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Abstract. Early damage detection of structure’s joints is essential in order to ensure the integrity of 

structures. Vibration-based methods are the most popular way of diagnosing damage in machinery 

joints. Any technique that is used for such a purpose requires dealing with the variability inherent to 

the system due to manufacturing tolerances, environmental conditions or aging. The level of 

variability in vibrational response can be very high for mass-produced complex structures that 

possess a large number of components. In this study, a simple and efficient time frequency method 

is proposed for detection of damage in connecting joints. The method suggests using singular 

spectrum analysis for building a reference space from the signals measured on a healthy structure 

and then compares all other signals to that reference space in order to detect the presence of faults. 

A model of two plates connected by a series of mounts is used to examine the effectiveness of the 

method where the uncertainty in the mount properties is taken into account to model the variability 

in the built-up structure. The motivation behind the simplified model is to identify the faulty mounts 

in trim-structure joints of an automotive vehicle where a large number of simple plastic clips are 

used to connect the trims to the vehicle structure. 

1 Introduction  

Joints such as clips and bolts are commonly used in the 

built-up structures to connect different components. The 

damage in these joints can adversely affect the integrity 

of the whole structure and may lead to catastrophic 

incidents. Thus, an early detection of damage in the 

structure with faulty joints is crucial in order to maintain 

the safety and to extend the service life span of structures. 

Damage detection in structural joints has attracted a 

lot of attention and many techniques were developed 

during the past few decades. Vibration-based analysis is 

one of the most popular strategies for the damage 

detection as it is non-destructive and repeatable.  The 

deviation of natural frequencies and damping ratios from 

the baseline values due to bolt looseness is investigated in 

[1] where a couple of Euler beams with a single bolted lap 

joint is used in the analysis. The results illustrate that the 

bolts looseness affect the structure’s natural frequencies 

and damping ratios. However, the change is more 

significant at the higher frequency range.  

In reference [2], an experimental investigation is 

conducted for identifying the looseness in cargo bolts 

under random excitation. The experiment is conducted on 

twelve bolt groups and seven different severity of 

damages (i.e. looseness). For each simulated damage 

type, vibration signals are acquired using accelerometers 

and time series are used for detection. Two kinds of 

autoregressive models were constructed. The residual 

errors of the models are used as damage index for 

different levels of damage. The results showed that the 

suggested methodology has the possibility of early 

detection of bolt looseness severity.    

A damage detection method based on the analysis of the 

subharmonic resonance is presented in [3]. The study 

proposed the structure bolted joint as a two-degree of 

freedom nonlinear model and uses a multiple timescale 

method for illustrating the generation of subharmonic 

resonance. Experiments were conducted on a single bolt-

joint aluminum beam and the damage in the joint is 

simulated by bolts looseness. The excitation of the beams 

and acquisition of the corresponding response signals are 

conducted by piezoelectric transducers. The results 

showed that the subharmonic frequencies appear in the 

structure response spectrum when it is excited by a double 

of its natural frequency.   

The study in [4] presents a technique for the looseness 

detection of bolted structure. The technique based on the 

frequency response function (FRF) data. The 

experimental results of the study are obtained using both 

accelerometer and strain gauge and their measurements 

are compared to assess the bolt looseness.  The results 

show that presence of bolt looseness causes and abrupt 

change in the orthogonal modes. 
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The detection of undesired structural changes in space 

vehicle due to bolt looseness is investigated in [5]. Special 

kind of piezoelectric sensors are used on a real satellite 

panel with 49 bolts.  The damage in the satellite panel is 

simulated as looseness in a bolt.  The capability of two 

different methods, namely Acousto-Elastic and Electro-

Mechanical Impedance methods, of detecting damage is 

investigated. The experimental results of the study show 

that the present techniques have a potential possibility for 

both damage detection and localization. 

A combined methodology based on vibration and 

electro-mechanical impedance techniques for the purpose 

of structural joint damage detection is presented in [6]. A 

number of structure joint damage scenarios are designed 

in the study for the purpose of damage detection. The 

experimental results such as modal parameters are 

analyzed and showed that the present methodology is 

useful in extracting damage information of the joint. 

The study in Ref. [7] proposes an artificial neural 

network (ANN) based method for the estimation of 

damage severities in truss bridge’s joint. The mode shapes 

and natural frequencies are used as input features to the 

ANN in order to assess the damage. A numerical analysis 

is presented in order to assess the method’s efficiency and 

accuracy. 

In this study, the effectiveness of a new method to 

detect the damage in joints of two connected plates is 

investigated. The uncertainty in joint property are 

modelled using the measured variability of plastic mount 

that are used to connect the trim to the structure of an 

automotive vehicle [8]. A large number of these clips are 

used in modern vehicles. These clips should be firmly 

connected and any rattling can be a source of unwanted 

noise in a vehicle’s cabin. It is shown that the variability 

in the effective stiffness and damping of such clips can 

affect the vibration response of the vehicle [8]. Such 

variability makes the damage detection process more 

difficult and uncertain.  

A simple and easy methodology based on Singular 

Spectrum Analysis (SSA) is suggested here for damage 

detection. In this method, the time domain vibration 

acceleration signals are subjected to the SSA for the 

decomposition purposes. From the response of structure 

with healthy joints a reference space is made. Other 

signals of the healthy structure will be projected onto this 

space and allow an estimation of a threshold value. Any 

new signal will be projected on that baseline space and 

their distance to the cluster of healthy signal will be 

compared to the threshold value to classify them as 

healthy or damaged.  

In the following section, the mathematical formulation 

of the problem is described. In section 3, the fundamentals 

of the SSA are described briefly. Results and discussion 

are presented in section 4 and the section 5 focuses on   

conclusions made in this paper.  

2 Mathematical formulation of the 
problem  

A simple model of two connected steel plates with 

multiple mounts is used here in order to simulate a built-

up structure. For the purposes of modeling, the steel plates 

are simply supported and thus an analytical solution for 

their vibration response exists according to Kirchhoff–

Love plate theory [9]. The two plates are connected by 

eleven mounts which are distributed randomly between 

the plates. This allows obtaining an analytical solution 

using the impedance-mobility technique (FRF coupling) 

[10,11] The plates are made of steel and have the 

following dimensions: plate 1 has a thickness of 1.5 mm, 

width of 350mm and length of 500mm; plate 2 has a 

thickness of 1.3mm, width of 400mm and length of 

600mm.  A schematic view of two plates is shown in 

figure 1. The mobility functions between point 1 on the 

first plate and point 2 on the second plate are obtained.  

 

Fig. 1. A schematic view of two plates connected by eleven 

clips. 

The uncertainty in the clips properties are considered 

based on the measurement conducted in [8]. A Monte 

Carlo simulation is used to obtain the point and the 

transfer mobilities while the clips properties are varied. 

The mobility 𝑌12 for point 1 of the first plate and point 2 

of the second plate is shown in figure 2 for 250 

realisations where all clips are considered connected. It 

can be seen that at lower frequencies there are distinct 

modes which are not affected by the variability in clips 

properties. However, the effect of variability in the clips 

properties becomes more prevalent with the increase of 

the frequency. 

Fig. 2. Monte Carlo simulation results of mobility 𝑌12 of two 

connected plate with 11 clips. 
 

Damage is modelled by removing one clip at a time.  Then 

again, a Monte Carlo simulation is used to simulate the 

effect of uncertainty in the clip properties. The mobility 

𝑌12 for the two connected plates, where one of the clips is 



 

 

removed is shown in figure 3. Here, again 250 realisations 

for each case are produced.  Overall 11 cases of damaged 

joint and one case with no damage are presented in figure 

3. The variability in the clips properties make it 

impossible to distinguish between each case and there are 

overlap between healthy and damaged connector for all 

the cases. 

Fig. 3. Monte Carlo simulation of the mobility 𝑌12 of two 

connected plate for healthy and damaged connections where one 

of the clips is removed each time. 

 

3 Methodology 

SSA is a time series analysis method that popularly used 

in biomedical and meteorological sciences [12-14]. 

Recently, it was used for the purposes of engineering 

application such as fault diagnosis of rolling element 

bearings [15-19], tool wear health monitoring [20, 21] and 

delamination in composite materials [22].   

The SSA has two main stages; decomposition and 

reconstruction. In the first stage, a signal which is 

discretized as a time series is decomposed into a number 

of independent components, the principal components 

(PC’s). Each component contains a certain percentage of 

the original signal variance. The reconstruction stage, 

which is not used in this methodology, uses all or some of 

the principal components to reconstruct the original 

signal.  Further details of the SSA can be found in [23, 

24]. 

The methodology suggested has two key steps: 

building baseline space and damage detection 

methodology. The later contains extraction of feature 

vectors (FVs), setting a threshold and a classification 

process. 

3.1 Building reference/baseline space.  

A baseline space is made from subjecting a signal 

measured on a healthy structure to the decomposition 

stage of the SSA. First a trajectory matrix X of dimension 

𝐿 by 𝐾 is made from the time-lapped signal x of a length 

n (i.e 𝑥 = [𝑥(1), 𝑥(2), 𝑥(3)… 𝑥(𝑛)]) as shown in Eq. (1): 
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where 𝑥(𝑛) is a 𝑛th element of the measured signal. The L 

is the window of decomposition (i.e the number of PCs 

resulted from the decomposition stage) and K=n-L+1.The 

covariance matrix of the trajectory matrix can be obtained 

using to Eq. 2, 

 

             𝐂x =
𝐗𝐗′

𝐿
                                        (2) 

Eigenvalues and eigenvectors of the covariance matrix 𝐂𝐱 

can be obtained by subjecting it to singular value 

decomposition, 

 

𝐂𝐱𝐔𝑖 = 𝜆𝑖𝐔𝑖                                   (3) 

Each eigenvalue (i.e. 𝜆𝑖) represents a fraction of the 

original signal’s variance in the direction of the 

corresponding eigenvector 𝐔𝑖. The eigenvalues are 

usually arranged in a decreasing order and the 

corresponding variances are represented in the so-called 

scree plot [25].  

For building the baseline space, all or only a part of 

eigenvectors obtained above, which correspond to the 

healthy condition can be used.  

 3.2 Damage detection methodology 

After building the baseline/reference space from a healthy 

signal, any new signal will be projected on the baseline 

space and the fault detection process is conducted. The 

detection process has two main steps: feature vector 

extraction and classification. 

3.2.1 Feature vector extraction 

Supposing signals from healthy and faulty condition are 

available, the healthy signals are divided equally into 

training and testing samples, while all the faulty signals 

are used as testing samples.  

For the training samples, the trajectory matrix of every 

signal is projected onto the baseline space. The projection 

means multiplying the transpose of the trajectory matrix 

𝐗 by each of the baseline eigenvector 𝐔𝑖. This projection 

will provide the corresponding principal components 𝐏𝐂𝑖, 

 

𝐏𝐂𝑖 =
𝐗′𝐔𝑖

𝜆𝑖

                                         (4) 

The symbol (′) denotes the transpose. Then, the Euclidean 

norm of each of the three principal components is 

calculated as in Eq.5, 

𝑓𝑖𝑗 = ∑(𝐏𝐂𝑖𝑗 (𝑚))
2

𝐾

𝑚=1

                         (5) 

where fij is the feature, 𝑖 is the number of principle 

component and 𝑗 is the number of the signal that is 



 

 

projected. 

In the present study, the baseline space is basically 

made from the first three eigenvectors. Hence, all feature 

vectors will be of three dimensions. More eigenvectors 

can also be used but in this study the first three vectors 

were sufficient to achieve a very good classification . 

Then the feature vector (FV) obtained from 𝑗th signal will 

have the form, 

𝐟𝑗 = [𝑓1𝑗  𝑓2𝑗  𝑓3𝑗] ′                      (6) 

 The reason for choosing three feature components only 

is that these can be visualized in a 3D space.  

3.2.2 Classification 

When a baseline space is made and the training samples 

are projected, the resultant FVs are arranged in rows to 

form the baseline feature matrix 𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒. Then, the 

Mahalanobis distance (𝐷𝑖)of each feature vectors to the 

𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is calculated, 

 

𝐷𝑖 = √(𝑓𝑣𝑖 − 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒). 𝑆
−1. (𝑓𝑣𝑖 − 𝐸𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)

𝑇      (7) 

 

Where 𝐄𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  is the mean of the rows of the 

𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒  and 𝑆−1  is the inverse of the covariance matrix 

of  𝐅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 . 
 

From the values of  𝐷𝑖  corresponding to the baseline 

training sample a suitable probability distribution is fitted. 

In the present study, a lognormal probability distribution 

if fitted. From this probability distribution, a suitable 

threshold 𝑇𝑟 is found. The threshold here is selected in a 

way the cumulative probability distribution become equal 

to 0.99 [26]. A new signal will be classified based on its 

 𝐷𝑖   to the class of healthy or faulty signals, according to 

Eq. (8). 

 
𝐷𝑖 > 𝑇𝑟    𝑠𝑖𝑛𝑔𝑎𝑙 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑐𝑙𝑎𝑠𝑠
𝐷𝑖 ≤ 𝑇𝑟    𝑠𝑖𝑔𝑛𝑎𝑙 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑓𝑎𝑢𝑙𝑡𝑦 𝑐𝑙𝑎𝑠𝑠    

            (8) 

where 𝐷𝑖  is the Mahalanobis distance of 𝑖th signal 

measured from the healthy space and 𝑇𝑟 is the calculated 

threshold. 

4 Results and discussion 

As was mentioned in Section 3, 250 realisations were 

obtained for the case when all clips are connected that is 

for the case of healthy clips. Similarly, 250 signals are 

simulated for each case when one clip is removed. In total, 

there will be 3000 realisations (250*12 (1 Healthy case 

+11 removed clip cases)). The signals from the healthy 

structure are divided equally (i.e. each is 125 realisations) 

into training and testing samples, each one containing 125 

signals. All the other 2750 signals are used as testing 

samples. 

Figure 4 represents the 3D visualization of training FVs 

which were obtained according to Eq.6.  

 

 

Fig. 4. 3D visualisation of baseline FVs. 
 

Figure 5 shows the projection of the testing FVs 

on the baseline feature space. The healthy training 

and testing FVs are represented in blue color. The 

FVs corresponding to faulty class are represented in 

red color. It can be seen that the testing FVs 

corresponding to the faulty cases can be visually 

recognized from the baseline FVs.  

 

 

Fig. 5.  Clustering of 3D visualisation of baseline FVs. 
 

Figure 6 represents the Mahalanobis distances of all 

the feature vectors that were measured to the training FVs. 

The horizontal dashed line represents the threshold Tr. 

The figure clearly shows that the D level of the faulty FVs 

is higher than the D level of the training FVs. In this sense, 

the FVs made from faulty class are dissimilar to those 

made from training FVs. The FV’s from the faulty class 

will be recognized as such according to the rule defined 

in Eq. (8). 

4.3

# 10
-3

4.25
4.2

norm of PC1

4.15
4.1

4.05
42.5

2.6

2.7

norm of PC2

2.8

2.9

3

# 10
-3

2.4

2.2

2

1.8

1.6

1.4

1.2
3.1

# 10
-3

n
o

rm
 o

f 
P

C
3



 

 

 

Fig. 6.  The levels of D for both training and testing sample. 
 

Table 1 shows the confusion matrix that represents the 

rates of correct and incorrect classification in percentages 

for the healthy and the faulty signals. The first column 

denotes the real class and the first row corresponds to the 

recognized class. The numbers on the main diagonal 

shows the correct classification rates while the off-

diagonal numbers show the percentage of misclassified 

signals. All the 125 healthy FVs from the testing samples 

are correctly assigned to the healthy class. Only 31 out of 

the 2750 (1.13 %) testing FVs corresponding to faulty 

conditions were misclassified as healthy while all the rest 

2719 FVs (i.e. 98.87%) were correctly classified as faulty. 

Table 1. Confusion matrix 

Real 

class/recognized 

class 

H F 

H 100% 0% 

F 1.13% 98.87% 

5 Conclusions 

This study suggests a vibration-based monitoring method 

to identify damage in joints in presence of variability. The 

proposed method is used to detect damage in a faulty joint 

of two connected plates. Two plates are assumed to be 

connected by small plastic clips that are used to connect 

the vehicle’s trim to its structure. The variability in clips’ 

effective stiffness and damping are modelled here using a 

Monte Carlo simulation.  

The methodology proposed here does not require previous 

measurements of signals corresponding to faulty cases. 

The results obtained in the paper demonstrate the 

accuracy of the method, which supports the claim of using 

it for purposes of automatic damage assessment. 
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