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Abstract 

Predicting the risk of traffic demands and delays exceeding critical limits at 

road junctions, airports, hospitals, etc, requires knowing how both mean and 

variance of queue size vary over time. Microscopic simulation can explore 

variability but is computationally demanding and gives only sample results. A  

computationally efficient approximation to the mean is used in many modelling 

tools, but only empirical extensions for variance in particular situations have 

been available. The paper derives theoretical formulae for time-dependent and 

equilibrium variance, believed to be novel and to apply generally to queues 

covered by the Pollaczek-Khinchin mean formula, and offering possible 

structural insights. These are applied in an extended approximation giving 

mutually consistent mean and variance estimates with improved accuracy. 

Tests on oversaturated peak demand cases are compared with Markov 

probabilistic simulation, demonstrating accuracy (R2>0.99) for typical random, 

priority-like (M/M/1) and traffic-signal-like (M/D/1) queues. Implications for 

risk analysis, planning and policy are considered. 
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1. Introduction 

Realistic modelling of traffic, whether of people, vehicles or other discrete units, needs 

to account for time variation of demand and transient overloading of capacity, for which 

steady-state equilibrium theory is inadequate and can be misleading. In modelling road 

traffic in particular, but also relevant to other services with time-variable demands such as 

airports and other borders, and hospitals including A&E/ER units, there is a need for a 

computationally efficient general method for predicting time-dependent queue behaviour. 

This becomes acute where there is risk of overloading with disproportionate consequences 

like gridlock, flights missed or travel disrupted, and emergency patients left on trolleys.  

The paper derives theoretical formulae for time-dependent and equilibrium queue mean 

and variance, as initially proposed by the author in Taylor (2005, 2014) respectively, which 

are believed to be novel, and are compatible with and as general as the Pollaczek-Khinchin 

mean formula. It uses these to construct an extended computationally efficient method for 

estimating mutually consistent mean and variance as functions of time. Results are verified 

by Markov-chain simulations, programmed by the author assisted by N H Spencer at TRL, 

using test cases including oversaturated peak and random demand profiles, for two 

common and generic queue processes with random arrivals: priority-like M/M/1 with 

random service; and traffic signal-like M/D/1 with uniform service2. Finally, some 

implications for analysis of risk, planning and policy are discussed. 

2. Brief history of queuing theory and modelling 

Queuing theory dates back to Erlang’s (1909) work on telegraphy, and many standard 

works on the subject are available, but their treatment of transient behaviour tends to be 
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restricted to particular cases. Microscopic ‘Monte-Carlo’ simulation can in principle 

represent any random process, but simulating thousands of events may be computationally 

demanding, and as queues tend to be highly variable even under identical average 

conditions, many randomised simulation runs are usually needed to get a spread of 

representative results. Exact formulae like those of Morse (1955, 1958), Clarke (1956), 

Sharma (1990), Heidemann (1994) and Griffiths et al (2005) can be used to develop 

dynamic probability distributions for some queue processes, but may require evaluating 

complicated functions and sums of series. Markov-chain simulation, which develops a 

distribution in small steps using state transition or recurrence relationships, can handle a 

wider range of processes, see Olszewski (1990), Viti and van Zuylen (2010), but is still 

computationally demanding so most suitable for benchmarking. 

Most queue processes conserve ‘customers’, giving rise to a ‘deterministic’ time-

dependent formula for mean queue size. However, this cannot predict the process-specific 

equilibrium mean size to which some queues eventually converge under steady-state 

conditions. An expression for this is credited independently to Félix Pollaczek, Aleksandr 

Khinchin (P-K) and Harald Cramér in 1930-32. Equilibrium mean formulae exist for 

several processes, but actual size at any time is highly variable. Equilibrium probability 

distributions of queue size are sometimes adopted for convenience, but simulations show 

that distributions in realistic cases differ substantially from equilibrium, see e.g. Whitt 

(1983), Kimber and Daly (1986). Soros (1987) points out that: “The concept of an 

equilibrium is very useful. It allows us to focus on the final outcome rather than on the 

process that leads up to it. But … equilibrium has rarely been observed in real life”. 

An heuristic ‘coordinate-transformed’ or ‘sheared’ approximation to mean queue 

development, sometimes ascribed to P D Whiting at TRL, and described by Kimber and 

Hollis (1979), has been used extensively in traffic modelling and junction design software 

as described by Robertson (1969), Leonard et al (1978, 1989), van Vliet (1982), Semmens 

(1985), Taylor (2003), Binning (2004), TRL (2015), and is cited in design literature such 

as HCM (2010/2016). Variations have been described by Newell (1971), Doherty (1977), 

Catling (1977) and Akçelik (1980). The resulting method is computationally efficient, 

rational and seamless through saturation, However, it cannot account for day-to-day 

variability enabling reliable estimation of the risk of overloading, and must therefore be 

considered incomplete. Semi-empirical methods for estimating queue variance are 

described by Kimber, Daly et al (1986), Fu and Hellinger (2000), and Viti and van Zuylen 

(2010), but are restricted to particular queue processes. 

3. Theoretical development of the mean queue 

3.1 Time-dependent mean properties 

Equation (1) gives the ‘deterministic’ mean size of a queue L(t) at time t, reflecting 

conservation of customers/units in [0,t], where demand intensity3  is the ratio of mean 

arrival rate  to service rate or capacity , both assumed constant in [0,t]. 
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The utilisation of service u can vary, as can its time-average x, but both converge 

asymptotically to the equilibrium value  as t, provided that <1. Differentiating (1) 

gives the rate of change of the mean queue, equation (2), which relates utilisation of 

service or the proportion of time service is occupied u to the average probability 0p of the 
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queue being zero over a service period, subscript e indicating an equilibrium value. 

              tpptutL e 00 11        (2) 

Parameters , ,  can be generalised to time-dependent functions, but it is convenient 

to assume they are piecewise constant. Olszewski (1990), Heydecker and Verlander (1998) 

and Addison and Heydecker (2006) point out that this leads to results that are non-

transitive, i.e. depend on how time is ‘sliced’. However, time can be resolved in as short 

periods as desired or indicated by data that are often aggregated in finite time periods. One 

would expect correct representation of probability distributions to ensure transitivity. 

3.2 Evaluation of queue moments and characterisation of service processes 

Standard works often obtain the equilibrium mean of a specific queue process by 

substituting the appropriate Laplace transform function of arrival and service processes 

into the general transform formula due to Pollaczek and Khinchin (e.g. Medhi, 2003). 

Queue moments can be evaluated directly from recurrence relations if available. The 

Imbedded Markov (IM) method, which treats a queue as a discrete process and evaluates 

its state only at the end of each service period, can in principle deliver explicit general 

formulae for all moments of a family of queue processes. However, as discrete event 

treatment does not involve time explicitly, issues can arise in deriving continuous time-

dependent functions for moments higher than the mean that involve non-linearity. 

Evaluation at equilibrium is unaffected because it represents an ergodic condition. While 

all a queue’s properties are necessarily implicit in its formulation, in the sense discussed 

generally by Machta et al (2013), an exact procedure giving a general formula like (1) 

cannot also yield the equilibrium result for a specific process. Table 1 expresses the rules 

for obtaining moments of a queue size probability distribution {pi}. 

Table 1. Rules for evaluating queue moments 

Evaluate distribution Equilibrium result Time-dependent formula 

1st moment:   iip  P(empty queue) ep0  Mean L(t) 

2nd raw moment   ipi2
 Mean  eL  Variance V(t) 

3rd raw moment   ipi3
 Variance  eV  Skewness (in principle) 

 

A distinction is drawn between queue size including or excluding the customer/unit in 

service. This does not affect the M/M/1 process whose service is random, but does affect 

the M/D/1 process where, for example, physical service time at saturation rate at a traffic 

signal is typically much less than average service time allowing for the red/green cycle. 

Hence the unit-in-service is excluded from the queue at a signal to first approximation. 

3.3 Imbedded Markov derivation of the Pollaczek-Khinchin equilibrium mean  

The Imbedded Markov model, including unit-in-service (i.u.i.s), is given by the first of 

equations (3), see e.g. Bunday (1996) after Kleinrock (1975), being similar to Lindley’s 

(1952) waiting time formula. The second equation applies without unit-in-service (n.u.i.s). 

  11   nnnn qUqq   (i.u.i.s),      111
~~

  nnnn qUqq   (n.u.i.s)   where (3) 

qn = number of units (customers) in the system at end of the service period of unit n 

n= number of units arriving during the service time of unit n 

U(qn) = 1 if unit remains in system (qn>1) and will be served in period n+1, otherwise 0 

     nq~ = qn - U(qn) represents queue size excluding the unit-in-service (n.u.i.s).  



Intermediate working results, noting that n+1 is independent of qn and U(qn), include:  
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Equations (1,3) are essentially equivalent statements of conservation. To obtain the 

equilibrium mean, the first of equations (3) is squared and relevant equations (4) applied: 
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The expectation of squared arrivals in a service period involves the dispersion index of 

arrivals Ia (personal communication by B G Heydecker) and the coefficient of variation cb 

of the service distribution whose probability generating function is b(s): 
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At steady-state equilibrium the q2 terms cancel by definition. Writing the equilibrium 

mean queue E(qn) as Le, the expectation of (5) gives the P-K mean formula: 
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The index I in (8), introduced by Kimber and Hollis (1979) with I Summersgill, 

represents contribution of the unit-in-service (value 0 or 1). When the second of equations 

(3) is used, the term -22 in (7) is replaced by -2, suppressing the term I consistent with 

the interpretation. Some statistical parameters and equilibrium means are given in Table 2. 

Table 2. Statistical parameters and equilibrium means of common queue types 

Process With u.i.s I Ia cb C poe (instantaneous) Mean Le 

M/M/1 Yes 1 1 1 1 10ep  
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M/D/1 No 0 1 0 
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The equilibrium probability of zero queue, p0e, refers to the instantaneous probability 

distribution at the end of a service period. The average over a service period must be (1-) 

to ensure steady state, where arrivals and utilisation both equal . The M/D/1 (n.u.i.s) 

mean matches a stochastic component in Webster and Cobbe’s (1966) signal delay 

formula, although this is supplemented by an empirical term related to capacity in the 

green period. Some standard works, e.g. Medhi (2003), derive the M/D/1 (i.u.i.s) form of 

mean expression, but the extra term  does not reflect actual delay. Burrow (1987) 

recommends C=0.6 in place of C=0.5 in practice. These issues are discussed further by 

Taylor and Heydecker (2014). In time-dependent modelling capacity may change while a 

customer is in the queue, so individual delays are obtained by piecewise forward-looking 



application of Little’s (1961) formula, in which delay is given by queue size divided by 

throughput capacity, so queue size and delay need compatible definitions (Taylor, 2003). 

4. Derivation of theoretical formulae for queue variance 

4.1 M/M/1 time-dependent variance from recurrence relations 

Full derivations are given here and subsequently for the sake of completeness and 

verifiability. Time-dependent variance is obtained from recurrence relations as described 

by Taylor (2005). Addison and Heydecker (2006) derive its time derivative by a similar 

method. Differential recurrence relations for M/M/1 probabilities at constant arrival and 

service rates  and , with a ‘barrier’ at zero queue size, are given by:  

  010 ppp  ,    11   iiii pppp  (i>0)   (9) 

Recalling  = /, the rate of change of the raw second moment, M2, is given by 

equation (10). Terms in 2M itself cancel giving equation (11), which integrates to give (12). 

Here D is the time-averaged mean queue size over the period [0,t], which can be 

interpreted loosely as delay per unit time. The general behaviour of D is similar to that of L 

with a time lag, and it converges to the same equilibrium value Le. 
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On rearranging (12), inserting the initial state, and substituting Le for the mean 

expression in Table 2, the time-dependent variance formula equation (13) is obtained, 

which in the oversaturated limit (x=1) reduces to the familiar ‘deterministic’ formula (14). 

             1121000  LLttDLLLVtV e    (13) 

      tVtV  0   in the deterministic limit  (14) 

4.2 M/D/1 (n.u.i.s) time-dependent variance from recurrence relations 

Taylor and Heydecker (2014) derive finite-differential recurrence relations for M/D/1 on a 

notional uniform service time interval 1/ and define notional continuous-time derivatives, 

as in equations (15), leading to rates of change of moments (16,17). Only derivatives of 

{pi} for i>0 contribute to rates of change, but p0 itself appears on the RHS. 

    












1

0

1
!

1
i

j

ji

j

i tp
j

e
tp ,

 

    tptppp iiii  1   (15) 

   0

0 0 !
1 ppie

j
jiL

e

i

i

j

j

































 











     so     

01 peL   (16) 



   0

0 0

22

2
!

1 ppei
j

jiM
e

i

i

j

j

































 











   so 

      LLpeLLM    12122 2

0

2

2   (17) 

Equation (17) differs from the M/M/1 equivalent (11) only in the first term on the RHS, 

corresponding to the difference between M/M/1 and M/D/1 equilibrium means Le in Table 

2, so integration again gives (13). This together with the symmetrical structure of the 

formula encourages belief in its generality.  

4.3 Derivation of expression for equilibrium variance 

In accordance with Table 1, Imbedded Markov evaluation of equilibrium variance requires 

cubing the first of equations (3), discrete versus continuous time not being an issue here: 
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Taking expectations at equilibrium, where q3 terms cancel and u=, after rearranging: 
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The expectation of 3

1 n  involves the skewness of the arrival and service distributions. 

These are not standard P-K parameters but are allowed for here by extra terms, assuming 

Poisson processes (Willmot, 1986), although the validity of arrivals dispersion Ia appears 

to require only independence of service, giving equations (20) with =1 by default: 
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Substituting (6,20) into (19) leads to a general expression for equilibrium variance (21), 

where the unit-in-service parameter I has been introduced semi-empirically by comparing 

M/D/1 values with and without unit-in-service for various values of . 
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Table 2 can now be extended to include equilibrium variance formulae as Table 3. 

Table 3. Equilibrium moments of common queue types 

Process I Ja Jb poe  Mean Le  Variance Ve 

M/M/1 1 1 0 10ep  
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4.4 Generality of variance results and general form of moments 

Results obtained from Imbedded Markov should be more general than those from 

recurrence relations. However, variance obtained from IM exceeds the continuous time 

result (13) by 2(L-L0). There seems to be no simple way around this, but it can be 

resolved by considering the service interval shrunk to infinitesimal size, in effect to 

continuous time. As the ‘unwanted’ term  nn qU1  is the only one involving the interaction 

of two independent variables, it should vanish to first order. However, variability and non-

ergodicity make it practically impossible to verify the result exactly by aggregating many 

simulation runs. Equation (13) resembles (1) in structure, although there is no obvious 

conserved quantity like number of customers. In both, process dependence is only implicit, 

through  and Le(). The same result for two different processes supports generality, and a 

similar formula is obtainable from a simple dispersion model. It is inferred that the mth 

time-dependent moment, Mm, should satisfy an equation of the following general form, 

where fm is some function of moments < m and statistical parameters {ci}: 
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Like (1,13) this appears to conserve something at least statistically, and leaves the 

corresponding equilibrium result undetermined. The factor involving (1-) ensures that the 

RHS remains valid and finite when >1. Calculating equilibrium variance (21) using 

approximate skewness parameters (20) is sufficient because, in contrast to the P-K mean 

whose algebraic form matters, only the numerical value of the equilibrium variance is 

needed to constrain queue development. Furthermore, the complexity of explicit time-

dependent and equilibrium formulae must rise with increasing m, and this is likely to make 

obtaining explicit formulae for higher moments difficult or impractical. 

4.5 Hysteresis in queue development 

Hysteresis in queues is observed in road networks as described by Arup, Bates et al (2004), 

Addison (2006) and Fosgerau (2008), and shown by simulation in Figure 1. Time lags arise 

naturally in the relationships between mean queue and demand, and between variance and 

mean. A queue will continue to grow as long as demand exceeds capacity, even if demand 

is falling. Likewise, variance can increase even when a queue is decaying. This is evident 

when the rate of change of variance is expressed in balanced form: 
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Figure 1.  Hysteresis between mean and demand (left) and variance and mean (right) 



5. Results needed for estimating probability distributions and model verification 

Examples exist of probability distributions with different shapes but the same mean and 

variance. Taylor and Heydecker (2015) find that a minimum of three moments is needed to 

represent a queue size probability distribution. However, involving skewness explicitly 

would be impractical, as argued above. The ‘barrier’ at zero size induces interdependence 

between queue moments and the probability of zero queue p0, which as the complement of 

utilisation of service is intimately related to the dynamics of the queue and is much easier 

to work with than skewness. Accordingly, dynamic probability distributions can be 

estimated from p0 (styled as the ‘0th moment’), mean and variance. Estimating them 

requires an iterative Newton method, although an explicit doubly-nested geometric 

formula, also the maximum entropy form, can be used in a few cases. 

Queue size probability distributions can be developed by Markov simulation of 

recurrence relations in small time steps, e.g. 0.1-1.0 second, and moments calculated 

directly from these distributions to verify model estimates. For reassurance, the exact 

M/M/1 series formula of Morse (1955, 1958) can be used to verify M/M/1 Markov 

simulations, and Monte-Carlo simulation to check both (Taylor, 2005, 2014). Test cases 

used consist of 34 transiently oversaturated Gaussian peak profiles of various lengths and 

intensities (maximum demand intensity =1.1458), originally defined by Kimber et al 

(1986), three persistently oversaturated cases (maximum =1.3), and three randomly 

generated profiles (maximum =1.4911). These are divided into time slices of a few 

minutes (4.5-12 minutes for the peak cases) with demand intensity  and capacity  

assumed to be piecewise constant. Both M/M/1 and M/D/1 processes are evaluated. 

6. Time-dependent approximation to the mean queue 

6.1 Coordinate-transformed or sheared method 

The series formulae of Morse (1955, 1958) for M/M/1 queue size probabilities show that 

time development of even the simplest queue is complex, but equations (1,8) constrain the 

behaviour of the mean. Kimber and Hollis (1979) combine them to create a ‘coordinate 

transformed’ model, analogous to a conical volume-delay function (Spiess, 1989). Figure 2 

shows graphically how this ‘shears’ the static equilibrium function (8) (left) into the time-

dependent asymptote (1) (right) that rotates anti-clockwise as time proceeds, giving a 

smooth function that evolves with time (dashed curve). In effect this assumes ‘quasi-

equilibrium’, where the queue at time t is equated to the equilibrium value that would result 

from a traffic intensity equal to x at the stop line, so replacing  in (8) with x. This results 

in a quadratic in queue size, equation (24), with solution (25). 
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The initial queue L0 from (1) enters smoothly in (25) but causes an awkward step in Ld 

in Figure 2. Kimber and Hollis (1979) avoid this by ‘divided’ or origin-shifted formulae 

where the time origin is displaced to -t0, obtained by solving for t after inverting (25) with 

L0 set to zero, as expressed by (26), a variation of which is applied to a decaying queue. 
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Figure 2.  Coordinate-transformed or sheared time-dependent mean queue 

 

The solution has a computationally efficient closed form, free from empirical 

parameters, with seamless behaviour through saturation, and can accommodate any queue 

processes represented by the P-K formula, making it convenient for time-dependent 

network and assignment modelling as referred to earlier. 

6.2 Accuracy of the mean approximation and its relevance to variance estimation 

Figure 3 plots errors in the mean queue relative to Markov simulation, for undersaturated 

growth (left), an oversaturated peak case (middle), and variance (right) as discussed below.  

 

 
Figure 3.  Errors in mean queue and variance estimates compared to Markov simulation 

 

The ‘divided’ method performs fairly well for oversaturated queue growth, but not 

decay. As peak queue size is around 65, the errors are moderate in practical terms. It is 

tempting to ask whether variance can be ‘sheared’ like the mean. However, Newell (1971) 

shows this is impractical because the contributions of arrival and service components are 

additive rather than subtractive, so the graph of time-dependent variance lies outside the 

equilibrium and deterministic curves. Kimber et al (1986) describe a method for estimating 

variance in oversaturated demand peaks based on regression from simulated Gaussian 

demand profiles. Fu and Hellinger (2000) calibrate an extension to Webster and Cobbe’s 

(1966) signal delay formula, using parameters regressed from simulation. However, none 

of these methods can model all processes covered by the P-K formula, or assure 

consistency between mean and variance estimates. This can be interpreted as any estimate 



of the mean queue carrying with it an implicit probability distribution that in general does 

not reflect real behaviour, reflecting the observation by Olszewski (1990), echoed by Viti 

and van Zuylen (2004), that queue behaviour is affected by the variance of its distribution. 

Thus it is essential to calculate mean and variance in a mutually consistent way. 

Unfortunately, equation (13) alone is insufficient. The mean solution (25) is naturally well-

behaved in the sense of converging to the correct equilibrium mean, but the variance (13) 

is highly sensitive to D and hence to L, meaning incidentally that evaluating D precisely by 

integrating (25) according to the definition in (12) would not help. As Figure 3 (right) 

shows, estimates of variance over a peak, based on either of the sheared forms of the mean 

L(t), with ‘delay’ D approximated by L(t/2), are seriously inaccurate or unstable. This 

implies that an active mechanism is required to ensure consistency of mean and variance. 

7. Extending time-dependent approximation to include variance 

7.1 Strategy for development of the method 

The coordinate-transformed mean queue is the natural starting point because it is quite 

general, anchored in queuing theory, has convenient computational properties, and is used 

in many software tools. Objectives are to extend the method so variance is calculated to 

useful accuracy along with the mean, both being asymptotic to their equilibrium values, 

and to verify results for M/M/1 and M/D/1 processes against Markov simulation.  

As Kimber and Hollis (1979) found with their ‘divided queue’ approach, the optimum 

method of approximation can differ between growth and decay regimes. This can be 

explained by differences in the form and dynamics of the corresponding probability 

distributions. The present approach exploits the behaviour of the moments in equations 

(1,2,13) to approximate queue development piecewise through time, mirroring that of the 

implicit queue size probability distributions, as visualised in Figure 4. 

 
Figure 4. Queue state development over one time period in terms of three moments 

 

Three regimes of queue development are considered separately: 

 Undersaturated growth (<1), tending towards equilibrium from below 

 Oversaturated growth (>1), with no upper limit 

 Decay (undersaturated) (<1), tending towards equilibrium from above. 



7.2 Undersaturated growth regime 

In this regime the ‘pressure’ of demand intensity is effectively ‘resisted’ by the degree of 

saturation, so behaviour near equilibrium is dominated by first-order terms. Because the 

mean solution (25) is already approximate, variations are allowed if they improve results in 

a particular context. D(t) can be approximated by Ls(t/2) where the queue is varying 

linearly or slowly, as in early growth from zero or near equilibrium. However, when 

substituted into the variance formula (13) with simple initial conditions L0=0, V0=0, Ls(t) 

turns out to be a better model of D as t, giving the correct asymptotic rate of change in 

the mean, although the effect on its absolute value is barely noticeable. This is a hint that 

transformation of the time variable may be used to correct the mean for consistency with 

the variance. By Taylor-Maclaurin expansion of the mean formula, expressed in terms of 

1/t, the following asymptotic correction factor to divide into time is obtained, which 

depends on the form of the P-K mean and the extremal values of the mean and variance: 
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Undershoot of the mean can occur initially if the initial variance is small, modelling 

which would require reversing the direction of time. This is avoided by defining D by 

interpolating Ls(t) and Ls(t/2) as in equation (28). The factor (t) is itself interpolated 

between its extremal values using an heuristically determined time function (29) which 

incorporates demand  through a ‘link function’ based on stochastic relaxation time (30). 
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The lower limit on time of 1/ or one service interval is not restrictive. The link 

function (30) reflects approximate scale-independence in queue behaviour with change of 

 or . The initial value 0 is obtained by differentiating (28,29) and letting t0, and 

reflects the difference between the actual initial utilisation determined by the initial state 

and that ‘predicted’ by the mean formula (25).  is turns out to be simply related to . 
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Figure 5 shows that this scheme gives consistent results when the ‘true’ values of  are 

estimated from Markov simulated queue growth for several values of  (left). The fit 

between simulated and either time- or interpolation-corrected growth is close (right, where 

the curves are indistinguishable). Taylor and Heydecker (2014) find that a link-function 

approach based on stochastic relaxation time is also useful when estimating functions to 

correct signal queue moments for different throughput capacities in green phases. This 

procedure, while to some extent heuristic, appears to be the simplest way to satisfy the 

constraints of the initial and asymptotic states, and equations (31,32) together embody all 

information about them contained in the three moments. 



 
Figure 5. Verification of time transformation and interpolation procedure 

 

The corrected time-dependent mean queue and utilisation are now obtained by 

successive differentiation of (28). Variance V is then obtained by substituting L and D into 

(13), its correct convergence to equilibrium being guaranteed by the construction. 

   tDDtL    and     Ltu     (33) 

Figure 6 (left and middle) compares simulated and approximated development of a 

queue growing from zero to equilibrium at =0.9 under M/M/1 (upper curves) and M/D/1 

(lower curves) processes, plotted on a logarithmic time scale. Theoretical equilibrium 

means are 9 and 4.05, and variances 90 and 22.8825, respectively. Some overshoot in the 

variance reflects small errors in D to which the variance formula is highly sensitive at 

larger values of t. However, this should have little practical significance, especially when 

expressed in terms of standard deviation. Figure 6 (right) illustrates modelled undershoot 

of the mean where the initial queue is exact (L0=9, V0=0) rather than in equilibrium, with 

part of the growth trajectory of variance (as standard deviation) also shown. 

 
Figure 6. Queue growth at =0.9 (M/M/1 above, M/D/1 below) and undershoot example 

 

7.3 Oversaturated growth regime 

After some experimentation, it is considered that the origin-shifted version of the 

coordinate-transformed queue (26) can be used without correction where the queue is far 

from equilibrium. Under saturation, where throughput is constant, queue growth is almost 

linear and the queue integral or delay-per-unit-time on [t0,t0+t] can be approximated by: 

        2,0 0 ttLtD t        (34) 

However, as there is no built-in constraint on the variance, this can be inaccurate under 

heavy demand. Furthermore, as p0 diminishes almost to zero its leverage on the form of the 



probability distribution decreases. In practice, distributions tend to normal form once p0 is 

so small that service is almost continually saturated. The initial probability of zero queue 

can then be estimated from the initial mean and variance according to the first of equations 

(35). If p0 is sufficiently small, 10-3 or less, accuracy may be improved by extrapolating 

mean and variance at time t deterministically according to the last two equations, with the 

final p0 value obtained from these moments similarly to the initial value. 
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A weighted combination of these methods could be used, but in practice p0 tends to 

decline so sharply that it is sufficient to select one or the other. For M/D/1 cases, the 

modelled average 0p must be multiplied by e to give the correct instantaneous value for 

comparison with that in the Markov simulated distribution (see Tables 2, 3 earlier). 

7.4 Decay regime 

During decay of a heavy queue, its probability distribution can undergo large and rapid 

change making approximation difficult. The distribution can be viewed as a linearly 

weighted superposition of exact queue states that evolve at different rates. High valued 

states drift down almost linearly while low valued states may be near equilibrium or even 

growing. Any normal shape produced by a period of oversaturation is quickly lost, and the 

distribution moves towards equilibrium in a way somewhat resembling the collapse of a 

viscous mass that collides with and rebounds from the ‘barrier’ at zero queue size. This can 

be seen in examples of distributions given by Taylor and Heydecker (2015), where the 

distribution immediately post-peak develops a ‘duck-tail’ at small sizes and later becomes 

‘heavy-tailed’ with a bi-modal shape, eventually relaxing to an equilibrium-like shape. 

Moments tend to be less volatile, indeed their behaviour can be rather simple as long as 

service is saturated, but there comes a point when this is no longer true. Kimber and Hollis 

(1979) assumed linear decay above twice Le and an inverted form of origin-shifted queue 

below this. As Figure 3 showed, this clever but structurally questionable manoeuvre can 

lead to serious error. In fact, the behaviour of variance in decay, as in oversaturated 

growth, is dominated more by the absolute value of the D function than by its difference 

from Le. Together these suggest abandoning the coordinate-transformed model in favour of 

more direct approximation. Possibly the simplest approximation to the mean queue is an 

exponential function fitted to initial and equilibrium values, where the timescale factor is 

also interpolated exponentially to satisfy boundary conditions, equations (36,37).  
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With these definitions, differentiating (36) gives an expression (38) for utilisation at 

small values of t, whose form resembles Shore’s (1978) maximum entropy time-dependent 

solution for M/M/, suggesting that this queue model is close to the ‘least special’ choice. 
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Expressions for Dm, Vm are obtained directly from (36) by integration and applying (13), 

but because the variance result is not explicitly constrained certain safeguards are needed: 



 If a is negative, m is set equal to i; and t / min(i,a) is limited to avoid overflow 

 Lm has a lower limit of the deterministic size of the queue (equation (1) with x=1) 

 Vm has a lower limit of min(V0,Ve). 

The exponential approximation is unsatisfactory for growth, for reasons converse to the 

above, but seems to perform adequately for decay. While it might be improved, 

modifications requiring complex heuristics or empirical parameters would be undesirable. 

8. Results of tests with full demand profiles 

Figure 7 compares Markov simulated (dashed) and model-approximated (solid) profiles of 

an oversaturated peak case (max=1.1384) and a random profile case involving sporadic 

bursts of heavy demand (max=1.4911). The match between estimated and simulated queue 

size profiles is so close that they are almost indistinguishable, and the fit between variance 

profiles may be considered good enough for practical purposes. 

 
Figure 7.  Estimated and simulated profiles for oversaturated peak and random profile 

Figure 8 plots results for each separate time slice in all the test cases, standard deviation 

replacing variance to compress the scale. As absolute magnitudes vary greatly, aggregate 

error is represented by correlation coefficients, with R2 exceeding 0.99 for all results 

except p0. These results confirm the useful accuracy of the method. 

 
Figure 8.  Estimated versus simulated results for all M/M/1 and M/D/1 test cases 



9. Consequences for design, planning and policy 

The results above show that estimation of variance can be added relatively simply to the 

established closed-form model of the mean queue, enabling estimation of day-to-day 

variability or uncertainty expected under similar average conditions. Actual underlying 

conditions may be difficult to pin down, so if the basic M/M/1 and M/D/1 models are not 

thought appropriate, observed traffic statistics could be used to estimate P-K parameters, 

although further work is needed to ensure that the methods of approximation and 

estimating probability distributions work in more general cases. 

The form of and relationships between the time-dependent mean, variance and higher 

moments reflect the particular nature of queues, which have a simple physical generating 

process and a barrier at zero size as well as the possibility of a steady state, leading to 

relatively constrained behaviour and predictability of their probability distributions. 

Conversely, queue size can be volatile especially after oversaturated peaks. Figure 9 (left) 

illustrates a modelled highly skewed post-peak queue size distribution, with a ‘heavy tail’ 

creating a risk of impacts that may not have been anticipated or designed for. ‘Heightened 

risks’ reflect the consequential impacts of overloading a particular system. The shape of 

the probability distribution determines not only the magnitude of overloading risk at the 

current level of demand, but also how the system responds to exogenous growth in demand 

(e.g. Taylor, 2012). Even if mitigation by design or demand management is impractical, it 

will be advantageous to be able to analyse the risk of overloading, especially of critical 

services, and the likely effect of ‘triage’, metering or other selective measures.  

 

 
Figure 9.  Illustrative queue size distribution showing consequences of ‘heavy tail’ 

In Figure 9 (right), speculatively, random longer queues and delays are perceived as 

abnormal, which could encourage unrealistic expectations leading to demands for further 

provision, which in turn generate more demand (SACTRA, 1994), resulting in a self-

reinforcing cycle. This may be exacerbated by behavioural ‘baseline drift’ such as the 

tendency to translate time savings into increased travel distances observed by Metz (2014). 

10. Conclusion 

Formulae have been derived for time-dependent and equilibrium queue variance, which 

are believed to be novel and general at least for processes covered by the Pollaczek-

Khinchin mean formula. These results are used to develop an extension of macroscopic 

time-dependent queue approximation to include variance. Improved accuracy and correct 

asymptotic behaviour are assured by taking account of essential properties of queue 

development and embodying mutual consistency between queue size moments in the 

structure. Benchmarking against Markov simulations of transiently or randomly 

oversaturated test cases shows good results for M/M/1 (random service, similar to a 



priority junction or roundabout) and M/D/1 (uniform service, similar to a traffic signal) 

queue processes, with aggregate R2>0.99 for mean and standard deviation. 

Although the structure of the approximation method is heuristic, it is anchored in theory 

and involves no free parameters or empirical calibration. While including variance is 

somewhat more complicated than calculating the mean alone, the use of compatible 

closed-form formulae means it could be incorporated as a module in existing junction 

design and assignment software with no changes to program structure or data. As it 

accommodates all the Pollazcek-Khinchin statistical parameters, with further work it 

should be extendible to processes other than M/M/1 and M/D/1. From a theoretical 

viewpoint, the time-dependent and equilibrium variance expressions may offer structural 

insights not available from considering only the mean, like the family of functions for 

moments, although it is doubtful that evaluating moments higher than variance is useful. 

In the past, estimating queue size probability distributions, for example to evaluate risks 

of overloading services or exceeding critical limits while avoiding unjustified assumptions 

of equilibrium or normality, has required detailed simulation or ad hoc extensions limited 

to specific processes. By delivering three time-varying moments, namely the probability 

that the queue is zero (‘0th moment’), as well as the mean and variance, the method 

described enables realistic probability distributions to be estimated. While this currently 

requires an iterative Newton method, there are standard codes for this, and distributions are 

likely to be needed only at particular places and times so may be calculated off-line. 

Queue processes that can currently be modelled are those representing transient or 

periodic overloading at road junctions and transport services like car parks, airports and 

borders, but may be applied to hospitals and A&E/ER units, or anywhere subject to 

variability that can be represented by a single service process. High-capacity transport 

systems like motorways and railways tend to be dominated by deterministic variations 

rather than the random ones that affect urban road junctions, but they too are subject to 

unpredictable demand and incidents that can affect distributions of delay. The work may 

also have implications for design and policy where the shape of probability distributions of 

queue size or delay affects performance, consequential impacts, or perceptions of service.  
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