − µQ‖2

F
2σ2

)
,

which is a Gaussian kernel on mean embeddings [Christmann and Steinwart, 2010].
Other nonlinear kernels on distributions can be found in Szabó et al. [2016, Table 1].
An advantage of defining kernels based on mean embeddings is that it is invariant to
reparameterization of the input distributions. In Chapter 6, we will see an application
of Gaussian process regression for distribution regression for predicting expectation
propagation messages.

2.5 Properties of Kernels

We have seen in Section 2.1 that a kernel k directly characterizes the Hilbert space F
of real-valued functions. In fact, functions in F (k) also inherit properties of k. We
start with the boundedness.

Lemma 2.7 (Boundedness of kernels [Steinwart and Christmann, 2008, Lemma 4.23]).
Let X be a set and k : X ×X → R be a kernel with RKHS F . Then, k is bounded if and only
if ‖ f ‖∞ = supx∈X | f (x)| < ∞ for all f ∈ F .

Lemma 2.7 states that the boundedness of the kernel k implies the boundedness of
the functions in F (k), and vice versa. Continuity of the functions in the RKHS is also
characterized by the continuity of the kernel, as stated in Lemma 2.8.

Lemma 2.8 (Continuity of kernels [Steinwart and Christmann, 2008, Lemma 4.28]).
Let k : X ×X → R be a kernel associated with the RKHS F on a topological space X . Then,
every f ∈ F is bounded and continuous if and only if k is bounded, and v 7→ k(x, v) is
continuous for all x ∈ X .

The “size” of an RKHS is also an important property for learning on distributions.
In particular, if the function class defining an integral probability metric (IPM, see
(2.8)) is large enough, then the IPM is a metric (rather than just a pseudometric). A
useful class of large RKHSs is one which can approximate a continuous function up to
any arbitrary accuracy. A kernel defining such an RKHS is called universal (Definition
2.9). We write C(X ) to denote the space of continuous functions, and write Cb(X ) to
denote the space of bounded, continuous functions endowed with the uniform norm.
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Definition 2.9 (Universal kernels [Steinwart and Christmann, 2008, Definition 4.52]).
A continuous kernel k on a compact metric space X is called universal (also known
as c-universal [Sriperumbudur et al., 2011]) if the associated RKHS F is dense in
C(X ) i.e., for any function g ∈ C(X ) and any ε > 0, there exists an f ∈ F such that
‖ f − g‖∞ ≤ ε.

Gretton et al. [2012a, Theorem 5] showed that if k is universal on a compact metric
space X , then it is characteristic in the sense of Definition 2.6. The proof relies on the
facts that an IPM ((2.8)) defined with the function class Cb(X ) is a metric on the space
of Borel probability measures [Dudley, 2002, Lemma 9.3.2], and that any function
from C(X ) ⊃ Cb(X ) can be well approximated by some function in a universal RKHS
(by definition). When X ⊂ Rd is compact, Steinwart and Christmann [2008, Corollary
4.58] shows that the exponential kernel k(x, y) = exp

(
x>y

)
, and the Gaussian kernel

in (2.3) are universal.
The compactness of X required in the definition of universal kernels can be

restrictive and exclude many interesting spaces including Rd. A variant of the c-
universality is c0-universality which does not require the domain to be a compact
space. Before we define c0-universality, we will need a few more definitions. Let C0(X )

be the class of all continuous real-valued functions on X which vanish at infinity.
Precisely, for any ε > 0, and any f ∈ C0(X ), the set {x ∈ X : | f (x)| ≥ ε} is compact.
When X is a normed vector space, the condition is equivalent to having f (x)→ 0 as
‖x‖ → ∞ for all f ∈ C0(X ). A space X is said to be locally compact if every point in
X has a compact neighbourhood. A space X is Hausdorff if for any x 6= y ∈ X , there
exist a neighbourhood U of x, and a neighbourhood V of y such that U and V are
disjoint. Any metric space is Hausdorff. An example of a locally compact Hausdorff
(LCH) space is Rd for d ∈N. We are ready to define c0-universal kernels.

Definition 2.10 (c0-kernels and c0-universal kernels (Sriperumbudur et al. [2011, p.
2392], Carmeli et al. [2010, Definition 4.1])). Let X be a locally compact Hausdorff
(LCH) space. A kernel k : X ×X → R is said to be a c0-kernel if it is bounded with
k(x, ·) ∈ C0(X ) for all x ∈ X . A kernel k : X ×X → R is said to be c0-universal if it is
a c0-kernel, and the RKHS F (k) is dense in C0(X ) with respect to the uniform norm.

There is less restriction on the domain of a c0-universal kernel compared with a
c-universal kernel. c0-universal kernels, however, need to vanish at infinity. Examples
of c0-universal kernels on Rd include the Gaussian (in (2.3)), Laplacian, B2l+1-spline,
inverse multiquadric, and the Matérn class. When X is compact, the c- and c0-
universality are equivalent. A c0-universal kernel on an LCH space is characteristic
[Sriperumbudur et al., 2011, p. 2398]. A c0-kernel that is characteristic needs not
be c0-universal. However, this statement is true if the kernel is also translation
invariant3 on Rd [Sriperumbudur et al., 2011, p. 2397]. That is, a translation invariant,

3A kernel k : X × X → R on a vector space X is said to be translation invariant if there exists a
function k̃ : X → R such that k̃(x− y) = k(x, y) for all x, y ∈ X . In words, the kernel k depends on only
the difference of the two arguments.
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characteristic c0-kernel on Rd is c0-universal. Translation invariant, c0-kernels on Rd

will be important in our discussion of independence testing in Chapter 4.
More recently, real analytic kernels were used to construct fast two-sample tests

[Chwialkowski et al., 2015]. Real analytic kernels are defined in Definition 2.11.

Definition 2.11 (Real analytic kernels [Chwialkowski et al., 2015, p. 5]). Let X ⊆ Rd

be an open set. A kernel k : X ×X → R is said to be real analytic (or simply analytic)
if for all v ∈ X , x 7→ k(x, v) is a real analytic function on X .

A real analytic kernel is necessarily infinitely differentiable, meaning that it is very
smooth. An example of a real analytic kernel is the Gaussian kernel on an open set
X ⊆ Rd. One useful consequence on the RKHS F (k) with a bounded, real analytic
kernel k is that all functions in F (k) are real analytic (Lemma 2.12).

Lemma 2.12 (Analytic functions in RKHSs [Chwialkowski et al., 2015, Lemma 1]4).
Let X ⊆ Rd be an open set. If a kernel k : X ×X → R is bounded and real analytic, then all
functions in the RKHS associated with k are real analytic.

A well-known property of a real analytic non-zero function is that its set of roots
has measure zero (Lemma 2.13).

Lemma 2.13 (Roots of non-zero analytic functions have measure zero [Mityagin, 2015]).
Let f be a real analytic function on an open set X ⊆ Rd. If f 6= 0 (the zero function), then
{x | f (x) = 0} has zero Lebesgue measure.

Since many kernel-based statistic tests boil down to determining whether an
(empirically computed) RKHS function is a zero function, it turns out that Lemma 2.13
provides a fast alternative to computing the RKHS norm on the function. In Chapter
3, we will discuss an idea to exploit this fact to construct efficient linear-time tests.

4Lemma 1 in Chwialkowski et al. [2015] states this result only for when X = Rd. However, the same
proof goes through with an open set X ⊆ Rd.
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Chapter 3

Informative Features for
Distinguishing Distributions

Summary We study two semimetrics on probability distributions [Chwialkowski et al.,
2015], given as the sum of differences of expectations of analytic functions evaluated at
spatial or frequency locations (i.e., features). The goal is to learn informative features
for distinguishing two distributions. The features are learned so as to maximize the
distinguishability of the distributions, by optimizing a lower bound on test power for
a statistical test using these features. The result is a parsimonious and interpretable
indication of how and where two distributions differ locally. We show that the
empirical estimate of the test power criterion converges with increasing sample size,
ensuring the quality of the returned features. In real-world benchmarks on high-
dimensional text and image data, linear-time tests using the proposed semimetrics
achieve comparable performance to the state-of-the-art quadratic-time maximum mean
discrepancy test, while returning human-interpretable features that explain the test
results.

3.1 Introduction

We address the problem of discovering features of distinct probability distributions,
with which they can most easily be distinguished. The distributions may be in high
dimensions, can differ in non-trivial ways (i.e., not simply in their means), and are
observed only through i.i.d. samples. One application for such divergence measures
is to model criticism, where samples from a trained model are compared with a
validation sample: in the univariate case, through the KL divergence [Cinzia Carota
and Polson, 1996], or in the multivariate case, by use of the maximum mean discrep-
ancy (MMD) [Lloyd and Ghahramani, 2015] (see Section 2.3 for an introduction to
MMD). In the latter work, the model output of the Automated Statistician [Lloyd et al.,
2014] is compared with the original sample via a smooth witness function, which has
largest amplitude where the sample probability mass differs most from the model.
An alternative, interpretable analysis of a multivariate difference in distributions may
be obtained by projecting onto a discriminative direction, such that the Wasserstein

29
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distance on this projection is maximized [Mueller and Jaakkola, 2015]. Note that both
recent works require low dimensionality, either explicitly (in the case of Lloyd and
Gharamani, the function becomes difficult to plot in more than two dimensions), or
implicitly in the case of Mueller and Jaakkola, in that a large difference in distributions
must occur in projection along a particular one-dimensional axis. Distances between
distributions in high dimensions may be more subtle, however, and it is of interest
to find interpretable, distinguishing features of these distributions. For example,
when divergence measures are used in adversarial learning for deep belief networks
[Dziugaite et al., 2015, Li et al., 2015], it might be of interest to reveal explicitly the
manner in which the distributions returned by samples from the model differ from
the validation sample, which is challenging given the high dimensional outputs of the
models.

In this chapter, we take a hypothesis testing approach to discovering features
which best distinguish two multivariate probability measures P and Q, as observed
by samples X := {xi}n

i=1 drawn independently and identically (i.i.d.) from P, and
Y := {yi}n

i=1 ⊂ X ⊆ Rd from Q. Non-parametric two-sample tests based on RKHS
distances [Moulines et al., 2008, Fromont et al., 2012, Gretton et al., 2012a] or energy
distances [Székely and Rizzo, 2004, Baringhaus and Franz, 2004] have as their test
statistic an integral probability metric, the Maximum Mean Discrepancy [Gretton
et al., 2012a, Sejdinovic et al., 2013]. For this metric, a smooth witness function is
computed, such that the amplitude is largest where the probability mass differs most
[e.g. Gretton et al., 2012a, Figure 1]. Lloyd and Ghahramani [2015] used this witness
function to compare the model output of the Automated Statistician [Lloyd et al.,
2014] with a reference sample, yielding a visual indication of where the model fails. In
high dimensions, however, the witness function cannot be plotted, and is less helpful.
Furthermore, the witness function does not give an easily interpretable result for
distributions with local differences in their characteristic functions. A more subtle
shortcoming is that it does not provide a direct indication of the distribution features
which, when compared, would maximize test power. Rather, it is the witness function
norm, and (broadly speaking) its variance under the null, that determine test power.

Contributions Our approach builds on the analytic representations of probability
distributions of Chwialkowski et al. [2015], where differences in expectations of
analytic functions at particular spatial or frequency locations are used to construct a
two-sample test statistic, which can be computed in linear time. Chwialkowski et al.
[2015] showed that, despite the differences in these analytic functions being evaluated
at random locations, the analytic tests have greater power than linear time tests based
on subsampled estimates (see (2.14)) of the MMD [Gretton et al., 2012b, Zaremba et al.,
2013]. Our first theoretical contribution, in Section 3.4.1, is to derive a lower bound on
the test power, which can be maximized over the choice of test locations (features).
We propose two novel variants, both of which significantly outperform the random
feature choice of Chwialkowski et al.. The Mean Embedding (ME) test evaluates the
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difference of mean embeddings at locations chosen to maximize the test power lower
bound (i.e., spatial features); unlike the maxima of the MMD witness function, these
features are directly chosen to maximize the distinguishability of the distributions,
and take variance into account. The Smooth Characteristic Function (SCF) test uses
as its statistic the difference of the two smoothed empirical characteristic functions,
evaluated at points in the frequency domain so as to maximize the same criterion
(i.e., frequency features). Optimization of the mean embedding kernels/frequency
smoothing functions themselves is achieved on a held-out data set with the same
consistent objective.

As our second theoretical contribution in Section 3.4.2, we prove that the empirical
estimate of the test power criterion asymptotically converges to its population quantity
uniformly over the class of Gaussian kernels, at the rate of Op(n−1/4), where n is
the sample size. Two important consequences follow: first, in testing, we obtain
a more powerful test with fewer features. Second, we obtain a parsimonious and
interpretable set of features that best distinguish the probability distributions. In
Section 3.5, we provide experiments demonstrating that the proposed linear-time tests
greatly outperform all considered linear time tests, and achieve performance that
compares to or exceeds the more expensive quadratic-time MMD test [Gretton et al.,
2012a]. Moreover, the new tests discover features of text data (NIPS proceedings) and
image data (distinct facial expressions) which have a clear human interpretation, thus
validating our feature elicitation procedure in these challenging high-dimensional
testing scenarios.

3.2 Mean Embedding (ME) Test

Our approach of discovering distinguishing features is formulated as a nonparametric
two-sample test based on the mean embedding (ME) and the smooth characteristic
function (SCF) tests [Chwialkowski et al., 2015]. In this section, we review the
ME test. The SCF test will be described in Section 3.3. Given two i.i.d. samples
X := {xi}n

i=1,Y := {yi}n
i=1 from P and Q on X ⊆ Rd, respectively, the goal of a

two-sample test is to decide whether P is different from Q on the basis of the samples.
The task is formulated as a statistical hypothesis test proposing a null hypothesis
H0 : P = Q (samples are drawn from the same distribution) against an alternative
hypothesis H1 : P 6= Q (the sample generating distributions are different). A test
calculates a test statistic λ̂n from X and Y, and rejects H0 if λ̂n exceeds a predetermined
test threshold (critical value). The threshold Tα is given by the (1− α)-quantile of the
distribution of λ̂n under H0 i.e., the null distribution, and α is the significance level of
the test.

3.2.1 Unnormalized ME Statistic

The (unnormalized) ME test, in its simplest form, relies on a (random) metric on
the space of Borel probability measures. Given a bounded, characteristic, integrable
and real analytic kernel k : X × X → R (see Section 2.5: Properties of Kernels),
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consider the mean embeddings of P and Q given respectively by µP := Ex∼Pk(x, ·)
and µQ := Ey∼Qk(y, ·). The population unnormalized ME (UME) statistic is defined
such that its square is

UME2(P, Q) =
1
J

J

∑
j=1

[
µP(vj)− µQ(vj)

]2 , (3.1)

where V := {v1, . . . , vJ} is the set of test locations at which the witness function (i.e.,
difference of the two mean embeddings. See (2.9)) is evaluated. Chwialkowski et al.
[2015, Theorem 2] shows that if V is drawn from a distribution with a density, then
(3.1) is a random metric on the space of Borel probability measures. A random metric
[Chwialkowski et al., 2015, Definition 1] simply means that it is a metric in the usual
sense with qualification “almost-surely” attached to each property of the metric. More
precisely, if V is drawn from a distribution η which has a density and whose support
is a subset of X , then η-almost surely UME(P, Q) is a metric. In particular, η-almost
surely UME(P, Q) = 0 if and only if P = Q. The η-almost-sureness means that there
exists at least one setting of V such that UME(P, Q) = 0 does not imply P = Q.
However, if V ∼ η, then such an “unlucky” event will not happen (more precisely, the
probability of such event is 0).

A consistent estimator of (3.1) is given by

ÛME2 =
1
J

J

∑
j=1

[
µ̂P(vj)− µ̂Q(vj)

]2
=

1
J

J

∑
j=1

[
zn,j
]2

=
1
J

z>n zn, (3.2)

where µ̂P(v) := 1
n ∑n

i=1 k(xi, v) and µ̂Q(v) := 1
n ∑n

i=1 k(yi, v) are empirical mean em-
beddings of P and Q, respectively, zn := 1

n ∑n
i=1 zi ∈ RJ and

zi := [k(xi, v1)− k(yi, v1), . . . , k(xi, vJ)− k(yi, vJ)] ∈ RJ .

If we assume that evaluation of k(x, v) costs O(d), then clearly (3.2) can be computed
in O(dJn) time, which is linear in the sample size. We note that the pairing of xi and yi

in zi does not suggest any joint dependency between xi and yi. Any arbitrary pairing
yields an equivalent estimator. In principle, ÛME2 can be used as a test statistic for the
two-sample test. However, under H0, as n→ ∞,

√
nÛME2 converges to a finite sum of

weighted chi-squared variables that are dependent.1 This distribution does not have a
closed-form expression. Thus, determining (1− α)-quantile for the test threshold has
to rely on simulations from the asymptotic null distribution, or a permutation test,
both of which can be costly.

1Under H0, for a fixed V , by the central limit theorem,
√

nzn,j
d→ N (0, V[k(x, vj)− k(x, vj)]) for all

j ∈ {1, . . . , J}. Thus, nz2
n,j

d→ V[k(x, vj)− k(x, vj)]χ
2(1) for all j ∈ {1, . . . J}. The variables nz2

n,1, . . . , nz2
n,J

are dependent since they all depend on the samples X and Y.
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3.2.2 Normalized ME (NME) Statistic

Intractability of the asymptotic null distribution was the motivation to consider the
normalized ME statistic [Chwialkowski et al., 2015, Eq. 13]. The empirical normalized
ME statistic (NME) is defined as

N̂ME2(P, Q) = λ̂n := nz>n S−1
n zn, (3.3)

where Sn := 1
n ∑n

i=1(zi− zn)(zi− zn)> ∈ RJ×J and zn is as in (3.2). The NME is a form
of Hotelling’s T-squared statistic [Anderson, 2003, Chapter 5]. The presence of the
inverse covariance matrix S−1

n is to decorrelate zn,1, . . . , zn,J , so that the asymptotic null
distribution is tractable. Asymptotic behaviors of λ̂n are summarized in Proposition
3.1.

Proposition 3.1 (Asymptotic behaviors of λ̂n [Chwialkowski et al., 2015, Proposition
2]). Suppose UME2(P, Q) = 0. Then, for fixed d, as n → ∞, λ̂n

d→ χ2(J), the chi-squared
random variable with J degrees of freedom. If UME2(P, Q) > 0, then for any fixed r,
P(λ̂n > r)→ 1 as n→ ∞.

Proposition 3.1 states that the asymptotic null distribution of λ̂n is χ2(J) which is
very simple. This asymptotic null distribution holds true regardless of P and Q. This
implies that when n is sufficiently large, one can simply compute the (1− α)-quantile
of χ2(J) for the test threshold. Under H1, the probability of correctly rejecting H0

approaches 1 as n→ ∞. These two facts mean that the NME test is consistent.

3.3 Smooth Characteristic Function (SCF) Test

The SCF test relies on the difference of smoothed (by a kernel) characteristic functions
of P and Q on X ⊆ Rd, evaluated at J frequencies. Let ϕP(t) := Ex∼P[eit>x] be the
characteristic function of P where i =

√
−1. Similarly, ϕQ(t) := Ey∼P[eit>y]. To

motivate the importance of the smoothing operation on the characteristic functions,
consider the difference of (non-smoothed) characteristic functions [Epps and Singleton,
1986]:

ρ2
ϕ(P, Q) :=

1
J

J

∑
j=1
|ϕP(vj)− ϕQ(vj)|2, (3.4)

where V := {vj}J
j=1 is the set of frequency values at which the characteristic function

difference is evaluated. The set V plays the same role (in the frequency domain) as the
spatial test locations of the ME test. While (3.4) can be estimated efficiently in O(dJn)
time (assuming the use of empirical characteristic functions), it turns out that ρϕ(P, Q)

is only a pseudometric. In particular, ρ2
ϕ(P, Q) = 0 does not always imply P = Q, as

summarized in Proposition 3.2.

Proposition 3.2 (Chwialkowski et al. [2015, Proposition 1]). Let J ∈N and let {vj}J
j=1

be a sequence of real-valued i.i.d. random variables drawn from a distribution η with a density.
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Then, for any ε, there exists an uncountable set A of probability measures on the real line such
that for any P, Q ∈ A, we have P(ρ2

ϕ(P, Q) = 0) ≥ 1− ε.

Proposition 3.2 implies that there are infinitely many distinct P, Q’s that cannot
be distinguished by ρ2

ϕ(P, Q). The SCF test remedies this by considering smooth
characteristic functions instead (Definition 3.3).

Definition 3.3 (Smooth characteristic function [Chwialkowski et al., 2015, Definition
2]). A smooth characteristic function φP(v) of a distribution P is its characteristic
function convolved with a real analytic, translation invariant, positive definite kernel
l : X ×X → R (see also Section 2.5: Properties of Kernels):

φP(v) :=
∫

Rd
ϕP(w)l(v−w)dw. (3.5)

The population unnormalized test statistic of the SCF test is defined as

USCF2(P, Q) :=
1
J

J

∑
j=1
|φP(vj)− φQ(vj)|2. (3.6)

In contrast to (3.4), the use of smooth characteristic functions in (3.6) greatly increases
the class of distributions that can be distinguished.

Proposition 3.4 (USCF is a random metric [Chwialkowski et al., 2015, Theorem 1]). Let
l : X → R be an integrable, real analytic, translation invariant kernel (i.e., (x, y) 7→ l(x− y)
defines a positive definite kernel on X ×X ), whose inverse Fourier transform is strictly greater
than zero. Let {vj}J

j=1 be realizations from a distribution η that has a density. Then, for any
J > 0, η-almost surely, USCF2(P, Q) is a metric on the space of probability measures that
have integrable characteristic functions.

Proposition 3.4 guarantees that for any distributions P, Q that have integrable
characteristic functions, almost surely USCF2(P, Q) = 0 if and only if P = Q. Thus,
an empirical estimate of (3.6) can be used as a test statistic for two-sample testing. The
smooth characteristic function in (3.5) has an equivalent expression [Chwialkowski
et al., 2015, Proposition 3] which avoids computationally difficult convolution:

φP(v) := Ex∼P[exp(iv>x)l̂(x)], (3.7)

where l̂(x) =
∫

Rd exp(−iu>x)l(u)du is the inverse Fourier transform of l(x). The
plug-in estimator of (3.7) is straightforwardly given by φ̂P(v) = 1

n ∑n
i=1 exp(iv>xi)l̂(xi).

It follows that a consistent estimator of (3.6) is

ÛSCF2 =
1
J

J

∑
j=1

[
φ̂P(vj)− φ̂Q(vj)

]2
=

1
J

J

∑
j=1

[
zn,j
]2

=
1
J

z>n zn, (3.8)
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where

zi := [l̂(xi) sin(x>i vj)− l̂(yi) sin(y>i vj), l̂(xi) cos(x>i vj)− l̂(yi) cos(y>i vj)]
J
j=1 ∈ R2J ,

and zn = 1
n ∑n

i=1 zi. Here, we have stacked together the real and imaginary parts of
exp(iv>x)l̂(x) and exp(iv>y)l̂(y) to avoid complex numbers. Clearly, (3.8) takes the
same form as the unnormalized ME statistic in (3.2), where the change is the definition
of zi. Note that the length of zi in the case of SCF test is 2J. As in the case of the
normalized ME statistic in (3.3), we can consider the normalized SCF statistic (NSCF)
to get a tractable asymptotic null distribution. The NSCF statistic takes the same form
in the normalized ME statistic:

N̂SCF2(P, Q) = λ̂n := nz>n S−1
n zn.

Here we intentionally use the same notation λ̂n for both the normalized ME and
SCF statistics, since they share many common properties. The distinction will be
clear from the context. The asymptotic null distribution of N̂SCF2 is χ2(2J). The test
based on N̂SCF2 is consistent when P and Q have integrable characteristic functions
[Chwialkowski et al., 2015, Proposition 4]. We will use J′ to refer to the degrees of
freedom of the chi-squared distribution i.e., J′ = J for the ME test, and J′ = 2J for the
SCF test.

3.4 Proposal: Interpretable Two-Sample Tests

This section describes our contributions. We extend the ME and SCF tests to learn
discriminative features V = {vj}J

j=1 by maximizing a proxy for the test power (Section
3.4.1). The learned features give a visual indication of where the two distributions
differ. We then derive a simple empirical optimization objective, and theoretically
justify its convergence (Section 3.4.2). In the followings, we will interchangeably use
the terms test locations and features to refer to V .

In our study, we modify the ME and SCF statistics by adding to Sn an identity
matrix I scaled by a regularization parameter γn > 0, giving

λ̂n := nz>n (Sn + γnI)−1 zn, (3.9)

for stability of the matrix inverse. Using multivariate Slutsky’s theorem, under H0,
λ̂n still asymptotically follows χ2(J′) provided that γn → 0 as n → ∞. Consistency
of the two tests remains true. We start by describing the criterion we use to learn
discriminative features.

3.4.1 A Test Power Lower Bound and Feature Learning

We propose optimizing the test locations V and kernel parameters (jointly referred to
as θ) by maximizing a lower bound on the test power in Proposition 3.5. This criterion
offers a simple objective function for fast parameter tuning. The bound may be of
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independent interest in other Hotelling’s T-squared statistics, since apart from the
Gaussian case [e.g. Bilodeau and Brenner, 2008, Ch. 8], the characterization of such
statistics under the alternative distribution is challenging. We use Exy as a shorthand
for Ex∼PEy∼Q and let ‖ · ‖F be the Frobenius norm.

Proposition 3.5 (Lower bound on the test power). Define µ := Exy[z1], Σ := Exy[(z1 −
µ)(z1 − µ)>], and λn := nµ>Σ−1µ (the population counterpart of λ̂n). Let V be a collection
in which each element is a set of J test locations.

• For the ME test, let K be a uniformly bounded (i.e., there exists B < ∞ such that
supk∈K sup(x,y)∈X 2 |k(x, y)| ≤ B) family of k : X ×X → R measurable kernels.

• For the SCF test, let K be a class of translation-invariant kernels such that L = {x 7→
k̂(x) : k ∈ K} is uniformly bounded (i.e., ∃B < ∞ such that sup f∈L supx∈X | f (x)| ≤
B) family, where k̂(x) :=

∫
e−iw>xk(w)dw.

Assume that c̃ := supV∈V,k∈K ‖Σ−1‖F < ∞. Then, for any V ∈ V, for large n, the test
power P

(
λ̂n ≥ Tα

)
of both tests satisfies P

(
λ̂n ≥ Tα

)
≥ L(λn) where

L(λn) := 1− 2e
− (λn−Tα)2

32 ·8B2c2
2 J′n − 2e

− (γn(λn−Tα)(n−1)−24B2c1 J′n)2
32 ·32B4c2

1 J′2n(2n−1)2 − 2e
− ((λn−Tα)/3−c3nγn)

2
γ2

n
32B4 J′2c2

1n ,

c1 := 4B2 J′
√

Jc̃, c2 := 4B
√

J′ c̃, and c3 := 4B2 J′ c̃2. For the ME test, J′ = J. For the SCF
test, J′ = 2J. For large n, L(λn) is increasing in λn.

Proof (sketch). The idea is to construct a bound for |λ̂n − λn| which involves bounding
‖zn − µ‖2 and ‖Sn − Σ‖F separately using Hoeffding’s inequality. The result follows
after a reparameterization of the bound on P(|λ̂n − λn| ≥ t) to have P

(
λ̂n ≥ Tα

)
. See

Section 3.B for details.

Proposition 3.5 suggests that for large n it is sufficient to maximize λn to maximize
the lower bound on the test power of both ME and SCF tests. Assume that k is
characteristic [Sriperumbudur et al., 2011] for the ME test. It can be shown that λn = 0
if and only if P = Q i.e., λn is a semimetric for P and Q. In this sense, one can see λn

as encoding the ease of rejecting H0. The higher λn, the easier for the test to correctly
reject H0 when H1 holds. This observation justifies the use of λn as a maximization
objective for parameter tuning.

Feature Learning The statistic λ̂n for both ME and SCF tests depends on a set of test
locations V and a kernel parameter σ. We propose setting

θ := {V , σ} = arg max
θ

λn = arg max
θ

µ>Σ−1µ. (3.10)

The optimization of θ brings two benefits: first, it significantly increases the probability
of rejecting H0 when H1 holds; second, the learned test locations act as discriminative
features allowing an interpretation of how the two distributions differ. To avoid
creating a dependency between θ and the data used for testing (which would affect
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the null distribution), we split the data into two disjoint sets. Let D := (X,Y) and
Dtr,Dte ⊂ D such that Dtr ∩Dte = ∅ and Dtr ∪Dte = D. In practice, since µ and Σ are
unknown, for parameter tuning, we use λ̂tr

n/2 to estimate λn, where λ̂tr
n/2 is the test

statistic computed on the training set Dtr. Specifically, the optimization in (3.10) is
approximated by

θtr ≈ arg max
θ

ztr>
n (Str

n + γnI)−1ztr
n ,

where ztr
n and Str

n are zn and Sn estimated using the training sample Dtr, and θtr

refers to θ optimized on the training data. The regularization nparameter γn is not
optimized; we set γn to be as small as possible while being large enough to ensure
that (Str

n + γnI)−1 can be stably computed. For simplicity, we assume that each of Dtr

and Dte has half of the samples in D. We perform an optimization of θtr with gradient
ascent algorithm on λ̂tr

n/2(θ). The actual two-sample test is performed using the test
statistic λ̂te

n/2(θ
tr) computed on Dte. The full algorithm for the two proposed tests from

parameter tuning to the actual two-sample testing is given in Algorithm 3.1.

Algorithm 3.1 Optimizing parameters and testing in the ME and SCF tests
Require: Two samples X, Y, significance level α, and number J of test locations.

1: Split D := (X,Y) into disjoint training and test sets, Dtr and Dte, of the same size
nte.

2: Optimize parameters θtr = arg maxθ λ̂tr
n/2(θ) where λ̂tr

n/2(θ) is computed with the
training set Dtr.

3: Set Tα to the (1− α)-quantile of χ2(J′).
4: Compute the test statistic λ̂te

n/2(θ
tr) using Dte.

5: Reject H0 if λ̂te
n/2(θ

tr) > Tα.

We note that optimizing parameters by maximizing a test power proxy [Gretton
et al., 2012b] is valid under both H0 and H1 as long as the data used for parameter
tuning and for testing are disjoint. If H0 is true, then Proposition 3.1 guarantees that
λ̂te

n/2(θ)
d→ χ2(J′) for any θ which is independent of the test data. Splitting the data

into two disjoint sets guarentees the independence. Thus, the optimized θtr does not
change the null distribution. Also, the rejection threshold Tα depends on only J′ and
is independent of the optimized parameters. If, instead, the optimization is performed
on the same data used for testing (i.e., consider λ̂te

n (θ
te)), then the asymptotic null

distribution of χ2(J′) no longer holds. In this case, the asymptotic rate of false rejection
of H0 will be larger than α if the test threshold is still set to (1− α)-quantile of χ2(J′).

Optimization Assume that the Gaussian kernel k(x, v) = exp
(
− ‖x−v‖2

2σ2

)
is used.

Then, the parameter tuning objective λ̂tr
n/2(θ) is a function of θ consisting of one

positive real σ and J test locations, each having d dimensions. The parameters θ can
thus be regarded as a Jd + 1 Euclidean vector. We take the derivative of λ̂tr

n/2(θ) with
respect to θ, and use gradient ascent to maximize it. Since σ2 is always non-negative,
positivity constraint on σ does not need to be explicitly enforced. J is pre-specified



38 CHAPTER 3. INFORMATIVE FEATURES FOR DISTINGUISHING DIST.

and fixed. For the ME test, we initialize the test locations with realizations from two
multivariate normal distributions fitted to samples from P and Q; this ensures that the
initial locations are well supported by the data. For the SCF test, initialization using
the standard normal distribution is found to be sufficient. We emphasize that both
the optimization and testing are linear in n. Computing the regularized statistic in
(3.9) for both ME and SCF tests costs O(J′3 + J′2n + dJ′n), and the optimization costs
O(J′3 + dJ′2n) per gradient ascent iteration.

3.4.2 Convergence of the Normalized ME Test Power Criterion

Since we use an empirical estimate λ̂tr
n/2 in place of the population power criterion λn

for parameter optimization, we give a finite-sample bound in Theorem 3.6 guarantee-
ing the convergence of z>n (Sn + γn I)−1zn to µ>Σ−1µ as n increases, in the case of the
ME test. The convergence is uniform over all kernels k ∈ K (a family of uniformly
bounded kernels) and all test locations in an appropriate class V.

Theorem 3.6 (Convergence of the power criterion of the NME test). Let X ⊆ Rd be a
measurable set, and V be a collection in which each element is a set of J test locations. For a
class of kernels K on X ⊆ Rd, define

F1 := {x 7→ k(x, v) | k ∈ K, v ∈ X}, (3.11)

F2 := {x 7→ k(x, v)k(x, v′) | k ∈ K, v, v′ ∈ X},
F3 := {(x, y) 7→ k(x, v)k(y, v′) | k ∈ K, v, v′ ∈ X}. (3.12)

Assume

1. K is a uniformly bounded (by B) family of k : X ×X → R measurable kernels,

2. c̃ := supV∈V supk∈K ‖Σ−1‖F < ∞, and

3. Fi = { fθi | θi ∈ Θi} is VC-subgraph [van der Vaart and Wellner, 2000] with VC-index
VC(Fi) < ∞, and Fi is a separable Carathéodory family (i.e., Θi is in a separable
metric space, and θi 7→ fθi(x) is continuous for all x ∈ X ), for all i = 1, 2, 3.

Let c1 := 4B2 J
√

Jc̃, c2 := 4B
√

Jc̃, and c3 := 4B2 Jc̃2. Let Ci-s (i = 1, 2, 3) be the universal
constants associated to Fi-s according to Theorem 2.6.7 in van der Vaart and Wellner [2000].
Then for any δ ∈ (0, 1) with probability at least 1− δ,

sup
V∈V

sup
k∈K

∣∣∣z>n (Sn + γnI)−1zn − µ>Σ−1µ
∣∣∣

≤ 2TF1

(
2

γn
c1BJ

2n− 1
n− 1

+ c2
√

J
)
+

2
γn

c1 J(TF2 + TF3) +
8

γn

c1B2 J
n− 1

+ c3γn,

where

TFj =
16
√

2Bζ j

√
n

2
√

log
[
Cj ×VC(Fj)(16e)VC(Fj)

]
+

√
2π[VC(Fj)− 1]

2

+ Bζ j

√
2 log(5/δ)

n
,
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for j = 1, 2, 3 and ζ1 = 1, ζ2 = ζ3 = 2.

Proof (sketch). The idea is to lower bound the difference with an expression involving
supV∈V supk∈K ‖zn − µ‖2 and supV∈V supk∈K ‖Sn − Σ‖F. These two quantities can
be seen as suprema of empirical processes, and can be bounded by Rademacher
complexities of their respective function classes (i.e., F1,F2, and F3). Finally, the
Rademacher complexities can be upper bounded using Dudley entropy bound and
VC subgraph properties of the function classes. Proof details are given in Section
3.A.

Theorem 3.6 implies that if we set γn = O(n−1/4), then we have

sup
V∈V

sup
k∈K

∣∣∣z>n (Sn + γnI)−1zn − µ>Σ−1µ
∣∣∣ = Op(n−1/4)

as the rate of convergence. A kernel class K satisfying the three conditions of Theorem
3.6 is the widely used isotropic Gaussian kernel class

Kg =
{

kσ : (x, y) 7→ exp
(
−(2σ2)−1‖x− y‖2

)
| σ ∈ [gl , gu]

}
, (3.13)

for any (gl , gu) such that 0 < gl < gu < ∞. In fact, a generic isotropic Gaussian
kernel class in which σ > 0 (i.e., not necessarily restricted to a compact set) satisfies
conditions 1 and 3 of Theorem 3.6 as shown in Lemma 3.9. To further guarantee that
c̃ = supV∈V supk∈K ‖Σ−1‖F < ∞ (condition 2 of Theorem 3.6), it is sufficient that the
Gaussian width σ in Kg be constrained to be in a compact set. Also, for V, consider V

such that any two test locations in any V ∈ V are at least ε distance apart (i.e., distinct
test locations), and that all test locations have a norm uniformly bounded by ζ, for
some ε, ζ > 0. Then, for any non-degenerate P, Q, we have c̃ < ∞ since (k,V) 7→ λn

is continuous on K×V, and thus attains its supremum over compact sets K and V.
The distinctiveness of {vj}J

j=1 is a necessary condition for Σ to be invertible.
Briefly, in Lemma 3.9, we show that K = Kg is uniformly bounded with B = 1

(condition 1 of Theorem 3.6), the induced classes F1,F2, and F3 are VC-subgraphs
with VC-indices linear in d, and are such that θi 7→ fθi is continuous. Specifically, in
condition 3 of Theorem 3.6, Θ1 = {(k, v) | k ∈ Kg, v ∈ X} and Θ2 = Θ3 = {(k, v, v′) |
k ∈ Kg, v, v′ ∈ X}.

3.5 Experiments

In this section, we demonstrate the effectiveness of the proposed methods on both
toy and real problems. We study seven kernel-based two-sample tests, all using the
isotropic Gaussian kernel class Kg in (3.13). For the SCF test, we set l̂(x) = k(x, 0)
where k ∈ Kg. Denote by ME-full and SCF-full the ME and SCF tests whose test
locations V and the Gaussian width σ are fully optimized using gradient ascent
on a separate training sample (Dtr) of the same size as the test set (Dte). ME-grid
and SCF-grid are as in Chwialkowski et al. [2015] where only the Gaussian width
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is optimized by a grid search,2 and the test locations are randomly drawn from a
multivariate normal distribution. Specifically, for ME-grid, the test locations are drawn
from a multivariate normal distribution fitted to the training data. For SCF-grid, the
test locations (in the frequency domain) are drawn from the standard multivariate
normal distribution. MMD-quad (quadratic-time) and MMD-lin (linear-time) refer to
the nonparametric tests based on maximum mean discrepancy of Gretton et al. [2012a]
(see Section 2.3: Maximum Mean Discrepancy), where to ensure a fair comparison, the
Gaussian kernel width is also chosen so as to maximize a criterion for the test power
on training data [Gretton et al., 2012b, Sutherland et al., 2016]. For MMD-quad, since
its null distribution is given by an infinite sum of weighted chi-squared variables (no
closed-form quantiles), in each trial we randomly permute the two samples 400 times
to approximate the null distribution [Gretton et al., 2012a]. Finally, T2 is the standard
two-sample Hotelling’s T-squared test, which serves as a baseline with Gaussian
assumptions on P and Q.

In all the following experiments, each problem is repeated for 500 trials. For toy
problems, new samples are generated from the specified P, Q distributions in each
trial. For real problems, samples are partitioned randomly into training and test sets
in each trial. In all of the simulations, we report an estimate of the rejection rate
i.e., the proportion of the number of times that λ̂te

n/2 is above Tα. This quantity is an
estimate of type-I error under H0, and corresponds to test power when H1 is true. We
set α = 0.01 in all the experiments.

3.5.1 Informative Features: Simple Demonstration

We begin with a demonstration that the proxy λ̂tr
n/2(θ) for the test power is informative

for revealing the difference of the two distributions in the ME test. We consider the
Gaussian Mean Difference (GMD) problem (see Table 3.1), where both P and Q are
two-dimensional normal distributions with the difference in means. We use J = 2 test
locations v1 and v2, where v1 is fixed to the location indicated by the black triangle in
Figure 3.1. The contour plot shows v2 7→ λ̂tr

n/2(v1, v2).

Figure 3.1 (left) suggests that λ̂tr
n/2 is maximized when v2 is placed in either of the

two regions that captures the difference of the two samples i.e., the region in which
the probability masses of P and Q have less overlap. Figure 3.1 (right), we consider
placing v1 in one of the two key regions. In this case, the contour plot shows that v2

should be placed in the other region to maximize λ̂tr
n/2, implying that placing multiple

test locations in the same neighborhood will not increase the discriminability. The two
modes on the left and right suggest two ways to place the test location in a region
that reveals the difference. The non-convexity of the λ̂tr

n/2 is an indication of many
informative ways to detect differences of P and Q, rather than a drawback. A convex
objective would not capture this multimodality.

2Chwialkowski et al. [2015] chooses the Gaussian width that minimizes the median of the p-values, a
heuristic that does not directly address test power. Here, we perform a grid search to choose the best
Gaussian width by maximizing λ̂tr

n/2 as done in ME-full and SCF-full.
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Figure 3.1: A contour plot of λ̂tr
n/2 as a function of v2 when J = 2 and v1 is fixed (black

triangle). The objective λ̂tr
n/2 is high in the regions that reveal the difference of the two

samples.

Table 3.1: Four toy problems. H0 holds only in SG.

Data P Q

SG N (0d, Id) N (0d, Id)
GMD N (0d, Id) N ((1, 0, . . . , 0)>, Id)
GVD N (0d, Id) N (0d, diag(2, 1, . . . , 1))
Blobs Gaussian mixtures in R2 as studied in Chwialkowski et al.

[2015], Gretton et al. [2012b].
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3.5.2 Test Power Vs. Sample Size n

We now demonstrate the rate of increase of test power with sample size. When the
null hypothesis holds, the type-I error stays at the specified level α. We consider the
following four toy problems: Same Gaussian (SG), Gaussian mean difference (GMD),
Gaussian variance difference (GVD), and Blobs. The specifications of P and Q are
summarized in Table 3.1. In the Blobs problem, P and Q are defined as a mixture of
Gaussian distributions arranged on a 4× 4 grid in R2. This problem is challenging
as the difference of P and Q is encoded at a much smaller length scale compared to
the global structure [Gretton et al., 2012b]. Specifically, the eigenvalue ratio for the
covariance of each Gaussian distribution is 2.0 in P, and 1.0 in Q. We set J = 5.

The results are shown in Figure 3.2 where type-I error (for SG problem), and test
power (for GMD, GVD and Blobs problems) are plotted against test sample size. A
number of observations are worth noting. In the SG problem, we see that the type-I
error roughly stays at the specified level: the rate of rejection of H0 when it is true is
roughly at the specified level α = 0.01.

GMD with 100 dimensions turns out to be an easy problem for all the tests except
MMD-lin. In the GVD and Blobs cases, ME-full and SCF-full achieve substantially



42 CHAPTER 3. INFORMATIVE FEATURES FOR DISTINGUISHING DIST.

1000 2000 3000 4000 5000
Test sample size

0.000

0.005

0.010

0.015

0.020

T
y
p
e
-I

 e
rr

o
r

(a) SG. d = 50.

1000 2000 3000 4000 5000
Test sample size

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

(b) GMD. d = 100.
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(c) GVD. d = 50.

1000 2000 3000 4000 5000
Test sample size

0.0

0.2

0.4

0.6

0.8

1.0

T
e
st

 p
o
w

e
r

ME-full

ME-grid

SCF-full

SCF-grid

MMD-quad

MMD-lin
T 2

(d) Blobs.

Figure 3.2: Plots of type-I error/test power against the test sample size nte in the four
toy problems.
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Figure 3.3: Plots of type-I error/test power against the dimensions d in the four toy
problems in Table 3.1.

higher test power than ME-grid and SCF-grid, respectively, suggesting a clear advan-
tage from optimizing the test locations. Remarkably, ME-full consistently outperforms
the quadratic-time MMD across all test sample sizes in the GVD case. When the
difference of P and Q is subtle as in the Blobs problem, ME-grid, which uses randomly
drawn test locations, can perform poorly (see Figure 3.2d) since it is unlikely that
randomly drawn locations will be placed in the key regions that reveal the difference.
In this case, optimization of the test locations can considerably boost the test power
(see ME-full in Figure 3.2d). Note also that SCF variants perform significantly better
than ME variants on the Blobs problem, as the difference in P and Q is localized in the
frequency domain; ME-full and ME-grid would require many more test locations in
the spatial domain to match the test powers of the SCF variants. For the same reason,
SCF-full does much better than the quadratic-time MMD across most sample sizes, as
the latter represents a weighted distance between characteristic functions integrated
across the entire frequency domain [Sriperumbudur et al., 2010, Corollary 4].

3.5.3 Test Power Vs. Dimension d

We next investigate how the dimension (d) of the problem can affect type-I errors
and test powers of ME and SCF tests. We consider the same artificial problems: SG,
GMD and GVD. This time, we fix the test sample size to 10000, set J = 5, and vary
the dimension. The results are shown in Figure 3.3. Due to the large dimensions and
sample size, it is computationally infeasible to run MMD-quad.

We observe that all the tests except the T-test can maintain type-I error at roughly
the specified significance level α = 0.01 as dimension increases. The type-I per-
formance of the T-test is incorrect at large d because of the difficulty in accurately
estimating the covariance matrix in high dimensions. As the T-test relies on only the
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Table 3.2: Type-I errors and powers of various tests in the problem of distinguishing
NIPS papers from two categories. α = 0.01. J = 1. nte denotes the test sample size of
each of the two samples.

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin

Bayes-Bayes 215 .012 .018 .012 .004 .022 .008
Bayes-Deep 216 .954 .034 .688 .180 .906 .262
Bayes-Learn 138 .990 .774 .836 .534 1.00 .238
Bayes-Neuro 394 1.00 .300 .828 .500 .952 .972
Learn-Deep 149 .956 .052 .656 .138 .876 .500
Learn-Neuro 146 .960 .572 .590 .360 1.00 .538

difference in the means, a difference of P and Q in the variance cannot be detected
in the GVD problem (Figure 3.3c), even though the Gaussian assumptions hold. It is
interesting to note the high performance of ME-full in the GMD problem in Figure
3.3b. ME-full achieves the maximum test power of 1.0 throughout and matches the
power T-test, in spite of being nonparametric and making no assumption on P and Q
(the T-test is further advantaged by its excessive Type-I error). However, this is true
only with optimization of the test locations. This is reflected in the test power of ME-
grid in Figure 3.3b which drops monotonically as dimension increases, highlighting
the importance of test location optimization. The performance of MMD-lin degrades
quickly with increasing dimension, as expected from Ramdas et al. [2015].

3.5.4 Distinguishing Articles From Two Categories

We now turn to performance on real data. We first consider the problem of distinguish-
ing two categories of publications at the conference on Neural Information Processing
Systems (NIPS). Out of 5903 papers published in NIPS from 1988 to 2015, we manually
select disjoint subsets related to Bayesian inference (Bayes), neuroscience (Neuro), deep
learning (Deep), and statistical learning theory (Learn) (see Section 3.7). Each paper is
represented as a bag of words using TF-IDF [Manning et al., 2008] as features. We
perform stemming, remove all stop words, and retain only nouns. A further filtering of
document-frequency (DF) of words that satisfies 5 ≤ DF ≤ 2000 yields approximately
5000 words from which 2000 words (i.e., d = 2000 dimensions) are randomly selected.
See Section 3.7 for more details on the preprocessing. For ME and SCF tests, we use
only one test location i.e., set J = 1. We perform 1000 permutations to approximate
the null distribution of MMD-quad in this and the following experiments. We run
the test 500 times where in each trial half of the collection is randomly assigned as a
training set (Dtr) for tuning the test locations and the Gaussian width. The other half
(Dte) is used for the actual two-sample test. If the number of papers in one sample is
larger, we subsample so that the size matches the smaller sample.

Type-I errors and test powers are summarized in Table. 3.2. The first column
indicates the categories of the papers in the two samples. In Bayes-Bayes problem,
papers on Bayesian inference are randomly partitioned into two samples in each trial.
This task represents a case in which H0 holds. Among all the linear-time tests, we
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observe that ME-full has the highest test power in all the tasks, attaining a maximum
test power of 1.0 in the Bayes-Neuro problem. This high performance assures that
although different test locations V may be selected in different trials, these locations
are each informative. It is interesting to observe that ME-full has performance close
to or better than MMD-quad, which requires O(n2) runtime complexity. Besides
clear advantages of interpretability and linear runtime of the proposed tests, these
results suggest that evaluating the differences in expectations of analytic functions
at particular locations can yield an equally powerful test at a much lower cost, as
opposed to computing the RKHS norm of the witness function as done in MMD.
Unlike Blobs (Figure 3.2d), however, Fourier features are less powerful in this setting.

We further investigate the interpretability of the ME test by the following procedure.
For the learned test location vt ∈ Rd (d = 2000) in trial t, we construct ṽt =

(
ṽt

1, . . . , ṽt
d

)
such that ṽt

j = |vt
j|. Let ηt

j ∈ {0, 1} be an indicator variable taking value 1 if ṽt
j is among

the top five largest for all j ∈ {1, . . . , d}, and 0 otherwise. Define ηj := ∑t ηt
j as a proxy

indicating the significance of word j i.e., ηj is high if word j is frequently among the
top five largest as measured by ṽt

j. The top ten words as sorted in descending order
by ηj in all the problems are

• Bayes-Bayes: collabor, traffic, bay, permut, net, central, occlus, mask, draw, joint.

• Bayes-Deep: infer, bay, mont, adaptor, motif, haplotyp, ecg, covari, boltzmann, classifi.

• Bayes-Learn: infer, markov, graphic, segment, bandit, boundari, favor, carlo, prioriti,
prop.

• Bayes-Neuro: spike, markov, cortex, dropout, recurr, iii, gibb, basin, circuit, subsystem.

• Learn-Deep: deep, forward, delay, subgroup, bandit, recept, invari, overlap, inequ,
pia.

• Learn-Neuro: polici, interconnect, hardwar, decay, histolog, edg, period, basin, inject,
human.

The results show that the learned test locations are highly interpretable. Indeed,
in the Bayes-Neuro problem, “markov” and “gibb” (i.e., stemmed from Gibbs) are
discriminative terms in Bayesian inference category, and “spike” and “cortex” are key
terms in neuroscience. Note that since H0 is true in the Bayes-Bayes problem, the
extracted terms are arbitrary and not interpretable. To show that not all the randomly
selected 2000 terms are informative, if the definition of ηt

j is modified to consider
the least important words (i.e., ηj is high if word j is frequently among the top five
smallest as measured by ṽt

j), we instead obtain

circumfer, bra, dominiqu, rhino, mitra, kid, impostor,

in the Bayes-Neuro problem. These words are not discriminative.

3.5.5 Distinguishing Positive and Negative Emotions
In the final experiment, we study how well ME and SCF tests can distinguish two
samples of photos of people showing positive and negative facial expressions. Our
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(a) HA (b) NE (c) SU (d) AF (e) AN (f) DI (g) v1

Figure 3.4: (a)-(f): Six facial expressions of actor AM05 in the KDEF data. (g): Average
across trials of the learned test locations v1.

emphasis is on the discriminative features of the faces identified by ME test showing
how the two groups differ. For this purpose, we use Karolinska Directed Emotional
Faces (KDEF) dataset [Lundqvist et al., 1998] containing aligned face images of 70
amateur actors, 35 females and 35 males. We use only photos showing front views of
the faces. In the dataset, each actor displays seven expressions: happy (HA), neutral
(NE), surprised (SU), sad (SA), afraid (AF), angry (AN), and disgusted (DI). We assign
HA, NE, and SU faces into the positive emotion group (i.e., samples from P), and AF,
AN and DI faces into the negative emotion group (samples from Q). We denote this
problem as “+ vs. −”. Examples of six facial expressions from one actor are shown in
Figure 3.4. Photos of the SA group are unused to keep the sizes of the two samples
the same. Each image of size 562× 762 pixels is cropped to exclude the background,
resized to 48× 34 = 1632 pixels (d), and converted to grayscale.

We run the tests 500 times with the same setting used previously i.e., Gaussian
kernels, and J = 1. The type-I errors and test powers are shown in Table 3.3. In
the table, “± vs. ±” is a problem in which all faces expressing the six emotions are
randomly split into two samples of equal sizes i.e., H0 is true. Both ME-full and
SCF-full achieve high test powers while maintaining the correct type-I errors.

Table 3.3: Type-I errors and powers in the problem of distinguishing positive (+) and
negative (-) facial expressions. α = 0.01. J = 1.

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin

± vs. ± 201 .010 .012 .014 .002 .018 .008
+ vs. − 201 .998 .656 1.00 .750 1.00 .578

As a way to interpret how positive and negative emotions differ, we take an average
across trials of the learned test locations of ME-full in the “+ vs. −” problem. This
average is shown in Figure 3.4g. We see that the test locations faithfully capture the
difference of positive and negative emotions by giving more weights to the regions of
nose, upper lip, and nasolabial folds (smile lines), confirming the interpretability of
the test in a high-dimensional setting.



46 CHAPTER 3. INFORMATIVE FEATURES FOR DISTINGUISHING DIST.

3.6 Runtimes

In this section, we provide runtimes of all the experiments. The runtimes of the “Test
power vs. sample n” experiment are shown in Figure 3.5. The runtimes of the “Test
power vs. dimension d” experiment are shown in Figure 3.6. Tables 3.4, 3.5 give the
runtimes of the two real-data experiments.
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Figure 3.5: Plots of runtimes in the “Test power vs. sample n” experiment.
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Figure 3.6: Plots of runtimes in the “Test power vs. dimension d” experiment. The test
sample size is 10000.

Table 3.4: Runtimes (in seconds) in the problem of distinguishing NIPS papers from
two categories.

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin

Bayes-Bayes 215 126.7 116 34.67 1.855 13.66 .6112
Bayes-Deep 216 118.3 111.7 36.41 1.933 13.59 .5105
Bayes-Learn 138 94.59 89.16 23.69 1.036 2.152 .36
Bayes-Neuro 394 142.5 130.3 69.19 3.533 32.71 .8643
Learn-Deep 149 105 99.59 24.99 1.253 2.417 .4744
Learn-Neuro 146 101.2 93.53 25.29 1.178 2.351 .3658

Table 3.5: Runtimes (in seconds) in the problem of distinguishing positive (+) and
negative (-) facial expressions.

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin

± vs. ± 201 87.7 83.4 10.5 1.45 9.93 0.464
+ vs. − 201 85.0 80.6 11.7 1.42 10.4 0.482

In the cases where n is large (Figure 3.5), MMD-quad has the largest runtime due
to its quadratic dependency on the sample size. In the extreme case where the test
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sample size is 10000 (Figure 3.6), it is computationally infeasible to run MMD-quad.
We observe that the proposed ME-full and SCF-full have a slight overhead from the
parameter optimization. However, since the optimization procedure is also linear in
n, we are able to conduct an accurate test in less than 10 minutes even when the test
sample size is 10000 and d = 1500 (see Figures 3.6a, 3.6b). We note that the actual tests
(after optimization) for all ME and SCF variants take less than one second in all cases.
In the ME-full, we initialize the test locations with realizations from two multivariate
normal distributions fitted to samples from P and Q. When d is large, this heuristic
can be expensive. An alternative initialization scheme for V is to randomly select J
points from the two samples.

3.7 Preprocessing of the NIPS Text Collection

The full procedure for processing the NIPS text collection (in Section 3.5.4) is summa-
rized as following.

1. Download all 5903 papers from 1988 to 2015 from https://papers.nips.cc as
PDF files.

2. Convert each PDF file to text with pdftotext.3

3. Remove all stop words. We use the list of stop words from http://www.ranks.

nl/stopwords.

4. Keep only nouns. We use the list of nouns as available in WordNet-3.0.4

5. Keep only words which contain only English alphabets i.e., does not contain
punctuations or numbers. Also, word length must be between 3 and 20 characters
(inclusive).

6. Keep only words which occur in at least 5 documents, and in no more than 2000
documents.

7. Convert all characters to small case. Stem all words with SnowballStemmer in
NLTK [Bird et al., 2009]. For example, “recognize” and “recognizer” become
“recogn” after stemming.

8. Categorize papers into disjoint collections. A paper is treated as belonging to a
group if its title has at least one word from the list of keywords for the category.
Papers that match the criteria of both categories are not considered. The lists of
keywords are as follows.

(a) Bayesian inference (Bayes): graphical model, bayesian, inference, mcmc,
monte carlo, posterior, prior, variational, markov, latent, probabilistic, expo-
nential family.

3pdftotext is available at http://poppler.freedesktop.org.
4WordNet is available online at https://wordnet.princeton.edu/wordnet/citing-wordnet/.

https://papers.nips.cc
http://www.ranks.nl/stopwords
http://www.ranks.nl/stopwords
http://poppler.freedesktop.org
https://wordnet.princeton.edu/wordnet/citing-wordnet/
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(b) Deep learning (Deep): deep, drop out, auto-encod, convolutional, neural
net, belief net, boltzmann.

(c) Learning theory (Learn): learning theory, consistency, theoretical guar-
antee, complexity, pac-bayes, pac-learning, generalization, uniform con-
verg, bound, deviation, inequality, risk min, minimax, structural risk, VC,
rademacher, asymptotic.

(d) Neuroscience (Neuro): motor control, neural, neuron, spiking, spike, cor-
tex, plasticity, neural decod, neural encod, brain imag, biolog, perception,
cognitive, emotion, synap, neural population, cortical, firing rate, firing-rate,
sensor.

9. Randomly select 2000 words from the remaining words.

10. Treat each paper as a bag of words and construct a feature vector with TF-IDF
[Manning et al., 2008].



Proofs

3.A Proof: Convergence of the NME Power Criterion

Notations Let 〈A, B〉F := tr
(
A>B

)
be the Frobenius inner product, and ‖A‖F :=√

〈A, A〉F. A � 0 means that A ∈ Rd×d is symmetric, positive semidefinite. For
a ∈ Rd, ‖a‖2

2 = 〈a, a〉2 = a>a. [a1; . . . ; aN ] ∈ Rd1+...+dN is the concatenation of the
an ∈ Rdn vectors. R+ is the set of positive reals. f ◦ g is the composition of function f
and g. Let M denote a general metric space below. In measurability requirements
metric spaces are meant to be endowed with their Borel σ-algebras.

Let C be a collection of subsets ofM (C ⊆ 2M). C is said to shatter {p1, p2, . . . , pi} ⊆
M set, if for any S ⊆ {p1, p2, . . . , pi} there exist C ∈ C such that S = C∩{p1, p2, . . . , pi};
in other words, arbitrary subset of {p1, p2, . . . , pi} can be cut out by an element of C.
The VC index of C is the smallest i for which no set of size i is shattered:

VC (C) = inf
{

i : max
p1,...,pi

|{C ∩ {p1, . . . , pi} : C ∈ C}| < 2i
}

.

A collection C of measurable sets is called VC-class if its index VC (C) is finite. The
subgraph of a real-valued function f : M → R is sub( f ) = {(m, u) : u < f (m)} ⊆
M×R. A collection of F measurable functions is called VC-subgraph class, or shortly
VC if the collection of all subgraphs of F , {sub( f )} f∈F is a VC-class of sets; its index

is defined as VC (F ) := VC
(
{sub( f )} f∈F

)
.

Let L0(M) be the set ofM→ R measurable functions. Given an i.i.d. (indepen-
dent identically distributed) sample from P (wi

i.i.d.∼ P), let w1:n = (w1, . . . , wn) and let
Pn = 1

n ∑n
i=1 δwi denote the empirical measure.

Lq (M, Pn) =

 f ∈ L0 (M) : ‖ f ‖Lq(M,Pn) =

[
1
n

n

∑
i=1
| f (wi)|q

] 1
q

< ∞

 ,

where (1 ≤ q < ∞), and ‖ f ‖L∞(M) := supm∈M | f (m)|.
Define P f :=

∫
M f (w)dP(w), where P is a probability distribution on M. Let

‖Pn −P‖F := sup f∈F |Pn f −P f |. The diameter of a class F ⊆ L2 (M, Pn) is

diam(F , L2(M, Pn)) := sup
f , f ′∈F

‖ f − f ′‖L2(M,Pn),

49
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its r-covering number (r > 0) is the size of the smallest r-net

N
(
r,F , L2 (M, Pn)

)
= inf

{
t ≥ 1 : ∃ f1, . . . , ft ∈ F such that F ⊆ ∪t

i=1B(r, fi)
}

,

where B(r, f ) =
{

g ∈ L2 (M, Pn) | ‖ f − g‖L2(M,Pn) ≤ r
}

is the ball with center f

and radius r. ×N
i=1Qi is the N-fold product measure. For sets Qi, ×n

i=1Qi is their
Cartesian product. For a function class F ⊆ L0 (M) and w1:n ∈ Mn, R(F , w1:n) :=
Er

[
sup f∈F

∣∣ 1
n ∑n

i=1 ri f (wi)
∣∣] is the empirical Rademacher average, where r := r1:n and

ri-s are i.i.d. samples from a Rademacher random variable [P(ri = 1) = P(ri = −1) =
1
2 ]. Let (Θ, ρ) be a metric space; a collection of F = { fθ | θ ∈ Θ} ⊆ L0(M) functions is
called a separable Carathéodory family if Θ is separable and θ 7→ fθ(m) is continuous
for all m ∈ M. span(·) denotes the linear hull of its arguments. Γ(t) =

∫ ∞
0 ut−1e−udu

denotes the Gamma function.
Recall Theorem 3.6:

Theorem 3.6 (Convergence of the power criterion of the NME test). Let X ⊆ Rd be a
measurable set, and V be a collection in which each element is a set of J test locations. For a
class of kernels K on X ⊆ Rd, define

F1 := {x 7→ k(x, v) | k ∈ K, v ∈ X}, (3.11)

F2 := {x 7→ k(x, v)k(x, v′) | k ∈ K, v, v′ ∈ X},
F3 := {(x, y) 7→ k(x, v)k(y, v′) | k ∈ K, v, v′ ∈ X}. (3.12)

Assume

1. K is a uniformly bounded (by B) family of k : X ×X → R measurable kernels,

2. c̃ := supV∈V supk∈K ‖Σ−1‖F < ∞, and

3. Fi = { fθi | θi ∈ Θi} is VC-subgraph [van der Vaart and Wellner, 2000] with VC-index
VC(Fi) < ∞, and Fi is a separable Carathéodory family (i.e., Θi is in a separable
metric space, and θi 7→ fθi(x) is continuous for all x ∈ X ), for all i = 1, 2, 3.

Let c1 := 4B2 J
√

Jc̃, c2 := 4B
√

Jc̃, and c3 := 4B2 Jc̃2. Let Ci-s (i = 1, 2, 3) be the universal
constants associated to Fi-s according to Theorem 2.6.7 in van der Vaart and Wellner [2000].
Then for any δ ∈ (0, 1) with probability at least 1− δ,

sup
V∈V

sup
k∈K

∣∣∣z>n (Sn + γnI)−1zn − µ>Σ−1µ
∣∣∣

≤ 2TF1

(
2

γn
c1BJ

2n− 1
n− 1

+ c2
√

J
)
+

2
γn

c1 J(TF2 + TF3) +
8

γn

c1B2 J
n− 1

+ c3γn,

where

TFj =
16
√

2Bζ j

√
n

2
√

log
[
Cj ×VC(Fj)(16e)VC(Fj)

]
+

√
2π[VC(Fj)− 1]

2

+ Bζ j

√
2 log(5/δ)

n
,
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for j = 1, 2, 3 and ζ1 = 1, ζ2 = ζ3 = 2.

A proof is given as follows.

3.A.1 Bound in Terms of Sn and zn

For brevity, we will interchangeably use Sn for Sn(V) and zn for zn(V), and write
supV ,k for supV∈V supk∈K. Sn(V) and zn(V) will be used mainly when the dependency
of V needs to be emphasized. All suprema over V and the kernel k should be
understood as being constrained within V and K respectively. We start with

sup
V ,k

∣∣∣z>n (Sn + γn I)−1zn − µ>Σ−1µ
∣∣∣ ,

and upper bound the argument of supV ,k as∣∣∣z>n (Sn + γn I)−1zn − µ>Σ−1µ
∣∣∣

=
∣∣∣z>n (Sn + γn I)−1zn − µ> (Σ + γn I)−1 µ + µ> (Σ + γn I)−1 µ− µ>Σ−1µ

∣∣∣
≤
∣∣∣z>n (Sn + γn I)−1zn − µ> (Σ + γn I)−1 µ

∣∣∣+ ∣∣∣µ> (Σ + γn I)−1 µ− µ>Σ−1µ
∣∣∣

:= (�1) + (�2).

For (�1), we have∣∣∣z>n (Sn + γn I)−1zn − µ> (Σ + γn I)−1 µ
∣∣∣

=
∣∣∣〈znz>n , (Sn + γn I)−1

〉
F
−
〈

µµ>, (Σ + γn I)−1
〉

F

∣∣∣
=

∣∣∣∣ 〈znz>n , (Sn + γn I)−1
〉

F
−
〈

znz>n , (Σ + γn I)−1
〉

F
+
〈

znz>n , (Σ + γn I)−1
〉

F
−
〈

µµ>, (Σ + γn I)−1
〉

F

∣∣∣∣
≤
∣∣∣〈znz>n , (Sn + γn I)−1 − (Σ + γn I)−1

〉
F

∣∣∣+ ∣∣∣〈znz>n − µµ>, (Σ + γn I)−1
〉

F

∣∣∣
= ‖znz>n ‖F‖(Sn + γn I)−1 − (Σ + γn I)−1 ‖F + ‖znz>n − µµ>‖F‖ (Σ + γn I)−1 ‖F

(a)
≤ ‖znz>n ‖F‖(Sn + γn I)−1[(Σ + γn I)− (Sn + γn I)] (Σ + γn I)−1 ‖F

+ ‖znz>n − znµ> + znµ> − µµ>‖F‖Σ−1‖F

(a)
≤ ‖znz>n ‖F‖(Sn + γn I)−1‖F‖Σ− Sn‖F‖Σ−1‖F + ‖zn(zn − µ)>‖F‖Σ−1‖F + ‖(zn − µ)µ>‖F‖Σ−1‖F

(b)
≤
√

J
γn
‖zn‖2

2‖Σ− Sn‖F‖Σ−1‖F + ‖zn‖2‖zn − µ‖2‖Σ−1‖F + ‖µ‖2‖zn − µ‖2‖Σ−1‖F,

where at (a) we use ‖ (Σ + γn I)−1 ‖F ≤ ‖Σ−1‖F and at (b) we use ‖(Sn + γn I)−1‖F ≤√
J‖(Sn + γn I)−1‖2 ≤

√
J/γn.

For (�2), we have∣∣∣µ> (Σ + γn I)−1 µ− µ>Σ−1µ
∣∣∣ = ∣∣∣〈µµ>, (Σ + γn I)−1 − Σ−1

〉
F

∣∣∣
≤ ‖µµ>‖F‖ (Σ + γn I)−1 − Σ−1‖F

= ‖µ‖2
2‖ (Σ + γn I)−1 [Σ− (Σ + γn I)]Σ−1‖F
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= γn‖µ‖2
2‖‖ (Σ + γn I)−1

Σ−1‖F

≤ γn‖µ‖2
2‖‖ (Σ + γn I)−1 ‖F‖Σ−1‖F

(a)
≤ γn‖µ‖2

2‖‖Σ−1‖2
F.

Combining the upper bounds for (�1) and (�2), we arrive at∣∣∣z>n (Sn + γn I)−1zn − µ>Σ−1µ
∣∣∣

≤
√

J
γn
‖zn‖2

2‖Σ− Sn‖F‖Σ−1‖F + (‖zn‖2 + ‖µ‖2)‖zn − µ‖2‖Σ−1‖F + γn‖µ‖2
2‖‖Σ−1‖2

F

≤ 4B2 Jc̃
√

J
γn
‖Σ− Sn‖F + 4B

√
Jc̃‖zn − µ‖2 + 4B2 Jc̃2γn

=
c1

γn
‖Σ− Sn‖F + c2‖zn − µ‖2 + c3γn (3.14)

with c1 := 4B2 J
√

Jc̃, c2 := 4B
√

Jc̃, c3 := 4B2 Jc̃2, and c̃ := supV ,k ‖Σ−1‖F < ∞, where
we applied the triangle inequality, the CBS (Cauchy-Bunyakovskii-Schwarz) inequality,
and ‖ab>‖F = ‖a‖2‖b‖2. The boundedness of kernel k with the Jensen inequality
implies that

‖z̄n‖2
2 = ‖ 1

n

n

∑
i=1

zi‖2
2 ≤

1
n

n

∑
i=1
‖zi‖2

2 =
1
n

n

∑
i=1
‖(k(xi, vj)− k(yi, vj))

J
j=1‖2

2 (3.15)

=
1
n

n

∑
i=1

J

∑
j=1

[
k(xi, vj)− k(yi, vj)

]2

≤ 2
n

n

∑
i=1

J

∑
j=1

k2(xi, vj) + k2(yi, vj) ≤ 4B2 J, (3.16)

‖µ(V)‖2
2 =

J

∑
j=1

(
Exy

[
k(x, vj)− k(y, vj)

])2 ≤
J

∑
j=1

Exy
[
k(x, vj)− k(y, vj)

]2 ≤ 4B2 J.

(3.17)

Taking sup in (3.14), we get

sup
V ,k

∣∣∣z>n (Sn + γn I)−1zn − µ>Σ−1µ
∣∣∣ ≤ c1

γn
sup
V ,k
‖Σ− Sn‖F + c2 sup

V ,k
‖zn − µ‖2 + c3γn.

3.A.2 Empirical Process Bound on z̄n

Recall that z̄n (V) = 1
n ∑n

i=1 zi (V) ∈ RJ , zi (V) = (k(xi, vj) − k(yi, vj))
J
j=1 ∈ RJ ,

µ(V) =
(
Exy

[
k(x, vj)− k(y, vj)

])J
j=1; thus

sup
V

sup
k∈K
‖z̄n(V)−µ(V)‖2 = sup

V
sup
k∈K

sup
b∈B(1,0)

〈b, z̄n(V)−µ(V)〉2
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using that ‖a‖2 = supb∈B(1,0) 〈a, b〉2. Let us bound the argument of the supremum:

〈b, z̄n(V)−µ(V)〉2

≤
J

∑
j=1
|bj|
∣∣∣∣∣ 1n n

∑
i=1

[
k(xi, vj)− k(yi, vj)

]
−Exy

[
k(x, vj)− k(y, vj)

]∣∣∣∣∣
≤

J

∑
j=1
|bj|
(∣∣∣∣∣ 1n n

∑
i=1

k(xi, vj)−Exk(x, vj)

∣∣∣∣∣+
∣∣∣∣∣ 1n n

∑
i=1

k(yi, vj)−Eyk(y, vj)

∣∣∣∣∣
)

≤
√

J sup
v∈X

sup
k∈K

∣∣∣∣∣ 1n n

∑
i=1

k(xi, v)−Exk(x, v)

∣∣∣∣∣+√J sup
v∈X

sup
k∈K

∣∣∣∣∣ 1n n

∑
i=1

k(yi, v)−Eyk(y, v)

∣∣∣∣∣
=
√

J ‖Pn − P‖F1
+
√

J ‖Qn −Q‖F1
(3.18)

by the triangle inequality and exploiting that ‖b‖1 ≤
√

J ‖b‖2 ≤
√

J with b ∈ B(1, 0).
Thus, we have

sup
V

sup
k∈K
‖z̄n(V)−µ(V)‖2 ≤

√
J ‖Pn − P‖F1

+
√

J ‖Qn −Q‖F1
.

3.A.3 Empirical Process Bound on Sn

Noting that

Σ(V) = Exy

[
z(V)z>(V)

]
−µ(V)µ>(V),

Sn(V) =
1
n

n

∑
a=1

za(V)z>a (V)−
1

n(n− 1)

n

∑
a=1

∑
b 6=a

zazT
b ,

Exy

[
z(V)z>(V)

]
= Exy

[
1
n

n

∑
a=1

za(V)z>a (V)
]

,

µ(V)µ>(V) = Exy

[
1

n(n− 1)

n

∑
a=1

∑
b 6=a

za(V)zT
b (V)

]
,

we bound our target quantity as

‖Sn(V)− Σ(V)‖F

≤
∥∥∥∥∥ 1

n

n

∑
a=1

za(V)z>a (V)−Exy

[
z(V)z>(V)

]∥∥∥∥∥
F

+

∥∥∥∥∥ 1
n(n− 1)

n

∑
a=1

∑
b 6=a

za(V)zT
b (V)−µ(V)µ>(V)

∥∥∥∥∥
F

=: (∗1) + (∗2). (3.19)

(∗2) =

∥∥∥∥∥ 1
n

n

∑
a=1

za(V)
[

1
n− 1 ∑

b 6=a
z>b (V)

]
−µ(V)µ>(V)

∥∥∥∥∥
F

≤
∥∥∥∥∥ 1

n

n

∑
a=1

za(V)
(

1
n− 1 ∑

b 6=a
z>b (V)−µ>(V)

)∥∥∥∥∥
F

+

∥∥∥∥∥
(

1
n

n

∑
a=1

za(V)−µ(V)
)
µ>(V)

∥∥∥∥∥
F
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≤

∥∥∥∥∥∥
(

1
n

n

∑
a=1

za(V)
)(

1
n− 1

n

∑
b=1

zb(V)−µ(V)
)>∥∥∥∥∥∥

F

+

∥∥∥∥∥
(

1
n

n

∑
a=1

za(V)
)

z>a (V)
n− 1

∥∥∥∥∥
F

+

∥∥∥∥∥
(

1
n

n

∑
a=1

za(V)−µ(V)
)
µ>(V)

∥∥∥∥∥
F

= ‖z̄n(V)‖2

∥∥∥∥∥ 1
n− 1

n

∑
b=1

zb(V)−µ(V)
∥∥∥∥∥

2

+
1

n− 1
‖z̄n(V)‖2 ‖za(V)‖2

+ ‖z̄n(V)−µ(V)‖2 ‖µ(V)‖2

≤ 2B
√

J
(

n
n− 1

‖z̄n −µ(V)‖2 +
2B
√

J
n− 1

)
+

1
n− 1

4B2 J + 2B
√

J ‖z̄n(V)−µ(V)‖2

=
8B2 J
n− 1

+ 2B
√

J
2n− 1
n− 1

‖z̄n −µ(V)‖2 (3.20)

using the triangle inequality, the sub-additivity of sup,
∥∥abT

∥∥
F = ‖a‖2 ‖b‖2, ‖z̄n(V)‖2 ≤

2B
√

J, ‖za(V)‖2 ≤ 2B
√

J [see Eq. (3.16)] and∥∥∥∥∥ 1
n− 1

n

∑
b=1

zb(V)−µ(V)
∥∥∥∥∥

2

=

∥∥∥∥ n
n− 1

z̄n −
n

n− 1
µ(V) + 1

n− 1
µ(V)

∥∥∥∥
2

≤ n
n− 1

‖z̄n −µ(V)‖2 +
1

n− 1
‖µ(V)‖2 ,

with Eq. (3.17). Considering the first term in Eq. (3.19)∥∥∥∥∥ 1
n

n

∑
a=1

zaz>a −Exy

[
zz>

]∥∥∥∥∥
F

= sup
B∈B(1,0)

〈
B,

1
n

n

∑
a=1

zaz>a −Exy

[
zz>

]〉
F

≤ sup
B∈B(1,0)

J

∑
i,j=1
|Bij|

∣∣∣∣ 1n n

∑
a=1

[k(xa, vi)− k(ya, vi)][k(xa, vj)− k(ya, vj)]

−Exy
(
[k(x, vi)− k(y, vi)]

[
k(x, vj)− k(y, vj)

]) ∣∣∣∣
≤ sup

B∈B(1,0)

J

∑
i,j=1
|Bij|

(∣∣∣∣∣ 1n n

∑
a=1

k(xa, vi)k(xa, vj)−Ex
[
k(x, vi)k(x, vj)

]∣∣∣∣∣
+

∣∣∣∣∣ 1n n

∑
a=1

k(xa, vi)k(ya, vj)−Exy
[
k(x, vi)k(y, vj)

]∣∣∣∣∣
+

∣∣∣∣∣ 1n n

∑
a=1

k(ya, vi)k(xa, vj)−Exy
[
k(y, vi)k(x, vj)

]∣∣∣∣∣
+

∣∣∣∣∣ 1n n

∑
a=1

k(ya, vi)k(ya, vj)−Ey
[
k(y, vi)k(y, vj)

]∣∣∣∣∣
)

≤J sup
v,v′∈X

sup
k∈K

∣∣∣∣∣ 1n n

∑
a=1

k(xa, v)k(xa, v′)−Ex
[
k(x, v)k(x, v′)

]∣∣∣∣∣
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+ 2J sup
v,v′∈X

sup
k∈K

∣∣∣∣∣ 1n n

∑
a=1

k(xa, v)k(ya, v′)−Exy
[
k(x, v)k(y, v′)

]∣∣∣∣∣
+ J sup

v,v′∈X
sup
k∈K

∣∣∣∣∣ 1n n

∑
a=1

k(ya, v)k(ya, v′)−Ey
[
k(y, v)k(y, v′)

]∣∣∣∣∣
by exploiting that ‖A‖F = supB∈B(1,0) 〈B, A〉F, and ∑J

i,j=1 |Bij| ≤ J ‖B‖F ≤ J with
B ∈ B(1, 0). Using the bounds obtained for the two terms of Eq. (3.19), we get

sup
V

sup
k∈K
‖Sn(V)− Σ(V)‖F

≤ 8B2 J
n− 1

+ 2B
√

J
2n− 1
n− 1

sup
V

sup
k∈K
‖z̄n −µ(V)‖2

+ J
(
‖Pn − P‖F2

+ 2 ‖(P×Q)n − (P×Q)‖F3
+ ‖Qn −Q‖F2

)
. (3.21)

3.A.4 Bounding by Concentration and the VC Property

By combining Eqs. (3.14), (3.18) and (3.21)

sup
V

sup
k

∣∣∣z̄>n (Sn + γn I)−1z̄n −µ>Σ−1µ
∣∣∣ ≤

≤ c̄1

γn

[
8B2 J
n− 1

+ 2B
√

J
2n− 1
n− 1

√
J
(
‖Pn − P‖F1

+ ‖Qn −Q‖F1

)
+J
(
‖Pn − P‖F2

+ 2 ‖(P×Q)n − (P×Q)‖F3
+ ‖Qn −Q‖F2

) ]
+c̄2

√
J
(
‖Pn − P‖F1

+ ‖Qn −Q‖F1

)
+ c̄3γn

=
(
‖Pn − P‖F1

+ ‖Qn −Q‖F1

)( 2
γn

c̄1BJ
2n− 1
n− 1

+ c̄2
√

J
)
+ c̄3γn

+
c̄1

γn
J
[
‖Pn − P‖F2

+ ‖Qn −Q‖F2
+ 2 ‖(P×Q)n − (P×Q)‖F3

]
+

8
γn

c̄1B2 J
n− 1

.(3.22)

Applying Lemma 3.7 with δ
5 , we get the statement with a union bound. �

Lemma 3.7 (Concentration of the empirical process for uniformly bounded separable
Carathéodory VC classes). Let F be

1. VC-subgraph class ofM→ R functions with VC index VC(F ),

2. a uniformly bounded (‖ f ‖L∞(M) ≤ K < ∞, ∀ f ∈ F ) separable Carathéodory family.

Let Q be a probability measure, and let Qn = 1
n ∑n

i=1 δxi be the corresponding empirical
measure. Then for any δ ∈ (0, 1) with probability at least 1− δ

‖Qn −Q‖F ≤
16
√

2K√
n

[
2
√

log
[
C×VC(F )(16e)VC(F )]+ √

2π[VC(F )− 1]
2

]
+ K

√
2 log

( 1
δ

)
n

where the universal constant C is according to Lemma 3.11(iv).
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Proof. Notice that g(x1, . . . , xn) = ‖Qn −Q‖F satisfies the bounded difference prop-
erty with b = 2K

n [see Eq. (3.30)]:

|g(x1, . . . , xn)− g
(

x1, . . . , xj, x′j, xj+1, . . . , xn

)
|

≤
∣∣∣∣∣sup

f∈F

∣∣∣Q f − 1
n

n

∑
i=1

f (xi)
∣∣∣− sup

f∈F

∣∣∣Q f − 1
n

n

∑
i=1

f (xi) +
1
n

[
f (xj)− f (x′j)

] ∣∣∣∣∣∣∣∣
≤ 1

n
sup
f∈F
| f (xj)− f (x′j)| ≤

1
n

(
sup
f∈F
| f (xj)|+ sup

f∈F
| f (x′j)|

)
≤ 2K

n
.

Hence, applying Lemma 3.12, and using symmetrization [Steinwart and Christmann,
2008] (Prop. 7.10) for the uniformly bounded separable Carathéodory F class, for
arbitrary δ ∈ (0, 1) with probability at least 1− δ

‖Qn −Q‖F ≤ Ex1:n ‖Qn −Q‖F + K

√
2 log

( 1
δ

)
n

≤ 2Ex1:n R(F , x1:n) + K

√
2 log

( 1
δ

)
n

.

By the Dudley entropy bound [Bousquet, 2003, Eq. (4.4)], Lemma 3.11(iv) [with
F ≡ K, q = 2 M = Qn] and the monotone decreasing property of the covering number,
one arrives at

R(F , x1:n)

≤ 8
√

2√
n

∫ 2K

0

√
log N(r,F , L2(M, Qn))dr

≤ 8
√

2√
n

[∫ K

0

√
log N(r,F , L2(M, Qn))dr + K

√
log N(K,F , L2(M, Qn))

]
≤ 8
√

2K√
n

[∫ 1

0

√
log N(rK,F , L2(M, Qn))dr +

√
log N(K,F , L2(M, Qn))

]

≤ 8
√

2K√
n

∫ 1

0

√
log
[

a1

(
1
r

)a2
]

dr +
√

log(a1)


=

8
√

2K√
n

[
2
√

log(a1) +
∫ 1

0

√
a2 log

(
1
r

)
dr

]

=
8
√

2K√
n

[
2
√

log(a1) +

√
πa2

2

]
,

where a1 := C×VC(F )(16e)VC(F ), a2 := 2[VC(F )− 1] and
∫ 1

0

√
log
( 1

r

)
dr =

∫ ∞
0 t

1
2 e−tdt =

Γ
( 3

2

)
=
√

π
2 .

Lemma 3.8 (Properties of Fi from K).

1. Uniform boundedness of Fi-s [see Eqs. (3.11)-(3.12)]: IfK is uniformly bounded, i.e.,
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∃B < ∞ such that supk∈K sup(x,y)∈X 2 |k(x, y)| ≤ B; then F1, F2 and F3 [Eqs. (3.11)-
(3.12)] are also uniformly bounded with B, B2, B2 constants, respectively. That is,

sup
k∈K,v∈X

|k(x, v)| ≤ B,

sup
k∈K,(v,v′)∈X 2

|k(x, v)k(x, v′)| ≤ B2,

sup
k∈K,(v,v′)∈X 2

|k(x, v)k(y, v′)| ≤ B2.

2. Separability of Fi: since F1, F2 and F3 is parameterized by Θ = K×X , K×X 2,
K×X 2, separability of K implies that of Θ.

3. Measurability of Fi: ∀k ∈ K is measurable, then the elements of Fi (i = 1, 2, 3) are
also measurable. �

3.A.5 Finite VC Index of the Gaussian Kernel Class

Recall that Theorem 3.6 requires that the kernel class K consist of measurable kernels,
and be uniformly bounded (condition 1). Further, it also requires that Fi-s (associated
with K) be a VC-subgraph, separable Carathéodory families (condition 3). In this
section, we show that the kernel class consisting of all the isotropic Gaussian kernels
satisfies these two conditions. The VC property will be a direct consequence of the
VC indices of finite-dimensional function classes and preservation theorems (see
Lemma 3.11); for a nice example application see Srebro and Ben-David [2006] (Section
5) who study the pseudo-dimension of (x, y) 7→ k(x, y) kernel classes, for different
Gaussian families. We take the Gaussian class and use the preservation trick to bound
the VC index of the associated Fi-s.

Lemma 3.9 (Fi-s are VC-subgraph and uniformly bounded separable Carathéodory
families for the isotropic Gaussian kernel). Let

K =

{
kσ : (x, y) ∈ X ×X ⊆ Rd ×Rd 7→ e−

‖x−y‖22
2σ2 : σ > 0

}
.

Then, the F1, F2, F3 classes [see Eqs. (3.11)-(3.12)] associated to K are

• VC-subgraphs with indices VC(F1) ≤ d + 4, VC(F2) ≤ d + 4, VC(F3) ≤ 2d + 4,
and

• uniformly bounded separable Carathéodory families, with ‖ f ‖L∞(M) ≤ 1 for all f ∈
{F1,F2,F3}.5

Proof. VC subgraph property:

5M = X for F1 and F2, andM = X 2 in case of F3.
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F1: Consider the function class

G =

{
x 7→ ‖x− v‖2

2
2σ2 =

1
2σ2

(
‖x‖2

2 − 2 〈x, v〉2 + ‖v‖2
2

)
: σ > 0, v ∈ X

}
⊆ L0(Rd),

where G ⊆ G̃ := span
(

x 7→ ‖x‖2
2 , {x 7→ xi}d

i=1 , x 7→ 1
)

is a vector space, and dim(G) ≤
d+ 2. Thus by Lemma 3.11(i)-(ii), G is VC with VC(G) ≤ d+ 4; applying Lemma 3.11(iii)
with φ(z) = e−z, F1 = φ ◦ G is also VC with index VC(F1) ≤ d + 4.

F2: Since

F2 =

{
x 7→ k(x, v)k(x, v′) = e−

‖x−v‖22+‖x−v′‖2
2

2σ2 : σ > 0, v ∈ X , v′ ∈ X
}

,

and
{

x 7→ ‖x−v‖2
2+‖x−v′‖2

2
2σ2 : σ > 0, v ∈ X , v′ ∈ X

}
is a subset of S = span

(
x 7→

∥∥x
∥∥2

2, {x 7→
xi}d

i=1 , x 7→ 1
)
, it follows that VC(F2) ≤ d + 4.

F3: Since

F3 =

{
(x, y) 7→ k(x, v)k(y, v′) = e−

‖x−v‖2+‖y−v′‖2
2

2σ2 = e−
‖[x;y]−[v;v′]‖2

2
2σ2 : σ > 0, v ∈ Rd, v′ ∈ Rd

}
,

from the result on F1 we get that VC(F3) ≤ 2d + 4.

Uniformly bounded, separable Carathéodory family The result follows from Lemma 3.8

by noting that |k(x, y)| ≤ 1 =: B, (x, y) 7→ e−
‖x−y‖22

2σ2 is continuous (∀σ > 0), R+

is separable, and the (σ, v) 7→ e−
‖x−v‖22

2σ2 , (σ, v, v′) 7→ e−
‖x−v‖22

2σ2 e−
‖x−v′‖2

2
2σ2 , (σ, v, v′) 7→

e−
‖x−v‖22

2σ2 e−
‖y−v′‖2

2
2σ2 mappings are continuous (∀x, y ∈ X ).

We note that to also satisfy condition 2 of Theorem 3.6 (i.e., c̃ := supV∈V supk∈K ‖Σ−1‖F <

∞), K requires further restriction (see Section 3.4.2).

3.B Proof: A Lower Bound on the Test Power

Recall Proposition 3.5:

Proposition 3.10 (Lower bound on the test power). Define µ := Exy[z1], Σ := Exy[(z1−
µ)(z1 − µ)>], and λn := nµ>Σ−1µ (the population counterpart of λ̂n). Let V be a collection
in which each element is a set of J test locations.

• For the ME test, let K be a uniformly bounded (i.e., there exists B < ∞ such that
supk∈K sup(x,y)∈X 2 |k(x, y)| ≤ B) family of k : X ×X → R measurable kernels.

• For the SCF test, let K be a class of translation-invariant kernels such that L = {x 7→
k̂(x) : k ∈ K} is uniformly bounded (i.e., ∃B < ∞ such that sup f∈L supx∈X | f (x)| ≤
B) family, where k̂(x) :=

∫
e−iw>xk(w)dw.
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Assume that c̃ := supV∈V,k∈K ‖Σ−1‖F < ∞. Then, for any V ∈ V, for large n, the test
power P

(
λ̂n ≥ Tα

)
of both tests satisfies P

(
λ̂n ≥ Tα

)
≥ L(λn) where

L(λn) := 1− 2e
− (λn−Tα)2

32 ·8B2c2
2 J′n − 2e

− (γn(λn−Tα)(n−1)−24B2c1 J′n)2
32 ·32B4c2

1 J′2n(2n−1)2 − 2e
− ((λn−Tα)/3−c3nγn)

2
γ2

n
32B4 J′2c2

1n ,

c1 := 4B2 J′
√

Jc̃, c2 := 4B
√

J′ c̃, and c3 := 4B2 J′ c̃2. For the ME test, J′ = J. For the SCF
test, J′ = 2J. For large n, L(λn) is increasing in λn.

Proof

We first consider the case of the ME test. By (3.14), we have

|λ̂n − λn| ≤
c1n
γn
‖Σ− Sn‖F + c2n‖zn − µ‖2 + c3nγn. (3.23)

We will bound each of the three terms in (3.23).

Bounding ‖zn − µ‖2 (Second Term in (3.23))

Let
g(x, y, v) := k(x, v)− k(y, v). (3.24)

Define v∗ := arg maxv∈{v1,...,vJ}
∣∣ 1

n ∑n
i=1 g(xi, yi, v)−Exy [g(x, y, v)]

∣∣ and Gi := g(xi, yi, v∗).

‖zn − µ‖2 = sup
b∈B(1,0)

〈b, zn − µ〉2

≤ sup
b∈B(1,0)

J

∑
j=1
|bj|
∣∣∣∣∣ 1n n

∑
i=1

[
k(xi, vj)− k(yi, vj)

]
−Exy

[
k(x, vj)− k(y, vj)

]∣∣∣∣∣
= sup

b∈B(1,0)

J

∑
j=1
|bj|
∣∣∣∣∣ 1n n

∑
i=1

g(xi, yi, vj)−Exy
[
g(x, y, vj)

]∣∣∣∣∣
≤
∣∣∣∣∣ 1n n

∑
i=1

Gi −Exy [G1]

∣∣∣∣∣ sup
b∈B(1,0)

J

∑
j=1
|bj|

≤
√

J

∣∣∣∣∣ 1n n

∑
i=1

Gi −Exy [G1]

∣∣∣∣∣ sup
b∈B(1,0)

‖b‖2

=
√

J

∣∣∣∣∣ 1n n

∑
i=1

Gi −Exy [G1]

∣∣∣∣∣ ,

where we used the fact that ‖b‖1 ≤
√

J‖b‖2. It can be seen that −2B ≤ Gi ≤ 2B
because

Gi = k(xi, v∗)− k(yi, v∗) ≤ |k(xi, v∗)|+ |k(yi, v∗)| ≤ 2B.

Using Hoeffding’s inequality (Lemma 3.13) to bound
∣∣ 1

n ∑n
i=1 Gi −Exy[G1]

∣∣, we have

P (nc2‖zn − µ‖2 ≤ α) ≤ 1− 2 exp
(
− α2

8B2c2
2 Jn

)
. (3.25)
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Bounding First (‖Σ− Sn‖F) and Third Terms in (3.23)

Let η(vi, vj) :=
∣∣ 1

n ∑n
a=1 g(xa, ya, vi)g(xa, ya, vj)−Exy

[
g(x, y, vi)g(x, y, vj)

]∣∣. Define
(v∗1 , v∗2) = arg max

(v(1),v(2))∈{(vi ,vj)}J
i,j=1

η(v(1), v(2)). Define Hi := g(xi, yi, v∗1)g(xi, yi, v∗2).

By (3.19), we have

‖Sn − Σ‖F ≤ (∗1) + (∗2),

(∗1) =

∥∥∥∥ 1
n

n

∑
a=1

zaz>a −Exy[z1z>1 ]
∥∥∥∥

F
,

(∗2) =
8B2 J
n− 1

+ 2Bk
√

J
2n− 1
n− 1

‖zn − µ‖2.

We can upper bound (∗2) by applying Hoeffding’s inequality to bound ‖zn − µ‖2

giving

P

(
c1n
γn

(∗2) ≤ α

)
≥ 1− 2 exp

(
− (αγn − αγnn + 8B2c1 Jn)2

32B4c2
1 J2n(2n− 1)2

)
. (3.26)

We can upper bound (∗1) with

(∗1) = sup
B∈B(1,0)

〈
B,

1
n

n

∑
a=1

zaz>a −Exy[z1z>1 ]

〉
F

≤ sup
B∈B(1,0)

J

∑
i=1

J

∑
j=1
|Bij|

∣∣∣∣∣ 1n n

∑
a=1

g(xa, ya, vi)g(xa, ya, vj)−Exy
[
g(x, y, vi)g(x, y, vj)

]∣∣∣∣∣
≤
∣∣∣∣∣ 1n n

∑
a=1

Ha −Exy [H1]

∣∣∣∣∣ sup
B∈B(1,0)

J

∑
i=1

J

∑
j=1
|Bij|

≤ J

∣∣∣∣∣ 1n n

∑
a=1

Ha −Exy [H1]

∣∣∣∣∣ sup
B∈B(1,0)

‖B‖F = J

∣∣∣∣∣ 1n n

∑
a=1

Ha −Exy [H1]

∣∣∣∣∣ ,

where we used the fact that ∑J
i=1 ∑J

j=1 |Bij| ≤ J‖B‖F. It can be seen that −4B2 ≤ Ha ≤
4B2. Using Hoeffding’s inequality (Lemma 3.13) to bound

∣∣ 1
n ∑n

a=1 Ha −Exy [H1]
∣∣, we

have

P

(
c1n
γn

(∗1) ≤ α

)
≥ 1− 2 exp

(
− α2γ2

n

32B4 J2c2
1n

)
, (3.27)

implying that

P

(
c1n
γn

(∗1) + c3nγn ≤ α

)
≥ 1− 2 exp

(
− (α− c3nγn)

2 γ2
n

32B4 J2c2
1n

)
. (3.28)

Applying a union bound on (3.25), (3.26), and (3.28) with t = α/3, we can conclude
that

P
(∣∣λ̂n − λn

∣∣ ≤ t
)
≥ P

(
c1n
γn
‖Σ− Sn‖F + c2n‖zn − µ‖2 + c3nγn ≤ t

)
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≥ 1− 2 exp

(
− t2

32 · 8B2c2
2 Jn

)
− 2 exp

(
− (tγnn− tγn − 24B2c1 Jn)2

32 · 32B4c2
1 J2n(2n− 1)2

)
− 2 exp

(
− (t/3− c3nγn)

2 γ2
n

32B4 J2c2
1n

)
.

A rearrangement yields

P
(
λ̂n ≥ Tα

)
≥ 1− 2e

− (λn−Tα)2

32 ·8B2c2
2 Jn − 2e

− (γn(λn−Tα)(n−1)−24B2c1 Jn)2

32 ·32B4c2
1 J2n(2n−1)2 − 2e

− ((λn−Tα)/3−c3nγn)
2

γ2
n

32B4 J2c2
1n .

�

Proof of the Lower Bound on the SCF Test Power

The proof follows the same structure as in the proof of the ME test lower bound
given in Section 3.B. We only need to redefine g in (3.24) to be one of the following
gs and gc. Consider gs(x, y, v) := f (x) sin(x>v) − f (y) sin(y>v) and gc(x, y, v) :=
f (x) cos(x>v)− f (y) cos(y>v) for an arbitrary f ∈ L. It can be seen that both gs and
gc are bounded by 2B:

gs(x, y, v) := f (x) sin(x>v)− f (y) sin(y>v)

≤ | f (x) sin(x>v)|+ | f (y) sin(y>v)|
≤ 2B.

Derivation for gc is identical. For g ∈ {gs, gc}, these bounds imply that −2B ≤
g(x, y, v) ≤ 2B for any x, y, v. Since |g(x, y, v)| ≤ 2B which is the same as in Sec-
tion 3.B, the bound follows immediate where we only need to replace J with J′ = 2J.
This replacement follows from the fact that there are J features for sin and J features
for cos, totaling 2J. �

3.C External Lemmas

In this section we detail some external lemmas used in our proofs.

Lemma 3.11 (Properties of VC classes, see page 141, 146-147 in van der Vaart [2000]
and page 160-161 in Kosorok [2008]).

(i) Monotonicity: G ⊆ G̃ ⊆ L0(M)⇒ VC(G) ≤ VC(G̃).

(ii) Finite-dimensional vector space: if G is a finite-dimensional vector space of measurable
functions, then VC(G) ≤ dim(G) + 2.

(iii) Composition with monotone function: If G is VC and φ : R→ R is monotone, then for
φ ◦ G := {φ ◦ g : g ∈ G}, VC(φ ◦ G) ≤ VC(G).

(iv) The r-covering number of a VC class grows only polynomially in 1
r : Let F be VC on the

domainM with measurable envelope F (| f (m)| ≤ F(m), ∀m ∈ M, f ∈ F ). Then for
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any q ≥ 1 and M probability measure for which ‖F‖Lq(M,M) > 0

N
(

r ‖F‖Lq(M,M) ,F , Lq(M, M)
)
≤ C×VC(F )(16e)VC(F )

(
1
r

)q[VC(F )−1]

(3.29)

for any r ∈ (0, 1) with a universal constant C.

Lemma 3.12 (McDiarmid’s inequality). Let X1, . . . , Xn ∈ M be independent random
variables and let g :Mn → R be a function such that the

sup
x1,...,xn,x′j∈M

∣∣∣g(x1, . . . , xn)− g
(

x1, . . . , xj, x′j, xj+1, . . . , xn

)∣∣∣ ≤ b (3.30)

bounded difference property holds. Then for arbitrary δ ∈ (0, 1)

P

g(X1, . . . , Xn) ≤ E[g(X1, . . . , Xn)] + b

√
log
( 1

δ

)
n

2

 ≥ 1− δ.

Lemma 3.13 (Hoeffding’s inequality). Let X1, . . . , Xn be i.i.d. random variables with
P(a ≤ Xi ≤ b) = 1. Let X := 1

n ∑n
i=1 Xi. Then,

P
(∣∣X−E[X]

∣∣ ≤ t
)
≥ 1− 2 exp

(
− 2nt2

(b− a)2

)
.

Equivalently, for any δ ∈ (0, 1), with probability at least 1− δ, it holds that

∣∣X−E[X]
∣∣ ≤ b− a√

2n

√
log(2/δ).



Chapter 4

Informative Features for
Dependence Detection

Summary A new computationally efficient dependence measure, and an adaptive
statistical test of independence, are proposed. The dependence measure is the differ-
ence between analytic embeddings of the joint distribution and the product of the
marginals, evaluated at a finite set of locations (features). These features are chosen so
as to maximize a lower bound on the test power, resulting in a test that is data-efficient,
and that runs in linear time (with respect to the sample size n). The optimized features
can be interpreted as evidence to reject the null hypothesis, indicating regions in
the joint domain where the joint distribution and the product of the marginals differ
most. Consistency of the independence test is established, for an appropriate choice of
features. In real-world benchmarks, independence tests using the optimized features
perform comparably to the state-of-the-art quadratic-time HSIC test, and outperform
competing O(n) and O(n log n) tests.

4.1 Introduction

We consider the design of adaptive, nonparametric statistical tests of dependence: that
is, tests of whether a joint distribution Pxy factorizes into the product of marginals
PxPy with the null hypothesis that H0 : X and Y are independent. While classical
tests of dependence, such as Pearson’s correlation and Kendall’s τ, are able to detect
monotonic relations between univariate variables, more modern tests can address
complex interactions, for instance changes in variance of X with the value of Y. Key
to many recent tests is to examine covariance or correlation between data features.
These interactions become significantly harder to detect, and the features are more
difficult to design, when the data reside in high dimensions.

A basic nonlinear dependence measure is the Hilbert-Schmidt Independence
Criterion (HSIC), which is the Hilbert-Schmidt norm of the covariance operator
between feature mappings of the random variables [Gretton et al., 2005a, 2008]. Each
random variable X and Y is mapped to a respective reproducing kernel Hilbert space
Hk and Hl . For sufficiently rich mappings, the covariance operator norm is zero if and
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only if the variables are independent. A second basic nonlinear dependence measure
is the smoothed difference between the characteristic function of the joint distribution,
and that of the product of marginals. When a particular smoothing function is used,
the statistic corresponds to the covariance between distances of X and Y variable
pairs [Feuerverger, 1993, Székely and Rizzo, 2009, Székely et al., 2007], yielding a
simple test statistic based on pairwise distances. It has been shown by Sejdinovic
et al. [2013] that the distance covariance (and its generalization to semi-metrics) is an
instance of HSIC for an appropriate choice of kernels. A disadvantage of these feature
covariance statistics, however, is that they require quadratic time to compute (besides
in the special case of the distance covariance with univariate real-valued variables,
where Huo and Székely [2016] achieve an O(n log n) cost). Moreover, the feature
covariance statistics have intractable null distributions, and either a permutation
approach or the solution of an expensive eigenvalue problem [e.g. Zhang et al.,
2011] is required for consistent estimation of the quantiles. Several approaches were
proposed by Zhang et al. [2017] to obtain faster tests along the lines of HSIC. These
include computing HSIC on finite-dimensional feature mappings chosen as random
Fourier features (RFFs) [Rahimi and Recht, 2007], a block-averaged statistic, and a
Nyström approximation to the statistic. Key to each of these approaches is a more
efficient computation of the statistic and its threshold under the null distribution:
for RFFs, the null distribution is a finite weighted sum of χ2 variables; for the block-
averaged statistic, the null distribution is asymptotically normal; for Nyström, either a
permutation approach is employed, or the spectrum of the Nyström approximation
to the kernel matrix is used in approximating the null distribution. Each of these
methods costs significantly less than the O(n2) cost of the full HSIC (the cost is linear
in n, but also depends quadratically on the number of features retained). A potential
disadvantage of the Nyström and Fourier approaches is that the features are not
optimized to maximize test power, but are chosen randomly. The test consistency
of the Nyström approximation is also not guaranteed. The block statistic performs
worse than both, due to the large variance of the statistic under the null (which can be
mitigated by observing more data).

In addition to feature covariances, correlation measures have also been developed
in infinite dimensional feature spaces: in particular, Bach and Jordan [2002], Fuku-
mizu et al. [2008] proposed statistics on the correlation operator in a reproducing
kernel Hilbert space. While convergence has been established for certain of these
statistics, their computational cost is high at O(n3), and test thresholds have relied
on permutation. A number of much faster approaches to testing based on feature
correlations have been proposed, however. For instance, Dauxois and Nkiet [1998]
compute statistics of the correlation between finite sets of basis functions, chosen for
instance to be step functions or low order B-splines. The cost of this approach is
O(n). This idea was extended by Lopez-Paz et al. [2013], who computed the canonical
correlation between finite sets of basis functions chosen as random Fourier features;
in addition, they performed a copula transform on the inputs, with a total cost of
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O(n log n). Finally, space partitioning approaches have also been proposed, based on
statistics such as the KL divergence, however these apply only to univariate variables
[Heller et al., 2016], or to multivariate variables of low dimension [Gretton and Györfi,
2010] (that said, these tests have other advantages of theoretical interest, notably
distribution-independent test thresholds).

The approach we take is most closely related to HSIC on a finite set of features.
Our simplest test statistic, the Finite Set Independence Criterion (FSIC), is an average
of covariances of analytic functions (i.e., features) defined on each of X and Y. A nor-
malized version of the statistic (NFSIC) yields a distribution-independent asymptotic
test threshold. We show that our test is consistent, despite a finite number of analytic
features being used, via a generalization of arguments in Chwialkowski et al. [2015].
As in recent work on two-sample testing by Jitkrittum et al. [2016], our test is adaptive
in the sense that we choose our features on a held-out validation set to optimize a
lower bound on the test power. The design of features for independence testing turns
out to be quite different to the case of two-sample testing, however: the task is to find
correlated feature pairs on the respective marginal domains, rather than attempting
to find a single, high-dimensional feature representation on the tensor product of the
marginals, as we would need to do if we were comparing distributions Pxy and Qxy.
While the use of coupled feature pairs on the marginals entails a smaller feature
space dimension, it introduces significant complications in the proof of the lower
bound, compared with the two-sample case. This bound converges as more validation
samples are observed; since correlated feature pairs are used, a different approach
is required to the analogous two-sample result of Jitkrittum et al. [2016] (described
in Chapter 3). We demonstrate the performance of our tests on several challenging
artificial and real-world datasets, including detection of dependence between music
and its year of appearance, and between videos and captions. In these experiments,
we outperform competing linear and O(n log n) time tests.

4.2 New Statistic: The Finite Set Independence Criterion (FSIC)

We introduce two test statistics: first, the Finite Set Independence Criterion (FSIC),
which builds on the principle that dependence can be measured in terms of the
covariance between data features. Next, we propose a normalized version of this
statistic (NFSIC), with a simpler asymptotic distribution when Pxy = PxPy. We show
how to select features for the latter statistic to maximize a lower bound on the power
of its corresponding statistical test.

We begin by recalling the Hilbert-Schmidt Independence Criterion (HSIC) as
proposed in Gretton et al. [2005a], since our unnormalized statistic is built along
similar lines. Consider two random variables X ∈ X ⊆ Rdx and Y ∈ Y ⊆ Rdy . Denote
by Pxy the joint distribution between X and Y; Px and Py are the marginal distributions
of X and Y. Let ⊗ denote the tensor product, such that (a⊗ b) c = a 〈b, c〉. Assume
that k : X ×X → R and l : Y × Y → R are positive definite kernels associated with
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reproducing kernel Hilbert spaces (RKHS) Hk and Hl , respectively. Let ‖ · ‖HS be the
norm on the space of Hl → Hk Hilbert-Schmidt operators. Then, HSIC between X
and Y is defined as

HSIC(X, Y) =
∥∥µxy − µx ⊗ µy

∥∥2
HS

= E(x,y),(x′,y′)
[
k(x, x′)l(y, y′)

]
+ ExEx′ [k(x, x′)]EyEy′ [l(y, y′)]

− 2E(x,y)
[
Ex′ [k(x, x′)]Ey′ [l(y, y′)]

]
, (4.1)

where Ex := Ex∼Px , Ey := Ey∼Py , Exy := E(x,y)∼Pxy , and x′ is an independent copy
of x. The mean embedding of Pxy belongs to the space of Hilbert-Schmidt operators
from Hl to Hk, µxy :=

∫
X×Y k(x, ·)⊗ l(y, ·)dPxy(x, y) ∈ HS(Hl ,Hk), and the marginal

mean embeddings are µx :=
∫
X k(x, ·)dPx(x) ∈ Hk and µy :=

∫
Y l(y, ·)dPy(y) ∈ Hl

[Smola et al., 2007]. Gretton et al. [2005a, Theorem 4] show that if the kernels k and l
are universal [Steinwart and Christmann, 2008] on compact domains X and Y , then
HSIC(X, Y) = 0 if and only if X and Y are independent. Alternatively, Gretton [2015]
shows that it is sufficient for each of k and l to be characteristic to their respective
domains (meaning that distribution embeddings are injective in each marginal domain:
see Sriperumbudur et al. [2010]). Given a joint sample Zn = {(xi, yi)}n

i=1 ∼ Pxy,
an empirical estimator of HSIC can be computed in O(n2) time by replacing the
population expectations in (4.1) with their corresponding empirical expectations based
on Zn.

Proposal We now propose our new linear-time dependence measure, the Finite
Set Independence Criterion (FSIC). Let X ⊆ Rdx and Y ⊆ Rdy be open sets. Let
µxµy(x, y) := µx(x)µy(y). The idea is to see µxy(v, w) = Exy[k(x, v)l(y, w)], µx(v) =
Ex[k(x, v)] and µy(w) = Ey[l(y, w)] as smooth functions, and consider a new distance
between µxy and µxµy instead of a Hilbert-Schmidt distance as in HSIC [Gretton et al.,
2005a]. The new measure is given by the average of squared differences between µxy

and µxµy, evaluated at J random test locations VJ := {(vi, wi)}J
i=1 ⊂ X ×Y .

FSIC2(X, Y) :=
1
J

J

∑
i=1

u2(vi, wi) =
1
J
‖u‖2

2,

where

u(v, w) := µxy(v, w)− µx(v)µy(w)

= Exy[k(x, v)l(y, w)]−Ex[k(x, v)]Ey[l(y, w)], (4.2)

= covxy[k(x, v), l(y, w)],

u := (u(v1, w1), . . . , u(vJ , wJ))
>, and {(vi, wi)}J

i=1 are realizations from an absolutely
continuous distribution (wrt the Lebesgue measure).

Our first result in Proposition 4.2 states that FSIC(X, Y) almost surely defines a
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dependence measure for the random variables X and Y, provided that the kernels k
and l satisfy some conditions summarized in Assumption A.

Definition 4.1 (A0 kernels). Let X be an open set in Rd. A positive definite kernel
k : X × X → R is said to be A0 if it is bounded (i.e., there exists B ∈ R such
that supx,x′∈X k(x, x′) ≤ B), real analytic (Definition 2.11) and vanishes at infinity.
Equivalently, for all v ∈ X , f (x) := k(x, v) is bounded, real analytic on X , and for all
ε > 0 the set {x | | f (x)| ≥ ε} is compact.1

Assumption A. The kernels k : X × X → R and l : Y × Y → R are A0 (assumed to
be bounded by Bk and Bl respectively), characteristic [Sriperumbudur et al., 2010,
Definition 6], and translation invariant i.e., there exist ǩ and ľ such that k(x, x′) =

ǩ(x− x′) for all x, x′ ∈ X , and l(y, y′) = ľ(y− y′) for all y, y′ ∈ Y .

Proposition 4.2 (FSIC is a dependence measure). Assume that assumption A holds,
and that the test locations VJ = {(vi, wi)}J

i=1 are drawn from an absolutely continuous
distribution η. Then, η-almost surely, FSIC(X, Y) = 1√

J ‖u‖2 = 0 if and only if X and Y are
independent.

Proof. To prove the backward direction, we note that if X and Y are independent,
then u(v, w) = 0 for any (v, w) (see (4.2)), and FSIC(X, Y) = 0. We will prove
the forward direction. Define u := µxy − µx ⊗ µy, a member of the RKHS Hk ×Hl

associated with the product kernel g((x, y), (v, w)) := k(x, v)l(y, w). Since k and l
are c0-kernels (Definition 2.10), characteristic and translation invariant, Gretton [2015,
Theorem 2] implies that u = 0 if and only if Pxy = PxPy. Since for all v ∈ X , w ∈ Y ,
x 7→ k(x, v) and y 7→ l(y, w) are real analytic, it follows from Lemma 4.9 that
(x, y) 7→ k(x, v)l(y, w) is analytic on X ×Y . Since g is a bounded, real analytic kernel,
Lemma 2.12 ensures that u is a real analytic function. It is known that if u 6= 0, the
set of roots Ru := {(v, w) | u(v, w) = 0} has Lebesgue measure zero [Mityagin, 2015].
Hence, it is sufficient to draw (v, w) from an absolutely continuous distribution to
have (v, w) /∈ Ru η-almost surely, and consequently if X and Y are dependent, then
FSIC(X, Y) > 0, η-almost surely.

Examples of kernels k and l which satisfy Assumption A are the Gaussian kernels.
FSIC uses µxy as a proxy for Pxy, and µxµy as a proxy for PxPy. Proposition 4.2
states that, to detect the dependence between X and Y, it is sufficient to evaluate the
difference of the population joint embedding µxy and the embedding of the product
of the marginal distributions µxµy at a finite number of locations (defined by VJ). The
intuitive explanation of this property is as follows. If Pxy = PxPy, then u(v, w) = 0
everywhere, and FSIC(X, Y) = 0 for any VJ . If Pxy 6= PxPy, then u will not be a zero
function. Using the same argument as in Chwialkowski et al. [2015], since k and
l are analytic, u is also analytic, and the set of roots Ru := {(v, w) | u(v, w) = 0}

1A related class is the set of c0 kernels [Sriperumbudur et al., 2010, Section 2]. A kernel k is said to
be c0 if it is bounded with k(·, v) ∈ C0(X ) for all v ∈ X where C0(X ) contains the set of functions that
vanish at infinity. Note that if k is A0, then it is c0. The converse is not necessarily true.
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has Lebesgue measure zero [Mityagin, 2015]. Thus, it is sufficient to draw (v, w)

from an absolutely continuous distribution η to have (v, w) /∈ Ru η-almost surely,
and hence FSIC(X, Y) > 0. We note that a characteristic kernel which is not analytic
may produce u such that Ru has a positive Lebesgue measure. In this case, there
is a positive probability that (v, w) ∈ Ru, resulting in a potential failure to detect
the dependence. The required Assumption A only imposes conditions separately
on each of the marginal kernels k and l. In particular, there is no condition on the
product kernel g((x, y), (v, w)) := k(x, v)l(y, w) which would have been much more
restrictive.

Plug-in Estimator Assume that we observe a joint sample Zn := {(xi, yi)}n
i=1

i.i.d.∼ Pxy.
Unbiased estimators of µxy(v, w) and µxµy(v, w) are µ̂xy(v, w) := 1

n ∑n
i=1 k(xi, v)l(yi, w)

and µ̂xµy(v, w) := 1
n(n−1) ∑n

i=1 ∑j 6=i k(xi, v)l(yj, w), respectively. A straightforward

empirical estimator of FSIC2 is then given by

F̂SIC2(Zn) =
1
J

J

∑
j=1

û2(vj, wj),

û(v, w) := µ̂xy(v, w)− µ̂xµy(v, w) (4.3)

=
2

n(n− 1) ∑
i<j

h(v,w)((xi, yi), (xj, yj)), (4.4)

where
h(v,w)((x, y), (x′, y′)) :=

1
2
(k(x, v)− k(x′, v))(l(y, w)− l(y′, w)).

For conciseness, we define û := (û1, . . . , ûJ)
> ∈ RJ where ûi := û(vi, wi) so that

F̂SIC2(Zn) =
1
J û>û.

F̂SIC2 can be efficiently computed in O((dx + dy)Jn) time which is linear in n [see
(4.3) which does not have nested double sums], assuming that the runtime complexity
of evaluating k(x, v) is O(dx) and that of l(y, w) is O(dy).

Since FSIC satisfies FSIC(X, Y) = 0 ⇐⇒ X ⊥ Y, in principle its empirical
estimator can be used as a test statistic for an independence test proposing a null
hypothesis H0 : “X and Y are independent” against an alternative H1 : “X and Y
are dependent.” The null distribution (i.e., distribution of the test statistic assuming
that H0 is true) is challenging to obtain, however, and depends on the unknown Pxy.
This prompts us to consider a normalized version of FSIC whose asymptotic null
distribution takes a more convenient form. We first derive the asymptotic distribution
of û in Proposition 4.3, which we use to derive the normalized test statistic in Theorem
4.4. As a shorthand, we write z := (x, y), t := (v, w), covz is covariance,Vz stands for
variance.

Proposition 4.3 (Asymptotic distribution of û). Define u := (u(t1), . . . , u(tJ))
>, k̃(x, v) :=

k(x, v)−Ex′k(x′, v), and l̃(y, w) := l(y, w)−Ey′ l(y′, w). Let Σ = [Σij] ∈ RJ×J be the
matrix such that

Σij = Exy[k̃(x, vi)l̃(y, wi)k̃(x, vj)l̃(y, wj)]− u(ti)u(tj),
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for i, j ∈ {1, . . . , J}. Then, under both H0 and H1, for any fixed test locations {t1, . . . , tJ} for

which Σ is positive definite, it holds that
√

n(û− u) d→ N (0, Σ).

Proof. For a fixed {t1, . . . , tJ}, û is a one-sample second-order multivariate U-statistic
with a U-statistic kernel ht (see Section A.1: U-Statistics). Thus, by Lemma A.6, it
follows directly that

√
n(û− u) d→ N (0, Σ) where we note that Exy[k̃(x, v)l̃(y, w)] =

u(v, w).

Recall from Proposition 4.2 that u = 0 holds almost surely under H0. The asymp-
totic normality described in Proposition 4.3 implies that nF̂SIC2 = n

J û>û converges in
distribution to a sum of J dependent weighted χ2 random variables. The dependence
comes from the fact that the coordinates û1 . . . , ûJ of û all depend on the sample Zn.
This null distribution requires a large number of simulations to compute the rejection
threshold Tα for a given significance value α.

4.3 Normalized FSIC and Adaptive Test

For the purpose of an independence test, we will consider a normalized variant of
F̂SIC2, which we call N̂FSIC2, whose tractable asymptotic null distribution is χ2(J),
the chi-squared distribution with J degrees of freedom. We then show that the
independence test defined by N̂FSIC2 is consistent. These results are given in Theorem
4.4.

Theorem 4.4 (Independence test based on N̂FSIC2 is consistent). Let Σ̂ be a consistent
estimate of Σ based on the joint sample Zn, where Σ is defined in Proposition 4.3. Assume
that VJ = {(vi, wi)}J

i=1 ∼ η where η is absolutely continuous wrt the Lebesgue measure. The

N̂FSIC2 statistic is defined as λ̂n := nû>
(
Σ̂ + γnI

)−1 û where γn ≥ 0 is a regularization
parameter. Assume that

1. Assumption A holds.

2. Σ is invertible η-almost surely.

3. limn→∞ γn = 0.

Then, for any k, l and VJ satisfying the assumptions above,

1. Under H0, λ̂n
d→ χ2(J) as n→ ∞.

2. Under H1, for any r ∈ R, limn→∞ P
(
λ̂n ≥ r

)
= 1, η-almost surely.

That is, the independence test based on N̂FSIC2 is consistent.

Proof. Assume that H0 holds. The consistency of Σ̂ and the continuous mapping
theorem imply that

(
Σ̂ + γnI

)−1 p→ Σ−1 which is a constant. Let a be a random
vector in RJ following N (0, Σ). By van der Vaart [2000, Theorem 2.7 (v)], it follows
that

[√
nû,

(
Σ̂ + γnI

)−1
]

d→
[
a, Σ−1] where u = 0 almost surely by Proposition

4.2, and
√

nû d→ N (0, Σ) by Proposition 4.3. Since f (x, S) := x>Sx is continuous,
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f
(√

nû,
(
Σ̂ + γnI

)−1
)

d→ f (a, Σ−1). Equivalently, nû>
(
Σ̂ + γnI

)−1 û d→ a>Σ−1a ∼
χ2(J) by Anderson [2003, Theorem 3.3.3]. This proves the first claim.

The proof of the second claim has a very similar structure to the proof of Proposi-
tion 2 of Chwialkowski et al. [2015]. Assume that H1 holds. Then, u 6= 0 almost surely
by Proposition 4.2. Since k and l are bounded, it follows that |ht(z, z′)| ≤ 2BkBl for
any z, z′ (see (4.7)), and we have that û a.s.→ u by Serfling [2009, Section 5.4, Theorem
A]. Thus, û>

(
Σ̂ + γnI

)−1 û− r
n

d→ u>Σ−1u by the continuous mapping theorem, and
the consistency of Σ̂. Consequently,

lim
n→∞

P
(
λ̂n ≥ r

)
= 1− lim

n→∞
P
(

û>
(
Σ̂ + γnI

)−1 û− r
n
< 0

)
(a)
= 1−P

(
u>Σ−1u < 0

)
(b)
= 1,

where at (a) we use the Portmanteau theorem [van der Vaart, 2000, Lemma 2.2 (i)]

guaranteeing that xn
d→ x if and only if P(xn < t)→ P(x < t) for all continuity points

of t 7→ P(x < t). Step (b) is justified by noting that the covariance matrix Σ is positive
definite so that u>Σ−1u > 0, and t 7→ P(u>Σ−1u < t) (a step function) is continuous
at 0.

Theorem 4.4 states that if H1 holds, the statistic can be arbitrarily large as n
increases, allowing H0 to be rejected for any threshold. Asymptotically the test
threshold Tα is given by the (1− α)-quantile of χ2(J) and is independent of n. The
assumption on the consistency of Σ̂ is required to obtain the asymptotic chi-squared
distribution. The regularization parameter γn is to ensure that (Σ̂ + γnI)−1 can be
stably computed. In practice, γn requires no tuning, and can be set to be a very small
constant. We emphasize that J need not increase with n for test consistency.

The next proposition states that the computational complexity of the N̂FSIC2

estimator is linear in both the input dimension and sample size, and that it can be
expressed in terms of the K =[Kij] = [k(vi, xj)] ∈ RJ×n, L = [Lij] = [l(wi, yj)] ∈ RJ×n

matrices. In contrast to typical kernel methods, a large Gram matrix of size n× n is
not needed to compute N̂FSIC2.

Proposition 4.5 (An empirical estimator of N̂FSIC2). Let 1n := (1, . . . , 1)> ∈ Rn. Denote
by ◦ the element-wise matrix product. Then,

1. û = (K◦L)1n
n−1 − (K1n)◦(L1n)

n(n−1) .

2. A consistent estimator for Σ is Σ̂ = ΓΓ>
n where

Γ := (K− n−1K1n1>n ) ◦ (L− n−1L1n1>n )− ûb1>n ,

ûb = n−1 (K ◦ L) 1n − n−2 (K1n) ◦ (L1n) .

Assume that the complexity of the kernel evaluation is linear in the input dimension. Then the
test statistic λ̂n = nû>

(
Σ̂ + γnI

)−1 û can be computed in O(J3 + J2n + (dx + dy)Jn) time.



4.3. NORMALIZED FSIC AND ADAPTIVE TEST 71

Proof. Claim 1 for û is straightforward. The expression for Σ̂ in claim 2 follows directly
from the asymptotic covariance expression in Proposition 4.3. The consistency of Σ̂

can be obtained by noting that the finite sample bound for P(‖Σ̂− Σ‖F > t) decreases
as n increases. This is shown in Section 4.A.

Although the dependency of the estimator on J is cubic, we empirically observe
that only a small value of J is required (see Section 4.4). The number of test locations J
relates to the number of regions in X ×Y of pxy and px py that differ (see Figure 4.1).

Theorem 4.4 asserts the consistency of the test for any test locations VJ drawn
from an absolutely continuous distribution. In practice, VJ can be further optimized
to increase the test power for a fixed sample size. Our final theoretical result gives a
lower bound on the test power of N̂FSIC2 i.e., the probability of correctly rejecting H0.
We will use this lower bound as the objective function to determine VJ and the kernel
parameters. Let ‖ · ‖F be the Frobenius norm.

Theorem 4.6 (A lower bound on the test power). Let NFSIC2(X, Y) := λn := nu>Σ−1u.
Let K be a kernel class for k, L be a kernel class for l, and V be a collection with each element
being a set of J locations. Assume that

1. There exist finite Bk and Bl such that

sup
k∈K

sup
x,x′∈X

|k(x, x′)| ≤ Bk, and sup
l∈L

sup
y,y′∈Y

|l(y, y′)| ≤ Bl .

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F < ∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V , and λn ≥ r, the test power satisfies P
(
λ̂n ≥ r

)
≥ L(λn)

where

L(λn) = 1− 62e−ξ1γ2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

b·c is the floor function, ξ1 := 1
32c2

1 J2B∗ , B∗ is a constant depending on only Bk and Bl ,

ξ2 := 72c2
2 JB2, B := BkBl , ξ3 := 8c1B2 J, c3 := 4B2 Jc̃2, ξ4 := 28B4 J2c2

1, c1 := 4B2 J
√

Jc̃,
and c2 := 4B

√
Jc̃. Moreover, for sufficiently large fixed n, L(λn) is increasing in λn.

We provide a proof in Section 4.A. To put Theorem 4.6 into perspective, assume that
K =

{
(x, v) 7→ exp

(
− ‖x−v‖2

2σ2
x

)
| σ2

x ∈ [σ2
x,l , σ2

x,u]
}
=: Kg for some 0 < σ2

x,l < σ2
x,u < ∞

and L =
{
(y, w) 7→ exp

(
− ‖y−w‖2

2σ2
y

)
| σ2

y ∈ [σ2
y,l , σ2

y,u]
}

=: Lg for some 0 < σ2
y,l <

σ2
y,u < ∞ are Gaussian kernel classes. Then, in Theorem 4.6, B = Bk = Bl = 1, and

B∗ = 2. The assumption c̃ < ∞ is a technical condition to guarantee that the test
power lower bound is finite for all θ defined by the feasible sets K,L, and V . Let
Vε,r :=

{
VJ | ‖vi‖2, ‖wi‖2 ≤ r and ‖vi − vj‖2

2 + ‖wi −wj‖2
2 ≥ ε, for all i 6= j

}
. If we

set K = Kg,L = Lg, and V = Vε,r for some ε, r > 0, then c̃ < ∞ as Kg,Lg, and Vε,r
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are compact. In practice, these conditions do not necessarily create restrictions as they
almost always hold implicitly. We show in Section 4.4 that the objective function used
to choose VJ will discourage any two locations to be in the same neighborhood.

Parameter Tuning Let θ be the collection of all tuning parameters of the test. If
k ∈ Kg and l ∈ Lg (i.e., Gaussian kernels), then θ = {σ2

x , σ2
y , VJ}. The test power lower

bound L(λn) in Theorem 4.6 is a function of λn = nu>Σ−1u which is the population
counterpart of the test statistic λ̂n. As in FSIC, it can be shown that λn = 0 if and only
if X are Y are independent (from Proposition 4.2). According to Theorem 4.6, for a
sufficiently large n, the test power lower bound is increasing in λn. One can therefore
think of λn (a function of θ) as representing how easily the test rejects H0 given a
problem Pxy. The higher the λn, the greater the lower bound on the test power, and
thus the more likely it is that the test will reject H0 when it is false.

In light of this reasoning, we propose to set θ by maximizing the lower bound on
the test power i.e., set θ to θ∗ = arg maxθ L(λn). Assume that n is sufficiently large so
that λn 7→ L(λn) is an increasing function. Then, arg maxθ L(λn) = arg maxθ λn. Since
λn is unknown, we propose dividing the sample Zn into two disjoint sets: training
and test sets. The training set is used to compute λ̂n (an estimate of λn) to optimize
for θ∗, and the test set is used for the actual independence test with the optimized
θ∗. The splitting is to guarantee the independence of θ∗ and the test sample to avoid
overfitting. Since Theorem 4.4 guarantees that λ̂n

d→ χ2(J) as n→ ∞ for any θ (that
is independent of the test data), the asymptotic null distribution does not change by
using θ∗. This implies that asymptotically the false rejection rate of H0 (type-I error) is
still at the design level of α.

Illustration of N̂FSIC2 To better understand the behaviour of N̂FSIC2, we visualize
µ̂xy(v, w), µ̂xµy(v, w) and Σ̂(v, w) as a function of one test location (v, w) on a simple
toy problem. In this problem, Y = −X + Z where Z ∼ N (0, 0.32) is an independent
noise variable. As we consider only one location (J = 1), Σ̂(v, w) is a scalar. The

statistic can be written as λ̂n = n (
µ̂xy(v,w)−µ̂xµy(v,w))

2

Σ̂(v,w)
. These components are shown in

Figure 4.1, where we use Gaussian kernels for both X and Y, and the horizontal and
vertical axes correspond to v ∈ R and w ∈ R, respectively.

Intuitively, û(v, w) = µ̂xy(v, w)− µ̂xµy(v, w) captures the difference of the joint
distribution and the product of the marginals as a function of (v, w). Squaring û(v, w)

and dividing it by the variance shown in Figure 4.1c gives the statistic (also the
tuning objective) shown in Figure 4.1d. The latter figure illustrates that the parameter
tuning objective can be non-convex: non-convexity arises since there are multiple
ways to detect the difference between the joint distribution and the product of the
marginals. In this case, the lower left and upper right regions equally indicate the
largest difference. A convex objective would not be able to capture this phenomenon.
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(a) µ̂xy(v, w) (b) µ̂xµy(v, w)

(c) Σ̂(v, w) (d) Statistic λ̂n(v, w)

Figure 4.1: Illustration of N̂FSIC2. Y = −X + Z where Z ∼ N (0, 0.32) is an indepen-
dent noise variable

4.4 Experiments

In this section, we empirically study the performance of the proposed method on both
toy (Section 4.4.1) and real problems (Section 4.4.2). We are interested in challenging
problems requiring a large number of samples, where a quadratic-time test might be
computationally infeasible. Our goal is not to outperform a quadratic-time test with a
linear-time test uniformly over all testing problems. We will find, however, that our
test does outperform the quadratic-time test in some cases.

We compare the proposed NFSIC with optimization (NFSIC-opt) to five multivari-
ate nonparametric tests. The N̂FSIC2 test without optimization (NFSIC-med) acts as a
baseline, allowing the effect of parameter optimization to be clearly seen. The original
quadratic-time HSIC test of Gretton et al. [2005a] is denoted by QHSIC. Nyström HSIC
(NyHSIC) uses a Nyström approximation to the kernel matrices of X and Y when
computing the HSIC statistic. FHSIC is another variant of HSIC in which a random
Fourier feature approximation [Rahimi and Recht, 2007] to the kernel is used. NyHSIC
and FHSIC are studied in Zhang et al. [2017] and can be computed in O(n), with
quadratic dependency on the number of inducing points in NyHSIC, and quadratic
dependency on the number of random features in FHSIC. Finally, the Randomized
Dependence Coefficient (RDC) proposed in Lopez-Paz et al. [2013] is also considered.
The RDC can be seen as the primal form (with random Fourier features) of the kernel
canonical correlation analysis of Bach and Jordan [2002] on copula-transformed data.
We consider RDC as a linear-time test even though preprocessing by an empirical
copula transform costs O((dx + dy)n log n).

We use Gaussian kernel classes Kg and Lg for both X and Y in all the methods.
Except NFSIC-opt, all other tests use full sample to conduct the independence test,
where the Gaussian widths σx and σy are set according to the widely used median
heuristic i.e., σx = median

({
‖xi − xj‖2 | 1 ≤ i < j ≤ n

})
, and σy is set in the same

way using {yi}n
i=1. The J locations for NFSIC-med are randomly drawn from the

standard multivariate normal distribution in each trial. For a sample of size n, NFSIC-
opt uses half the sample for parameter tuning, and the other disjoint half for the
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test. We permute the sample 300 times in RDC2 and HSIC to simulate from the null
distribution and compute the test threshold. The null distributions for FHSIC and
NyHSIC are given by a finite sum of weighted χ2(1) random variables given in Eq. 8
of Zhang et al. [2017]. Unless stated otherwise, we set the test threshold of the two
NFSIC tests to be the (1− α)-quantile of χ2(J). To provide a fair comparison, we set
J = 10, use 10 inducing points in NyHSIC, and 10 random Fourier features in FHSIC
and RDC.

Optimization of NFSIC-opt The parameters of NFSIC-opt are σx, σy, and J locations
of size (dx + dy)J. We treat all the parameters as a long vector in R2+(dx+dy)J and
use gradient ascent to optimize λ̂n/2. We observe that initializing VJ by randomly
picking J points from the training sample yields good performance. The regularization
parameter γn in NFSIC is fixed to a small value, and is not optimized. It is worth
emphasizing that the complexity of the optimization procedure is still linear-time.3

We do not consider the distance covariance (dCov) of Székely and Rizzo [2009] in the
comparison since it was shown to be a special case of HSIC [Sejdinovic et al., 2013].
The asymptotically linear-time block HSIC test proposed in Zhang et al. [2017] is also
omitted as FHSIC and NyHSIC have superior performance in their empirical study.
Since FSIC, NyHFSIC and RDC rely on a finite-dimensional kernel approximation,
these tests are consistent only if both the number of features increases with n. By
constrast, the proposed NFSIC requires only n to go to infinity to achieve consistency
i.e., J can be fixed.

4.4.1 Toy Problems

We consider three toy problems.

1. Same Gaussian (SG). The two variables are independently drawn from the
standard multivariate normal distribution i.e., X ∼ N (0, Idx) and Y ∼ N (0, Idy)

where Id is the d× d identity matrix. This problem represents a case in which
H0 holds.

2. Sinusoid (Sin). Let pxy be the probability density of Pxy. In the Sinusoid
problem, the joint density of X and Y is given by

pxy(x, y) ∝ 1 + sin(ωx) sin(ωy), (4.5)

where the domains of X = (−π, π),Y = (−π, π), and ω is the frequency of
the sinusoid. As the frequency ω increases, the drawn sample becomes more
similar to a sample drawn from Uniform((−π, π)2). That is, the higher ω, the
harder to detect the dependency between X and Y. This problem was studied
in Sejdinovic et al. [2013]. Plots of the density for a few values of ω are shown

2We use a permutation test for RDC, following the authors’ implementation (https://github.com/
lopezpaz/randomized_dependence_coefficient, referred commit: b0ac6c0).

3Our claim on linear runtime (with respect to n) is for the gradient ascent procedure to find a local
optimum for θ. We do not claim a linear runtime to find a global optimum.

https://github.com/lopezpaz/randomized_dependence_coefficient
https://github.com/lopezpaz/randomized_dependence_coefficient
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Figure 4.1: (a): Runtime. (b): Probability of rejecting H0 as problem parameters vary.
Fix n = 4000.

in Figures 4.4 and 4.5. The main characteristic of interest in this problem is the
local change in the density function.

3. Gaussian Sign (GSign). In this problem, Y = |Z|∏dx
i=1 sgn(Xi), where X ∼

N (0, Idx), sgn(·) is the sign function, and Z ∼ N (0, 1) serves as a source of
noise. The full interaction of X = (X1, . . . , Xdx) is what makes the problem
challenging. That is, Y is dependent on X, yet it is independent of any proper
subset of {X1, . . . , Xd}. Thus, simultaneous consideration of all the coordinates
of X is required to successfully detect the dependency.

We fix n = 4000 and vary the problem parameters. Each problem is repeated
for 300 trials, where a new sample is redrawn each time. The significance level α

is set to 0.05. The results are shown in Figure 4.1. It can be seen that in the SG
problem (Figure 4.1b) where H0 holds, all the tests achieve roughly correct type-I
errors at α = 0.05. In particular, we point out that NFSIC-opt’s rejection rate is well
controlled as the sample used for testing and the sample used for parameter tuning
are independent. The rejection rate would have been much higher had we done the
optimization and testing on the same sample (i.e., overfitting). In the Sin problem,
NFSIC-opt achieves high test power for all considered ω = 1, . . . , 6, highlighting its
strength in detecting local changes in the joint density. The performance of NFSIC-med
is significantly lower than that of NFSIC-opt. This phenomenon clearly emphasizes
the importance of the optimization to place the locations at the relevant regions in
X ×Y . RDC has a remarkably high performance in both Sin and GSign (Figure 4.1c,
4.1d) despite no parameter tuning. The ability to simultaneously consider interacting
features of NFSIC-opt is indicated by its superior test power in GSign, especially at
the challenging settings of dx = 5, 6.

NFSIC vs. QHSIC. We observe that NFSIC-opt outperforms the quadratic-time
QHSIC in these two problems. QHSIC is defined as the RKHS norm of the witness
function u (see (4.2)). Intuitively, one can think of the RKHS norm as taking into
account all the locations (v, w). By contrast, the proposed NFSIC evaluates the witness
function at J locations. If the differences in pxy and px py are local (e.g., Sin problem),
or there are interacting features (e.g., GSign problem), then only small regions in
the space of (X, Y) are relevant in detecting the difference of pxy and px py. In these
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Figure 4.2: (a) Runtime. (b): Probability of rejecting H0 as n increases in the toy
problems.

cases, pinpointing exact test locations by the optimization of NFSIC performs well.
On the other hand, taking into account all possible test locations as done implicitly
in QHSIC also integrates over regions where the difference between pxy and px py

is small, resulting in a weaker indication of dependence. Whether QHSIC is better
than NFSIC depends heavily on the problem, and there is no one best answer. If the
difference between pxy and px py is large only in localized regions, then the proposed
linear time statistic has an advantage. If the difference is spatially diffuse, then QHSIC
has an advantage. No existing work has proposed a procedure to optimally tune
kernel parameters for QHSIC; by contrast, NFSIC has a clearly defined objective for
parameter tuning.

Sample Efficiency To investigate the sample efficiency of all the tests, we fix dx =

dy = 250 in SG, ω = 4 in Sin, dx = 4 in GSign, and increase n. Figure 4.2 shows the
results. The quadratic dependency on n in QHSIC makes it infeasible both in terms
of memory and runtime to consider n larger than 6000 (Figure 4.2a). By contrast,
although not the most time-efficient, NFSIC-opt has the highest sample-efficiency for
GSign, and for Sin in the low-sample regime, significantly outperforming QHSIC.
Despite the small additional overhead from the optimization, we are yet able to
conduct an accurate test with n = 105, dx = dy = 250 in less than 100 seconds. We
observe in Figure 4.2b that the two NFSIC variants have correct type-I errors across
all sample sizes. We recall from Theorem 4.4 that the NFSIC test with random test
locations will asymptotically reject H0 if it is false. A demonstration of this property
is given in Figure 4.2c, where the test power of NFSIC-med eventually reaches 1 with
n higher than 105.

4.4.2 Real Problems

We now examine the performance of our proposed test on real problems.

Million Song Data (MSD) We consider a subset of the Million Song Data4 [Bertin-
Mahieux et al., 2011], in which each song (X) out of 515,345 is represented by 90
features, of which 12 features are timbre average (over all segments) of the song, and
78 features are timbre covariance. Most of the songs are western commercial tracks

4Million Song Data subset: https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD.

https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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Figure 4.3: Probability of rejecting H0 as n increases in the two real problems. α = 0.01.

from 1922 to 2011. The goal is to detect the dependency between each song and its
year of release (Y). We set α = 0.01, and repeat for 300 trials where the full sample is
randomly subsampled to n points in each trial. Other settings are the same as in the
toy problems. To make sure that the type-I error is correct, we use the permutation
approach in the NFSIC tests to compute the threshold. Figure 4.3a shows the test
powers as n increases from 500 to 2000.

Evidently, NFSIC-opt has the highest test power among all the linear-time tests for
all the sample sizes. Its test power is second to only QHSIC. We recall that NFSIC-opt
uses half of the sample for parameter tuning. Thus, at n = 500, the actual sample
for testing is 250, which is relatively small. The fact that there is a vast power gain
from 0.4 (NFSIC-med) to 0.8 (NFSIC-opt) at n = 500 suggests that the optimization
procedure can perform well even at a lower sample sizes.

Videos and Captions Our last problem is based on the VideoStory46K5 dataset
[Habibian et al., 2014]. The dataset contains 45,826 Youtube videos (X) of an average
length of roughly one minute, and their corresponding text captions (Y) uploaded by
the users. Each video is represented as a dx = 2000 dimensional Fisher vector encoding
of motion boundary histograms (MBH) descriptors of Wang and Schmid [2013]. Each
caption is represented as a bag of words with each feature being the frequency of
one word. After filtering only words which occur in at least six video captions, we
obtain dy = 1878 words. We examine the test powers as n increases from 2000 to 8000.
The results are given in Figure 4.3. The problem is sufficiently challenging that all
linear-time tests achieve a low power at n = 2000. QHSIC performs exceptionally
well on this problem, achieving a maximum power throughout. NFSIC-opt has the
highest sample efficiency among the linear-time tests, showing that the optimization
procedure is also practical in a high dimensional setting.

Rejection Rate Under H0 To simulate cases in which H0 holds in the two real
problems, we permute the sample to break the dependency of X and Y: for each
i ∈ {1, . . . , n}, pair xi with yj where j is randomly chosen such that j 6= i. The results
are shown in Figure 4.3c and Figure 4.3d for the MSD and the Videos and Captions
problems, respectively. We observe that all tests have correct false rejection rates
(type-I errors) at the design level of α = 0.01.

5VideoStory46K dataset: https://ivi.fnwi.uva.nl/isis/mediamill/datasets/videostory.php.

https://ivi.fnwi.uva.nl/isis/mediamill/datasets/videostory.php
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4.4.3 Redundant Test Locations

Here, we provide a simple illustration to show that two locations t1 = (v1, w1) and
t2 = (v2, w2) which are too close to each other will reduce the maximization objective.
We consider the Sinusoid problem described in (4.5) with ω = 1 (see the joint density
in the left figure of Figure (4.4)), and use J = 2 test locations. In Figure 4.4, t1 is fixed
at the location indicated by the red marker, while t2 is varied along the horizontal
line shown in green. The objective value λ̂n as a function of t2 is shown in the bottom
figure. It can be seen that λ̂n decreases sharply when t2 is in the neighborhood of t1.
This property implies that two locations which are too close will not maximize the
objective function (i.e., the second feature contains no additional information when it
matches the first). In general, for J > 2, the objective will sharply decrease if any two
locations are in the same neighborhood.
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Figure 4.4: Plot of optimization objective values as location t2 moves along the green
line. The objective sharply drops when the two locations are in the same neighborhood.

4.4.4 Test Power Vs. Number J of Test Locations

It might seem intuitive that as the number of locations J increases, the test power
should also increase. Here, we empirically show that this statement is not always true.
Consider the Sinusoid toy example described in (4.5) with ω = 2 (also see the left
figure of Figure 4.5). By construction, X and Y are dependent in this problem. We
run NFSIC test with a sample size of n = 800, varying J from 1 to 600. For each value
of J, the test is repeated for 500 times. In each trial, the sample is redrawn and the J
test locations are drawn from Uniform((−π, π)2). There is no optimization of the test
locations. We use Gaussian kernels for both X and Y, and use the median heuristic to
set the Gaussian widths. Figure 4.5 shows the test power as J increases.

We observe that the test power does not monotonically increase as J increases.
When J = 1, the difference of pxy and px py cannot be adequately captured, resulting
in a low power. The power increases rapidly to roughly 0.6 at J = 10, and stays at 1
until about J = 100, after which the power steadily drops.

Unlike random Fourier features, the number of test locations in NFSIC is not the
number of Monte Carlo particles used to approximate an expectation. There is a
tradeoff: if the test locations are in key regions (i.e., regions in which there is a big
difference between pxy and px py), then they increase power; yet the statistic gains in
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Figure 4.5: The Sinusoid problem and the plot of test power vs. the number of test
locations.

variance (thus reducing test power) as J increases. As can be seen in Figure 4.5, there
are 16 key regions (either bright red or bright blue) that can reveal the difference of
pxy and px py. Using an unnecessarily high J not only makes the covariance matrix
Σ̂ harder to estimate accurately, it also significantly increases the computation as the
complexity on J is O(J3). We note that NFSIC is not intended to be used with a large
J. In practice, it should be set to be large enough so as to capture the key regions as
stated. As a practical guide, with optimization of the test locations, a good starting
point is J = 5 or 10.
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Proofs

4.A Proof: A Lower Bound on the Test Power

Recall Theorem 4.6,

Theorem 4.6 (A lower bound on the test power). Let NFSIC2(X, Y) := λn := nu>Σ−1u.
Let K be a kernel class for k, L be a kernel class for l, and V be a collection with each element
being a set of J locations. Assume that

1. There exist finite Bk and Bl such that

sup
k∈K

sup
x,x′∈X

|k(x, x′)| ≤ Bk, and sup
l∈L

sup
y,y′∈Y

|l(y, y′)| ≤ Bl .

2. c̃ := supk∈K supl∈L supVJ∈V ‖Σ
−1‖F < ∞.

Then, for any k ∈ K, l ∈ L, VJ ∈ V , and λn ≥ r, the test power satisfies P
(
λ̂n ≥ r

)
≥ L(λn)

where

L(λn) = 1− 62e−ξ1γ2
n(λn−r)2/n − 2e−b0.5nc(λn−r)2/[ξ2n2]

− 2e−[(λn−r)γn(n−1)/3−ξ3n−c3γ2
nn(n−1)]

2
/[ξ4n2(n−1)],

b·c is the floor function, ξ1 := 1
32c2

1 J2B∗ , B∗ is a constant depending on only Bk and Bl ,

ξ2 := 72c2
2 JB2, B := BkBl , ξ3 := 8c1B2 J, c3 := 4B2 Jc̃2, ξ4 := 28B4 J2c2

1, c1 := 4B2 J
√

Jc̃,
and c2 := 4B

√
Jc̃. Moreover, for sufficiently large fixed n, L(λn) is increasing in λn.

Overview of the proof We first derive a probabilistic bound for |λ̂n − λn|/n. The
bound is in turn upper bounded by an expression involving ‖û− u‖2 and ‖Σ̂− Σ‖F.
The difference ‖û− u‖2 can be bounded by applying the bound for U-statistics given
in Serfling [2009, Theorem A, p. 201]. For ‖Σ̂− Σ‖F, we decompose it into a sum of
smaller components, and bound each term with a product variant of the Hoeffding’s
inequality (Lemma 4.8). L(λn) is obtained by combining all the bounds with the union
bound.

Notations

Let 〈A, B〉F := tr(A>B) denote the Frobenius inner product, and ‖A‖F :=
√

tr(A>A)

be the Frobenius norm. Write z := (x, y) to denote a pair of points from X × Y .
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We write t := (v, w) to denote a pair of test locations from X × Y . For brevity, an
expectation over (x, y) (i.e., E(x,y)∼Pxy ) will be written as Ez or Exy. Define k̃(x, v) :=
k(x, v)−Ex′k(x′, v), and l̃(y, w) := l(y, w)−Ey′ l(y′, w). Let B2(r) := {x | ‖x‖2 ≤ r}
be a closed ball with radius r centered at the origin. Similarly, define BF(r) := {A |
‖A‖F ≤ r} to be a closed ball with radius r of J × J matrices under the Frobenius
norm. Denote the max operation by (x1, . . . , xm)+ = max(x1, . . . , xm).

For a product of marginal mean embeddings µx(v)µy(w), we write µ̂xµy(v, w) :=
1

n(n−1) ∑n
i=1 ∑j 6=i k(xi, v)l(yj, w) to denote the unbiased plug-in estimator, and write

µ̂x(v)µ̂y(w) := 1
n ∑n

i=1 k(xi, v) 1
n ∑n

j=1 l(yj, w) which is a biased estimator. Define

ûb(v, w) := µ̂xy(v, w) − µ̂x(v)µ̂y(w) so that ûb :=
(
ûb(t1), . . . , ûb(tJ)

)> where the
superscript b stands for “biased”. To avoid confusing with a positive definite kernel,
we will refer to a U-statistic kernel as a core.

Proof

We will first derive a bound for P(|λ̂n − λn| ≥ t), which will then be reparametrized
to get a bound for the target quantity P(λ̂n ≥ r). We closely follow the proof in
Section 3.A.1 up to (4.11), then we diverge. We start by considering |λ̂n − λn|/n.

|λ̂n − λn|/n =
∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣
=
∣∣∣û> (Σ̂ + γnI

)−1 û− u> (Σ + γnI)−1 u + u> (Σ + γnI)−1 u− u>Σ−1u
∣∣∣

≤
∣∣∣û> (Σ̂ + γnI

)−1 û− u> (Σ + γnI)−1 u
∣∣∣+ ∣∣∣u> (Σ + γnI)−1 u− u>Σ−1u

∣∣∣
:= (F)1 + (F)2 .

We next bound (F1) and (F2) separately by closely following the procedure in
Section 3.A.1. We have∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u

∣∣∣
≤
√

J
γn
‖û‖2‖Σ− Σ̂‖F‖Σ−1‖F + (‖û‖2 + ‖u‖2) ‖û− u‖2‖Σ−1‖F + γn‖u‖2

2‖Σ−1‖2
F.

(4.6)

Bounding ‖û‖2
2 and ‖u‖2

2 Here, we show that by the boundedness of the ker-
nels k and l, it follows that ‖û‖2

2 is bounded. Recall that supx,x′∈X |k(x, x′)| ≤ Bk,
supy,y′ |l(y, y′)| ≤ Bl , our notation t = (v, w) for the test locations, and zi := (xi, yi).
We first show that the U-statistic core h is bounded.

∣∣ht((x, y), (x′, y′))
∣∣ = ∣∣∣∣12 (k(x, v)− k(x′, v))(l(y, w)− l(y′, w))

∣∣∣∣
≤ 1

2
(
|k(x, v)|+ |k(x′, v)|

) (
|l(y, w)|+ |l(y′, w)|

)
≤ 2BkBl := 2B, (4.7)
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where we define B := BkBl . It follows that

‖û‖2
2 =

J

∑
m=1

[
2

n(n− 1) ∑
i<j

htm(zi, zj)

]2

≤
J

∑
m=1

[2BkBl ]
2 = 4B2 J, (4.8)

‖u‖2
2 =

J

∑
m=1

[
EzEz′htm(z, z′)

]2 ≤ 4B2 J. (4.9)

Using the upper bounds on ‖û‖2
2, ‖u‖2

2 ,(4.6) and the definition of c̃, we have∣∣∣û>(Σ̂ + γnI)−1û− u>Σ−1u
∣∣∣

≤
√

J
γn

4B2 Jc̃‖Σ− Σ̂‖F + 4B
√

Jc̃‖û− u‖2 + 4B2 Jc̃2γn

=:
c1

γn
‖Σ− Σ̂‖F + c2‖û− u‖2 + c3γn, (4.10)

where we define c1 := 4B2 J
√

Jc̃, c2 := 4B
√

Jc̃, and c3 := 4B2 Jc̃2. This upper bound
implies that

|λ̂n − λn| ≤
c1

γn
n‖Σ− Σ̂‖F + c2n‖û− u‖2 + c3nγn. (4.11)

We will separately upper bound ‖Σ− Σ̂‖F and ‖û− u‖2, and combine them with a
union bound.

Bounding ‖û− u‖2

Let t∗ = arg maxt∈{t1,...,tJ} |û(t)−u(t)|. Recall that u = (u(t1), . . . , u(tJ))
> = (u1, . . . , uJ)

>.

‖û− u‖2 = sup
b∈B2(1)

〈b, û− u〉2 ≤ sup
b∈B2(1)

J

∑
j=1
|bj||û(tj)− u(tj)|

≤ |û(t∗)− u(t∗)| sup
b∈B2(1)

J

∑
j=1
|bj|

(a)
≤
√

J|û(t∗)− u(t∗)| sup
b∈B2(1)

‖b‖2

=
√

J|û(t∗)− u(t∗)|, (4.12)

where at (a) we used ‖a‖1 ≤
√

J‖a‖2 for any a ∈ RJ . From (4.12), it can be seen that
bounding ‖û− u‖2 amounts to bounding the difference of a U-statistic û(t∗) (see (4.4))
to its expectation u(t∗). Combining (4.12) and (4.11), we have

|λ̂n − λn| ≤
c1

γn
n‖Σ− Σ̂‖F + c2n

√
J|û(t∗)− u(t∗)|+ c3nγn. (4.13)
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Bounding ‖Σ̂− Σ‖F

The plan is to write Σ̂ = Ŝ− ûbûb>, Σ = S− uu>, so that ‖Σ̂− Σ‖F ≤ ‖Ŝ− S‖F +

‖ûbûb> − uu>‖F and bound separately ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F.

Recall that Σij = η(ti, tj), η(t, t′) = Exy[
(
k̃(x, v)l̃(y, w)−u(v, w)

)(
k̃(x, v′)l̃(y, w′)−

u(v′, w′)
)
] where k̃(x, v) = k(x, v)−Ex′k(x′, v), and l̃(y, w) = l(y, w)−Ey′ l(y′, w).

Its empirical estimator (see Proposition 4.5) is Σ̂ij = η̂(ti, tj) where

η̂(t, t′) =
1
n

n

∑
i=1

[
(
k(xi, v)l(yi, w)− ûb(v, w)

)(
k(xi, v′)l(yi, w′)− ûb(v′, w′)

)
]

=
1
n

n

∑
i=1

k(xi, v)l(yi, w)k(xi, v′)l(yi, w′)− ûb(v, w)ûb(v′, w′),

k(x, v) := k(x, v)− 1
n ∑n

i=1 k(xi, v), and l(y, w) := l(y, w)− 1
n ∑n

i=1 l(yi, w). We note
that 1

n ∑n
i=1 k(xi, v)l(yi, w) = ûb(v, w). We define Ŝ ∈ RJ×J such that

Ŝij :=
1
n

n

∑
m=1

k(xm, vi)l(ym, wi)k(xm, vj)l(yi, wj),

and define similarly its population counterpart S such that

Sij := Exy[k̃(x, v)l̃(y, w)k̃(x, v′)l̃(y, w′)].

We have

Σ̂ = Ŝ− ûbûb>,

Σ = S− uu>,

‖Σ̂− Σ‖F = ‖Ŝ− S− (ûbûb> − uu>)‖F (4.14)

≤ ‖Ŝ− S‖F + ‖ûbûb> − uu>‖F. (4.15)

With (4.15), (4.13) becomes

|λ̂n − λn| ≤
c1n
γn
‖Ŝ− S‖F +

c1n
γn
‖ûbûb> − uu>‖F + c2n

√
J|û(t∗)− u(t∗)|+ c3nγn.

(4.16)

We will further separately bound ‖Ŝ− S‖F and ‖ûbûb> − uu>‖F.

Bounding ‖ûbûb> − uu>‖F

‖ûbûb> − uu>‖F = ‖ûbûb> − ûbu> + ûbu> − uu>‖F

≤ ‖ûb(ûb − u)>‖F + ‖(ûb − u)u>‖F

= ‖ûb‖2‖ûb − u‖2 + ‖ûb − u‖2‖u‖2

≤ 4B
√

J‖ûb − u‖2,
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where we used (4.9) and the fact that ‖ûb‖2 ≤ 2B
√

J which can be shown similarly to
(4.8) as

‖ûb‖2
2 =

J

∑
m=1

[
µ̂xy(vm, wm)− µ̂x(vm)µ̂y(wm)

]2

=
J

∑
m=1

[
1
n2

n

∑
i=1

n

∑
j=1

htm(zi, zj)

]2

≤
J

∑
m=1

[2BkBl ]
2 = 4B2 J.

Let (ṽ, w̃) := t̃ = arg maxt∈{t1,...,tJ} |ûb(t)− u(t)|. We bound ‖ûb − u‖2 by

‖ûb − u‖2
(a)
≤
√

J|ûb(t̃)− u(t̃)|
=
√

J
∣∣µ̂xy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣
=
√

J
∣∣µ̂xy(t̃)− µ̂xµy(t̃) + µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)− u(t̃)

∣∣
≤
√

J
∣∣µ̂xy(t̃)− µ̂xµy(t̃)− u(t̃)

∣∣+√J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣
=
√

J |û(t̃)− u(t̃)|+
√

J
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣ , (4.17)

where at (a) we used the same reasoning as in (4.12). The bias
∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)

∣∣
in the second term can be bounded as

∣∣µ̂xµy(t̃)− µ̂x(ṽ)µ̂y(w̃)
∣∣

=

∣∣∣∣∣ 1
n(n− 1)

n

∑
i=1

∑
j 6=i

k(xi, ṽ)l(yj, w̃)− 1
n2

n

∑
i=1

n

∑
j=1

k(xi, ṽ)l(yj, w̃)

∣∣∣∣∣
=

∣∣∣∣∣ 1
n(n− 1)

n

∑
i=1

n

∑
j=1

k(xi, ṽ)l(yj, w̃)− 1
n(n− 1)

n

∑
i=1

k(xi, ṽ)l(yi, w̃)− 1
n2

n

∑
i=1

n

∑
j=1

k(xi, ṽ)l(yj, w̃)

∣∣∣∣∣
=

∣∣∣∣∣
(

1− n
n− 1

)
1
n2

n

∑
i=1

n

∑
j=1

k(xi, ṽ)l(yj, w̃) +
1

n(n− 1)

n

∑
i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣
≤
∣∣∣∣∣
(

1− n
n− 1

)
1
n2

n

∑
i=1

n

∑
j=1

k(xi, ṽ)l(yj, w̃)

∣∣∣∣∣+
∣∣∣∣∣ 1
n(n− 1)

n

∑
i=1

k(xi, ṽ)l(yi, w̃)

∣∣∣∣∣
≤ B

n− 1
+

B
n− 1

=
2B

n− 1
.

Combining this upper bound with (4.17), we have

‖ûbûb> − uu>‖F ≤ 4BJ |û(t̃)− u(t̃)|+ 8B2 J
n− 1

. (4.18)

With (4.18), (4.16) becomes

|λ̂n − λn| ≤
c1n
γn
‖Ŝ− S‖F +

4BJc1n
γn

|û(t̃)− u(t̃)|+ c1n
γn

8B2 J
n− 1

+ c2n
√

J|û(t∗)− u(t∗)|+ c3nγn.

(4.19)



86 CHAPTER 4. INFORMATIVE FEATURES FOR DEPENDENCE DETECTION

Bounding ‖Ŝ− S‖F

Recall that VJ = {t1, . . . , tJ},

Ŝij = Ŝ(ti, tj) =
1
n

n

∑
m=1

k(xm, vi)l(ym, wi)k(xm, vj)l(ym, wj),

Sij = S(ti, tj) = Exy[k̃(x, vi)l̃(y, wi)k̃(x, vj)l̃(y, wj)].

Let (t(1), t(2)) = arg max(s,t)∈VJ×VJ
|Ŝ(s, t)− S(s, t)|.

‖Ŝ− S‖F = sup
B∈BF(1)

〈
B, Ŝ− S

〉
F

≤ sup
B∈BF(1)

J

∑
i=1

J

∑
j=1
|Bij||Ŝij − Sij|

≤
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ sup
B∈BF(1)

J

∑
i=1

J

∑
j=1
|Bij|

(a)
≤ J

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣ sup

B∈BF(1)
‖B‖F

= J
∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))

∣∣∣ , (4.20)

where at (a) we used ∑J
i=1 ∑J

j=1 |Aij| ≤ J‖A‖F for any matrix A ∈ RJ×J . We arrive at

|λ̂n − λn| ≤
c1 Jn
γn

∣∣∣Ŝ(t(1), t(2))− S(t(1), t(2))
∣∣∣+ 4BJc1n

γn
|û(t̃)− u(t̃)|

+
c1n
γn

8B2 J
n− 1

+ c2n
√

J|û(t∗)− u(t∗)|+ c3nγn. (4.21)

Bounding
∣∣Ŝ(t, t′)− S(t, t′)

∣∣
Having an upper bound for

∣∣Ŝ(t, t′)− S(t, t′)
∣∣ will allow us to bound (4.21). To keep

the notations uncluttered, we will define the following shorthands.

Expression Shorthand

k(x, v) a

k(x, v′) a′

k(xi, v) ai

k(xi, v′) a′i

Ex∼Px k(x, v) ã

Ex∼Px k(x, v′) ã′

1
n ∑n

i=1 k(xi, v) a

1
n ∑n

i=1 k(xi, v′) a′

Expression Shorthand

l(y, w) b

l(y, w′) b′

l(yi, w) bi

l(yi, w′) b′i

Ey∼Py l(y, w) b̃

Ey∼Py l(y, w′) b̃′

1
n ∑n

i=1 l(yi, w) b

1
n ∑n

i=1 l(yi, w′) b
′
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We will also use · to denote a empirical expectation over x, or y, or (x, y). The
argument under · will determine the variable over which we take the expectation.
For instance, aa′ = 1

n ∑n
i=1 k(xi, v)k(xi, v′) and aba′ = 1

n ∑n
i=1 k(xi, v)l(yi, w)k(xi, v′),

and so on. We define in the same way for the population expectation using ·̃ i.e.,
ãa′ = Ex [k(x, v)k(x, v′)] and ãba′ = Exy [k(x, v)l(y, w)k(x, v′)].

With these shorthands, we can rewrite Ŝ(t, t′) and S(t, t′) as

Ŝ(t, t′) =
1
n

n

∑
i=1

(ai − a)(bi − b)(a′i − a′)(b′i − b
′
),

S(t, t′) = Exy
[
(a− ã)(b− b̃)(a′ − ã′)(b′ − b̃′)

]
.

By expanding S(t, t′), we have

S(t, t′) = Exy
[
+ aba′b′ − aba′b̃′ − abã′b′ + abã′b̃′

− ab̃a′b′ + ab̃a′b̃′ + ab̃ã′b′ − ab̃ã′b̃′

− ãba′b′ + ãba′b̃′ + ãbã′b′ − ãbã′b̃′

+ ãb̃a′b′ − ãb̃a′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′
]

= +ãba′b′ − ãba′b̃′ − ãbb′ ã′ + ãbã′b̃′

− ãa′b′b̃ + ãa′b̃b̃′ + ãb′ ã′b̃− ãb̃ã′b̃′

− ã′bb′ ã + ã′bãb̃′ + ãã′b̃b′ − ãb̃ã′b̃′

+ ã′b′ ãb̃− ãb̃ã′b̃′ − ãb̃ã′b̃′ + ãb̃ã′b̃′

= +ãba′b′ − ãba′b̃′ − ãbb′ ã′ + ãbã′b̃′

− ãa′b′b̃ + ãa′b̃b̃′ + ãb′ ã′b̃ + ã′b′ ãb̃

− ã′bb′ ã + ã′bãb̃′ + ãã′b̃b′ − 3ãb̃ã′b̃′.

The expansion of Ŝ(t, t′) can be done in the same way. By the triangle inequality, we
have

∣∣Ŝ(t, t′)− S(t, t′)
∣∣

≤
∣∣∣aba′b′ − ãba′b′

∣∣∣+ ∣∣∣aba′ b
′ − ãba′b̃′

∣∣∣+ ∣∣∣abb′a′ − ãbb′ ã′
∣∣∣+ ∣∣∣aba′b

′ − ãbã′b̃′
∣∣∣∣∣∣aa′b′ b− ãa′b′b̃

∣∣∣+ ∣∣∣aa′ b b
′ − ãa′b̃b̃′

∣∣∣+ ∣∣∣ab′a′b− ãb′ ã′b̃
∣∣∣+ ∣∣∣a′b′ab− ã′b′ ãb̃

∣∣∣∣∣∣a′bb′a− ã′bb′ ã
∣∣∣+ ∣∣∣a′bab

′ − ã′bãb̃′
∣∣∣+ ∣∣∣a a′bb′ − ãã′b̃b′

∣∣∣+ 3
∣∣∣aba′b

′ − ãb̃ã′b̃′
∣∣∣ .

The first term
∣∣∣aba′b′ − ãba′b′

∣∣∣ can be bounded by applying the Hoeffding’s inequality.
Other terms can be bounded by applying Lemma 4.8. Recall that we write (x1, . . . , xm)+

for max(x1, . . . , xm).
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Bounding
∣∣∣aba′b′ − ãba′b′

∣∣∣ (1st term). Since −B2 ≤ aba′b′ ≤ B2, by the Hoeffding’s
inequality (Lemma 3.13), we have

P
(∣∣∣aba′b′ − ãba′b′

∣∣∣ ≤ t
)
≥ 1− 2 exp

(
− nt2

2B4

)
.

Bounding
∣∣∣aba′ b

′ − ãba′b̃′
∣∣∣ (2nd term). Let f1(x, y) = aba′ = k(x, v)l(y, w)k(x, v′) and

f2(y) = b′ = l(y, w′). We note that | f1(x, y)| ≤ (BBk, Bl)+ and | f2(y)| ≤ (BBk, Bl)+.
Thus, by Lemma 4.8 with E = 2, we have

P
(∣∣∣aba′ b

′ − ãba′b̃′
∣∣∣ ≤ t

)
≥ 1− 4 exp

(
− nt2

8(BBk, Bl)
4
+

)
.

Bounding
∣∣∣aba′b

′ − ãbã′b̃′
∣∣∣ (4th term). Let f1(x, y) = ab = k(x, v)l(y, w), f2(x) =

a′ = k(x, v′) and f3(y) = b′ = l(y, w′). We can see that | f1(x, y)|, | f2(x)|, | f3(y)| ≤
(B, Bk, Bl)+. Thus, by Lemma 4.8 with E = 3, we have

P
(∣∣∣aba′b

′ − ãbã′b̃′
∣∣∣ ≤ t

)
≥ 1− 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)
.

Bounding
∣∣∣aba′b

′ − ãb̃ã′b̃′
∣∣∣ (last term). Let f1(x) = a = k(x, v), f2(y) = b = l(y, w), f3(x) =

a′ = k(x, v′) and f4(y) = b′ = l(y, w′). It can be seen that | f1(x)|, | f2(y)|, | f3(x)|, | f4(y)| ≤
(Bk, Bl)+. Thus, by Lemma 4.8 with E = 4, we have

P
(

3
∣∣∣aba′b

′ − ãb̃ã′b̃′
∣∣∣ ≤ t

)
≥ 1− 8 exp

(
− nt2

32 · 32(Bk, Bl)
8
+

)
.

Bounds for other terms can be derived in a similar way to yield

(3rd term) P
(∣∣∣abb′a′ − ãbb′ ã′

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBl , Bk)
4
+

)
,

(5th term) P
(∣∣∣aa′b′ b− ãa′b′b̃

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBk, Bl)
4
+

)
,

(6th term) P
(∣∣∣aa′ b b

′ − ãa′b̃b̃′
∣∣∣ ≤ t

)
≥ 1− 6 exp

(
− nt2

18(B2
k , Bl)

6
+

)
,

(7th term) P
(∣∣∣ab′a′b− ãb′ ã′b̃

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)
,

(8th term) P
(∣∣∣a′b′ab− ã′b′ ãb̃

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)
,

(9th term) P
(∣∣∣a′bb′a− ã′bb′ ã

∣∣∣ ≤ t
)
≥ 1− 4 exp

(
− nt2

8(BBl , Bk)
4
+

)
,

(10th term) P
(∣∣∣a′bab

′ − ã′bãb̃′
∣∣∣ ≤ t

)
≥ 1− 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)
,
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(11th term) P
(∣∣∣a a′bb′ − ãã′b̃b′

∣∣∣ ≤ t
)
≥ 1− 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
.

By the union bound, we have

P
(∣∣Ŝ(t, t′)− S(t, t′)

∣∣ ≤ 12t
)

≥ 1−
[

2 exp
(
− nt2

2B4

)
+ 4 exp

(
− nt2

8(BBk, Bl)
4
+

)
+ 4 exp

(
− nt2

8(BBl , Bk)
4
+

)
+ 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)

+ 4 exp

(
− nt2

8(BBk, Bl)
4
+

)
+ 6 exp

(
− nt2

18(B2
k , Bl)

6
+

)
+ 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)

+ 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)
+ 4 exp

(
− nt2

8(BBl , Bk)
4
+

)
+ 6 exp

(
− nt2

18(B, Bk, Bl)
6
+

)

+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)
8
+

)]

= 1−
[

2 exp
(
− nt2

2B4

)
+ 8 exp

(
− nt2

8(BBk, Bl)
4
+

)
+ 8 exp

(
− nt2

8(BBl , Bk)
4
+

)
+ 24 exp

(
− nt2

18(B, Bk, Bl)
6
+

)

+ 6 exp

(
− nt2

18(B2
k , Bl)

6
+

)
+ 6 exp

(
− nt2

18(Bk, B2
l )

6
+

)
+ 8 exp

(
− nt2

32 · 32(Bk, Bl)
8
+

)]
≥ 1−

[
2 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

)
+ 24 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 6 exp

(
−122nt2

B∗

)
+ 8 exp

(
−122nt2

B∗

) ]
= 1− 62 exp

(
−122nt2

B∗

)
,

where

B∗ :=
1

122 max
[
2B4, 8(BBk, Bl)

4
+, 8(BBl , Bk)

4
+, 18(B, Bk, Bl)

6
+,

18(B2
k , Bl)

6
+, 18(Bk, B2

l )
6
+, 32 · 32(Bk, Bl)

8
+

]
.

By reparameterization, it follows that

P

(
c1 Jn
γn

∣∣Ŝ(t, t′)− S(t, t′)
∣∣ ≤ t

)
≥ 1− 62 exp

(
− γ2

nt2

c2
1 J2nB∗

)
. (4.22)

Union Bound for
∣∣λ̂n − λn

∣∣ and Final Lower Bound

We will bound terms in (4.21) separately and combine all the bounds with the union
bound. As shown in (4.7), the U-statistic core h is bounded between −2B and 2B.
Thus, by Lemma A.5 (with m = 2), we have

P
(

c2n
√

J|û(t∗)− u(t∗)| ≤ t
)
≥ 1− 2 exp

(
− b0.5nct2

8c2
2n2 JB2

)
. (4.23)
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Bounding c1n
γn

8B2 J
n−1 + c3nγn +

4BJc1n
γn
|û(t̃)− u(t̃)|. By Lemma A.5 (with m = 2), it fol-

lows that

P

(
c1n
γn

8B2 J
n− 1

+ c3nγn +
4BJc1n

γn
|û(t̃)− u(t̃)| ≤ t

)

≥ 1− 2 exp

−b0.5ncγ2
n

[
t− c1n

γn

8B2 J
n−1 − c3nγn

]2

27B4 J2c2
1n2


= 1− 2 exp

(
−b0.5nc

[
tγn(n− 1)− 8c1B2nJ − c3n(n− 1)γ2

n
]2

27B4 J2c2
1n2(n− 1)2

)
(a)
≥ 1− 2 exp

(
−
[
tγn(n− 1)− 8c1B2nJ − c3n(n− 1)γ2

n
]2

28B4 J2c2
1n2(n− 1)

)
, (4.24)

where at (a) we used b0.5nc ≥ (n− 1)/2. Combining (4.22), (4.23), and (4.24) with
the union bound (set T = 3t), we can bound (4.21) with

P
(∣∣λ̂n − λn

∣∣ ≤ T
)
≥ 1− 62 exp

(
− γ2

nT2

32c2
1 J2nB∗

)
− 2 exp

(
− b0.5ncT2

72c2
2n2 JB2

)
− 2 exp

(
−
[
Tγn(n− 1)/3− 8c1B2nJ − c3γ2

nn(n− 1)
]2

28B4 J2c2
1n2(n− 1)

)
.

Since
∣∣λ̂n − λn

∣∣ ≤ T implies λ̂n ≥ λn − T, a reparametrization with r = λn − T gives

P
(
λ̂n ≥ r

)
≥ 1− 62 exp

(
−γ2

n(λn − r)2

32c2
1 J2nB∗

)
− 2 exp

(
−b0.5nc(λn − r)2

72c2
2n2 JB2

)
− 2 exp

(
−
[
(λn − r)γn(n− 1)/3− 8c1B2nJ − c3γ2

nn(n− 1)
]2

28B4 J2c2
1n2(n− 1)

)
:= L(λn).

Grouping constants into ξ1, . . . ξ5 gives the result.
The lower bound L(λn) takes the form

1− 62 exp
(
−C1(λn − Tα)

2)− 2 exp
(
−C2(λn − Tα)

2)− 2 exp
(
− [(λn − Tα)C3 − C4]

2

C5

)
,

where C1, . . . , C5 are positive constants. For fixed large enough n such that λn > Tα,
and fixed significance level α, increasing λn will increase L(λn). Specifically, since n is
fixed, increasing u>Σ−1u in λn = nu>Σ−1u will increase L(λn).

4.B Helper Lemmas

This section contains contributed as well as known lemmas used to prove the main
results in this chapter.

Lemma 4.7 (Product to sum). Assume that |ai| ≤ B, |bi| ≤ B for i = 1, . . . , E. Then



4.B. HELPER LEMMAS 91∣∣∣∏E
i=1 ai −∏E

i=1 bi

∣∣∣ ≤ BE−1 ∑E
j=1 |aj − bj|.

Proof.∣∣∣∣∣ E

∏
i=1

ai −
E

∏
j=1

bj

∣∣∣∣∣ ≤
∣∣∣∣∣ E

∏
i=1

ai −
E−1

∏
i=1

aibE

∣∣∣∣∣+
∣∣∣∣∣E−1

∏
i=1

aibE −
E−2

∏
i=1

aibE−1bE

∣∣∣∣∣+ . . . +

∣∣∣∣∣a1

E

∏
j=2

bj −
E

∏
j=1

bj

∣∣∣∣∣
≤ |aE − bE|

∣∣∣∣∣E−1

∏
i=1

ai

∣∣∣∣∣+ |aE−1 − bE−1|
∣∣∣∣∣
(

E−2

∏
i=1

ai

)
bE

∣∣∣∣∣+ . . . + |a1 − b1|
∣∣∣∣∣ E

∏
j=2

bj

∣∣∣∣∣
≤ |aE − bE|BE−1 + |aE−1 − bE−1| BE−1 + . . . + |a1 − b1| BE−1

= BE−1
E

∑
j=1
|aj − bj|

applying triangle inequality, and the boundedness of ai and bi-s.

Lemma 4.8 (Product variant of the Hoeffding’s inequality). For i = 1, . . . , E, let
{x(i)j }

ni
j=1 ⊂ Xi be an i.i.d. sample from a distribution Pi, and fi : Xi 7→ R be a measurable

function. Note that it is possible that P1 = P2 = · · · = PE and {x(1)j }
n1
j=1 = · · · = {x(E)

j }
nE
j=1.

Assume that | fi(x)| ≤ B < ∞ for all x ∈ Xi and i = 1, . . . , E. Write P̂i to denote an empirical
distribution based on the sample {x(i)j }

ni
j=1. Then,

P

(∣∣∣∣∣
[

E

∏
i=1

Ex(i)∼P̂i
fi(x(i))

]
−
[

E

∏
i=1

Ex(i)∼Pi
fi(x(i))

]∣∣∣∣∣ ≤ T

)
≥ 1− 2

E

∑
i=1

exp
(
− niT2

2E2B2E

)
.

Proof. By Lemma 4.7, we have∣∣∣∣∣
[

E

∏
i=1

Ex(i)∼P̂i
fi(x(i))

]
−
[

E

∏
i=1

Ex(i)∼Pi
fi(x(i))

]∣∣∣∣∣ ≤ BE−1
E

∑
i=1

∣∣∣Ex(i)∼P̂i
fi(x(i))−Ex(i)∼Pi

fi(x(i))
∣∣∣ .

By applying the Hoeffding’s inequality to each term in the sum, we have

P
(∣∣∣Ex(i)∼P̂i

fi(x(i))−Ex(i)∼Pi
fi(x(i))

∣∣∣ ≤ t
)
≥ 1− 2 exp

(
−2nit2

4B2

)
.

The result is obtained with a union bound.

Lemma 4.9 (Product of real analytic functions). Let f : X → R and g : Y → R be real
analytic functions where X ⊆ Rdx and Y ⊆ Rdy are open sets. Define h(x, y) := f (x)g(y).
Then, h is real analytic on X ×Y .

Proof. By Lemma 4.10, f and g satisfy the following properties:

• For any v ∈ X , there exist an open ball W f with v ∈ W f ⊆ X , and constants
C f > 0 and R f > 0 such that∣∣∣∣ ∂α

∂xα
f (x)

∣∣∣∣ ≤ C f
α!

R|α|f

, ∀x ∈W f , (4.25)
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for any α = (α1, . . . , αdx) ∈ {0, 1, 2, . . .}dx .

• For any w ∈ Y , there exist an open ball Wg with w ∈ Wg ⊆ Y , and constants
Cg > 0 and Rg > 0 such that∣∣∣∣ ∂β

∂yβ
g(y)

∣∣∣∣ ≤ Cg
β!

R|β|g

, ∀y ∈Wg, (4.26)

for any β = (β1, . . . , βdy) ∈ {0, 1, 2, . . .}dy .

Since f and g are infinitely differentiable, h is infinitely differentiable on X × Y .
(4.25) and (4.26) together mean that, for any (v, w) ∈ X ×Y , there exist an open ball
W ⊂W f ×Wg which contains (v, w), and constants C := C f Cg and R := min(R f , Rg)

such that ∣∣∣∣ ∂α∂β

∂xα∂yβ
h(x, y)

∣∣∣∣ ≤ C
α!β!

R|α|+|β|
, ∀(x, y) ∈W,

implying that h(x, y) is real analytic on X ×Y by Lemma 4.10.

Lemma 4.10 (Krantz and Parks [2002, Proposition 2.2.10]). Let f be an infinitely differen-
tiable function on an open set X ⊆ Rd. The function f is in fact real analytic if and only if,
for each v ∈ X , there are an open ball W, with v ∈W ⊆ X , and constants C > 0 and R > 0
such that the derivatives of f satisfy∣∣∣∣∂m f

∂xm (x)
∣∣∣∣ ≤ C

m!
R|m|

, ∀x ∈W,

where m = (m1, . . . , md) ∈ {0, 1, 2, . . .}d is used as a multi-index with xm := ∏d
i=1 xmi

i ,
m! := ∏d

i=1 mi!, |m| := ∑d
i=1 mi, and ∂m

∂xm = ∂m1

∂xm1
1

∂m2

∂xm2
2

. . . ∂md

∂x
md
d

.



Chapter 5

Informative Features for Model
Criticism

Summary We propose a novel adaptive test of goodness of fit, with computational
cost linear in the number of samples. We learn the test features that best indicate
the differences between observed samples and a reference model, by minimizing the
false negative rate. These features are constructed via Stein’s method, meaning that
it is not necessary to compute the normalising constant of the model. We analyse
the asymptotic Bahadur efficiency of the new test, and prove that under a mean-shift
alternative, our test always has greater relative efficiency than a previous linear-time
kernel test, regardless of the choice of parameters for that test. In experiments, the
performance of our method exceeds that of the earlier linear-time test, and matches
or exceeds the power of a quadratic-time kernel test. In high dimensions and where
model structure may be exploited, our goodness of fit test performs far better than
a quadratic-time two-sample test based on the Maximum Mean Discrepancy, with
samples drawn from the model.

5.1 Introduction

The goal of goodness of fit testing is to determine how well a model density p(x) fits
an observed sample D = {xi}n

i=1 ⊂ X ⊆ Rd from an unknown distribution q(x). This
goal may be achieved via a hypothesis test, where the null hypothesis H0 : p = q is
tested against H1 : p 6= q. The problem of testing goodness of fit has a long history
in statistics [Frank J. Massey, 1951], with a number of tests proposed for particular
parametric models. Such tests can require space partitioning [Györfi and van der
Meulen, 1990, Beirlant et al., 1994], which works poorly in high dimensions; or closed-
form integrals under the model, which may be difficult to obtain, besides in certain
special cases [Baringhaus and Henze, 1988, Bowman and Foster, 1993, Székely and
Rizzo, 2005, Rizzo, 2009]. An alternative is to conduct a two-sample test using samples
drawn from both p and q. This approach was taken by Lloyd and Ghahramani [2015],
using a test based on the (quadratic-time) Maximum Mean Discrepancy [Gretton et al.,
2012a], however this does not take advantage of the known structure of p (quite apart

93



94 CHAPTER 5. INFORMATIVE FEATURES FOR MODEL CRITICISM

from the increased computational cost of dealing with samples from p).

More recently, measures of discrepancy with respect to a model have been pro-
posed based on Stein’s method [Ley et al., 2017]. A Stein operator for p may be
applied to a class of test functions, yielding functions that have zero expectation
under p. Classes of test functions can include the W2,∞ Sobolev space [Gorham and
Mackey, 2015], and reproducing kernel Hilbert spaces (RKHS) [Oates et al., 2017b].
Applications include variance reduction in Bayesian quadrature Oates et al. [2017b,a]
and construction of variational density estimates. Statistical tests have been proposed
by Chwialkowski et al. [2016], Liu et al. [2016] based on classes of Stein transformed
RKHS functions, where the test statistic is the norm of the smoothness-constrained
function with largest expectation under q . We will refer to this statistic as the Kernel
Stein Discrepancy (KSD). For consistent tests, it is sufficient to use c0-universal kernels
[Carmeli et al., 2010, Definition 4.1], as shown by Chwialkowski et al. [2016, Theorem
2.2], although inverse multiquadric kernels may be preferred if uniform tightness is
required [Gorham and Mackey, 2017].1

The minimum variance unbiased estimate of the KSD is a U-statistic, with compu-
tational cost quadratic in the number n of samples from q. It is desirable to reduce the
cost of testing, however, so that larger sample sizes may be addressed. A first approach
is to replace the U-statistic with a running average with linear cost, as proposed by Liu
et al. [2016] for the KSD, but this results in an increase in variance and corresponding
decrease in test power. An alternative approach is to construct explicit features of
the distributions, whose empirical expectations may be computed in linear time. In
the two-sample and independence settings, these features were initially chosen at
random by [Epps and Singleton, 1986, Chwialkowski et al., 2015, Zhang et al., 2017].
More recently, features have been constructed explicitly to maximize test power in the
two-sample [Jitkrittum et al., 2016] and independence testing [Jitkrittum et al., 2017]
settings, resulting in tests that are not only more interpretable, but which can yield
performance matching quadratic-time tests.

We propose to construct explicit linear-time features for testing goodness of fit,
chosen so as to maximize test power. These features further reveal where the model
and data differ, in a readily interpretable way. Our first theoretical contribution is a
derivation of the null and alternative distributions for tests based on such features,
and a corresponding power optimization criterion. Note that the goodness-of-fit test
requires somewhat different strategies to those employed for two-sample (Section 3.2)
and independence testing (Section 4.3), which become computationally prohibitive
in high dimensions for the Stein discrepancy (specifically, the normalization used in
prior work to simplify the asymptotics would incur a cost cubic in the dimension d
and the number of features in the optimization).

1Briefly, Gorham and Mackey show that when an exponentiated quadratic kernel is used, a sequence
of sets D may be constructed that does not correspond to any q, but for which the KSD nonetheless
approaches zero. In a statistical testing setting, however, we assume identically distributed samples from
q, and the issue does not arise.
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Our second theoretical contribution, given in Section 5.4, is an analysis of the
relative Bahadur efficiency of our test vs the linear time test of Liu et al. [2016]: this
represents the relative rate at which the p-value decreases under H1 as we observe
more samples. We prove that our test has greater asymptotic Bahadur efficiency
relative to the test of Liu et al., for Gaussian distributions under the mean-shift
alternative. This is shown to hold regardless of the bandwidth of the exponentiated
quadratic kernel used for the earlier test. The proof techniques developed are of
independent interest, and we anticipate that they may provide a foundation for the
analysis of relative efficiency of linear-time tests in the two-sample and independence
testing domains. In experiments (Section 5.5), our new linear-time test is able to detect
subtle local differences between the density p(x), and the unknown q(x) as observed
through samples. We show that our linear-time test constructed based on optimized
features has comparable performance to the quadratic-time test of Chwialkowski et al.
[2016], Liu et al. [2016], while uniquely providing an explicit visual indication of
where the model fails to fit the data.

5.2 Kernel Stein Discrepancy (KSD) Test

We begin by introducing the Kernel Stein Discrepancy (KSD) and associated statistical
test, as proposed independently by Chwialkowski et al. [2016] and Liu et al. [2016].
Assume that the data domain is a connected open set X ⊆ Rd. Consider a Stein
operator Tp that takes in a multivariate function f(x) = ( f1(x), . . . , fd(x))> ∈ Rd

and constructs a function
(
Tpf
)
(x) : Rd → R. The constructed function has the key

property that Ex∼q
[
(Tpf)(x)

]
= 0 if and only if q = p, for all f in an appropriate

function class. Thus, one can use this expectation as a statistic for testing goodness of
fit.

The function class F d for the function f is chosen to be a unit-norm ball in a
reproducing kernel Hilbert space (RKHS) in Chwialkowski et al. [2016], Liu et al.
[2016]. More precisely, let F be an RKHS associated with a positive definite kernel
k : X × X → R. Let φ(x) = k(x, ·) denote a feature map of k so that k(x, x′) =

〈φ(x), φ(x′)〉F . Assume that fi ∈ F for all i = 1, . . . , d so that f ∈ F × · · · × F := F d

where F d is equipped with the standard inner product 〈f, g〉F d := ∑d
i=1 〈 fi, gi〉F . The

kernelized Stein operator2 Tp studied in Chwialkowski et al. [2016] is

(
Tpf
)
(x) :=

d

∑
i=1

(
∂ log p(x)

∂xi
fi(x) +

∂ fi(x)
∂xi

)
(a)
=
〈

f, ξp(x, ·)
〉
F d

,

where at (a) we use the reproducing property of F , i.e., fi(x) = 〈 fi, k(x, ·)〉F , and
that ∂k(x,·)

∂xi
∈ F [Steinwart and Christmann, 2008, Lemma 4.34], hence ξp(x, ·) :=

∂ log p(x)
∂x k(x, ·)+ ∂k(x,·)

∂x is in F d. Under appropriate conditions, e.g. that lim‖x‖→∞ p(x) fi(x) =
0 for all i = 1, . . . , d, it can be shown using integration by parts that Ex∼p(Tpf)(x) = 0

2The Stein operator presented in Liu et al. [2016] is defined such that
(
Tpf
)
(x) ∈ Rd. This distinction

is not crucial and leads to the same goodness-of-fit test.
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for any f ∈ F d [Chwialkowski et al., 2016, Lemma 5.1]. Based on the Stein operator,
Chwialkowski et al. [2016], Liu et al. [2016] define the kernelized Stein discrepancy as

Sp(q) := sup
‖f‖Fd≤1

Ex∼q

〈
f, ξp(x, ·)

〉
F d

(a)
= sup
‖f‖Fd≤1

〈
f, Ex∼qξp(x, ·)

〉
F d

= ‖g(·)‖F d , (5.1)

where at (a), ξp(x, ·) is Bochner integrable [Steinwart and Christmann, 2008, Definition
A.5.20] as long as Ex∼q‖ξp(x, ·)‖F d < ∞, and g(y) := Ex∼qξp(x, y) is what we refer to
as the Stein witness function. The Stein witness function will play a crucial role in our
new test statistic in Section 5.3. It can be shown that Sp(q) = 0 if and only if p = q
under some conditions (Theorem 5.1).

Theorem 5.1 (Chwialkowski et al. [2016, Theorem 2.2]). If the kernel k is c0-universal
[Carmeli et al., 2010, Definition 4.1], Ex∼qEx′∼qhp(x, x′) < ∞, and Ex∼q‖∇x log p(x)

q(x) ‖2 <

∞, then Sp(q) = ‖Ex∼qξp(x, ·)‖F d = 0 if and only if p = q.

The KSD Sp(q) can be written as S2
p(q) = Ex∼qEx′∼qhp(x, x′), where

hp(x, y) := s>p (x)sp(y)k(x, y) + s>p (y)∇xk(x, y) + s>p (x)∇yk(x, y) +
d

∑
i=1

∂2k(x, y)
∂xi∂yi

,

(5.2)
and sp(x) := ∇x log p(x) is a column vector. An unbiased empirical estimator of
S2

p(q), denoted by Ŝ2 = 2
n(n−1) ∑i<j hp(xi, xj) [Liu et al., 2016, Eq. 14], is a degenerate

U-statistic under H0. For the goodness-of-fit test, the rejection threshold can be
computed by a bootstrap procedure. All these properties make Ŝ2 a very flexible
criterion to detect the discrepancy of p and q: in particular, it can be computed even if
p is known only up to a normalization constant. Further studies on nonparametric
Stein operators can be found in Oates et al. [2017b], Gorham and Mackey [2015].

Linear-Time Kernel Stein (LKS) Test Computation of Ŝ2 costs O(n2). To reduce this
cost, a linear-time (i.e., O(n)) estimator based on an incomplete U-statistic is proposed
in Liu et al. [2016, Eq. 17], given by

Ŝ2
l :=

2
n

n/2

∑
i=1

hp(x2i−1, x2i), (5.3)

where we assume n is even for simplicity. Empirically Liu et al. [2016] observed
that the linear-time estimator performs much worse (in terms of test power) than the
quadratic-time U-statistic estimator, agreeing with our findings presented in Section
5.5.

5.3 New Statistic: The Finite Set Stein Discrepancy (FSSD)

Although shown to be powerful, the main drawback of the Kernel Stein Discrepancy
test is its high computational cost of O(n2). Further, to get the rejection threshold, if
the bootstrap resampling is performed b times, then the complexity is O(bn2) which



5.3. NEW STATISTIC: THE FINITE SET STEIN DISCREPANCY (FSSD) 97

is high, making it impractical for data with large sample size. The LKS test is one
order of magnitude faster. Unfortunately, the decrease in the test power outweighs the
computational gain [Liu et al., 2016]. We therefore seek a variant of the KSD statistic
that can be computed in linear time, and whose test power is comparable to the KSD
test.

Key Idea The fact that Sp(q) = 0 if and only if p = q implies that g(v) = 0 for all
v ∈ X if and only if p = q, where g is the Stein witness function in (5.1). One can see
g as a function witnessing the differences of p, q, in such a way that |gi(v)| is large
when there is a discrepancy in the region around v, as indicated by the ith output of g.
The test statistic of Liu et al. [2016], Chwialkowski et al. [2016] is essentially given by
the degree of “flatness” of g as measured by the RKHS norm ‖ · ‖F d . The core of our
proposal is to use a different measure of flatness of g which can be computed in linear
time.

The idea is to use a real analytic kernel k which makes g1, . . . , gd real analytic.
If gi 6= 0 is an analytic function, then the Lebesgue measure of the set of roots
{x | gi(x) = 0} is zero [Mityagin, 2015]. This property suggests that one can evaluate
gi at a finite set of locations V = {v1, . . . , vJ}, drawn from a distribution with a density
(w.r.t. the Lebesgue measure). If gi 6= 0, then almost surely gi(v1), . . . , gi(vJ) will
not be zero. Our new test statistic based on this idea is called the Finite Set Stein
Discrepancy (FSSD) and is given in Theorem 5.2.

Theorem 5.2 (The Finite Set Stein Discrepancy (FSSD)). Let X be a connected open set in
Rd. Define FSSD2

p(q) := 1
dJ ∑d

i=1 ∑J
j=1 g2

i (vj). Assume

1. The test locations V = {v1, . . . , vJ} ⊂ Rd are drawn i.i.d. from a distribution η which
has a density,

2. k : X ×X → R is c0-universal and real analytic (see Section 2.5),

3. Ex∼qEx′∼qhp(x, x′) < ∞,

4. Ex∼q‖∇x log p(x)−∇x log q(x)‖2 < ∞, and

5. lim‖x‖→∞ p(x)g(x) = 0.

Then, η-almost surely FSSD2
p(q) = 0 if and only if p = q, for any J ≥ 1.

Proof. Since k is real analytic, the components g1, . . . , gd of g are real analytic by
Lemma 2.12. For each i = 1, . . . , d, if gi is real analytic, then ∑J

j=1 g2
i (vj) = 0 if and

only if gi(y) = 0 for all y ∈ X , η-almost surely [Mityagin, 2015]. This implies that
1
dJ ∑d

i=1 ∑J
j=1 g2

i (vj) = 0 if and only if g(y) = 0 for all y ∈ X , η-almost surely. By
Theorem 5.1, g = 0 (the zero function) if and only if p = q.

This measure depends on a set of J test locations (or features) {vi}J
i=1 used to

evaluate the Stein witness function, where J is fixed and is typically small. A kernel
which is c0-universal and real analytic is the Gaussian kernel k(x, y) = exp

(
− ‖x−y‖2

2
2σ2

k

)
.

We will consider only the Gaussian kernel. Besides the requirement that the kernel be
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real and analytic, the remaining conditions in Theorem 5.2 are the same as given in
Chwialkowski et al. [2016, Theorem 2.2]. Note that if the FSSD is to be employed in a
setting otherwise than testing, for instance to obtain pseudo-samples converging to p,
then stronger conditions may be needed [Gorham and Mackey, 2017].

5.3.1 Goodness-of-Fit Test with the FSSD Statistic

Given a significance level α for the goodness-of-fit test, the test can be constructed
so that H0 is rejected when nF̂SSD2 > Tα, where Tα is the rejection threshold (crit-
ical value), and F̂SSD2 is an empirical estimate of FSSD2

p(q). The threshold which
guarantees that the type-I error (i.e., the probability of rejecting H0 when it is true) is
bounded above by α is given by the (1− α)-quantile of the null distribution i.e., the
distribution of nF̂SSD2 under H0. In the following, we start by giving the expression
for F̂SSD2, and summarize its asymptotic distributions in Proposition 5.3.

Let Ξ(x) ∈ Rd×J such that [Ξ(x)]i,j = ξp,i(x, vj)/
√

dJ. Define τ(x) := vec(Ξ(x)) ∈
RdJ where vec(M) concatenates columns of the matrix M into a column vector. We
note that τ(x) depends on the test locations V = {vj}J

j=1. Let ∆(x, y) := τ(x)>τ(y) =
tr(Ξ(x)>Ξ(y)). Given an i.i.d. sample {xi}n

i=1 ∼ q(x), a consistent, unbiased estimator
of FSSD2

p(q) is

F̂SSD2 =
1
dJ

d

∑
l=1

J

∑
m=1

1
n(n− 1)

n

∑
i=1

∑
j 6=i

ξp,l(xi, vm)ξp,l(xj, vm) (5.4)

=
2

n(n− 1) ∑
i<j

∆(xi, xj),

which is a one-sample second-order U-statistic with ∆ as its U-statistic core (see
Section A.1: U-Statistics). Being a U-statistic, its asymptotic distribution can easily be
derived. We use d→ to denote convergence in distribution.

Proposition 5.3 (Asymptotic distributions of F̂SSD2). Let Z1, . . . , ZdJ
i.i.d.∼ N (0, 1). Let

µ := Ex∼q[τ(x)], Σr := covx∼r[τ(x)] ∈ RdJ×dJ for r ∈ {p, q}, and {ωi}dJ
i=1 be the

eigenvalues of Σp = Ex∼p[τ(x)τ>(x)]. Assume that Ex∼qEy∼q∆2(x, y) < ∞, and the
assumptions in Theorem 5.2 hold. Then,

1. Under H0 : p = q, nF̂SSD2 d→ ∑dJ
i=1(Z2

i − 1)ωi.

2. Under H1 : p 6= q, if σ2
H1

:= 4µ>Σqµ > 0, then
√

n(F̂SSD2 − FSSD2)
d→ N (0, σ2

H1
).

Proof. Recognizing that (5.4) is a degenerate U-statistic, the results follow directly
from Serfling [2009, Section 5.5.1, 5.5.2].

Claims 1 and 2 of Proposition 5.3 imply that under H1, the test power (i.e., the
probability of correctly rejecting H1) goes to 1 asymptotically, if the threshold Tα is
defined as above. In practice, simulating from the asymptotic null distribution in
Claim 1 can be challenging, since the plug-in estimator of Σp requires a sample from
p, which is not available. A straightforward solution is to draw sample from p, either
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by assuming that p can be sampled easily or by using an MCMC method, although
this adds an additional computational burden to the test procedure. A more subtle
issue is that when dependent samples from p are used in obtaining the test threshold,
the test may become more conservative than required for i.i.d. data [Chwialkowski
et al., 2014]. An alternative approach is to use the plug-in estimate Σ̂q instead of
Σp. The covariance matrix Σ̂q can be directly computed from the data. This is the
approach we take. Theorem 5.4 guarantees that the replacement of the covariance in
the computation of the asymptotic null distribution still yields a consistent test. We
write PH1 for the distribution of nF̂SSD2 under H1.

Theorem 5.4. Let Σ̂q := 1
n ∑n

i=1 τ(xi)τ
>(xi)− [ 1

n ∑n
i=1 τ(xi)][

1
n ∑n

j=1 τ(xj)]
> with {xi}n

i=1 ∼
q. Suppose that the test threshold Tα is set to the (1− α)-quantile of the distribution of

∑dJ
i=1 ν̂i(Z2

i − 1) where {Zi}dJ
i=1

i.i.d.∼ N (0, 1), and ν̂1, . . . , ν̂dJ are eigenvalues of Σ̂q. Assume
that the assumptions in Theorem 5.2 hold. Then, under H0, asymptotically the false rejection
rate is α. Under H1, the test power PH1(nF̂SSD2 > Tα)→ 1 as n→ ∞.

Proof. Under H0, p = q implies that Σ̂q = Σ̂p (empirical estimate of Σp). Let λj(A)

denote the jth eigenvalue of the matrix A. Lemma 5.15 implies that A 7→ λj(A) is
continuous on the space of real symmetric matrices, for all j. Since plimn→∞ ‖Σ̂p −
Σp‖ = 0 (i.e., Σ̂p converges in probability to Σp), by the continuous mapping theorem,
the eigenvalues of Σ̂p converge to the eigenvalues of Σp in probability. This implies
that ∑dJ

i=1(Z2
i − 1)ν̂i converges in probability to ∑dJ

i=1(Z2
i − 1)ωi as n → ∞, where

{ωi}dJ
i=1 are eigenvalues of Σp. By Lemma 5.16, the quantile also converges, and the

test threshold thus matches that of the true asymptotic null distribution given in claim
1 of Proposition 5.3.

Assume H1 holds. Let t̂α, tα be (1− α)-quantiles of the distributions of ∑dJ
i=1(Z2

i −
1)ν̂i and ∑dJ

i=1(Z2
i − 1)νi, respectively, where {νi}dJ

i=1 are eigenvalues of Σq. By the
same argument as in the previous paragraph, t̂α converges in probability to tα, which
is a constant independent of the sample size n. Given {vj}J

j=1 ∼ η, where η is a
distribution with a density, FSSD2 > 0 by Theorem 5.2. It follows that

lim
n→∞

P
(

nF̂SSD2 > t̂α

)
= lim

n→∞
P

(
F̂SSD2 − t̂α

n
> 0

)
(a)
= P

(
FSSD2 > 0

)
= 1,

where at (a), we use the fact that F̂SSD2 converges in probability to FSSD2 by the law
of large numbers, and that t̂α/n

p→ 0.

5.3.2 Optimizing the Test Parameters

Theorem 5.2 guarantees that the population quantity FSSD2 = 0 if and only if p = q
for any choice of {vi}J

i=1 drawn from a distribution with a density. In practice, we

are forced to rely on the empirical F̂SSD2, and some test locations will give a higher
detection rate (i.e., test power) than others for finite n. Following the approaches of
Gretton et al. [2012b], Jitkrittum et al. [2016], Sutherland et al. [2016], Jitkrittum et al.
[2017], we choose the test locations V =

{
vj
}J

j=1 and kernel bandwidth σ2
k so as to
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maximize the test power i.e., the probability of rejecting H0 when it is false. We first
give an approximate expression for the test power when n is large.

Proposition 5.5 (Approximate test power of nF̂SSD2). Under H1, for large n and fixed

r, the test power PH1(nF̂SSD2 > r) ≈ 1− Φ
(

r√
nσH1
−√n FSSD2

σH1

)
, where Φ denotes the

cumulative distribution function of the standard normal distribution, and σH1 is defined in
Proposition 5.3.

Proof. PH1(nF̂SSD2 > r) = PH1(F̂SSD2 > r/n) = PH1

(√
n F̂SSD2−FSSD2

σH1
>
√

n r/n−FSSD2

σH1

)
.

For sufficiently large n, the alternative distribution is approximately normal as given

in Proposition 5.3. It follows that PH1(nF̂SSD2 > r) ≈ 1−Φ
(

r√
nσH1
−√n FSSD2

σH1

)
.

Let ζ := {V, σ2
k } be the collection of all tuning parameters. Assume that n is

sufficiently large. Following the same argument as in Sutherland et al. [2016], in
r√

nσH1
− √n FSSD2

σH1
, we observe that the first term r√

nσH1
= O(n−1/2) going to 0 as

n → ∞, while the second term
√

n FSSD2

σH1
= O(n1/2), dominating the first for large n.

Thus, the best parameters that maximize the test power are given by

ζ∗ = arg max
ζ

PH1(nF̂SSD2 > Tα) ≈ arg max
ζ

FSSD2

σH1

. (5.5)

Since FSSD2 and σH1 are unknown, we divide the sample {xi}n
i=1 into two disjoint

training and test sets, and use the training set to compute F̂SSD2

σ̂H1+γ to estimate FSSD2

σH1
,

where a small regularization parameter γ > 0 is added for numerical stability. The
goodness-of-fit test is performed on the test set to avoid overfitting. The idea of
splitting the data into training and test sets to learn good features for hypothesis
testing was successfully used in Sutherland et al. [2016], Jitkrittum et al. [2016, 2017],
Gretton et al. [2012b].

To find a local maximum of F̂SSD2

σ̂H1+γ , we use gradient ascent for its simplicity. The

initial points of {vi}J
i=1 are set to random draws from a normal distribution fitted

to the training data, a heuristic we found to perform well in practice. The objective
is non-convex in general, reflecting many possible ways to capture the differences
of p and q. The regularization parameter γ is not tuned, and is fixed to a small

constant. Assume that ∇x log p(x) costs O(d2) to evaluate. Computing ∇ζ
F̂SSD2

σ̂H1+γ costs

O(d2 J2n). The computational complexity of estimating nF̂SSD2 and σ̂2
H1

is O(d2 Jn).
Thus, finding a local optimum via gradient ascent is still linear-time in n, for a fixed
maximum number of iterations. Computing Σ̂q costs O(d2 J2n), and obtaining all
the eigenvalues of Σ̂q costs O(d3 J3). We note that the optimization does not require
eigenvalues of Σ̂q. The eigenvalues are only needed once to perform the test. If the
eigenvalues decay to zero sufficiently rapidly, one can approximate the asymptotic
null distribution with only a few eigenvalues. The cost to obtain the largest few
eigenvalues alone can be much smaller.
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Remark 1. Let µ̂ := 1
n ∑n

i=1 τ(xi). It is possible to normalize the FSSD statistic to get
a new statistic λ̂n := nµ̂>(Σ̂q + γI)−1µ̂ where γ ≥ 0 is a regularization parameter
that goes to 0 as n → ∞. This was done in the case of the normalized ME (mean
embeddings) statistic in Section 3.2, and the normalized FSIC statistic in Section 4.3.
The asymptotic null distribution of the normalized statistic in this case takes the
convenient form of χ2(dJ) (independent of p and q), eliminating the need to obtain
the eigenvalues of Σ̂q. As in the case of the normalized ME and FSIC statistics, the test
power criterion for tuning the parameters in this case is the statistic λ̂n itself. However,
the optimization is computationally expensive as (Σ̂q + γI)−1 (costing O(d3 J3)) needs
to be reevaluated in each gradient ascent iteration. In particular, the cost is high even
for a moderate value of the input dimension d. In our proposed FSSD statistic, there
is no cubic dependency on d or J in the optimization.

5.4 Relative Efficiency of the FSSD and LKS Tests

Both the linear-time kernel Stein (LKS) and FSSD tests have the same computational
cost of O(d2n), and are consistent, achieving maximum test power of 1 as n → ∞
under H1. It is thus of theoretical interest to understand which test is more sensitive in
detecting the differences of p and q. This can be quantified by the Bahadur slope of the
test [Bahadur, 1960]. Two given tests can then be compared by computing the Bahadur
efficiency (Theorem 5.14) which is given by the ratio of the slopes of the two tests.
We note that the constructions and techniques in this section may be of independent
interest, and can be generalised to other statistical testing settings.

5.4.1 Relative Efficiency and Bahadur Slope

We start by introducing the concept of Bahadur slope for a general test, following
the presentation of Gleser [1964, 1966]. Consider a hypothesis testing problem on a
parameter θ. The test proposes a null hypothesis H0 : θ ∈ Θ0 against the alternative
hypothesis H1 : θ ∈ Θ\Θ0, where Θ, Θ0 are arbitrary sets. Let Tn be a test statistic
computed from a sample of size n, such that large values of Tn provide an evidence
to reject H0. We use plim to denote convergence in probability, and write Er for
Ex∼rEx′∼r.

Approximate Bahadur Slope (ABS) For θ0 ∈ Θ0, let the asymptotic null distribution
of Tn be F(t) = limn→∞ Pθ0(Tn < t), where we assume that the CDF (F) is continuous
and common to all θ0 ∈ Θ0. The continuity of F will be important later when
Theorems 5.7 and 5.8 are used to compute the slopes of LKS and FSSD tests. Assume
that there exists a continuous strictly increasing function ρ : (0, ∞)→ (0, ∞) such that
limn→∞ ρ(n) = ∞, and that −2 plimn→∞

log(1−F(Tn))
ρ(n) = c(θ) where Tn ∼ Pθ , for some

function c such that 0 < c(θA) < ∞ for θA ∈ Θ\Θ0, and c(θ0) = 0 when θ0 ∈ Θ0.
The function c(θ) is known as the approximate Bahadur slope (ABS) of the sequence Tn.
The quantifier “approximate” comes from the use of the asymptotic null distribution
instead of the exact one [Bahadur, 1960]. Intuitively the slope c(θA), for θA ∈ Θ\Θ0, is
the rate of convergence of p-values (i.e., 1− F(Tn)) to 0, as n increases. The higher the
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slope, the faster the p-value vanishes, and thus the lower the sample size required to
reject H0 under θA.

Approximate Bahadur Efficiency Given two sequences of test statistics, T(1)
n and T(2)

n

having the same ρ(n) (see Theorem 5.8), the approximate Bahadur efficiency of T(1)
n

relative to T(2)
n is defined as E(θA) := c(1)(θA)/c(2)(θA) for θA ∈ Θ\Θ0. If E(θA) > 1,

then T(1)
n is asymptotically more efficient than T(2)

n in the sense of Bahadur, for the
particular problem specified by θA ∈ Θ\Θ0.

In practice, the main difficulty in determining the approximate Bahadur slope is
the computation of −2 plimn→∞

log(1−F(Tn))
ρ(n) , typically requiring the aid of the theory of

large deviations. There are further sufficient conditions which make the computation
easier. The following conditions are due to Gleser [1964, 1966], first appearing in
Bahadur [1960] in a slightly less general form.

Definition 5.6. Let D(a, t) be a class of all continuous cumulative distribution func-
tions (CDF) F such that −2 log(1− F(x)) = axt(1 + o(1)), as x → ∞ for a > 0 and
t > 0.

Theorem 5.7 (Gleser [1964, 1966]). Consider a sequence of test statistic Tn. Assume that

1. There exists a function F(x) such that for θ ∈ Θ0, limn→∞ Pθ(Tn < x) = F(x), for all
x, and such that F ∈ D(a, t) for some a > 0 and t > 0 (see Definition 5.6).

2. There exists a continuous, strictly increasing function R : (0, ∞) → (0, ∞) with
limn→∞ R(n) = ∞, and a function b(θ) with 0 < b(θ) < ∞ defined on Θ\Θ0, such
that for all θ ∈ Θ\Θ0, plimn→∞ Tn/R(n) = b(θ).

Then, −2 plimn→∞
log(1−F(Tn))

[R(n)]t
= a [b(θ)]t =: c(θ), the approximate slope of the sequence

Tn, where ρ(n) = R(n)t (see Section 5.4).

Theorem 5.8 (Gleser [1964, 1966]). Consider two sequences of test statistics T(1)
n and T(2)

n .
Let F(i) be the CDF of T(i)

n for i = 1, 2. Assume that each sequence satisfies all the conditions

in Theorem 5.7 with F(i) ∈ D(ai, ti). Further, assume that
[

R(1)(x)
]t1

=
[

R(2)(x)
]t2

for all
x. Then

plim
n→∞

log(1− F(1)(T(1)
n ))

log(1− F(2)(T(2)
n ))

=
c(1)(θ)
c(2)(θ)

= ϕ1,2(θ),

which is the approximate Bahadur efficiency of T(1)
n relative to T(2)

n .

With Theorem 5.7, the difficulty is in showing that F ∈ D(a, t) for some a > 0, t > 0.
Typically verification of the assumption 2 of Theorem 5.7 poses no problem. Bahadur
[1960] showed that the CDF of N (0, 1) belongs to D(1, 2) and the CDF of χ2

k (chi-
squared distribution with k degrees of freedom, fixed k) belongs to D(1, 1). The
following theorem makes it easier to determine whether a given CDF is in the class
D(a, t).



5.4. RELATIVE EFFICIENCY OF THE FSSD AND LKS TESTS 103

Theorem 5.9 (Gleser [1966, Theorem 6, 7]). Let X have CDF F ∈ D(a, t), and X1, . . . , Xm

be independent random variables, each with CDF Fi ∈ D(a, t). Then, the following statements
are true.

1. If b > 0, then the CDF of bX is in D(ab−t, t).

2. X− b has CDF in D(a, t) provided that t ≥ 1.

3. For r > 0, Xr has CDF in D(a, r−1t) provided that F(0) = 0.

4. max(X1, . . . , Xm) has CDF in D(a, t).

5. Let a1, . . . , am be non-negative real numbers such that amax := max(a1, . . . , am) > 0.
Then, ∑m

i=1 aiXi has CDF in D(a · a−t
max, t) provided that ∑m

i=1 Xi has CDF in D(a, t)
and Xi ≥ 0 for all i = 1, . . . , m.

5.4.2 Approximate Bahadur Slopes of nF̂SSD2 and
√

nŜ2
l

We now give approximate Bahadur slopes for two sequences of linear time test
statistics: the proposed nF̂SSD2 (Theorem 5.10), and the LKS test statistic

√
nŜ2

l

(Theorem 5.11). We then show in Theorem 5.14 that when p = N (0, 1) and q =

N (µq, 1), the approximate Bahadur efficiency of nF̂SSD2 relative to
√

nŜ2
l is always

greater than 2 for appropriately chosen hyperparameters (i.e., a Gaussian kernel
bandwidth and a test location).

Theorem 5.10. The approximate Bahadur slope of nF̂SSD2 is c(FSSD) := FSSD2/ω1, where
ω1 is the maximum eigenvalue of Σp := Ex∼p[τ(x)τ>(x)] (see Section 5.3.1 for the definition
of τ) and ρ(n) = n (see Section 5.4.1 for ρ).

Proof. We will use Theorem 5.7 to derive the slope. For the assumption 1 of Theorem
5.7, we first show that the asymptotic null distribution belongs to the class D(a =

1/ω1, t = 1) as defined in Definition 5.6. By Proposition 5.3, the asymptotic null
distribution is ∑dJ

i=1 ωiZ2
i − ∑dJ

i=1 ωi where Z1, . . . , ZdJ
i.i.d.∼ N (0, 1) and ω1 ≥ · · · ≥

ωdJ ≥ 0 are eigenvalues of Σp. It is known from Bahadur [1960] that the CDF of
χ2

f is in D(1, 1) for any fixed degrees of freedom f . Thus, it follows from claim 5

of Theorem 5.9 that the CDF of ∑dJ
i=1 ωiZ2

i is in D(a = 1/ω1, t = 1). Claim 2 of
Theorem 5.9 guarantees that the CDF of ∑dJ

i=1 ωiZ2
i −∑dJ

i=1 ωi is in D(a = 1/ω1, t = 1)
as desired.

For assumption 2 of Theorem 5.7, choose R(n) := n. It follows from the weak
law of large numbers that under H1, nF̂SSD2/R(n)

p→ FSSD2. By Theorem 5.7, the
approximate slope is FSSD2/ω1.

Theorem 5.11. The approximate Bahadur slope of the linear-time kernel Stein (LKS) test

statistic
√

nŜ2
l is c(LKS) = 1

2
[Eqhp(x,x′)]

2

Ep[h2
p(x,x′)]

, where hp is the U-statistic kernel in (5.2) of the KSD

statistic, and ρ(n) = n.
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Proof. We will use Theorem 5.7 to derive the slope. By the central limit theorem,

√
n
(

Ŝ2
l − S2

p(q)
)

d→ N (0, 2Vq[hp(x, x′)]),

where Vq[hp(x, x′)] := Ex∼qEx′∼q[h2
p(x, x′)]−

(
Ex∼qEx′∼q[hp(x, x′)]

)2. Under H0 : p =

q, it follows that S2
p(q) = Ex∼qEx′∼q[hp(x, x′)] = 0 by Theorem 5.1, and

√
nŜ2

l
d→

N (0, 2Vp[hp(x, x′)]) where Vp[hp(x, x′)] := Ex∼pEx′∼p[h2
p(x, x′)]. It is known from Ba-

hadur [1960] that the CDF ofN (0, 1) is in the class D(1, 2) (see Definition 5.6). Thus, by
property 1 of Theorem 5.9, the CDF ofN (0, 2Vp[hp(x, x′)]) is inD

(
a = 1

2Vp[hp(x,x′)] , t = 2
)

.
For assumption 2 of Theorem 5.7, choose R(n) :=

√
n. It follows from the weak

law of large numbers that under H1,
√

nŜ2
l /R(n) = Ŝ2

l
p→ S2

p(q). By Theorem 5.7, the

approximate slope is
S4

p(q)
2Vp[hp(x,x′)] implying the result.

To make these results concrete, we consider the setting where p = N (0, 1) and
q = N (µq, σ2

q ) on the real line. We assume that both tests use the Gaussian kernel
k(x, y) = exp

(
−(x− y)2/2σ2

k

)
, possibly with different bandwidths. We write σ2

k and
κ2 for the kernel bandwidths of FSSD and LKS, respectively. Under these assumptions,
the slopes given in Theorem 5.10 and Theorem 5.11 can be derived explicitly. The full
expressions of the slopes are given in Proposition 5.12 and Proposition 5.13.

Proposition 5.12. Under the setting that J = 1 (i.e., one test location v), p = N (0, 1) and
q = N (µq, σ2

q ), the approximate Bahadur Slope of nF̂SSD2 is

c(FSSD) :=

(
σ2

k

) 3/2 (σ2
k + 2

) 5/2e
v2

σ2
k +2
− (v−µq)2

σ2
k +σ2

q
((

σ2
k + 1

)
µq + v

(
σ2

q − 1
))2(

σ2
k + σ2

q

)
3
(
σ6

k + 4σ4
k + (v2 + 5) σ2

k + 2
) . (5.6)

Proof. This result follows directly from Theorem 5.10 specialized to the case of p =

N (0, 1), q = N (µq, σ2
q ), and J = 1. Since dJ = 1, the covariance matrix

Σp = Ex∼p

[
ξ2

p(x, v)
]
=

e
− v2

σ2
k +2
(
σ6

k + 4σ4
k +

(
v2 + 5

)
σ2

k + 2
)

σk
(
σ2

k + 2
)

5/2

reduces to a scalar, where

ξp(x, v) =
[

∂

∂x
log p(x)

]
k(x, v) +

∂

∂x
k(x, v)

= −e
− (v−x)2

2σ2
k
(
xσ2

k − v + x
)

/σ2
k .

In this case,

FSSD2 = E2
x∼q
[
ξp(x, v)

]
=

σ2
k e
− (v−µq)2

σ2
k +σ2

q
((

σ2
k + 1

)
µq + v

(
σ2

q − 1
))2

(
σ2

k + σ2
q

)3 . (5.7)
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Taking the ratio FSSD2/Ex∼p

[
ξ2

p(x, v)
]

gives the result.

Remark 2. As noted in Theorem 5.2 that FSSD2
p(q) = 0 if and only if p = q almost

surely with respect to the distribution η with a density, from which v is drawn. The
η-almost sureness means that when p 6= q,

1. There might exist a set V0 of measure zero such that FSSD2
p(q) = 0 when v ∈ V0.

2. When v ∼ η, v /∈ V0 with probability 1 and hence FSSD2
p(q) > 0.

To concretely demonstrate this, consider the case where p = N (0, 1), q = N (µq, σ2
q ),

µq 6= 0 and σ2
q 6= 1. From (5.7), it can be seen that V0 =

{
−
(
σ2

k + 1
)

µq/
(

σ2
q − 1

)}
containing only one element. Since η has a density, the probability that v drawn from
η is realized to be this value is 0.

Proposition 5.13. Assume that p = N (0, 1) and q = N (µq, σ2
q ). Let

√
nŜ2

l be the linear-

time kernel Stein (LKS) test statistic where Ŝ2
l is defined in (5.3) with a Gaussian kernel

k(x, y) = exp
(
− (x−y)2

2κ2

)
. Then, the following statements hold.

1. The population kernel Stein discrepancy is

S2
p(q) =

µ2
q

(
κ2 + 2σ2

q

)
+
(

σ2
q − 1

)
2(

κ2 + 2σ2
q

)√
2σ2

q

κ2 + 1
.

2. The approximate Bahadur slope of
√

nŜ2
l is

c(LKS) :=
κ5 (κ2 + 4

)5/2
[

µ2
q

(
κ2 + 2σ2

q

)
+
(

σ2
q − 1

)2
]2

2 (κ8 + 8κ6 + 21κ4 + 20κ2 + 12)
(

κ2 + 2σ2
q

)3 . (5.8)

3. Let

c(LKS)
1 =

(
κ2)5/2 (

κ2 + 4
)5/2

µ4
q

2 (κ2 + 2) (κ8 + 8κ6 + 21κ4 + 20κ2 + 12)

denote the approximate slope c(LKS) specialized to when q = N (µq, 1). Then, for any
µq 6= 0, the function κ2 7→ c(LKS)

1 (µq, κ2) is strictly increasing on (0, ∞). Further,

lim
κ2→∞

c(LKS)
1 (µq, κ2) = µ4

q/2. (5.9)

Proof. Proof of Claim 1, 2. Recall Ŝ2
l := 2

n ∑n/2
i=1 hp(x2i−1, x2i). With p = N (0, 1), and

k(x, y) = exp
(
− (x−y)2

2κ2

)
, hp(x, y) can be written as

hp(x, y) :=
e−

(x−y)2

2κ2
(
κ2 −

(
κ2 + 1

)
x2 +

(
κ4 + 2κ2 + 2

)
xy−

(
κ2 + 1

)
y2)

κ4 .
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By Theorem 5.11, c(LKS) = 1
2
[Eqhp(x,x′)]

2

Ep[h2
p(x,x′)]

which mainly involves expectations with

respect to a normal distribution. In computing the expectation Ex′∼qhp(x, x′), the idea
is to form the density for a new normal distribution by combining 1√

2πσ2
q
e−(x−µq)2/2σ2

q

(the density of q) and the term e−
(x−y)2

2κ2 in the expression of hp(x, y). Computation of
Ex′∼qhp(x, x′) will then boil down to computing an expectation wrt. a new normal
distribution.

It turns out that

Ex∼qEx′∼q[hp(x, x′)] =
µ2

q

(
κ2 + 2σ2

q

)
+
(

σ2
q − 1

)2

(
κ2 + 2σ2

q

)√
2σ2

q

κ2 + 1
= S2

p(q),

Ep

[
h2

p(x, x′)
]
=

(
κ2 + 4

) (
κ4 + 4κ2 + 5

)
κ2 + 12

κ3 (κ2 + 4)5/2 .

Computing 1
2

S4
p(q)

Ep[h2
p(x,x′)]

gives the slope.

Proof of Claim 3. The expression for c(LKS)
1 is obtained straightforwardly by

plugging σ2
q = 1 into the expression of c(LKS). Assume µq 6= 0. It can be seen that

c(LKS)
1 (µq, κ2) is differentiable with respect to κ2 on the interval (0, ∞). The partial

derivative is given by

∂

∂κ2 c(LKS)
1 =

(
κ2)3/2 (

κ2 + 4
)3/2 (7κ8 + 56κ6 + 166κ4 + 216κ2 + 120

)
µ4

q

(κ2 + 2)2 (κ8 + 8κ6 + 21κ4 + 20κ2 + 12)2 .

Since for any µq 6= 0, ∂
∂κ2 c(LKS)

1 > 0 for κ2 ∈ (0, ∞), we conclude that κ2 7→
c(LKS)

1 (µq, κ2) is a strictly increasing function on (0, ∞). By taking the limit, we have
limκ2→∞ c(LKS)

1 (µq, κ2) = µ4
q/2.

By Theorem 5.8, the approximate Bahadur efficiency can be computed by taking the
ratio of the two slopes. For this purpose, we consider p = N (0, 1) and q = N (µq, 1)
i.e., a mean shift problem. The efficiency is given in Theorem 5.14.

Theorem 5.14 (Bahadur efficiency in the Gaussian mean shift problem). Let E1(µq, v, σ2
k , κ2)

be the approximate Bahadur efficiency of nF̂SSD2 relative to
√

nŜ2
l for the case where

p = N (0, 1), q = N (µq, 1), and J = 1 (i.e., one test location v for nF̂SSD2). Fix σ2
k = 1

for nF̂SSD2. Then, for any µq 6= 0, for some v ∈ R, and for any κ2 > 0, we have
E1(µq, v, σ2

k , κ2) > 2.

Proof. By Proposition 5.12, the approximate slope of nF̂SSD2 when σ2
q = 1 is

c(FSSD)
1 (µq, v, σ2

k ) =
σ2

k

(
σ2

k + 2
) 3µ2

qe
v2

σ2
k +2
− (v−µq)2

σ2
k +1√

2
σ2

k
+ 1

(
σ2

k + 1
) (

σ6
k + 4σ4

k + (v2 + 5) σ2
k + 2

) .
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Theorem 5.8 states that the approximate efficiency E1(µq, v, σ2
k , κ2) is given by the ratio

c(FSSD)
1 (µq,v,σ2

k )

c(LKS)
1 (µq,κ2)

(see Propositions 5.12 and 5.13) of the approximate slopes of the two tests.

Pick σ2
k = 1, and for any µq 6= 0, pick v = 2µq. These choices give the slope

c(FSSD)
1 (µq, 2µq, 1) =

9
√

3e
5µ2

q
6 µ2

q

2
(

4µ2
q + 12

) .

We have

E1(µq, v, σ2
k , κ2) = E1(µq, 2µq, 1, κ2)

= c(FSSD)
1 (µq, 2µq, 1)/c(LKS)

1 (µq, κ2)

(a)
≥ c(FSSD)

1 (µq, 2µq, 1)/

(
µ4

q

2

)

=
9
√

3e
5µ2

q
6

µ2
q

(
4µ2

q + 12
) := g(µq),

where at (a) we use c(LKS)
1 (µq, κ2) ≤ µ4

q/2 from (5.9). It can be seen that for µq 6= 0,
g(µq) is an even function i.e., g(µq) = g(−µq). The second derivative

∂2

∂µ2
q

g(µq) =
√

3e
5µ2

q
6

(
25µ8

q + 45µ6
q − 45µ4

q + 81µ2
q + 486

)
/
(

4µ4
q

(
µ2

q + 3
)3
)
> 0.

To see that ∂2

∂µ2
q
g(µq) > 0, consider two cases of µ2

q ≥ 1 and 0 < µ2
q < 1. When µ2

q ≥ 1,

g(µq) ≥
√

3e
5µ2

q
6

(
25µ8

q + 81µ2
q + 486

)
/
(

4µ4
q

(
µ2

q + 3
)3
)
> 0,

because 45µ6
q − 45µ4

q ≥ 0. When 0 < µ2
q < 1,

g(µq) ≥
√

3e
5µ2

q
6

(
25µ8

q + 45µ6
q + 486

)
/
(

4µ4
q

(
µ2

q + 3
)3
)
> 0,

because −45µ4
q + 81µ2

q ≥ 0. This shows that g(µq) is convex on (0, ∞). The function

g(µq) on R\{0} achieves global minima at µq = µ∗q := ±
√

3
10

(√
41− 1

)
≈ ±1.273.

This implies that

E1(µq, v, σ2
k , κ2) ≥ g(µq) ≥ g(µ∗q)

=
25
√

3e
1
4 (
√

41−1)

8
(√

41 + 4
) ≈ 2.00855 > 2.
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When p = N (0, 1) and q = N (µq, 1) for µq 6= 0, Theorem 5.14 guarantees that our
FSSD test is asymptotically at least twice as efficient as the LKS test in the Bahadur
sense. We note that the efficiency is conservative in the sense that σ2

k = 1 regardless of
µq. Choosing σ2

k dependent on µq will likely improve the efficiency further.

5.5 Experiments

In this section, we demonstrate the performance of the proposed test on a number
of problems. The primary goal is to understand the conditions under which the test
can perform well. Our goal is not to demonstrate that the proposed test outperforms
the quadratic-time test of Chwialkowski et al. [2016], Liu et al. [2016] over all possible
problems.

5.5.1 Sensitivity to Local Differences

−4 −2 0 2 4v∗ v∗

p

q
FSSD2

σH1

Figure 5.1: The power criterion FSSD2/σH1 as a function of test location v, when
p = N (0, 1) and q = Laplace(0, 1/

√
2).

We start by demonstrating that the test power objective FSSD2/σH1 captures local
differences of p and q, and that interpretable features v are found. Consider a one-
dimensional problem in which p = N (0, 1) and q = Laplace(0, 1/

√
2), a zero-mean

Laplace distribution with scale parameter 1/
√

2. These parameters are chosen so that
p and q have the same mean and variance. Figure 5.1 plots the (rescaled) objective as
a function of v. The objective illustrates that the best features (indicated by v∗) are at
the most discriminative locations.

5.5.2 Test Power

We next investigate the power of different tests on two problems with different
characteristics:

1. Gaussian vs. Laplace: p(x) = N (x|0, Id) and q(x) = ∏d
i=1 Laplace(xi|0, 1/

√
2)

where the dimension d will be varied. The two distributions have the same mean
and variance. The main characteristic of this problem is local differences of p
and q (see Figure 5.1). Set n = 1000.

2. Restricted Boltzmann Machine (RBM): p(x) is the marginal distribution of

p(x, h) =
1
Z

exp
(

x>Bh + b>x + c>x− 1
2
‖x‖2

)
,
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where x ∈ Rd, h ∈ {±1}dh is a random vector of hidden variables, and Z is the
normalization constant. The exact marginal density p(x) = ∑h∈{−1,1}dh p(x, h) is
intractable when dh is large, since it involves summing over 2dh terms. Recall
that the proposed test only requires the score function ∇x log p(x) (not the
normalization constant), which can be computed in closed form in this case, and
is given by

∇x log p(x) = b− x + Bϕ(B>x + c),

ϕ(z) =
exp(2z)− 1
exp(2z) + 1

,

where ϕ applies element-wise to a vector input [Liu et al., 2016, Section 6]. In
this problem, q is another RBM where entries of the matrix B are corrupted by
Gaussian noise. This problem was considered in Liu et al. [2016]. We set d = 50
and dh = 40, and generate samples by n independent chains (i.e., n independent
samples) of blocked Gibbs sampling with 2000 burn-in iterations.

We evaluate the following six kernel-based nonparametric tests with α = 0.05, all
using the Gaussian kernel.

1. FSSD-rand: the proposed FSSD test where the test locations set to random draws
from a multivariate normal distribution fitted to the data. The kernel bandwidth
is set by the commonly used median heuristic i.e., σk = median({‖xi − xj‖, i <
j}).

2. FSSD-opt: the proposed FSSD test where both the test locations and the Gaus-
sian bandwidth are optimized (Section 5.3.2). For both the FSSD tests, we use
J = 5.

3. KSD: the quadratic-time Kernel Stein Discrepancy test with the median heuristic.

4. LKS: the linear-time version of KSD with the median heuristic.

5. MMD-opt: the quadratic-time MMD two-sample test of Gretton et al. [2012a]
where the kernel bandwidth is optimized by grid search to maximize a power
criterion as described in Sutherland et al. [2016].

6. ME-opt: the linear-time mean embeddings (ME) two-sample test of Jitkrittum
et al. [2016] where parameters are optimized. We draw n samples from p to run
the two-sample tests (MMD-opt, ME-opt).

All tests with optimization use 20% of the sample size n for parameter tuning. Each
problem is repeated for 200 trials, resampling n points from q every time.

Gaussian vs. Laplace In Figure 5.2a (Gaussian vs. Laplace), high performance
of FSSD-opt indicates that the test performs well when there are local differences
between p and q. Low performance of FSSD-rand emphasizes the importance of the
optimization of FSSD-opt to pinpoint regions where p and q differ. The power of KSD
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n = 1000.
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Figure 5.2: Rejection rates of the six tests in the two problems. In the RBM problem,
d = 50 and dh = 40. The proposed linear-time FSSD-opt has a comparable or higher
test power in some cases than the quadratic-time KSD test.

quickly drops as the dimension increases, which can be understood since KSD is the
RKHS norm of a function witnessing differences in p and q across the entire domain,
including where these differences are small.

RBM with d = 50 and dh = 40 We next consider the case of RBMs with d = 50 and
dh = 40. Following Liu et al. [2016], b, c are independently drawn from the standard
multivariate normal distribution, and entries of B ∈ R50×40 are drawn with equal
probability from {±1}, in each trial. The density q represents another RBM having
the same b, c as in p, and with all entries of B corrupted by independent zero-mean
Gaussian noise with standard deviation σper. Figure 5.2b shows the test powers as σper

increases, for a fixed sample size n = 1000. We observe that all the tests have correct
false positive rates (type-I errors) at roughly α = 0.05 when there is no perturbation
noise. In particular, the optimization in FSSD-opt does not increase false positive
rate when H0 holds. We see that the performance of the proposed FSSD-opt matches
that of the quadratic-time KSD at all noise levels. MMD-opt and ME-opt perform far
worse than the goodness-of-fit tests when the difference in p and q is small (σper is
low), since these tests simply represent p using samples, and do not take advantage of
its structure.

The advantage of having O(n) runtime can be clearly seen when the problem is
much harder, requiring larger sample sizes to tackle. Consider a similar problem on
RBMs in which the parameter B ∈ R50×40 in q is given by that of p, where only the
first entry B1,1 is perturbed by random N (0, 0.12) noise. The results are shown in
Figure 5.2c where the sample size n is varied. We observe that the two two-sample
tests fail to detect this subtle difference even with large sample size. The test powers
of KSD and FSSD-opt are comparable when n is relatively small. It appears that KSD
has higher test power than FSSD-opt in this case for large n. However, this moderate
gain in the test power comes with an order of magnitude more computation. As
shown in Figure 5.2d, the runtime of the KSD is much larger than that of FSSD-opt,
especially at large n. In these problems, the performance of the new test (even without
optimization) far exceeds that of the LKS test.
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(d) RBM. No perturbation.
H0 holds.

Figure 5.3: Rejection rates of the six tests in the RBM problem with d = 50 and dh = 10.
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Figure 5.4: Pairwise scatter plots of 1000 points drawn from RBMs. Only the first 4
variates out of 50 are shown. (a): RBM with d = 50 dimensions with dh = 10 latent
variables. (b): RBM with d = 50 dimensions with dh = 40 latent variables.

RBM with d = 50 and dh = 10 In Liu et al. [2016], the setting of d = 50 and dh = 10
was studied. For completeness, we consider the same setting and show the results in
Figure 5.3 where all other problem configurations are the same.

In Figure 5.3a, p is set to an RBM with parameters randomly drawn (described
in Section 5.5), and q is the same RBM with all entries of the parameter B ∈ R50×10

perturbed by independent Gaussian noise with standard deviation σper, which varies
from 0 to 0.06. We observe that the proposed FSSD-opt and KSD perform comparably.
Figure 5.3b considers a hard problem where only the first entry B1,1 is perturbed by
noise following N (0, 0.12), and the sample size n is varied. In both of these two cases,
the overall trend is similar to the case of d = 50 and dh = 40 presented in Figure 5.2.
It is interesting to note that FSSD-rand, relying on random test locations, performs
comparably or even outperforms FSSD-opt in the case of d = 50, dh = 10, but not in
the case of d = 50, dh = 40. This phenomenon can be explained as follows. In the case
of d = 50, dh = 10, the data generated from the RBM tend to have simple structure
(see Figure 5.4a). By contrast, data generated from the RBM with d = 50, dh = 40
(more latent variables) have larger variance, and can form a complicated structure
(Figure 5.4b), requiring a careful choice of test locations to detect differences of p and
q. When d = 50, dh = 10, however, random test locations given by random draws from
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(a) p = 2-component GMM.
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Figure 5.5: Plots of the optimization objective as a function of test location v ∈ R2

in the Gaussian mixture model (GMM) evaluation task. Density functions of the
fitted GMMs are shown in wireframe. The parameter tuning objective is shown as a
grayscale contour plot.

a Gaussian distribution fitted to the data are sufficient to capture the simple structural
difference. This explains why FSSD-rand can perform well in this case. Additionally,
FSSD-rand also has 20% more testing data, since FSSD-opt uses 20% of the sample for
parameter tuning.

Figure 5.3d shows the rejection rates of all the tests as the sample size increases
when p and q are the same RBM. All the tests have roughly the right false rejection
rates at the set significance level α = 0.05.

5.5.3 Informative Features

In the final simulation, we demonstrate that the learned test locations are informative
in visualising where the model does not fit the data well. We consider crime data from
the Chicago Police Department, recording n = 11957 locations (latitude-longitude
coordinates) of robbery events in Chicago in 2016.3 We address the situation in which
a model p for the robbery location density is given, and we wish to visualise where it
fails to match the data. We fit a Gaussian mixture model (GMM) with the expectation-
maximization algorithm to a subsample of 5500 points. We then test the model on a
held-out test set of the same size to obtain proposed locations of relevant features v.
Figure 5.5a shows the test robbery locations in purple, the model with two Gaussian
components in wireframe, and the optimization objective for v as a grayscale contour
plot (a red star indicates the maximum). We observe that the 2-component model is a
poor fit to the data, particularly in the right tail areas of the data, as indicated in dark
gray (i.e., the objective is high). Figure 5.5b shows a similar plot with a 10-component
GMM. The additional components appear to have eliminated some mismatch in the
right tail, however a discrepancy still exists in the left region. Here, the data have a
sharp boundary on the right side following the geography of Chicago, and do not
exhibit exponentially decaying Gaussian-like tails. We note that tests based on a
learned feature located at the maximum both correctly reject H0.

3Data can be found at https://data.cityofchicago.org.

https://data.cityofchicago.org
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5.5.4 Rejection Rate Vs. Number J of Test Locations
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Figure 5.6: Plots of rejection rate against the number of test locations J in the three toy
problems in Section 5.5.4.

The aim of this section is to explore the test power of the proposed FSSD test as a
function of the number of test locations J. We consider three synthetic problems to
illustrate three phenomena depending on the characteristic of the problem. We note
that the test power may not necessarily increase with J. Figure 5.6 shows the rejection
rate as a function of the test locations J in the three problems described below. In all
cases, the sample size is set to n = 500, the train/test ratio is 50%, and the significance
level is α = 0.05. All rejection rates are computed with 200 trials with data sampled
from the specified q in every trial.

We emphasize that the FSSD test is not designed to be used with large J, since
doing so defeats the purpose of a linear-time test.

Same Gaussian (SG): In this problem, p = q = N (0, I) in R5 i.e., H0 is true. It can
be seen in Figure 5.6a that both the FSSD tests with and without optimization achieve
correct false positive rate at roughly α for all J considered. That is, under H0, the false
rejection rate stays at the right level for all J.

Gaussian vs. Gaussian Mixture Model (GMM): This is a one-dimensional problem
where p = N (0, 1) and q = 0.9N (0, 1) + 0.1N (0, 0.12) i.e., a mixture of two normal
distributions. In this problem, p significantly differs from q in a small region around
0. This difference is created by the second mixture component. The characteristic of
this problem is the local difference of p and q.

Figure 5.6b indicates that using random test locations (FSSD-rand) does not give
high test power. With optimization (FSSD-opt), the power increases as J increases up
to a point, after which it slightly drops down and reaches a plateau. This behavior
can be explained by noting that there is only a very small region around 0 to detect
the difference. More signal can be gained with diminishing return by increasing the
number of test locations around 0. When J is sufficiently high, the increase in the
variance of the statistic outweighs the gain of the signal (recall that the variance of
the null distribution increases with J). This increase in the variance reduces the test
power.

Gaussian Variance Difference (GVD): This is a synthetic problem studied in Jitkrit-
tum et al. [2016] where p = N (0, I) and q = N (0, diag(2, 1 . . . , 1)) in R5. In this case,



114 CHAPTER 5. INFORMATIVE FEATURES FOR MODEL CRITICISM

the region of difference between q and p exists only along the first dimension, and is
broad.

In this case, Figure 5.6c shows that, with optimization, the power increases as
the number of test locations increases. Unlike the case of Gaussian vs. GMM, the
region of difference in this case is broad, and can accommodate more test locations to
increase the signal. Despite this, we expect the test power to reach a plateau when J is
sufficiently large for the same reason as described previously. In FSSD-rand, random
test locations decrease the power due to the increase in the variance. Since only one
dimension is relevant in determining the difference of p and q, it is unlikely that
random locations are in the right region.

5.6 Known Results

This section presents known results that we use in our proofs.

Lemma 5.15 (Weyl’s Perturbation Theorem [Bhatia, 2013, p. 152]). Let λj(A) denote the
jth eigenvalue of a square matrix A. If A, B are two Hermitian matrices, then

max
j
|λj(A)− λj(B)| ≤ ‖A− B‖,

where ‖ · ‖ denotes the operator norm.

Lemma 5.16 ([van der Vaart, 2000, Lemma 21.2]). For any sequence of cumulative distri-
bution functions, F−1

n
d→ F−1 if and only if Fn

d→ F.



Chapter 6

Informative Features for Automated
Expectation Propagation

Summary We propose an efficient nonparametric strategy for learning a message
operator in expectation propagation (EP), which takes as input the set of incoming
messages to a factor node, and produces an outgoing message as output. This
learned operator replaces the multivariate integral required in classical EP, which may
not have an analytic expression. We use kernel-based regression, which is trained
on a set of probability distributions representing the incoming messages, and the
associated outgoing messages. The kernel approach has two main advantages: first, it
is fast, as it is implemented using a novel two-layer random feature representation
of the input message distributions; second, it has principled uncertainty estimates,
and can be cheaply updated online, meaning it can request and incorporate new
training data when it encounters inputs on which it is uncertain. In experiments,
our approach is able to solve learning problems where a single message operator is
required for multiple, substantially different data sets (logistic regression for a variety
of classification problems), where it is essential to accurately assess uncertainty and to
efficiently and robustly update the message operator.

6.1 Introduction

An increasing priority in Bayesian modelling is to make inference accessible and
implementable for practitioners, without requiring specialist knowledge. This is a goal
sought, for instance, in probabilistic programming languages [Wingate et al., 2011,
Goodman et al., 2008], as well as in more granular, component-based systems [Stan
Development Team, 2014, Minka et al., 2014]. In all cases, the user should be able to
freely specify what they wish their model to express, without having to deal with the
complexities of sampling, variational approximation, or distribution conjugacy. In
reality, however, model convenience and simplicity can limit or undermine intended
models, sometimes in ways the users might not expect. To take one example, the
inverse gamma prior, which is widely used as a convenient conjugate prior for the
variance, has quite pathological behaviour [Gelman, 2006]. In general, more expressive,
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freely chosen models are more likely to require expensive sampling or quadrature
approaches, which can make them challenging to implement or impractical to run.

We address the particular setting of expectation propagation [Minka, 2001], a
message passing algorithm wherein messages are confined to being members of a
particular parametric family. The process of integrating incoming messages over
a factor potential, and projecting the result onto the required output family, can
be difficult, and in some cases not achievable in closed form. Thus, a number of
approaches have been proposed to implement EP updates numerically, independent
of the details of the factor potential being used. One approach, due to Barthelmé and
Chopin [2011], is to compute the message update via importance sampling. While
these estimates converge to the desired integrals for a sufficient number of importance
samples, the sampling procedure must be run at every iteration during inference,
hence it is not viable for large-scale problems.

An improvement on this approach is to use importance sampled instances of
input/output message pairs to train a regression algorithm, which can then be used
in place of the sampler. Heess et al. [2013] use neural networks to learn the mapping
from incoming to outgoing messages, and the learned mappings perform well on a
variety of practical problems. This approach comes with a disadvantage: it requires
training data that cover the entire set of possible input messages for a given type of
problem (e.g., datasets representative of all classification problems the user proposes to
solve), and it has no way of assessing the uncertainty of its prediction, or of updating
the model online in the event that a prediction is uncertain.

The disadvantages of the neural network approach were the basis for work by
Eslami et al. [2014], who replaced the neural networks with random forests. The
random forests provide uncertainty estimates for each prediction. This allows them to
be trained “just-in-time,” during EP inference, whenever the predictor decides it is
uncertain. Uncertainty estimation for random forests relies on unproven heuristics,
however: we demonstrate empirically that such heuristics can become highly mislead-
ing as we move away from the initial training data. Moreover, online updating can
result in unbalanced trees, resulting in a cost of prediction of O(N) for training data
of size N, rather than the ideal O(log(N)).

Proposal We propose a novel, kernel-based approach to learning a message operator
nonparametrically for expectation propagation. The learning algorithm takes the form
of a distribution regression problem [Szabó et al., 2016, Oliva et al., 2013, Poczos
et al., 2013], where the inputs are probability measures represented as embeddings
of the distributions to a reproducing kernel Hilbert space (RKHS), and the outputs
are vectors of message parameters. A first advantage of this approach is that one
does not need to pre-specify customized features of the distributions, as in Eslami
et al. [2014], Heess et al. [2013]. Rather, we use a general characteristic kernel on
input distributions [Christmann and Steinwart, 2010, Eq. 9], which in our experiments
gives better performance than customized features. A potential downside of the
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kernel approach is that it can be computationally costly, with training time of O(N3)

and a cost of O(N) to make a prediction. To make the algorithm computationally
tractable, we regress directly in the primal from random Fourier features of the data
[Rahimi and Recht, 2007, Le et al., 2013, Yang et al., 2015]. In particular, we establish a
novel random feature representation for when inputs are distributions, via a two-level
random feature approach. This gives us both fast prediction (linear in the number
of random features), and fast online updates (quadratic in the number of random
features).

A second advantage of our approach is that, being an instance of Gaussian process
regression, there are well established estimates of predictive uncertainty [Rasmussen
and Williams, 2006, Ch. 2]. We use these uncertainty estimates so as to determine
when to query the importance sampler for additional input/output pairs, i.e., the
predictive uncertainty triggers just-in-time updates of the regressor. We demonstrate
empirically that our uncertainty estimates are more robust and informative than those
for random forests, especially as we move away from the training data.

In Section 6.2, we introduce the notation for expectation propagation, and indicate
how an importance sampling procedure can be used as an oracle to provide training
data for the message operator. Next, in Section 6.3, we describe our kernel regression
approach, and the form of an efficient kernel message operator mapping the input
messages (distributions embedded in an RKHS) to outgoing messages (sets of param-
eters of the outgoing messages). Finally, in Section 6.4, we describe our experiments,
which cover three topics: a benchmark of our uncertainty estimates, a demonstration
of factor learning on artificial data with well-controlled statistical properties, and a
logistic regression experiment on four different real-world datasets, demonstrating
that our just-in-time learner can correctly evaluate its uncertainty and update the
regression function as the incoming messages change.

6.2 Message Passing

Message passing is a family of algorithms for computing marginal distributions over
a subset of variables, given a joint distribution. Assume that the joint probability
density p over a set of variables x = (x1, . . . xd) of interest can be represented as a
product of J factors i.e., p(x) = 1

Z ∏J
j=1 f j(xne( f j)), and Z is the normalization constant

[Bishop, 2006, Section 8.4.3: Factor Graphs]. For each j ∈ {1, . . . , J}, the factors f j is
a non-negative function (not necessarily a probability density) defined over a subset
xne( f j) of the full set of variables x, where ne( f j) ⊂ {1, . . . , d} denotes the set of indices
of variables connected to f j. These variables form the neighbors of the factor node
f j when p(x) is represented as a factor graph. An example of a simple probability
density p(x) and its factor graph representation is shown in Figure 6.1.

We deal with models in which some of the factors have a non-standard form, or
may not have a known closed-form expression (i.e., black-box factors). Although our
approach applies to any such factor in principle, in this paper we focus on directed
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x1

fa

x2

fb
x3

fc

x4

Figure 6.1: An example of a simple factor graph corresponding to p(x) =
1
Z fa(x1, x2) fb(x2, x3, x4) fc(x3), containing three factors fa, fb, fc defined over four vari-
ables x1, . . . , x4.

factors f (xout|xin) which specify a conditional distribution over variables xout given
xin (and thus xne( f ) = (xout, xin)). The only assumption we make is that we are
provided with a forward sampling function f : xin 7→ xout, i.e., a function that maps
(stochastically or deterministically) a setting of the input variables xin to a sample from
the conditional distribution over xout ∼ f (·|xin). In particular, the ability to evaluate
the potential value of f (xout|xin) is not assumed. A natural way to specify f is as code
in a probabilistic program.

6.2.1 Belief Propagation and Expectation Propagation

Belief propagation (BP), or the sum-product message passing [Pearl, 1982], computes
exact marginal distributions over subsets of variables (possibly conditioned on another
subset) by iteratively passing messages between variables and factors. A BP message
sent from a factor f to variable xi (where i ∈ ne( f )) is given by

m f→i(xi) =
∫

f (xne( f )) ∏
i′∈ne( f )\{i}

mi′→ f (xi′)dxne( f )\{i} (6.1)

where mi′→ f is the message sent to factor f from a neighboring variable xi′ .1 A factor-
to-variable message in general can be any non-negative function (i.e., not necessarily a
distribution) whose complexity depends on the factor f . A variable-to-factor message
mi′→ f is simply the product of all messages from all other neighboring factors (except
the recipient factor):

mi′→ f (xi′) = ∏
f ′∈ne(i′)\{ f }

m f ′→xi′ (xi′), (6.2)

where ne(i′) is the set of neighboring factor nodes to the variable i′. The marginal
distribution p(xk) of xk is proportional to the product of all incoming messages to xk:

p(xk) ∝ ∏
f ′∈ne(k)

m f ′→xk(xk). (6.3)

If a variable is observed, conditioning on the observed value amounts to replacing
the incoming message from the variable with the Dirac delta function centered at the
observed value. It is well known that if the factor graph is a tree, BP ensures consistency

1We will interchangeably write mi→ f and mxi→ f for a message from the variable xi to f . Similarly,
we use both m f→i and f f→xi

to denote a message from the factor f to xi.
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of the obtained marginals at convergence [Wainwright and Jordan, 2008, p. 105]. That
is, the marginal computed in (6.3) is equal to p(xk) =

∫ 1
Z ∏J

j=1 f j(xne( f j))dx\k where
x\k = (x1, . . . , xk−1, xk+1, . . . , xd).

6.2.2 Expectation Propagation

Expectation Propagation (EP) is an approximate procedure for computing marginal
beliefs of variables by iteratively passing messages between variables and factors until
convergence [Minka, 2001]. It can be seen as an alternative to belief propagation,
where a part of factor outgoing messages is projected onto a prespecified class Q
of known parametric distributions. In contrast to BP, the projection in EP allows
messages to be represented parametrically regardless of the complexity of the factors
in the graph. The EP message from factor f to variable V ∈ ne( f ) is

m f→V(xV) =
proj[ 1

Z

∫
f (xne( f ))∏V′∈ne( f ) mV′→ f (xV′)dxne( f )\V ]

mV→ f (xV)
:=

q f→V(xV)

mV→ f (xV)
, (6.4)

proj[p] := argminq∈QKL[p||q],

where KL[p||q] denotes the Kullback-Leibler (KL) divergence from p to q, Z is the
normalizing constant, and Q is a chosen class of distributions, typically in the expo-
nential family e.g., the set of normal distributions. EP is a general case of BP where
factor-outgoing messages are defined such that the marginal of each variable xV is
constrained to be in Q. To see this, consider the argument to the proj operator in (6.4):∫

f (xne( f )) ∏
V′∈ne( f )

mV′→ f (xV′)dxne( f )\V

= mV→ f (xV)
∫

f (xne( f )) ∏
V′∈ne( f )\{V}

mV′→ f (xV′)dxne( f )\V (6.5)

(a)
= mV→ f (xV)m f→V(xV)

(b)
=

 ∏
f ′∈ne(V)\{ f }

m f ′→V(xV)

m f→V(xV)

(c)
∝ p(xV),

where (a) follows from (6.1), at (b) we use (6.2), and at (c) follows from (6.3). If p(xV)

is already in the chosen family Q, then the projection in (6.4) has no effect, and EP
factor-outgoing message m f→V(xV) reduces to the BP outgoing message in (6.1). An
EP message from a variable is the same as the BP message in (6.2). The marginal p(xk)

is proportional to the product of all EP incoming messages to xk as in (6.3).

There are two key differences to BP. Firstly, the marginal estimated by EP messages
is generally not exact because of the projection. Secondly, EP is inherently loopy,
and requires multiple passes over all the nodes in the graph, even when the graph
is a tree. This characteristic is due to the cyclic dependency on the variable-to-factor
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message mV→ f , in the computation of the factor-to-variable message m f→V (see (6.4)).
In BP, if the graph is a tree, then there is no such cyclic dependency (see (6.1)), and
messages can be sent from leaf nodes to the node whose marginal distribution is
desired, passing over all the variable nodes only once. One way to implement EP is by
initializing all variable-to-factor messages appropriately, and iteratively computing
(6.4) until convergence i.e., until factor-to-variable messages no longer change.

6.2.3 Monte Carlo EP Message Approximation

A common choice for Q (for the projection in (6.4)) is to set to a subset of the exponen-
tial family. Consider a density q(x|η) = h(x) exp

(
η>u(x)− A(η)

)
in the exponential

family parameterized by a natural parameter η ∈ RT, where u(x) computes the suffi-
cient statistics of x, h(x) is the base measure, and A(η) := log

∫
h(x) exp

(
η>u(x)

)
dx

is the log normalizer of q. Assume that Q :=
{

q(x|η) | η ∈ RT} for some fixed u
and h. With this choice for Q, it is well known that projection amounts to finding a
distribution in Q which satisfies a moment-matching constraint. Specifically, given an
arbitrary distribution r(x), its projection onto Q is given by

proj[r] = arg min
q∈Q

KL[r||q] = q∗(x), such that

Ex∼r[u(x)] = Ex∼q∗ [u(x)]. (6.6)

We observe from (6.6) that finding the projection of r(x) requires evaluating the
expectation of u(x) under r. Exactly computing the expectation can be challenging,
as it requires evaluating a high-dimensional integral with respect to an arbitrary
distribution r. Even closed-form factors often require hand-crafted approximations,
or the use of expensive numerical integration techniques; for “black-box” factors
implemented as forward sampling functions as in the problem we consider, more
sophisticated techniques are needed. Barthelmé and Chopin [2011], Heess et al. [2013],
Eslami et al. [2014] propose a stochastic approach to the integration and projection step.
A sample based approximation of this expectation can be obtained via importance
sampling described as follows.

Approximating Factor-Outgoing Messages with Importance Sampling Assume that
xne( f ) = (xout, xin) so that f (xne( f )) = f (xout|xin), and that xout ∼ f (·|xin) can be
simulated given xin. Let

r f→V(xV) :=
1
Zr

∫
f (xout|xin) ∏

V′∈ne( f )
mV′→ f (xV′)dxne( f )\V

be the function that is the argument to the projection in (6.4), where Zr is the nor-
malizer of r f→V . Given a proposal distribution s(xin) (i.e., a normalized probability
density) with appropriate support, the expectation ExV∼r f→V [u(xV)] in (6.6) can be
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approximated as

ExV∼r f→V [u(xV)] =
1
Zr

∫ ∫
u(xV) f (xout|xin) ∏

V′∈ne( f )
mV′→ f (xV′)dxne( f )\V dxV

=
1
Zr

∫ ∫
u(xV)

∏V′∈ne( f ) mV′→ f (xV′)

s(xin)
f (xout|xin)s(xin)dxoutdxin

≈
1
M ∑M

l=1 w̃(x(l)ne( f ))u(x(l)V )

1
M ∑M

j=1 w̃(x(j)
ne( f ))

, (6.7)

where w̃(xne( f )) =
∏V′∈ne( f ) mV′→ f (xV′ )

s(xin)
is the importance weight, and {x(l)ne( f )}M

l=1 ∼
f (xout|xin)s(xin) are M Monte Carlo particles used to approximate the expectation.
We note that

Zr =
∫

f (xout|xin) ∏
V′∈ne( f )

mV′→ f (xV′)dxne( f )

=
∫ ∏V′∈ne( f ) mV′→ f (xV′)

s(xin)
f (xout|xin)s(xin)dxne( f )

≈ 1
M

M

∑
j=1

w̃(x(j)
ne( f )).

The estimate for the expected sufficient statistics in (6.7) only assumes that the pro-
posal distribution s(xin) is normalized. In particular, we assume neither the ability to
evaluate the density of f (xout|xin), nor the fact that ∏V′∈ne( f ) mV′→ f (xV′) is a normal-
ized density. The moment estimate in (6.7) provides us with an estimate of the the
natural parameter η of q f→V in (6.4), from which the factor-outgoing message m f→V

is readily computed.

6.2.4 Learning to Pass EP Messages

Message approximation as in the previous section could be used directly when running
the EP algorithm, as in Barthelmé and Chopin [2011]; but this approach can suffer
when the number of particles M is small, and the importance sampling estimate is not
reliable. On the other hand, for large M, the computational cost of running EP with
approximate messages can be very high, as importance sampling must be performed
for sending each outgoing message. To obtain a low-variance message approximation
at lower computational cost, Heess et al. [2013] and Eslami et al. [2014] both amortize
previously computed approximate messages by training a function approximator to
directly map a tuple of incoming variable-to-factor messages (mV′→ f )V′∈ne( f ) to an
approximate factor-to-variable message m f→V , i.e., they learn a mapping

Mθ
f→V : (mV′→ f )V′∈ne( f ) 7→ m f→V ,

where θ is a tunable parameter vector. We will refer to Mθ
f→V as a message operator,

(mV′→ f )V′∈ne( f ) as incoming messages, and m f→V as outgoing message.
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Heess et al. [2013] use neural networks and a large, fixed training set to learn
their approximate message operator prior to running EP. By contrast, Eslami et al.
[2014] employ random forests as their class of learning functions, and update their
approximate message operator on the fly during inference (known as just-in-time
learning), depending on the predictive uncertainty of the current message operator.
Specifically, they endow their function approximator with an uncertainty estimate

vθ
f→V : (mV′→ f )V′∈ne( f ) 7→ v,

where v indicates the expected unreliability of the predicted, approximate message
m f→V returned by Mθ

f→V . If v = vθ
f→V

(
(mV′→ f )V′∈ne( f )

)
exceeds a pre-defined

threshold, the required message is approximated via importance sampling (as in
(6.7)), and the message operator Mθ

f→V is updated online with this new labeled pair(
(mV′→ f )V′∈ne( f ), m f→V

)
leading to a new set of parameters θ′ with

vθ′
f→V

(
(mV′→ f )V′∈ne( f )

)
< vθ

f→V

(
(mV′→ f )V′∈ne( f )

)
.

Eslami et al. [2014] estimate the predictive uncertainty vθ
f→V via the heuristic of

looking at the variability of the predictions from all the trees in the forest [Criminisi
and Shotton, 2013]. They implement their online updates by splitting the trees at
their leaves. Both these mechanisms can be problematic, however. First, the heuristic
used in computing uncertainty has no guarantees: indeed, uncertainty estimation
for random forests remains a challenging topic of current research [Hutter, 2009].
This is not merely a theoretical consideration: in our experiments in Section 6.4,
we demonstrate that uncertainty heuristics for random forests become unstable and
inaccurate as we move away from the initial training data. Second, online updates
of random forests may not work well when the newly observed data are from a very
different distribution to the initial training sample [e.g. Lakshminarayanan et al., 2014,
Fig. 3]. For large amounts of training set drift, the leaf-splitting approach of Eslami
et al. can result in a decision tree in the form of a long chain, giving a worst case
cost of prediction (computational and storage) of O(N) for training data of size N, vs
the ideal of O(log(N)) for balanced trees. Finally, note that the approach of Eslami
et al. uses certain bespoke features of the factors when specifying tree traversal in the
random forests, notably the value of the factor potentials at the mean and mode of
the incoming messages. These features require expert knowledge of the model on the
part of the practitioner, and are not available in the “forward sampling” setting. The
present work does not employ such features.

Computational Complexity of the Random Forest Approach We now provide a cost
breakdown of the random forest approach. Let K be the number of trees in the
random forest, Dt be the number of features used in tree traversal, Dr be the number
of features used in making predictions at the leaves, N be the number of training
points provided by the importance sampling oracle, and L be the number of training
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points per leaf. Assuming that the depth of trees is O(log(N)), one prediction from a
random forest costs O(KDrDt log(N)), and one update costs O(KD3

r Dt log(N)). This
is because for each of K trees in the forest, tree traversal involves O(log(N)) steps
which each costs O(Dt) (splitting on an internal node involves a linear regression
using the tree traversal features), and one prediction costs O(Dr). The leaf predictions
are made using polynomial regression of degree two, which must be re-trained from
scratch for each new point. Retraining at a leaf costs O(D2

r (Dr + L)), however L is
typically negligible at a lower depth, effectively costing O(D3

r ). Therefore, the total
updating cost across all trees is O(KD3

r Dt log(N)).
It is instructive to consider some representative numbers used by Eslami et al. The

number of trees in the forest was K = 64, the number of features at a leaf was in
general Dr = 14 (since Gaussian, Beta and Gamma distributions are all parameterised
by two numbers, most factors had two incoming messages, and quadratic regressors
were used). Dt was typically of the order of 10 to 20, depending on the number of
incoming factor messages: these include parameters of the messages, the values of
the factor at the mean and mode of the incoming messages, and the binary features
characterizing the message. Training set size N was in the order of thousands (1,000
to 5,000), and the number of samples L per leaf was between 10 and 50.

6.3 Proposal: Kernel-Based Message Operators

We now propose a kernel regression method for jointly learning the message operator
Mθ

f→V and uncertainty estimate vθ
f→V . We regress from the tuple of incoming mes-

sages, which are probability distributions, to the parameters of the outgoing message.
To this end we apply a kernel over distributions from [Christmann and Steinwart,
2010] to the case where the input consists of more than one distribution. We note that
Song et al. [2010, 2011] propose a related regression approach for predicting outgoing
messages from incoming messages, for the purpose of belief propagation. Their setting
is different from ours, however, as their messages are smoothed conditional density
functions rather than parametric distributions of known form. An important issue
is computational cost, as EP is an iterative algorithm and many predictions must be
made. To achieve fast predictions and message operator updates, we follow Rahimi
and Recht [2007], Le et al. [2013], Yang et al. [2015], and express the kernel regression
in terms of random features whose expected inner product is equal to the kernel
function; i.e., we perform regression directly in the primal on these random features.
In Section 6.3.1, we define our kernel on tuples of distributions, and then derive the
corresponding random feature representation in Section 6.3.2. Section 6.3.3 describes
the regression algorithm, as well as our strategy for uncertainty evaluation and online
updates.

6.3.1 Kernels on Tuples of Distributions

In the followings, we consider only a single factor, and therefore drop the factor
identity from our notation. We write the set of c incoming messages to a factor node
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as a tuple of probability densities R := (r(l))c
l=1 of random variables X(l) on respective

domains X (l). Our goal is to define a kernel between one such tuple, and a second
one, which we will write S := (s(l))c

l=1.
We define our kernel in terms of embeddings of the tuples R, S into a reproducing

kernel Hilbert space (RKHS). We first consider the embedding of a single distribution
in the tuple. Let us define an RKHS H(l) on each domain, with respective kernel
k(l)(x(l)1 , x(l)2 ) on X (l) ×X (l). We may embed individual probability distributions to
these RKHSs (see Section 2.2: Kernel Mean Embedding ). The mean embedding of r(l)

is written
µr(l)(·) :=

∫
k(l)(x(l), ·)r(l)(x(l))dx(l).

Similarly, a mean embedding may be defined on the product of messages in a tuple
r = ×c

l=1r(l) as

µr :=
∫

k([x(1), . . . , x(c)], ·)r(x(1), . . . , x(c))dx(1) · · ·dx(c), (6.8)

where we have defined the joint kernel k on the product space X (1) × · · · × X (c),
associated with the RKHS H = H(1) × · · · × H(c). Finally, a kernel on two such
embeddings µr, µs of tuples R, S can be obtained as in Christmann and Steinwart [2010,
eq. 9],

κ(r, s) = exp
(
−‖µr − µs‖2

H
2γ2

)
. (6.9)

This kernel has two parameters: γ2, and the width parameter of the kernel k defining
µr = Ex∼rk(x, ·).

We have considered several alternative kernels on tuples of messages, including
kernels on the message parameters, kernels on a tensor feature space of the distribution
embeddings in the tuple, and inner products of the mean embeddings (6.8). We have
found these alternatives to have worse empirical performance than the approach
described above. We give details of these experiments in Section 6.7.

6.3.2 Random Feature Approximations

One approach to learning the mapping Mθ
f→V from incoming to outgoing messages

would be to employ Gaussian process regression [Rasmussen and Williams, 2006],
using the kernel in (6.9). This approach is not suited to just-in-time (JIT) learning,
however, as both prediction and storage costs grow with the size of the training set;
thus, inference on even moderately sized datasets rapidly becomes computationally
prohibitive. Instead, we define a finite-dimensional random feature map ψ̂ ∈ RDout

such that κ(r, s) ≈ ψ̂(r)>ψ̂(s), and regress directly on these feature maps in the primal
(see next section). Storage and computation are then a function of the dimension of
the feature map Dout, yet performance is close to that obtained using the exact kernel
κ.

In Rahimi and Recht [2007], a method based on Fourier transforms was proposed
for computing a vector of random features ϕ̂ for a translation invariant kernel k(x, y) =
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Algorithm 6.1 Construction of two-stage random features for κ

Require: Input distribution r, Fourier transform k̂ of the embedding translation-
invariant kernel k, number of inner features Din, number of outer features Dout,
outer Gaussian width γ2.

Ensure: Random features ψ̂(r) ∈ RDout .

1: Sample {ωi}Din
i=1

i.i.d∼ k̂.

2: Sample {bi}Din
i=1

i.i.d∼ Uniform[0, 2π].

3: φ̂(r) =
√

2
Din

(
Ex∼r cos(ω>i x + bi)

)Din

i=1 ∈ RDin

If r(x) = N (x; m, Σ),

φ̂(r) =

√
2

Din

(
cos(ω>i m + bi) exp

(
−1

2
ω>i Σωi

))Din

i=1
.

4: Sample {νi}Dout
i=1

i.i.d∼ k̂gauss(γ2) i.e., Fourier transform of a Gaussian kernel with width γ2.

5: Sample {ci}Dout
i=1

i.i.d∼ Uniform[0, 2π].

6: ψ̂(r) =
√

2
Dout

(
cos(ν>i φ̂(r) + ci)

)Dout
i=1 ∈ RDout

k(x − y) such that k(x, y) ≈ ϕ̂(x)> ϕ̂(y) where x, y ∈ Rd and ϕ̂(x), ϕ̂(y) ∈ RDin .
This is possible because of Bochner’s theorem [Rudin, 2013], which states that a
continuous, translation-invariant kernel k can be written in the form of an inverse
Fourier transform:

k(x− y) =
∫

k̂(ω)eiω>(x−y) dω,

where i =
√
−1 and the Fourier transform k̂ of the kernel can be treated as a distribu-

tion. The inverse Fourier transform can thus be seen as an expectation of the complex
exponential, which can be approximated with a Monte Carlo average by drawing
random frequencies from k̂. We will follow a similar approach, and derive a two-stage
set of random Fourier features for (6.9). Details of the random features of Rahimi and
Recht [2007] are given in Section 6.6.

We start by expanding the exponent of (6.9) as

κ(r, s) = exp
(
− 1

2γ2 〈µr, µr〉+
1

γ2 〈µr, µs〉 −
1

2γ2 〈µs, µs〉
)

. (6.10)

Assume that the embedding kernel k used to define the embeddings µr and µs is
translation invariant. Since 〈µr, µs〉 = Ex∼rEy∼sk(x − y), one can use the result of
Rahimi and Recht [2007] to write

〈µr, µs〉 ≈ Ex∼rEy∼s ϕ̂(x)> ϕ̂(y)

= Ex∼r ϕ̂(x)>Ey∼s ϕ̂(y) := φ̂(r)>φ̂(s), (6.11)

where the output of the map φ̂(r) : r 7→ Ex∼r ϕ̂(x) contains Din standard Rahimi-Recht
random features, shown in Steps 1-3 of Algorithm 6.1. By combining (6.10) and (6.11),
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we have

κ(r, s) ≈ exp

(
−
‖φ̂(r)− φ̂(s)‖2

Din

2γ2

)
,

which is a standard Gaussian kernel on RDin , and ‖ · ‖Din denotes the standard
Euclidean norm in RDin . We can thus further approximate this Gaussian kernel by the
random Fourier features of Rahimi and Recht, to obtain a vector of random features
ψ̂ such that κ(r, s) ≈ ψ̂(r)>ψ̂(s) where ψ̂(r), ψ̂(s) ∈ RDout . Pseudocode for generating
the random features ψ̂ is given in Algorithm 6.1. Note that the sine component in the
complex exponential vanishes due to the translation invariance property (analogous
to an even function), i.e., only the cosine term remains. We refer to Section 6.6.3 for
more details on the derivation.

For the implementation, we need to pre-compute {ωi}Din
i=1 , {bi}Din

i=1 , {νi}Dout
i=1 and

{ci}Dout
i=1 , where Din and Dout are the number of random features used. A more storage-

efficient way to support a large number of random features is to store only the random
seed used to generate the features, and to generate the coefficients on-the-fly when
needed [Dai et al., 2014]. In our implementation, we use a Gaussian kernel for k.

6.3.3 Regression for Message Prediction

Let X = (x1| · · · |xN) be the N training tuples of incoming messages to a factor node,
represented by the two-stage random features described in Section 6.3.2 i.e., xi ∈ RDout

for i = 1, . . . , N. Let Y =
(

ExV∼q1
f→V

u(xV)| · · · |ExV∼qN
f→V

u(xV)
)
∈ RDy×N be the

expected sufficient statistics of the corresponding outgoing messages, where qi
f→V is

the numerator of (6.4).

Since we require uncertainty estimates on our predictions, we perform Bayesian
linear regression from the random features to the output messages, which yields
predictions close to those obtained by Gaussian process regression with the kernel in
(6.9). The uncertainty estimate in this case will be the predictive variance. We assume
prior and likelihood

w ∼ N
(
w; 0, IDout σ

2
0
)

,

Y | X, w ∼ N
(
Y; w>X, σ2

y IN

)
,

where the output noise variance σ2
y captures the intrinsic stochasticity of the impor-

tance sampler used to generate Y. It follows that the posterior of w is given by [Bishop,
2006]

p(w|Y) = N (w; µw, Σw),

Σw =
(
XX>σ−2

y + σ−2
0 I
)−1

,

µw = ΣwXY
>σ−2

y =

(
XX> +

σ2
y

σ2
0

I

)−1

XY>.
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The predictive distribution on the output y∗ given an observation x∗ is

p(y∗|x∗,Y) =
∫

p(y∗|w, x∗,Y)p(w|Y) dw

= N
(
y∗; x∗>µw, x∗>Σwx

∗ + σ2
y

)
.

For simplicity, we treat each output (expected sufficient statistic) as a separate
regression problem. Treating all outputs jointly can be achieved with a multi-output
kernel [Álvarez et al., 2012].

Online Update We describe an online update for Σw and µw when observations (i.e.,
random features representing incoming messages) xi arrive sequentially. We use ·(N)

to denote a quantity constructed from N samples. The posterior covariance matrix at
time N + 1 is

Σ(N+1)
w = Σ(N)

w −
Σ(N)

w xN+1x
>
N+1Σ(N)

w σ−2
y

1 + x>N+1Σ(N)
w xN+1σ−2

y

,

meaning that it can be expressed as an inexpensive update of the covariance at
time N. Updating Σw for all the Dy outputs costs O((DinDout + D2

out)Dy) per new
observation. For µw = ΣwXY

>σ−2
y , we maintain XY> ∈ RDout×Dy , and update it at cost

O(DinDoutDy) as (
XY>

)(N+1)
=
(
XY> + xN+1y

>
N+1

)
.

Since we have Dy regression functions, for each tuple of incoming messages x∗, there
are Dy predictive variances, v∗1 , . . . , v∗Dy

, one for each output. Let {τi}Dy
i=1 be pre-

specified predictive variance thresholds. Given a new input x∗, if v∗1 > τ1 or · · · or
v∗Dy

> τDy (the operator is uncertain), a query is made to the oracle to obtain a ground
truth y∗. The pair (x∗, y∗) is then used to update Σw and µw.

We refer to the new kernel-based message operator that learns just-in-time during
inference as KJIT (kernel-based just-in-time learning).

6.4 Experiments

We evaluate our learned message operator using two different factors: the logistic
factor, and the compound gamma factor. In the first and second experiments we
demonstrate that the proposed message operator is capable of learning high-quality
mappings from incoming to outgoing messages, and that the associated uncertainty
estimates are reliable. The third and fourth experiments assess the performance of the
operator as part of the full EP inference loop in two different models: approximating
the logistic, and the compound gamma factors. Our final experiment demonstrates
the ability of our learning process to reliably and quickly adapt to large shifts in
the message distribution, as encountered during inference in a sequence of several
real-world regression problems.

For all experiments we used Infer.NET [Minka et al., 2014] with its extensible
factor interface for our own operator. We used the default settings of Infer.NET unless



128 CHAPTER 6. INFORMATIVE FEATURES FOR AUTOMATED EP

xi

dot

w prior

zi
logistic (f)
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Figure 6.1: Factor graph for binary logistic regression. The kernel-based message
operator learns to approximate the logistic factor highlighted in red. The two incoming
messages are mzi→ f (zi) = N (zi; µ, σ2) and mpi→ f (pi) = Beta(pi; α, β). The prior
distribution on the weight vector w is N (0, I).

stated otherwise. The regression target is the marginal belief (numerator of (6.4))
in experiment 1,2,3 and 5. We set the regression target to the outgoing message
in experiment 4. Given a marginal belief, the outgoing message can be calculated
straightforwardly by dividing two messages (see (6.4)), both of which are in the same
exponential family.

Experiment 1: Batch Learning As in [Heess et al., 2013, Eslami et al., 2014], we study
the logistic factor f (p|z) = δ

(
p− 1

1+exp(−z)

)
, where δ is the Dirac delta function, in

the context of a binary logistic regression model (Figure 6.1). The factor is deterministic
and there are two incoming messages: mpi→ f (pi) = Beta(pi; α, β) and mzi→ f (zi) =

N (zi; µ, σ2), where zi = w>xi represents the dot product between an observation
xi ∈ Rd and the coefficient vector w whose posterior is to be inferred.

In this first experiment we simply learn a kernel-based operator to send the
message m f→zi . Following Eslami et al. [2014], we set d to 20, and generated 20
different datasets, each containing {(xi, yi)}n

i=1 (n = 300) observations according to the
model. For each dataset we ran EP, and collected incoming-outgoing message pairs in
the first five iterations (i.e., the first five passes over all the nodes in the graph) of EP
from Infer.NET’s handcrafted implementation of the logistic factor. We partitioned
the messages randomly into 5,000 training and 3,000 test messages, and learned a
message operator to predict m f→zi as described in Section 6.3.3. Regularization and
kernel parameters were chosen by leave-one-out cross validation. We set the number
of random features to Din = 500 and Dout = 1, 000; empirically, we observed no
significant improvements beyond 1,000 random features.

We report log KL[q f→zi‖q̂ f→zi ] where q f→zi is the ground truth projected belief
(numerator of (6.4)) and q̂ f→zi is the prediction. The histogram of the log KL errors is
shown in Figure 6.2a; Figure 6.2b shows examples of predicted messages for different
log KL errors. It is evident that the kernel-based operator does well in capturing the
relationship between incoming and outgoing messages. The discrepancy with respect
to the ground truth is barely visible even at the 99th percentile. See Section 6.7 for a
comparison with other kernels and other methods.

Experiment 2: Uncertainty Estimates For the approximate message operator to
perform well in a JIT learning setting, it is crucial to have reliable estimates of
operator’s predictive uncertainty in different parts of the space of incoming messages.
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Figure 6.2: (a) Log KL errors for predicting the projected beliefs to zi. (b) Examples of
predicted messages at different error levels.
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(b) Uncertainty estimates

Figure 6.3: (a) Incoming messages (each represented by a black dot) from z to f from
20 EP runs on the binary logistic regression problem, as shown in Figure 6.1. (b)
Uncertainty estimates of the proposed kernel-based method (predictive variance) and
Eslami et al.’s random forests (KL-based agreement of predictions of different trees)
on the two uncertainty test sets shown. For testing, we fix the other incoming message
mpi→ f to Beta(pi; 1, 2).

To assess this property we compute the predictive variance using the same learned
operator as used in Figure 6.2. The forward incoming messages mzi→ f in the previously
used training set are shown in Figure 6.3a. The backward incoming messages mpi→ f

are not displayed. Shown in the same plot are two curves (a blue line, and a pink
parabola) representing two “uncertainty test sets”: these are the sets of parameter
pairs on which we wish to evaluate the uncertainty of the predictor, and pass through
regions with both high and low densities of training samples. Figure 6.3b shows
uncertainty estimates of our kernel-based operator and of random forests, where we
fix mpi→ f (pi) := Beta(pi; 1, 2) for testing. The implementation of the random forests
closely follows Eslami et al. [2014].

From the figure, as the mean of the test message moves away from the region
densely sampled by the training data, the predictive variance reported by the kernel
method increases much more smoothly than that of the random forests. Further,
our method clearly exhibits a higher uncertainty on the test set #1 than on the test
set #2. This behaviour is desirable, as most of the points in test set #1 are either
in a low density region or an unexplored region. These results suggest that the
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Figure 6.4: Uncertainty estimate of KJIT in its prediction of outgoing messages at each
factor invocation, for the binary logistic regression problem. The black dashed lines
indicate the start of a new inference problem.

predictive variance is a robust criterion for querying the importance sampling oracle.
One key observation is that the uncertainty estimates of the random forests are
highly non-smooth; i.e., uncertainty on nearby points may vary wildly. As a result, a
random forest-based JIT learner may still query the importance sampler oracle when
presented with incoming messages similar to those in the training set, thereby wasting
computation.

We have further checked that the predictive uncertainty of the regression function is
a reliable indication of the error in KL divergence of the predicted outgoing messages.
These results are given in Figure 6.7.1 of Section 6.7.

Experiment 3: Just-In-Time Learning In this experiment we test the message operator
in the logistic regression model as part of the full EP inference loop in a just-in-time
learning setting. We now learn two kernel-based message operators, one for each
outgoing direction from the logistic factor. The data generation is the same as in the
batch learning experiment. We sequentially presented the operator with 30 related
problems, where a new set of observations {(xi, yi)}n

i=1 was generated at the beginning
of each problem from the model, while keeping w fixed. This scenario is common in
practice: one is often given several sets of observations which share the same model
parameter [Eslami et al., 2014]. As before, the inference target was p(w|{(xi, yi)}n

i=1).
We set the maximum number of EP iterations to 10 in each problem.

We employed a “mini-batch” learning approach in which the operator always
consults the oracle in the first few hundred factor invocations for initial batch train-
ing. In principle, during the initial batch training, the operator can perform cross
validation or type-II maximum likelihood estimation for parameter selection; however
for computational simplicity we set the kernel parameters according to the median
heuristic. Full detail of the heuristic is given in Section 6.5. The numbers of random
features were Din = 300 and Dout = 500. The output noise variance σ2

y was fixed
to 10−4 and the uncertainty threshold on the log predictive variance was set to -8.5.
To simulate a black-box setup, we used an importance sampler as the oracle rather
than Infer.NET’s factor implementation, where the proposal distribution was fixed to
N (z; 0, 200) with 5× 105 particles.

Figure 6.4 shows a trace of the predictive variance of KJIT in predicting the mean
of each m f→zi upon each factor invocation. The black dashed lines indicate the start
of a new inference problem. Since the first 300 factor invocations are for the initial
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Figure 6.5: Classification performance and inference times of all methods in the binary
logistic regression problem.
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Figure 6.6: Factor graph of the compound gamma factor problem.

training, no uncertainty estimate is shown. From the trace, we observe that the
uncertainty rapidly drops down to a stable point at roughly -8.8 and levels off after
the operator sees about 1,000 incoming-outgoing message pairs, which is relatively
low compared to approximately 3,000 message passings (i.e., 10 iterations × 300
observations) required for one problem. The uncertainty trace displays a periodic
structure, repeating itself in every 300 factor invocations, corresponding to a full
sweep over all 300 observations to collect incoming messages mzi→ f . The abrupt drop
in uncertainty in the first EP iteration of each new problem is due to the fact that
Infer.NET’s inference engine initializes the message from w to have zero mean, leading
to mzi→ f also having a zero mean. Repeated encounters of such a zero mean incoming
message reinforce the operator’s confidence; hence the drop in uncertainty.

Figure 6.5a shows binary classification errors obtained by using the inferred
posterior mean of w on a test set of size 10000 generated from the true underlying
parameter. Included in the plot are the errors obtained by using only the importance
sampler for inference (“Sampling”), and using the Infer.NET’s hand-crafted logistic
factor. The loss of KJIT matches well with that of the importance sampler and
Infer.NET, suggesting that the inference accuracy is as good as these alternatives.
Figure 6.5b shows the inference time required by all methods in each problem. While
the inference quality is equally good, KJIT is orders of magnitude faster than the
importance sampler.

Experiment 4: Compound Gamma Factor We next simulate the compound gamma
factor, a heavy-tailed prior distribution on the precision of a Gaussian random vari-
able. A variable τ is said to follow the compound gamma distribution if τ ∼
Gamma(τ; s2, r2) (shape-rate parameterization) and r2 ∼ Gamma(r2; s1, r1) where



132 CHAPTER 6. INFORMATIVE FEATURES FOR AUTOMATED EP

2 2.5 3 3.5

2

2.5

3

3.5

Inferred by Infer.NET + KJIT

In
fe

rr
ed

 b
y 

In
fe

r.
N

E
T

Correlation: 1

 

 

Log shape

(a) Inferred shape

0 5 10

0

5

10

Infered by Infer.NET + KJIT

In
fe

rr
ed

 b
y 

In
fe

r.
N

E
T

Correlation: 0.999895

 

 

Log rate

(b) Inferred rate

0 500 1000 1500
0

2

4

6

8

10

T
im

e 
in

 lo
g(

m
s)

Problems seen

Inference time

 

 

Infer.NET
Infer.NET + KJIT

(c) Inference time

Figure 6.7: Shape (a) and rate (b) parameters of the inferred posteriors in the compound
gamma problem. (c) KJIT is able to infer equally good posterior parameters compared
to Infer.NET, while requiring a runtime several orders of magnitude lower.
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Figure 6.8: Classification performance and inference times on the four UCI datasets.

(s1, r1, s2) are parameters. The task we consider is to infer the posterior of the precision
τ of a normally distributed variable x ∼ N (x; 0, τ−1) given realizations {xi}m

i=1 (see
Figure 6.6 for the factor graph). We consider the setting (s1, r1, s2) = (1, 1, 1) which
was used in Heess et al. [2013]. Infer.NET’s implementation requires two gamma
factors to specify the compound gamma. Here, we collapse them into one factor
and let the operator learn to directly send an outgoing message m f→τ given mτ→ f ,
using Infer.NET as the oracle. The default implementation of Infer.NET relies on a
quadrature method. As in Eslami et al. [2014], we sequentially presented a number
of problems to our algorithm, where at the beginning of each problem, a random
number of observations n from 10 to 100, and the parameter τ, were drawn from the
model.

Figure 6.7a and Figure 6.7b summarize the inferred posterior parameters obtained
from running only Infer.NET and Infer.NET + KJIT, i.e., KJIT with Infer.NET as the
oracle. Figure 6.7c shows the inference time of both methods. The plots collectively
show that KJIT can deliver posteriors in good agreement with those obtained from
Infer.NET, at a much lower cost. Note that in this task only one message is passed to
the factor in each problem. Figure 6.7c also indicates that KJIT requires fewer oracle
consultations as more problems are seen.

Experiment 5: Classification Benchmarks In the final experiment, we demonstrate
that our method for learning the message operator is able to detect changes in the
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Figure 6.9: Uncertainty estimate of KJIT for outgoing messages on the four UCI
datasets.
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Figure 6.10: Distributions of incoming messages mzi→ f to the logistic factor in four
different UCI datasets (see Figure 6.1 for the factor graph).

distribution of incoming messages via its uncertainty estimate, and to subsequently
update its prediction through additional oracle queries. The different distributions of
incoming messages are achieved by presenting a sequence of different classification
problems to our learner. We used four binary classification datasets from the UCI
repository [Lichman, 2013]: banknote authentication, blood transfusion, fertility and
ionosphere, in the same binary logistic regression setting as before. The operator
was required to learn just-in-time to send outgoing messages m f→zi and m f→pi on
the four problems presented in sequence. The training observations consisted of 200
data points subsampled from each dataset by stratified sampling. For the fertility
dataset, which contains only 100 data points, we subsampled half the points. The
remaining data were used as test sets. The uncertainty threshold was set to -9, and
the minibatch size was 500. All other parameters were the same as in the earlier JIT
learning experiment.

Classification errors on the test sets and inference times are shown in Figure 6.8a
and Figure 6.8b, respectively. The results demonstrate that KJIT improves the inference
time on all the problems without sacrificing inference accuracy. The predictive variance
of each outgoing message is shown in Figure 6.9. An essential feature to notice is the
rapid increase of the uncertainty after the first EP iteration of each problem. As shown
in Figure 6.10, the distributions of incoming messages of the four problems are diverse.
The sharp rise followed by a steady decrease of the uncertainty is a good indicator
that the operator is able to promptly detect a change in input message distribution,
and robustly adapt to this new distribution by querying the oracle.
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Supplementary

6.5 Median Heuristic for the Gaussian Kernel on Mean Em-
beddings

In the proposed KJIT, there are two kernels: the inner kernel k for computing mean
embeddings, and the outer Gaussian kernel κ defined on the mean embeddings.
Both of the kernels depend on a number of parameters. In this section, we describe
a heuristic to choose the kernel parameters. We emphasize that this heuristic is
merely for computational convenience. A full parameter selection procedure like cross
validation or evidence maximization will likely yield a better set of parameters. We
use this heuristic in the initial mini-batch phase before the actual online learning.

Let {r(l)i | l = 1, . . . , c, and i = 1, . . . , N} be a set of N incoming message tuples
collected during the mini-batch phase, from c variables neighboring the factor. Let
Ri := (r(l)i )c

l=1 be the ith tuple, and let ri := ×c
l=1r(l)i be the product of incoming

messages in the ith tuple. Define Si and si to be the corresponding quantities of
another tuple of messages. We will drop the subscript i when considering only one
tuple.

Recall that the kernel on two tuples of messages R and S is given by

κ(R, S) = κ(r, s) = exp
(
−‖µr − µs‖2

H
2γ2

)
= exp

(
− 1

2γ2 〈µr, µr〉+
1

γ2 〈µr, µs〉 −
1

2γ2 〈µs, µs〉
)

,

where 〈µr, µs〉 = Ex∼rEy∼sk(x− y). The inner kernel k is a Gaussian kernel defined
on the domain X := X (1) × · · · × X (c) where X (l) denotes the domain of r(l). For
simplicity, we assume that X (l) is one-dimensional. The Gaussian kernel k takes the
form

k(x− y) = exp
(
−1

2
(x− y)> Σ−1 (x− y)

)
=

c

∏
l=1

exp

(
− (xl − yl)

2

2σ2
l

)
,

where Σ = diag(σ2
1 , . . . , σ2

c ). The heuristic for choosing σ2
1 , . . . , σ2

c and γ is as follows.

1. Set σ2
l := 1

N ∑N
i=1 V

xl∼r(l)i
[xl ] where V

xl∼r(l)i
[xl ] denotes the variance of r(l)i .

2. With Σ = diag(σ2
1 , . . . , σ2

c ) as defined in the previous step, set
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γ2 := median
(
{‖µri − µsj‖2}N

i,j=1

)
.

6.6 Kernels and Random Features

This section gives details on other kernels of distributions that we explored, and
describes their random feature representations.

6.6.1 Random Features

This section contains a summary of Rahimi and Recht [2007]’s random Fourier features
for a translation invariant kernel.

A kernel k(x, y) = 〈φ(x), φ(y)〉 in general may correspond to an inner product in
an infinite-dimensional space whose feature map φ cannot be explicitly computed.
In Rahimi and Recht [2007], methods of computing an approximate feature map φ̂

were proposed. The approximate feature map is such that k(x, y) ≈ φ̂(x)>φ̂(y) (with
equality in expectation) where φ̂(x), φ̂(y) ∈ RD and D is the number of random
features. High D yields a better approximation with higher computational cost.
Assume k(x, y) = k(x − y) (translation invariant) and x, y ∈ Rd. Random Fourier
features φ̂(x) ∈ RD such that k(x, y) ≈ φ̂(x)>φ̂(y) are generated as follows:

1. Compute the Fourier transform k̂ of the kernel k: k̂(ω) = 1
2π

∫
e−iω>δk(δ) dδ.

2. Draw D i.i.d. samples ω1, . . . , ωD ∈ Rd from k̂.

3. Draw D i.i.d samples b1, . . . , bD ∈ R from U[0, 2π] (uniform distribution).

4. φ̂(x) =
√

2
D

(
cos

(
ω>1 x + b1

)
, . . . , cos

(
ω>Dx + bD

))> ∈ RD

This procedure is justified by the Bochner’s theorem.

Theorem 6.1 (Bochner’s theorem [Rudin, 2013]). A continuous kernel k(x, y) = k(x− y)
on Rd is positive definite iff k(δ) is the Fourier transform of a non-negative measure.

Bochner’s theorem guarantees that the Fourier transform k̂ can be seen as an
unnormalized probability distribution. From this fact, we have

k(x− y) =
∫

k̂(ω)eiω>(x−y) dω = Eω∼k̂ [ηω(x)ηω(y)∗] ,

where i =
√
−1, ηω(x) = eiω>x and ·∗ denotes the complex conjugate. Since both k̂

and k are real, the complex exponential contains only the cosine terms. Drawing D
samples lowers the variance of the approximation.

6.6.2 MV (Mean-Variance) Kernel

Assume there are c incoming messages R :=
(

r(l)
)c

l=1
and S :=

(
s(l)
)c

l=1
. Assume

that Er(l) [x] = ml , Vr(l) [x] = vl , Es(l) [y] = µl , and Vs(l) [y] = σ2
l . Incoming messages

are not necessarily Gaussian. The MV (mean-variance) kernel is defined as a product
kernel on means and variances.

κmv (R, S)
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where k is a Gaussian kernel with unit width. The kernel κmv has P := (wm
1 , . . . , wm

c , wv
1, . . . , wv

c )

as its parameters. With this kernel, we treat messages as finite dimensional vec-
tors of their means and variances. Incoming messages (s(i))c

i=1 are represented as(
µ1, . . . , µc, σ2

1 , . . . , σ2
c
)>. This treatment reduces the problem of having distributions

as inputs to the familiar problem of having input points from a Euclidean space. The
random features of Rahimi and Recht [2007] can be applied straightforwardly.

6.6.3 Expected Product Kernel

Given two distributions r(x) = N (x; mr, Vr) and s(y) = N (y; ms, Vs) (d-dimensional
Gaussian), the expected product kernel κpro is defined as

κpro(r, s) = 〈µr, µs〉H = Ex∼rEy∼sk(x− y), (6.12)

where µr := Ex∼rk(x, ·) is the mean embedding of r, and we assume that the kernel
k associated with H is translation invariant i.e., k(x, y) = k(x − y). The goal here
is to derive random Fourier features for the expected product kernel. That is, we
aim to find φ̂ such that κpro(r, s) ≈ φ̂(r)>φ̂(s) and φ̂(x) ∈ RD. We first give some
results which will be used to derive the Fourier features for inner product of mean
embeddings.

Lemma 6.2. If b ∼ N (b; 0, σ2), then E[cos(b)] = exp
(
− 1

2 σ2).
Proof. Consider the characteristic function of x ∼ N (x; µ, σ2) which is given by

cx(t) = Ex [exp (itx)] = exp
(

itµ− 1
2

σ2t2
)

.

For µ = 0, t = 1, we have

cb(1) = Eb∼N (0,σ2) [exp(ib)] = exp
(
−1

2
σ2
)
= Eb∼N (0,σ2) [cos(b)] ,

where the imaginary part vanishes.

We are ready to derive random features for the expected product kernel. From
Rahimi and Recht [2007] which provides random features for k(x− y), we immediately
have

Ex∼rEy∼sk(x− y) ≈ Ex∼rEy∼s
2
D

D

∑
i=1

cos
(

w>i x + bi

)
cos

(
w>i y + bi

)
=

2
D

D

∑
i=1

Ex∼r cos
(

w>i x + bi

)
Ey∼s cos

(
w>i y + bi

)
, (6.13)

where {wi}D
i=1 ∼ k̂(w) (Fourier transform of k) and {bi}D

i=1 ∼ U [0, 2π].

Consider Ex∼r cos
(
w>i x + bi

)
, an expectation over x where bi and wi are given.

Define zi = w>i x + bi so that zi ∼ N (zi; w>i mr + bi, w>i Vrwi). Let di ∼ N (0, w>i Vrwi).
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Then,

Ex∼r cos
(

w>i x + bi

)
= Ezi [cos(zi)]

= Edi

[
cos

(
di + w>i mr + bi

)]
(a)
= Edi

[
cos(di) cos(w>i mr + bi)

]
−Edi

[
sin(di) sin(w>i mr + bi)

]
(b)
= cos(w>i mr + bi)Edi cos(di)

(c)
= cos(w>i mr + bi) exp

(
−1

2
w>i Vrwi

)
, (6.14)

where at (a) we use cos(α + β) = cos(α) cos(β)− sin(α) sin(β). We have (b) because
sine is an odd function and Edi sin(di) = 0. The last equality (c) follows from Lemma
6.2. It follows from (6.13) and (6.14) that the random features φ̂(r) ∈ RD are given by

φ̂(r) =

√
2
D


cos(w>1 mr + b1) exp

(
− 1

2 w>1 Vrw1
)

...
cos(w>Dmr + bD) exp

(
− 1

2 w>DVrwD
)
 .

For a distribution r which is not normal, we only need to be able to compute
Ex∼r cos

(
w>i x + bi

)
. With φ̂(r), we have κpro(r, s) ≈ φ̂(r)>φ̂(s) with equality in

expectation.

Closed-Form Expression for Gaussian Case For reference, if r(x) = N (x; mr, Vr) and
s(y) = N (y; ms, Vs) and k is a Gaussian kernel, (6.12) can be computed in closed-form.
Assume k(x− y) = exp

(
− 1

2 (x− y)> Σ−1 (x− y)
)

where the positive definite matrix
Σ is the kernel parameter. Then,

κpro(r, s) = Ex∼rEy∼sk(x− y) =

√
det(Drs)

det(Σ−1)
exp

(
−1

2
(mr −ms)

> Drs (mr −ms)

)
,

Drs := (Vr + Vs + Σ)−1 ,

where det(A) denotes the determinant of A.

6.6.4 Product and Sum Kernels on Mean Embeddings
Previously, we have defined an expected product kernel on single distributions. One
way to define a kernel between two tuples of more than one incoming message is to
take a product of the kernels defined on each message.

Let µr(l) := Er(l)(a)k
(l)(·, a) be the mean embedding [Smola et al., 2007] of the

distribution r(l) into RKHS H(l) induced by the kernel k. Assume k(l) = k(l)gauss

(Gaussian kernel) and assume there are c incoming messages R := (r(i)(a(i)))c
i=1 and

S := (s(i)(b(i)))c
i=1. A product of expected product kernels is defined as

κ×pro(R, S) :=

〈
c⊗

l=1

µr(l) ,
c⊗

l=1

µs(l)

〉
⊗lH(l)
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=
c

∏
l=1

Er(l)(a(l))Es(l)(b(l))k
(l)
gauss

(
a(l), b(l)

)
≈ φ̂(R)>φ̂(S),

where φ̂(R)>φ̂(S) = ∏c
l=1 φ̂(l)(r(l))>φ̂(l)(s(l)). The feature map φ̂(l)(r(l)) can be esti-

mated by applying the random Fourier features to k(l)gauss and taking the expectations
Er(l)(a)Es(l)(b). The final feature map is φ̂(R) = φ̂(1)(r(1))~ φ̂(2)(r(2))~ · · ·~ φ̂(c)(r(c)) ∈
RDc

, where ~ denotes a Kronecker product and we assume that φ̂(l) ∈ RD for
l ∈ {1, . . . , c}.

If we define the kernel as the sum of c kernels instead, we have

κ+pro(R, S) =
c

∑
l=1
〈µr(l) , µs(l)〉H(l) ≈

c

∑
l=1

φ̂(l)(r(l))>φ̂(l)(s(l)) = ϕ̂(R)> ϕ̂(S)

where ϕ̂(R) :=
(

φ̂(1)(r(1))>, . . . , φ̂(c)(r(c))>
)>
∈ RcD.

6.7 More Details on Experiment 1: Batch Learning

There are a number of kernels on distributions we may use for just-in-time learning.
To find the most suitable kernel, we compare the performance of each on a collection
of incoming and output messages at the logistic factor in the binary logistic regression
problem i.e., same problem as in experiment 1 in the main text. All messages are
collected by running EP 20 times on generated toy data. Only messages in the first
five EP iterations are considered, since messages passed in the early phase of EP vary
more than in a near-convergence phase. The regression output to be learned is the
numerator of (6.4).

A training set of 5000 messages and a test set of 3000 messages are obtained by
subsampling all the collected messages. Where random features are used, kernel
widths and regularization parameters are chosen by leave-one-out cross validation. To
get a good sense of the approximation error from the random features, we also compare
with incomplete Cholesky factorization (denoted by IChol), a widely used Gram matrix
approximation technique. We use hold-out cross validation with randomly chosen
training and validation sets for parameter selection, and kernel ridge regression in its
dual form when the incomplete Cholesky factorization is used.

Let f be the logistic factor and m f→i be an outgoing message. Let q f→i be the
ground truth belief message (numerator) associated with m f→i. Following Heess et al.
[2013], Eslami et al. [2014], the error metric we use is log KL[q f→i || q̂ f→i] where q̂ f→i

is the belief message estimated by a learned message operator. Table 6.7.1 reports the
means and standard deviations of the log KL-divergence.

The MV kernel is defined in Section 6.6.2. Here, product (sum) of expected product
kernels refers to a product (sum) of kernels, where each is an expected product
kernel defined on one incoming message (see Sections 6.6.3, and 6.6.4). Evidently, the
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Table 6.7.1: Means and standard deviations of the log KL-divergence between the
ground truth and predicted outgoing messages using different message operators.
RFFs stands for random Fourier features.

Mean log KL SD of log KL
RFFs + MV Kernel -6.96 1.67
RFFs + Expected product kernel on joint embeddings -2.78 1.82
RFFs + Sum of expected product kernels -1.05 1.93
RFFs + Product of expected product kernels -2.64 1.65
RFFs + Gaussian kernel on joint embeddings (KJIT) -8.97 1.57
IChol + sum of Gaussian kernel on embeddings -2.75 2.84
IChol + Gaussian kernel on joint embeddings -8.71 1.69
Breiman’s random forests [Breiman, 2001] -8.69 1.79
Extremely randomized trees [Geurts et al., 2006] -8.90 1.59
Eslami et al. [2014]’s random forests -6.94 3.88
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Figure 6.7.1: KL-divergence error versus predictive variance for predicting the mean
of m f→zi (normal distribution) in the logistic factor problem.

Gaussian kernel on joint mean embeddings (see (6.9)) performs significantly better than
other kernels. Besides the proposed method, we also compare the message prediction
performance to Breiman’s random forests [Breiman, 2001], extremely randomized trees
[Geurts et al., 2006], and Eslami et al. [2014]’s random forests. We use scikit-learn toolbox
[Pedregosa et al., 2011] for the extremely randomized trees and Breiman’s random
forests. For Eslami et al. [2014]’s random forests, we reimplemented the method as
closely as possible according to the description given in Eslami et al. [2014]. In all cases,
the number of trees is set to 64. Empirically we observe that decreasing the log KL
error below -8 will not yield a noticeable performance gain in the actual EP.

To verify that the uncertainty estimates given by KJIT coincide with the actual
predictive performance (i.e., accurate prediction when confident), we plot the pre-
dictive variance against the log KL-divergence error on both the training and test
sets. The results are shown in Figure 6.7.1. The uncertainty estimates show a positive
correlation with the KL-divergence errors. It is instructive to note that no point lies
at the bottom right i.e., making a large error while being confident. The fact that the
errors on the training set are roughly the same as the errors on the test set indicates
that the operator does not overfit.



Chapter 7

Conclusions and Future Work

In this thesis, we consider learning explicit features for statistical tests and Bayesian
inference with expectation propagation. We consider three hypothesis testing prob-
lems: two-sample testing, independence testing, and goodness-of-fit testing. In the
setting of two-sample testing (Chapter 3), we have considered two tests: the mean
embedding (ME) test, and the smooth characteristic function (SCF) test. In the ME
test, the features correspond to the spatial locations at which the witness function
(i.e., difference of mean embeddings of the two distributions) is evaluated. In the
SCF test, the features are in the frequency domain and are where the difference of
smoothed characteristic functions is evaluated. The features in these two tests thus
indicate where the two underlying distributions differ in the spatial and frequency
domains, respectively. In the independence test (Chapter 4), the features are points
in the joint domain of the two random variables X and Y, indicating the regions
in which the joint distribution and the product of marginal distributions of X and
Y differ most. In the goodness-of-fit test (Chapter 5), the features are points in the
domain of the model density, indicating where the model does not fit the observed
data. In all these tests, features can be automatically optimized so as to maximize
(a lower bound on) the rate of detecting the differences of two distributions. All
resulting tests, and their associated optimization procedures have runtime complexity
which is linear in the sample size. We have shown that the tests are consistent for any
number of features. We observe empirically that all proposed linear-time tests have
high performance, comparable to, or in some case exceeding that of their respective
competing quadratic-time tests.

In the second part on automated expectation propagation (EP) (Chapter 6), we have
proposed a method for learning a message operator mapping from a tuple of incoming
EP messages to an outgoing message. A learned message operator can be used in
place of computationally demanding Monte Carlo estimates of outgoing messages.
Our operator has two main advantages: it can reliably evaluate the uncertainty of its
prediction, so that it only consults a more expensive oracle when it is uncertain, and
it can efficiently update its mapping online, so that it learns from these additional
consultations. Once trained, the learned mapping performs as well as the oracle
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mapping, but at a far lower computational cost. This is in large part due to a novel
two-stage random feature representation of the input messages.

Future Work

For automated EP, one possible topic of research is hyperparameter selection. At
present, hyperparameters are learned on an initial mini-batch of data, however a
better option would be to adapt them online as more data are seen. There are several
possible future directions for the three proposed linear-time tests.

Bahadur Slope as the Optimization Objective The optimization objective for the
features in our proposed goodness-of-fit test (FSSD) is based on its test power (see
(5.5)). To recall, the objective is FSSD2/σH1 where FSSD is the population test statistic
which depends on the features and the kernel, and σH1 is the standard deviation of
the asymptotic normal distribution of

√
n
(

F̂SSD2 − FSSD2
)

assuming H1 is true (see

Proposition 5.3). The approximate Bahadur slope of nF̂SSD2 is c(FSSD) := FSSD2/ω1,
where ω1 is the maximum eigenvalue of the covariance matrix under H0 (see Theorem
5.10), which depends on the kernel and the features. It would be interesting to
optimize features by maximizing c(FSSD), and compare the obtained features and the
features learned by the procedure proposed in Section 5.3.2. Further, approximate
Bahadur slopes for the proposed two-sample and independence test statistics may also
be derived. A study on features obtained by optimizing their respective approximate
Bahadur slopes will be an interesting topic of research.

Linear-Time Test for Model Comparison The proposed goodness-of-fit test in Chap-
ter 5 determines whether an observed sample {xi}n

i=1 follows a known density p
(model). In some cases, especially with real data, the hypothetical models are known
a priori to be wrong. The relevant question then becomes: given a sample {xi}n

i=1,
and two density functions p1 and p2 representing two competing models known
to be wrong, which one fits the data better? A similar question was addressed be-
fore by Bounliphone et al. [2015] where the test relies on samples {yi}n

i=1 ∼ p1 and
{zi}n

i=1 ∼ p2 from the two models. In our case, the goal is to design a linear-time
test for model comparison, which directly makes use of the two known density func-
tions. Following Bounliphone et al. [2015], a potential approach is to propose the null
hypothesis H0 : FSSD2

1 ≤ FSSD2
2 (i.e., p1 fits better) against the alternative hypothe-

sis H1 : FSSD2
1 > FSSD2

2, where FSSD2
i denotes the discrepancy between the sample

{xi}n
i=1 and model pi, as measured by FSSD2 (defined in Theorem 5.2). It follows

that the empirical test statistic is Sn := F̂SSD2
1 − F̂SSD2

2, where F̂SSD2
1 and F̂SSD2

2 are
estimates based on the sample. The asymptotic null distribution can be derived by

considering the joint distribution of F̂SSD2
1 and F̂SSD2

2 i.e., they are dependent as the
same sample is used to estimate them. It will be interesting to design the procedure
so that the learned features indicate where (in the data domain) p2 fits the data better
than p1.



Appendix A

Appendix

This chapter summarizes well-known results that we use in this thesis.

A.1 U-Statistics

U-statistics, originally proposed in Hoeffding [1948], form a general class of unbiased
estimators. Many commonly used estimators can be written as a U-statistic including
mean, covariance, as well as the MMD’s unbiased estimator in (2.11). In this section,
we define U-statistics, and provide some known results regarding the convergence
properties, and asymptotic distributions under different conditions. Good references
on U-statistics include Hoeffding [1948], Kowalski and Tu [2008], Serfling [2009].

Definition A.1 (U-statistic (Hoeffding [1948], Serfling [2009, Section 5.1])). Consider a
symmetric function h(a1, . . . , am) of m arguments i.e., h(a1, . . . , am) is invariant to the
permutation of the m arguments. Let {xi}n

i=1 be an i.i.d. sample from a multivariate
distribution F, where n ≥ m. A one-sample order-m U-statistic is the statistic of the
form

Un :=
(

n
m

)−1

∑
c∈Cn

m

h(xi1 , . . . , xim), (A.1)

where Cn
m := {(i1, . . . , im) | 1 ≤ i1 < · · · < im ≤ n} so that ∑c∈Cn

m
denotes summation

over the (n
m) combinations of m distinct elements {i1, . . . , im} ⊂ {1, . . . , n} . The

statistic is an unbiased estimate of

θ(F) =
∫
· · ·

∫
h(x1, . . . , xm)dF(x1) · · ·dF(xm)

= Ex1∼F · · ·Exm∼F[h(x1, . . . , xm)] (A.2)

The function h is known as the U-statistic kernel of θ. Where there is ambiguity, we
will reserve the term kernel for a positive definite kernel, and refer to a U-statistic
kernel as a U-statistic core.

Notations For brevity, we will write the expectations Ex1∼F · · ·Exm∼F in (A.2) as EF.
We write θ for θ(F). Similarly, the variance over all the m variables is denoted by VF.
Define hc(x1, . . . xc) = EF[h(x1, . . . , xm) | x1, . . . , xc] for c ∈ {1, . . . , m} so that hm = h.
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Define ζ0 := 0 and, for c ∈ {1, . . . m}, let ζc := VF[hc(x1, . . . , xc)]. Let h̃c := hc − θ for
c ∈ {1, . . . , m} so that h̃m = h̃ = h− θ. Convergence in distribution is denoted by d→.

Lemma A.2 (Finite-sample variance of U-statistics [Serfling, 2009, Lemma A, p. 183]).
The variance of Un is given by

VF[Un] =

(
n
m

)−1 m

∑
c=1

(
m
c

)(
n−m
m− c

)
ζc, (A.3)

and satisfies

1. m2

n ζ1 ≤ VF[Un] ≤ m
n ζm,

2. (n + 1)VF[Un+1] ≤ nVF[Un],

3. VF[Un] =
m2ζ1

n +O(n−2), n→ ∞.

The variance expression in (A.3) holds for any finite sample size n, whereas item
3 in Lemma A.2 gives the asymptotic variance. The latter is useful for deriving the
asymptotic distributions of many test statistics. It can be shown that 0 = ζ0 ≤ ζ1 ≤
· · · ≤ ζm = VF[h(x1, . . . , xm)] < ∞ [Serfling, 2009, Section 5.2.1].

There are two cases to consider in deriving the asymptotic distributions of Un as
n→ ∞: when ζ1 > 0 and, when ζ1 = 0. When ζ1 = 0, the U-statistic Un is said to be
degenerate. We start with the asymptotic distribution of a degenerate U-statistic.

Lemma A.3 (Asymptotic distribution of degenerate U-statistics [Serfling, 2009, Section
5.5.2]1). Define an operator A acting on a function g ∈ L2(Rd, F) by

Ag(x) =
∫

Rd
h̃2(x, y)g(y)dF(y),

where x ∈ Rd. Let λ1, λ2, . . . be real eigenvalues of A satisfying Ag(x) = λig(x). If
EF[h2(x1, . . . , xm)] < ∞ and ζ1 = 0 < ζ2, then

n(Un − θ)
d→ m(m− 1)

2

∞

∑
i=1

λi(Z2
i − 1),

where Z1, Z2, . . . i.i.d.∼ N (0, 1).

Lemma A.3 states that under appropriate conditions, a degenerate U-statistic
asymptotically has the same distribution as an infinite weighted sum of chi-squared
random variables (up to a constant shift by m(m−1)

2 ∑∞
i=1 λi). The asymptotic distribu-

tion of Un when ζ1 > 0 is given in Lemma A.4.

Lemma A.4 (Asymptotic distribution of non-degenerate U-statistics [Serfling, 2009,
Section 5.5.1]). If EF[h2(x1, . . . , xm)] < ∞ and ζ1 > 0, then

√
n(Un − θ)

d→ N (0, m2ζ1).

1The discussion in Serfling [2009, Section 5.5.2] only considers univariate random variables. However,
the general theory of U-statistics holds for multivariate random variables [Hoeffding, 1948].
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When the U-statistic core is bounded, a finite-sample bound can be derived and is
given in Lemma A.5. This finite-sample bound generalizes Hoeffding’ inequality for
sum of independent random variables.

Lemma A.5 (A bound for U-statistics [Serfling, 2009, Theorem A, p. 201]). Let
h(x1, . . . , xm) be a U-statistic kernel for an m-order U-statistic such that h(x1, . . . , xm) ∈ [a, b]
where a ≤ b < ∞. Let Un = (n

m)
−1 ∑i1<···<im

h(xi1 , . . . , xim) be a U-statistic computed with
a sample of size n, where the summation is over the (n

m) combinations of m distinct elements
{i1, . . . , im} from {1, . . . , n}. Then, for t > 0 and n ≥ m,

P(Un −Eh(x1, . . . , xm) ≥ t) ≤ exp
(
−2bn/mct2/(b− a)2) ,

P(|Un −Eh(x1, . . . , xm)| ≥ t) ≤ 2 exp
(
−2bn/mct2/(b− a)2) ,

where bxc denotes the greatest integer which is smaller than or equal to x. Hoeffding’s
inequality is a special case when m = 1.

Multivariate U-Statistics

An extension to the U-statistics defined previously is multivariate U-statistics [Hoeffd-
ing, 1948, Kowalski and Tu, 2008], where Un now has multiple outputs. Let

h(a1, . . . , am) =
(

h(1)(a1, . . . , am), . . . , h(J)(a1, . . . , am)
)
∈ RJ

be a stack of J U-statistic kernels.2 Let {xi}n
i=1 be an i.i.d. sample drawn from F. A

one-sample order-m multivariate U-statistic is defined as

Un :=
(

n
m

)−1

∑
c∈Cn

m

h(xi1 , . . . , xim) =
(

U(1)
n , . . . , U(J)

n

)>
,

where Cn
m := {(i1, . . . , im) | 1 ≤ i1 < · · · < im ≤ n}. As in the univariate case in Defini-

tion A.1, Un is an unbiased estimate of θ =
(

θ(1), . . . , θ(J)
)>

:= EF[Un] ∈ RJ . Similarly
to the univariate case, we define hc(x1, . . . xc) := EF[h(x1, . . . , xm) | x1, . . . , xc], and
h̃c := hc − θ for c ∈ {1, . . . , m}. Let ζ

(j)
0 := 0, and ζ

(j)
c := VF[h

(j)
c (x1, . . . , xc)] for

c ∈ {1, . . . m} and j ∈ {1, . . . , J}. Further define

ζ
(l,j)
c : = covF[h

(l)
c (x1, . . . , xc), h(j)

c (x1, . . . , xc)]

= EF[h̃
(l)
c (x1, . . . , xc)h̃

(j)
c (x1, . . . , xc)]

= EF[h
(l)
c (x1, . . . , xc)h

(j)
c (x1, . . . , xc)]− θ(l)θ(j)

for l, j ∈ {1, . . . , J} and c ∈ {1, . . . , m}. Note that if l = j, then ζ
(l,j)
c = ζ

(l)
c .

Lemma A.6 (Asymptotic distribution of multivariate U-statistics (Hoeffding [1948,
Theorem 7.1], Kowalski and Tu [2008, p. 255], Lehmann [1999, Theorem 6.1.5])). Define

2In its full generality, each of the J U-statistic kernels can be of different orders [Hoeffding, 1948]. We
have omitted this case for brevity since it is not required in this study.
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Σ ∈ RJ×J such that Σij := ζ
(i,j)
1 . If Σ is positive definite, then

√
n(Un − θ)

d→ N (0, m2Σ).

For the limiting Gaussian distribution to be non-degenerate, the Σ has to be positive
definite. In particular, this condition requires that 0 < ζ

(j)
1 = VF[h

(j)
1 (x1)] < ∞ for all

j ∈ {1, . . . , J} i.e., the jth U-statistic as defined by the kernel h(j) is not degenerate.
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