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Abstract. In recent years, there was a great interest in developing flying drones with similar 

capabilities as flying insects. It is suggested that the flapping frequency of insects coincides with the 

resonance frequency of their flight mechanism to enhance the power consumptions. In this paper, 

the effect of nonlinearity in the flight mechanism on the power consumption is investigated. A simple 

nonlinear model of the insect flight mechanism is developed and normalised to study the effect of 

different parameters on its performance. Both bistable and hardening nonlinearity are considered. 

It is shown that for a harmonic loading, the bistable systems reach their peak power at lower 

frequencies when compared to the corresponding linear system. The maximum power factor of 

nonlinear oscillator would be lower than the liner one. It is also shown that the peak active power of 

the bistable system has a higher value than the linear system if the loading function is a pulse 

square signal.

1 Introduction 

Flying insects have evolved over thousands of years and 

have become efficient flying machines. They served as a 

source of inspiration for mini and micro unmanned air 

vehicles [1,2]. According to Greenewalt [3], the 

frequency of flapping is constant at different flight 

regimes. The flying birds or insects are modelled as a 

damped linear oscillator which operates at its resonance 

frequency to minimise the energy consumption. Fischer 

et. al. [4] proposed mechanisms for flapping wing robots 

that operate at their resonance frequency to minimise the 

power consumption. Madangopal et. al. [5] used four bar 

mechanisms for a flapping drone and used linear springs 

to mimic the elastic energy storage of the insects. They 

optimised the geometrical parameters and spring constant 

to achieve the minimum energy consumption. Baek et. al. 

[6] designed a flapping wing drone and optimised its 

performance considering the effect of battery and 

electrical motor. Bronson et. al. [7] and Bao et. al. [8] 

developed flapping wings that can be excited at the 

resonance frequency of the wing.  

Goosen et. al. [9] proposed a new design for a flapping 

wing drone. They listed nonlinearity as one of the 

difficulties in implementing a flying machine at its 

resonance frequency in practice. Ramananarivo et. al. [10] 

developed a nonlinear model of a beam like wing having 

cubic stiffness nonlinearity and quadratic damping term. 

They concluded that the resonance is not providing the 

maximum efficiency, but the temporal evolution of the 

wing is optimised to increase the aerodynamic efficiency. 

In insects with indirect flight muscles, the flight 

muscles are not directly connected to the wings but they 

cause a deformation of the thorax [11]. The movement of 

the thorax transfers to the wings through a complex 

mechanism.  Different models are suggested for the wing-

muscle interface [12] but its exact function yet still to be 

explored. The common theme between different models 

is the nonlinearity in restoring force of the “flight 

mechanism”. The benefit of such a nonlinear mechanism 

is attributed to an increase in the kinetic energy of the 

wings [13,14], modulation of the flapping amplitude [15] 

and an increase in the flapping speed during half of the 

flapping cycle [16]. 

In this paper, the energy efficiency of a flight mechanism 

is investigated by examining the active and reactive 

powers of a nonlinear oscillatory system. The power that 

conduct useful work in a system is called active power and 

the power that is used to accelerate masses and  deform 

elastic elements of the system is the reactive power [17]. 

In theory, the energy attributed to the reactive power 

returns to the source in a cycle. However, it increases the 

energy loss as most mechanical actuators do not have an 

energy recovery capability. A larger actuator is also 

required to compensate the reactive power requirement. 

In a linear oscillator at the resonance, the stiffness and 

inertia term cancel out and the reactive power become 

zero which is not the case in a nonlinear oscillator.  

 A lumped parameter model in form of a Duffing 

oscillator is used in this study as a simplified 

representation of a flapping wing aerial vehicle. Both 

bistable and monostable oscillator are considered. The 

generated lift is modelled by a linear damping term for the 

simplicity. The performance of the system for a range of 

parameters is evaluated and it is compared with a linear 

counterpart.  
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2 A nonlinear model  

A schematic view of the “click mechanism” which was  

proposed in Ref. [18] is shown in Fig. 1(a). A mechanical 

model of this mechanism is proposed by Brenan et. al. 

[13] and is shown in Fig. 1(b). The length 2𝑏 is the 

distances between the supports when springs are 

unloaded. The linear horizontal springs model the 

stiffness of notum and mesopleural process. The 

mechanism will snap through the unstable static 

equilibrium position if a force applies downward at point 

C. There are two static stable equilibrium positions which 

are shown by solid and dashed line in  Fig. 1(b). There is 

also an unstable equilibrium position where the levers are 

horizontal. Such a system is called bistable as there are 

two equilibrium points.  

Fig. 1. a) A schematic view of insect click mechanism 

reproduced from Ref. [18]. b) Mechanical model of the click 

mechanism. 

 

To account for the stiffness of scutellar lever (Fig. 

1(a)) a vertical spring can be added to the mechanical 

model at point C in parallel to a damper as shown in Fig. 

2. The damper is to model the aerodynamic load. The 

stiffness of the vertical spring can compensate the 

negative stiffness resulted from the lever mechanism and 

depending on the ratio between the vertical and horizontal 

springs 𝛼 = 𝑘/𝑘𝑣 such a system can be bistable or only 

possess a single stable equilibrium position, hereafter will 

be referred to as monostable system. Different force-

deflection curves for different values of 𝛼 are shown in 

Fig. 3 for a ratio of 𝑏/𝑙 = 0.7. 
 

 

Fig. 2. Complete model of the insect flight mechanism.  

 

Fig. 3. Nondimensional force as a function of displacement of 

the flight mechanism model for different ratio of 𝛼 and 𝑏/𝑙 =
0.7.  

 

The equation of motion of the single degree of 

freedom model of the flapping mechanism can be 

obtained,  

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑓𝑠(𝑥) = 𝐹 cos 𝜔𝑡 (1) 

where 𝑓𝑠(𝑥) is the nonlinear spring force. The spring 

reaction force can be approximated by a third order 

polynomial and the equation of motion would have the 

form of, 

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘1𝑥 + 𝑘3𝑥3 = 𝐹 cos 𝜔𝑡 (2) 

where 𝑘1 and 𝑘3 are stiffness coefficients and can be 

obtained as function of system parameters [13]. 

Depending on the chosen values for 𝛼 and 𝛽, linear 

stiffness term 𝑘1 can have a positive or a negative value. 

In this paper, it is tried to understand how flapping can be 

benefitted from nonlinearity. The equation of motion is 

normalised to make it possible to analyse the effect of 

different parameters on flapping performance, 

𝑥̂′′ + 2𝜁𝑥̂′ + 𝜅𝑥̂ + 𝛾𝑥̂3 = cos Ω𝑡 (3) 

where 𝑘 = |𝑘1|,   𝜔𝑛 = √𝑘/𝑚,  𝜏 = 𝜔𝑛𝑡, 𝑥̂ = 𝑥/𝑥0, 

𝑥0 = 𝐹/𝑘, 𝜁 = 𝑐/(2𝑚𝜔𝑛), Ω = 𝜔/𝜔𝑛, 𝜅 = 𝑘1/𝑘, 

𝛾 = 𝑥0
2 𝑘3/𝑘1 and dash (∎)′ represents differentiation 

with respect to non-dimensional time 𝜏. The normalised 

linear stiffness term 𝜅 can have a value of 1 or -1 

depending on the type of the system, i.e. bistable or 

monostable. The normalised nonlinear stiffness term 𝛾 

can be considered as the ratio between nonlinear spring 
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force and linear spring force at the displacement 𝑥0. It can 

also be linked to the applied force and thus is a function 

of the amplitude of response. 

3 Power 

The power that is used to produced aerodynamic lift is 

used as a measure of the performance here. This is called 

active or true power [17] and its average can be obtained 

over a period by calculating the work  of the external force 

over a period, 

𝑃 =
1

𝑇
∫ 𝐹(𝑡) 𝑥̇ 𝑑𝑡

𝑇

0

 (4) 

where 𝐹(𝑡) is the applied force. The power can be 

nondimensionalised as 𝑃̂ = 𝑃/(𝐹𝑥0 𝜔𝑛). The active 

power is the result of work done on the damping element 

and the same result can be obtained if external force is 

substituted by the damping force in Eq. (4).  

There is no net transfer of energy in a cycle through the 

work conducted on mass and stiffness elements of the 

system, and the part of the power that is required to move 

them is called reactive power. Its average can be obtained 

over a cycle similarly, 

𝑄 =
1

𝑇
 ∫ |𝑓𝑠(𝑥(𝑡)) − 𝑚𝑥̈| 𝑥̇ 𝑑𝑡

𝑇

0
 (5) 

where 𝑄 is the average reactive power and can be 

nondimensionalised as 𝑄̂ = 𝑄/(𝐹𝑥0 𝜔𝑛). It is important 

to note that although the net energy transfer due to 

reactive power is zero over a cycle, but it need to be 

considered in selection of the actuator as it should be sized 

based on the apparent power 𝑆 = √𝑃2 + 𝑄2. The ratio 

between active power and apparent power is called power 

ratio and is considered as a measure of the performance of 

the system in this study. A power ratio of one would result 

when all the power is used to conduct useful work. 

4 Harmonic loading 

The active and reactive powers are obtained in this section 

for a range of parameters to compare the performance of 

nonlinear and linear system in term of energy efficiency. 

A purely harmonic loading is assumed to be applied to the 

mechanism. The aerodynamic force is modelled through 

the damping force and as the purpose of the oscillator is 

to produce lift, it is expected that the damping coefficient 

be high. By comparing the ratio of the powers reported in 

Ref. [19], a damping ratio of 0.9 can be obtained for a 

linear oscillator.  

4.1 Bistable oscillator 

The nondimensional active and reactive power for the 

bistable mechanism is shown in Fig. 4 as a function of 

excitation frequency for three different value of 𝛾. The 

frequency of the peak active power increases by 

increasing 𝛾. The drop in active power immediately after 

the peak corresponds to the bifurcation where the inter-

well oscillation become chaotic before converting to 

intra-well oscillation. The peak in active power of the 

linear oscillator occurs at a normalised frequency of 1 

where the reactive power is equal to zero. For a linear 

oscillator at the natural frequency, the inertia and stiffness 

forces cancel out and the input energy dissipates 

completely through damping term. However, for a 

nonlinear oscillator, the reactive power never become 

zero because multiple harmonics exist in the response. 

 

Fig. 4. Nondimensional power as a function of frequency for 

harmonic loading, 𝜅 = −1 and 𝜁 = 0.9. black lines: active 

power 𝑃̂, cyan lines: reactive power 𝑄̂. Solid line: 𝛾 = 1; 

dashed line: 𝛾 = 2; dotted line: 𝛾 = 3; dashed-dotted line: 

linear oscillator. 

 
Power factor is plotted in the Fig. 5 as a function of 

frequency for the bistable system and the linear oscillator. 

The power factor is equal to unity for the linear oscillator 

at the natural frequency of the system. The peak in power 

factor is lower for nonlinear oscillator and is about %95 

but it is higher at low frequencies compared to the linear 

oscillator.  

 

Fig. 5: Power factor as a function of frequency for harmonic 

loading, 𝜅 = −1 and 𝜁 = 0.9. Solid line: 𝛾 = 1; dashed line: 

𝛾 = 2; dotted line: 𝛾 = 3; dashed-dotted line: linear oscillator. 

 

Although the damping factor is expected to be high 

due the nature of the oscillatory system, its exact value is 

not known. To evaluate the effect of damping, the active 

power for three different level of damping is shown in Fig. 

6 for the bistable oscillator with 𝛾 = 0.2. The lower 

damping level cause an increase in the peak of the 



 

 

nondimensional active power as well as a shift in its 

frequency to a higher frequency. Reducing the damping 

also cause a slight reduction in the power factor which is 

not shown here for brevity. 

 

 

Fig. 6.  Nondimensional power as a function of frequency for 

harmonic loading, 𝜅 = −1 and 𝛾 = 2. Solid line: 𝜁 = 0.5; 

dashed line: 𝜁 = 0.9; dotted line: 𝜁 = 1.5. 

 

4.2 Monostable oscillator 

The active and reactive power for a monostable oscillator 

(𝜅 = 1) is shown in Fig. 7 for three different value of  𝛾. 

Similar to Fig. 4, damping ratio is assumed to be equal to 

0.9. The hardening nonlinearity of the oscillator cause a 

shift in the peak frequency to higher frequencies 

compared to the linear oscillator. Furthermore, the 

reactive power has a minimum almost equal to zero 

similar to the linear system. The resulted power factor is 

shown in Fig. 8. The nonlinear oscillator has a maximum 

power factor close to unity. The high damping ratio makes 

the effect of nonlinearity on the dynamics of the 

monostable oscillator minimal.  

 

Fig. 7. Nondimensional power as a function of frequency for 

harmonic loading, 𝜅 = 1 and 𝜁 = 0.9. black lines: active power 

𝑃̂, cyan lines: reactive power 𝑄̂. Solid line: 𝛾 = 1; dashed line: 

𝛾 = 2; dotted line: 𝛾 = 3; dashed-dotted line: linear oscillator. 

 

 

Fig. 8. Power factor as a function of frequency for 𝜅 = 1 and 

𝜁 = 0.9. Solid line: 𝛾 = 1; dashed line: 𝛾 = 2; dotted line: 𝛾 =
3; dashed-dotted line: linear oscillator. 

5 Non-harmonic loading 

The forcing function of insect muscles are not most likely 

a simple harmonic. The existence of higher harmonics in 

a non-sinusoidal loading function can be beneficial to the 

performance of a nonlinear oscillator by increasing its 

power factor.  

5.1 Bistable oscillator 

The active and reactive power for a bistable system when 

subjected to a square loading function is shown in Fig. 9. 

The amplitude of the peak power is almost constant for 

three different values of nonlinearity and is higher than 

the linear oscillator. The amplitude of peak active power 

is almost two times of that for the same oscillator when 

harmonically loaded (Fig. 4). The power factor is shown 

in Fig. 10. The power factor is very close to one in all 

frequencies due to existence of multiple harmonics in the 

forcing function. 

 

Fig. 9. Nondimensional power as a function of frequency for 

square loading, 𝜅 = −1 and 𝜁 = 0.9. black lines: active power 

𝑃̂, cyan lines: reactive power 𝑄̂. Solid line: 𝛾 = 1; dashed line: 

𝛾 = 2; dotted line: 𝛾 = 3; dashed-dotted line: linear oscillator. 



 

 

 

Fig. 10. Power factor as a function of frequency for square 

loading, 𝜅 = −1 and 𝜁 = 0.9. Solid line: 𝛾 = 1; dashed line: 

𝛾 = 2; dotted line: 𝛾 = 3; dashed-dotted line: linear oscillator. 

5.1 Monostable oscillator 

The power curves of the monostable oscillator alongside 

a linear one are shown in Fig. 11 when subjected to a 

square pulse forcing function. The amplitude of active 

power is larger than the harmonic loading shown in Fig. 

7. The hardening nonlinearity cause the peaks of active 

power to shift to higher frequencies. Similar to the 

bistable system, the power factor would be close to unity 

which is not shown here for brevity. 

 

Fig. 11. Nondimensional power as a function of frequency for 

square loading, 𝜅 = 1 and 𝜁 = 0.9. Black lines: active power 

𝑃̂, cyan lines: reactive power 𝑄̂. Solid line: 𝛾 = 1; dashed line: 

𝛾 = 2; dotted line: 𝛾 = 3; dashed-dotted line: linear oscillator. 

6 Conclusions 

The nonlinearity in insect flight mechanism is modelled 

by a cubic nonlinearity. The mechanism can be bistable or 

monostable depending on the values of system 

parameters. The aerodynamic lift generation is modelled 

by a linear damper and the corresponding active power is 

obtained. The magnitude and the frequency at which the 

active power has its maximum value and the power factor 

are obtained in order to compare the effect of different 

parameters.  

For a bistable mechanism, the active power has a peak 

value at a lower frequency than the natural frequency of a 

comparable linear oscillator. The power factor of a linear 

oscillator is unity at its natural frequency but for a 

nonlinear oscillator it has a value smaller than one. For a 

monostable system with hardening stiffness the peak 

power shifts to the higher frequencies. The effect of 

nonlinearity is minimum in this case as the damping ratio 

is high.  

A square pulse forcing function is examined to assess a 

nonharmonic forcing function. The peak active power for 

bistable nonlinear system is higher than the linear one 

which implies a higher lift generation. Furthermore, the 

power factor has a value close to unity for the frequency 

range that is examined here. 
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