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Abstract

Statistical approaches for inferring the spatial distribution of taxa (Species Distribution Mod-

els, SDMs) commonly rely on available occurrence data, which is often clumped and geo-

graphically restricted. Although available SDM methods address some of these factors,

they could be more directly and accurately modelled using a spatially-explicit approach.

Software to fit models with spatial autocorrelation parameters in SDMs are now widely avail-

able, but whether such approaches for inferring SDMs aid predictions compared to other

methodologies is unknown. Here, within a simulated environment using 1000 generated

species’ ranges, we compared the performance of two commonly used non-spatial SDM

methods (Maximum Entropy Modelling, MAXENT and boosted regression trees, BRT), to a

spatial Bayesian SDM method (fitted using R-INLA), when the underlying data exhibit vary-

ing combinations of clumping and geographic restriction. Finally, we tested how any recom-

mended methodological settings designed to account for spatially non-random patterns in

the data impact inference. Spatial Bayesian SDM method was the most consistently accu-

rate method, being in the top 2 most accurate methods in 7 out of 8 data sampling scenarios.

Within high-coverage sample datasets, all methods performed fairly similarly. When sam-

pling points were randomly spread, BRT had a 1–3% greater accuracy over the other meth-

ods and when samples were clumped, the spatial Bayesian SDM method had a 4%-8%

better AUC score. Alternatively, when sampling points were restricted to a small section of

the true range all methods were on average 10–12% less accurate, with greater variation

among the methods. Model inference under the recommended settings to account for auto-

correlation was not impacted by clumping or restriction of data, except for the complexity of

the spatial regression term in the spatial Bayesian model. Methods, such as those made

available by R-INLA, can be successfully used to account for spatial autocorrelation in an

SDM context and, by taking account of random effects, produce outputs that can better elu-

cidate the role of covariates in predicting species occurrence. Given that it is often unclear

what the drivers are behind data clumping in an empirical occurrence dataset, or indeed

how geographically restricted these data are, spatially-explicit Bayesian SDMs may be the

better choice when modelling the spatial distribution of target species.
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Introduction

Development of quantitative methods to predict the spatial distribution of taxa from occur-

rence data is an active area of ecological research [1–3]. Understanding where organisms are

geographically located is key for many reasons: conservation scientists, for example, require

knowledge about threatened species’ distributions to prioritise management efforts [4, 5].

Alternatively, community ecologists need to know which species are likely to be present in the

broader species pool to better understand the community assemblage process at a specific loca-

tion [6, 7]. Within disease research, knowledge about pathogen distributions across a land-

scape can better inform understanding of spatial patterns of human disease risk [8, 9].

Statistical approaches for inferring the spatial distributions of taxa across landscapes are

commonly termed ‘Species Distribution Modelling’ (SDM) or ‘Niche Modelling’. Rather than

estimating niches as such, or looking to create models to better understand the causative pro-

cess behind spatial distributions, in most cases these statistical approaches are used as a spatial

interpolation across a region of interest to overcome incomplete sampling and predict the

probability of presence/absence at all un-surveyed locations. SDMs commonly rely on regres-

sion techniques, which identify the correlative associations of species’ occurrence to a suite of

explanatory and spatially extensive variables, e.g. temperature, altitude, and rainfall [1, 10].

Over the last decade there has been a significant uptake in methods that fit highly complex

SDM models, for example using maximum-entropy based lasso regressions or boosted regres-

sion trees (BRT) approaches [11]. This has been driven by the ability of these methods to

quickly select and infer models with limited user input and apparent high fit to the data, using

e.g. ‘area under receiver operating curve (AUC) statistic [12]. The availability of bespoke soft-

ware packages such as MAXENT [1] and the R package ‘dismo’ [13] have helped augment the

methodological uptake, as these packages are computationally inexpensive, user-friendly, free-

to-user and produce visually appealing outputs.

The ease of use of these packages, however, can also drive a method-agnostic (or ‘standard

settings’) approach to analysis [2]. By default, highly complex, ‘black box’ approaches can select

models that are over-fitted to the data such that any predictions partially reflect the sampling

biases of input datasets [1, 10]. Various methodological configurations have been suggested

to prevent such problems arising, including: reducing the complexity of the final model by

increasing penalties on additional parameters [14], reducing the number of predictors [15],

accounting for the spatial patterns of samples by using background points generated with a

similar spatial structure [16–18], or reducing the spatial autocorrelation of the sampling points

in the analyses [19–21]. A straightforward approach to control one aspect of this sampling

bias, i.e. the non-random spatial patterning of samples, is to directly incorporate a spatially-

structured random term into the underlying regression models. However, until recently, for-

mally incorporating such a term into SDM frameworks commonly used for spatial interpola-

tion of species occurrence by ecologists, required the use of complex code [21]. Integrated

Nested Laplace Approximation (INLA) Bayesian methods for fitting models with spatial ran-

dom effects have been recently implemented for R in the R-INLA package [22–26] and offer

a highly flexible modelling environment, which can incorporate a variety of spatial, random

effects into binomial, additive regression models. INLA methods analytically determine

the posterior marginal distributions for parameters [27], which affords a large reduction in

computational time compared to search based (e.g. MCMC) methods. Furthermore, R-INLA

provides computationally fast approximations to the spatial, random effect, which have been

shown to be effective in producing SDM-type spatial predictions [27].

Bayesian methods that remove the effects of spatial autocorrelation inferring SDMs have

the potential to both improve and deteriorate true predictive ability [28] and it is unclear in
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what situations they might offer an improvement over non-spatial methods. Empirically col-

lected samples are known often to be spatially biased due to anthropogenic drivers, such as:

spatially heterogeneous reporting rates around areas with high numbers of observers and

biases towards areas with active sampling programmes [29, 30], or, high disease detection rates

where there are existing identification/diagnostic facilities [31]. However, some or all of the

spatial patterning contained within any set of taxonomic samples could also be driven by the

underlying suitability of the environment, rather than the impact of anthropogenic drivers,

meaning the clumping of points itself contains important information and should not be dis-

counted [32]. The preferential use of pseudo-absence points in SDMs as an attempt to over-

come the lack of true absence data adds a further set of problems during inference [33], with a

lack of clear framework to select appropriate sets of background points [34]. The computa-

tional packages that are most commonly used and easily applicable by non-expert audiences,

however, are heavily weighted towards presence-ground approaches and we focus on them

here, mindful that point-process models might offer a better way forward [18]. Here, we test

the role that clumping and geographical bias have on the predictive ability of presence-back-

ground modelling methods, comparing a spatially-explicit Bayesian approach (spatially-

explicit INLA) to three non-spatial methods (non-spatial INLA, MAXENT and BRT) on sets

of simulated data that show high variation in clumping and bias. We also test, for all methods,

if inferences using any of the best-practice user settings previously recommended for optimum

SDM analysis are sensitive to our measured data biases. Overall, we show how the processes

behind the spatial patterns of the input data can dictate the optimal choice of methods, show-

ing that for the commonly encountered scenario of having clumped sample data, spatial Bayes-

ian models are more consistently accurate than traditional methods.

Methods

We tested the predictive performance of different SDM methods to reconstruct spatial pres-

ence, using simulated data sets with varying degrees of data clumping and geographical bias

for 1000 hypothetical taxa. All analyses was performed using R [35]. For each taxon, we gener-

ated four sets of simulated data with which to reconstruct occurrence, as follows:

1. Covariate raster layers. We first generated 5 covariates (or ‘explanatory variables’ to repre-

sent the role of bio-climatic data layers such as temperature or rainfall) across a hypothetical

landscape of 1-degree grid cells covering the world (a common resolution for SDM models

and input data). We sampled from randomly generated Gaussian distributions to produce

surfaces that best represent empirically observed climatic data. These surfaces, therefore,

had left to right, top to bottom or diagonal gradients of values or had humped shaped sets

of values, depending which part of the Gaussian distribution was sampled (e.g. the whole

distribution or just one tail).

2. True presence raster layer. We employed the covariates in a presence-absence binomial

regression, with randomly generated slopes and intercept, to calculate the true spatial distri-

bution of each hypothetical taxon. The regression formula was generated using a random

number of terms taken from a pool consisting of all linear and square terms for each covari-

ate and first order interactions between each of the five terms, giving a total of 25 possible

terms in the most complex models. We generated the ‘true presence’ grid by then predicting

a surface using the generated regression model with the original covariate raster layers

as inputs. After generating this layer, we added a small amount of random variation (i.e.

noise) to each grid cell to create a more realistic problem, where exact covariate relation-

ships are unknown (due to uncertainty in remotely-sensed data, for example).

Bayesian SDM methods for modelling clumped and restricted occurrence data
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3. Validation data. We sampled the true presence layer using 1000 random locations to create

a validation data set of true presence and absence points, which we could use to evaluate the

predictions from different SDM methods.

4. Spatially biased sample data. We then created a ‘samples’ data set with differing amounts

of clumping and geographical bias, analogous to a typical input data used in an empirical

SDM analysis. To create the biases, we first selected a small random number of ‘seed’

points from across the simulation landscape. These seed points were then filtered (i.e.

removed or not) using a spatially heterogeneous sample reporting layer reflecting that,

at some locations, external factors would alter the reporting rate of observations. This

reporting rate varied randomly between 0 and 1 within six, randomly-sized and placed,

but contiguous, areas across the landscape. We then generated the final SDM input data-

set by randomly drawing a set of ‘sampling’ points from around each remaining ‘seed’

points, with a random clumping coefficient (the mean of a Gaussian distribution, ranging

from 1–50 with a standard deviation equal to the mean divided by 5) dictating how tightly

clustered any secondary sampling points were around each seed point. The number of

‘samples’ around each ‘seed’ was constrained to be either conditionally dependent on the

probability of true presence or unaffected by the underlying suitability of the landscape.

We term these two processes ‘biological’ bias and ‘random’, respectively. Therefore, for

random datasets, sampling density was entirely random with respect to the underlying

habitat suitability, representing the situation where any spatially heterogeneous sampling

effort is driven by convenience or other non-biological processes. For biological bias, the

density patterns in the spatially-biased samples were driven by the probability of the tax-

on’s true presence, representing the situation where a greater number of reports are made

where there are more actual individuals to observe. All the secondary points (ranging

between 25 and 500 points) were then used as the final sampling dataset to be brought for-

ward to the SDM analysis.

5. Analysis. After simulation, we measured two aspects of the spatial pattern of the sample

points in such a way that could be applied to a typical SDM input dataset, as follows:

Clumping was defined as Clark-Evan’s dispersion coefficient of the samples [36] and split

into high and low categories (‘clumped’ or ‘even’) by the median value; Geographical bias

was calculated as the area covered by a convex hull containing all the biased samples,

divided by the range of occurrence of the true positive (validation) samples, again split into

high and low categories (‘high coverage’ or ‘restricted’) using the median value. This latter

measure represents when the state of knowledge, for a given species, is solely the distribu-

tional limits of its geographical range of occurrence. Each dataset was then assigned to

one of four equal groups, termed: even & high coverage, clumped & high coverage, even &

restricted, and clumped & restricted.

For each taxon, we reconstructed the geographic range of occurrence using the simulated

sampling data set and the covariate raster layers using the following SDM methods: (a)

MAXENT [1]; (b) boosted regression trees BRT; (c) spatial Bayesian model [22–26]; and (d)

non-spatial Bayesian model [22–26]. The MAXENT (a) and BRT (b) approaches are non-spa-

tial methods commonly used in SDM analyses and been shown to have high predictive perfor-

mance (11). To achieve this, MAXENT (a) fits a number of non-linear functions so that they

explain the presence points while being uninformative over randomly selected background

points. In contrast, BRT (b) contrasts presence points to randomly selected pseudo-absence

points. It then fits many regression trees, up-weighting the importance of misclassified points

for each new tree (boosting).

Bayesian SDM methods for modelling clumped and restricted occurrence data
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The spatial Bayesian model (c) involves fitting a Bayesian, hierarchical, binomial GLM,

with a continuous-space random-field. While, the same model could be fitted with MCMC or

other approaches, we focus here on the R-INLA implementation as its ease of use makes the

model easily accessible to many ecologists. We therefore refer to the combination of the spatial,

hierarchical model, the INLA approximation and the R-INLA implementation as the “spa-

tially-explicit INLA model”. In R-INLA, the random-field is implemented using a Gaussian

Markov random field approximation to the fully continuous Gaussian random field. The

model is hierarchical in that hyperparameters governing the effective spatial range of the ran-

dom-field are fitted jointly with the regression parameters. Defining the hyperparameters as a

random variable in this way avoids unprincipled selection of a fixed hyperparameter value; a

common problem in frequentist spatial models. The non-spatial INLA model (d) is simply a

Bayesian binomial GLM fitted with R-INLA and was used to ascertain whether the perfor-

mance of the spatially-explicit INLA model (c) was due to the spatial random-field or other

aspects of the INLA model).

We then predicted the true state (i.e. present or absent) for each species, for each species, at

each of the locations of the 1000 validation data points, and used an AUC (Area Under operat-

ing Curve score) approach to calculate the predictive accuracy of each method by comparing

the validation data with the predicted presence value. While other methods are available, AUC

represents a commonly used and adequately performing measure of predictive accuracy [37]

and works by calculating the relative numbers of correctly and incorrectly identified predic-

tions across all possible classification threshold values of the binomial response, with an AUC

value equal to or below 0.5 indicating a predictive ability equal to random expectation and 1 a

perfect predictive ability[12].

Finally, we tested whether any of the previously recommended configurations for setting

up any of the methods were sensitive to clumping or geographical restriction of the data. We

employed a brute-force approach, testing all reasonable SDM method configurations (S1

Table) and ensuring that we included those previously identified method setups shown to

improve predictive accuracy with biased data.

For R code, see supplementary code in S1 File. We also provide an R package, INLAutils

(https://github.com/timcdlucas/INLAutils), using functions for fitting SDM models with

R-INLA and more general utility functions for working with R-INLA.

Results

When comparing across sampling bias scenarios, the spatially-explicit INLA model was the

most consistently accurate, being in the top two most accurate methods in 7 out of the 8 com-

binations examined here (Fig 1). The proportion of the simulated landscape covered by the

sampling points was a key factor in dictating predictive accuracy, though presence of clumping

did also confer a small loss in accuracy (Fig 1). Within the high coverage scenarios, when ana-

lysing datasets with low sample clumping (even & high coverage) all methods gave high pre-

dictive performance (Fig 1), but with BRT the most accurate (mean AUC 0.955 and 0.935

for biological and random clumping processes respectively), and with the non-spatial INLA

model the least accurate (0.93 and 0.89 for biological and random clumping). For high cover-

age datasets with significant clumping of points (clumped & high coverage), the most accurate

method was the spatially-explicit INLA model for both biological and random underlying pro-

cesses (mean 0.929 and 0.901 AUC), again with the non-spatial INLA model performing the

poorest (mean 0.914 and 0.865 AUC) (Fig 1).

Within low coverage sampling datasets (even & restricted and clumped & restricted), there

were similar patterns among the methods, with an average low predictive accuracy compared

Bayesian SDM methods for modelling clumped and restricted occurrence data
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to high coverage sampling data (0.71–0.84 AUC scores across all methods) and higher variance

in scores. In both cases of restricted data, the simplest modelling approach, non-spatial INLA

models, tended to perform better (Fig 1), with spatially-explicit INLA model the next most

accurate method. When comparing clumping processes, if clumping was driven by biological

processes rather than by random processes predictive accuracy was generally higher (Fig 1).

For most methods, there was no difference in terms of predictive accuracy when choosing

the best set-up of analysis options across clumped and restricted sampling groups. For

instance, in all cases, randomly placed pseudo-absences/background points (R—S1 Table and

Fig 2) out-performed both spatially-weighted absence points (SW) and spatially-thinned pres-

ence points (ST) in our analysis (Fig 2). Reducing the number of covariates always reduced

average predictive accuracy (average reduction of 0.068 AUC score across methods) and

including interaction terms in the formulas resulted in no significant gains in accuracy, irre-

spective of the complexity of the function used to generate the simulated data (S1 Fig).

For INLA models comparing cut-off values from 0.5 to 8, we show that for high coverage-

high clumping datasets (Fig 3) the smaller the cut off (and therefore the more complex the

resulting spatial term), the more accurate the final models are. For data with low clustering

and high coverage and with both low coverage datasets (Fig 3), there appears to be the opposite

Fig 1. Comparison of the mean accuracy (AUC) of SDM models over 1000 simulated taxa. Sample clumping is caused by either

biological or random processes. Panels show the predictive accuracy of data subsets binned into either high or low clumping and high or low

coverage of the simulated true range. Points represent mean AUC scores from 1000 validation points per taxa and whiskers 95% confidence

intervals around each mean, where scores less than 0.5 represent no accuracy gain over random chance. Spatial INLA—Bayesian SDM

inferred using Integrated Nested Laplace Approximation with a spatial autocorrelation term, Non-spatial INLA—Bayesian SDM inferred

using INLA without a spatial autocorrelation term, BRT—boosted regression trees based SDM, MAXENT—maximum entropy based SDM.

https://doi.org/10.1371/journal.pone.0187602.g001
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relationship with highest accuracy at values at a cut-off of around 3 to 6. For MAXENT mod-

els, increasing the regularisation (beta) setting, which preferentially selects less-complex mod-

els, generally resulted in less accurate results (S2 Fig). Also, when manually specifying model

features, the inclusion of ‘hinge’ factors was important for good predictive accuracy (S3 Fig).

None of the BRT initial set-up values (S4–S7 Figs) produced any clear difference in predictive

accuracy.

Discussion

Choosing the best method to undertake species distribution modelling depends on the spatial

patterning within the input data. For instance, on even & high coverage datasets all methods

performed well, especially boosted regression trees. Such datasets are likely to be infrequently

found but when they are, the ease of use and high accuracy of MAXENT and BRT mean these

methods make them ideal choices. For all types of clumped data, the spatially-explicit INLA

model performed consistently well by controlling for the spatial pattern and therefore avoiding

Fig 2. Comparison of the mean accuracy (AUC) of SDM models over 1000 simulated taxa when altering the pseudo-absence

(background) point configurations and the effects of spatial thinning of presence points, on four SDM methods and across 4

types of dataset with different clumping and spatial bias. Panels show the predictive accuracy of data subsets binned into either high or

low clumping and high or low coverage of the simulated true range. Where R represents random absence points, ST—spatial thinning, SW

—spatially weighted absence points, B—both weighting and thinning (S1 Table) and Spatial INLA—Bayesian INLA model with spatial

random effect, Non-spatial INLA—Bayesian INLA model without spatial autocorrelation term, BRT—boosted regression trees, and

MAXENT—Maximum entropy based model. Points represent mean AUC scores from 1000 validation points per taxa and whiskers 95%

confidence intervals around each mean, where scores less than 0.5 represent no accuracy gain over random chance.

https://doi.org/10.1371/journal.pone.0187602.g002
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biases in the spatial distribution of data from causing biases in the inference of regression

coefficients.

It is expected, and supported here, that clumping driven by underlying habitat suitability

has less of an impact on the predictive performance of the models than random clumping, but,

importantly, not by a large amount. In the case where SDMs are inferred using data sources

such as GBIF, the complex processes underlying any spatial patterns in the input data are often

unclear [16], and it appears that a precautionary approach of using a spatially-explicit method

would reduce the impacts of misidentifying the processes behind underlying spatial bias. Sam-

pling restriction, however, had a much larger impact on predictive accuracy than clumping.

Building an SDM for a species based on sampling just one part of the overall range appears to

risk biasing the underlying regression models. Here, the simple models produced by non-spa-

tial INLA (and likely GLM approaches) appear to do well, perhaps because they are less over-

fitted to any biases in the data, producing more general, less precise predictions.

Our results, therefore, show that it is important to remain sceptical about SDM predictions

with high AUC scores that are based on a sub-sample of the input dataset, if there is no explicit

measure of the proportion of the known range that has been sampled. With geographically

restricted samples results with AUC scores>0.95 in our simulations often had a real AUC

score of less than 0.75. Without taking into account the data sampling scenarios examined

here, and instead evaluating SDM methods using the best-case datasets (i.e. even & high

Fig 3. Comparison of mean accuracy (AUC) of spatially-explicit INLA SDM models on 1000 simulated taxa when varying the

complexity of the underlying spatial mesh. Colours show the predictive accuracy of data subsets binned into either high or low clumping

and high or low coverage of the simulated true range. Points represent mean AUC scores across 1000 taxa and whiskers 95% confidence

intervals around each mean, where scores less than 0.5 represent no accuracy gain over random chance.

https://doi.org/10.1371/journal.pone.0187602.g003
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coverage), most analyses would prefer a BRT approach, which was a relatively poor performer

on the clumped and restricted datasets.

In terms of evaluating previously recommended settings for each method, irrespective of

the data sampling scenario, reducing the number of covariates to decrease collinearity was

again shown to be an inefficient approach [15]. It seems that even variables with a minimal

ability to explain the variation in species presence, confers a benefit greater than any cost

arising from increasing the complexity of the model, though we note covariate collinearity

could still obfuscate any attempted model interpretation. Conversely the role of changing

pseudo-absence patterns away from random did not repeat the results of previous work

with thinning [38] and spatial weighting [39] providing no clear gain in performance.

The use of pseudo-absence (also called background) points is simply an ad-hoc [33] solution

to the common problem of the lack of known non-occupied sites (i.e. input data contains

only the recorded presence or individual sightings of target species) and there is a lack of

clarity on the number and spatial spread of background points needed to improve predictive

accuracy.

Some recent developments have focussed instead on log-Gaussian Cox process [40] and

Poisson point process models (PPM) [18, 33] which, instead of using presence/absence data,

use the spatial pattern of presence points as the dependent variable in a regression. Indeed,

inferences using logistic type regressions with very large numbers of pseudo-absence points

have slope values that tend towards that of similar Poisson point process model (PPM) [18].

With these presence-only modelling approaches, it is still unclear how they deal with specifi-

cally parsing biological and non-biological drivers of point density patterns. Spatial autocor-

relation is known to be a problem for reliable inference of PPMs [34] but accounting for it

when using MAXENT or R-INLA is complex and requires careful parameterisation [33].

Undoubtedly point-process models will soon become more user friendly and may prove a

more effective approach but, in the meantime, it is important to evaluate the performance

of the most commonly used approaches. An alternative, a non-regression based approach,

“range bagging” [41] looks to bootstrap the variation in the multi-dimensional, environmen-

tal limits of a species, given random subsets of covariates and presence points, and careful

evaluation of these methods is needed in respected to the performance of binomial regres-

sions and PPMs.

The R-INLA package appears to offer additional benefits beyond spatially-explicit model-

ling. The combination of using a complex spatial latent field to capture spatial processes and

an underlying simple additive regression model for the response variables relationship to envi-

ronmental covariates, means that (specifically, when compared to boosted regression trees and

lasso techniques) the fixed effects are potentially more straightforward to interpret [42] (i.e.

per unit change in x results in per unit change in y). Another benefit of a Bayesian approach

is the capturing of uncertainty for each predicted value, with predictive uncertainty an often

ignored aspect of SDM modelling and prediction. R-INLA models are extremely flexible in

their specification, with spatial autocorrelation and observer bias being straightforwardly

incorporated as random effects, while standard error distributions, such as Gaussian, Poisson,

binomial, and a variety of zero-inflated models, can be used interchangeably [22]. This

method, therefore, has a built-in potential for extending SDM analysis away from simple bino-

mial models by, for example, incorporating two or more types of data [43], hierarchical sea-

sonal models [44] or fitting point-process models [33]. We hope that our study will aid the

uptake of such fast spatial Bayesian methods, as this approach shows great promise for other

analyses throughout ecology and evolutionary biology, especially in situations where non-

independent samples are commonly experienced.
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Supporting information

S1 Fig. Predictive accuracy of three species distribution modelling methods to infer 5000

simulated species’ ranges that were generated using either (a) just additive or (b) additive

and interaction terms in formula used to determine the relationship between species’

presence and a set of simulated covariates. A repeated set of comparisons (c-d) is made for

SDM methods (IN—spatial INLA, MAX—MAXENT, BRT—boosted regression trees) where

interactions can also be specified for the inference formulae (i.e. INLA & MAXENT). Points

represent mean AUC score over all simulated species where a prediction of the true range is

attempted using a set of simulated sampling points, with whiskers showing the 95% confidence

intervals. Different colours show the predictive accuracy of subsets of the 5000 datasets when

binning the input samples from each dataset into either high or low clumping and high or low

coverage of the simulated “true” range.

(TIF)

S2 Fig. Predictive accuracy of the MAXENT species distribution modelling method when

varying the complexity of the inference models using the beta, or “regularisation”, coeffi-

cient. Points represent mean AUC score over a set of 5000 simulated species where a predic-

tion of the true range is attempted using a set of simulated sampling points, with whiskers

showing the 95% confidence intervals. Different colours show the predictive accuracy of sub-

sets of the 5000 datasets when binning the input samples from each dataset into either high or

low clumping and high or low coverage of the simulated “true” range.

(TIF)

S3 Fig. Predictive accuracy of the MAXENT species distribution modelling method when

varying what class of terms are included in the inference model. Letter labels on x-axis rep-

resent model terms (Hinge—H, Product—P, Quadratic—Q, Threshold—T, Linear—L, Auto

Feature—AF). Points represent mean AUC score over a set of 5000 simulated species where a

prediction of the true range is attempted using a set of simulated sampling points, with whis-

kers showing the 95% confidence intervals. Different colours show the predictive accuracy of

subsets of the 5000 datasets when binning the input samples from each dataset into either high

or low clumping and high or low coverage of the simulated “true” range.

(TIF)

S4 Fig. Predictive accuracy of boosted regression trees (BRT) species distribution model-

ling method when varying the learning rate of tree inference algorithm. Points represent

mean AUC score over a set of 5000 simulated species where a prediction of the true range is

attempted using a set of simulated sampling points, with whiskers showing the 95% confidence

intervals. Different colours show the predictive accuracy of subsets of the 5000 datasets when

binning the input samples from each dataset into either high or low clumping and high or low

coverage of the simulated “true” range.

(TIF)

S5 Fig. Predictive accuracy of boosted regression trees (BRT) species distribution model-

ling method when varying the complexity of the underlying regression trees during

inference. Points represent mean AUC score over a set of 5000 simulated species where a pre-

diction of the true range is attempted using a set of simulated sampling points, with whiskers

showing the 95% confidence intervals. Different colours show the predictive accuracy of sub-

sets of the 5000 datasets when binning the input samples from each dataset into either high or

low clumping and high or low coverage of the simulated “true” range.

(TIF)
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S6 Fig. Predictive accuracy of boosted regression trees (BRT) species distribution model-

ling method when varying the bag fraction used to hold-back parts of data for internal

validation. Points represent mean AUC score over a set of 5000 simulated species where a pre-

diction of the true range is attempted using a set of simulated sampling points, with whiskers

showing the 95% confidence intervals. Different colours show the predictive accuracy of sub-

sets of the 5000 datasets when binning the input samples from each dataset into either high or

low clumping and high or low coverage of the simulated “true” range.

(TIF)

S7 Fig. Predictive accuracy of boosted regression trees (BRT) species distribution model-

ling method when varying the number of regression trees retained in the final modelling

set. Points represent mean AUC score over a set of 5000 simulated species where a prediction

of the true range is attempted using a set of simulated sampling points, with whiskers showing

the 95% confidence intervals. Different colours show the predictive accuracy of subsets of the

5000 datasets when binning the input samples from each dataset into either high or low clump-

ing and high or low coverage of the simulated “true” range.

(TIF)

S1 File. R code used to run analysis.

(ZIP)

S1 Table. Options tested for four different species distribution model methods (for details

see text). Letters in ‘Setting’ columns indicate abbreviations used and numbers previous analy-

ses from the literature.

(DOCX)
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