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Abstract
We present an efficient block-diagonal approxi-
mation to the Gauss-Newton matrix for feedfor-
ward neural networks. Our resulting algorithm
is competitive against state-of-the-art first-order
optimisation methods, with sometimes signifi-
cant improvement in optimisation performance.
Unlike first-order methods, for which hyperpa-
rameter tuning of the optimisation parameters is
often a laborious process, our approach can pro-
vide good performance even when used with de-
fault settings. A side result of our work is that for
piecewise linear transfer functions, the network
objective function can have no differentiable lo-
cal maxima, which may partially explain why
such transfer functions facilitate effective optimi-
sation.

1. Introduction
First-order optimisation methods are the current workhorse
for training neural networks. They are easy to implement
with modern automatic differentiation frameworks, scale
to large models and datasets and can handle noisy gradi-
ents such as encountered in the typical mini-batch setting
(Polyak, 1964; Nesterov, 1983; Kingma & Ba, 2014; Duchi
et al., 2011; Zeiler, 2012). However, a suitable initial learn-
ing rate and decay schedule need to be selected in order for
them to converge both rapidly and towards a good local
minimum. In practice, this usually means many separate
runs of training with different settings of those hyperparam-
eters, requiring access to either ample compute resources
or plenty of time. Furthermore, pure stochastic gradient
descent often struggles to escape ‘valleys’ in the error sur-
face with largely varying magnitudes of curvature, as the
first derivative does not capture this information (Dauphin
et al., 2014; Martens & Sutskever, 2011). Modern alter-
natives, such as ADAM (Kingma & Ba, 2014), combine
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the gradients at the current setting of the parameters with
various heuristic estimates of the curvature from previous
gradients.

Second-order methods, on the other hand, perform updates
of the form δ = H−1g, whereH is the Hessian or some ap-
proximation thereof and g is the gradient of the error func-
tion. Using curvature information enables such methods to
make more progress per step than techniques relying solely
on the gradient. Unfortunately, for modern neural net-
works, explicit calculation and storage of the Hessian ma-
trix is infeasible. Nevertheless, it is possible to efficiently
calculate Hessian-vector products Hg by use of extended
Automatic Differentiation (Schraudolph, 2002; Pearlmut-
ter, 1994); the linear system g = Hv can then be solved
for v, e.g. by using conjugate gradients (Martens, 2010;
Martens & Sutskever, 2011). Whilst this can be effective,
the number of iterations required makes this process un-
competitive against simpler first-order methods (Sutskever
et al., 2013).

In this work, we make the following contributions:

– We develop a recursive block-diagonal approxima-
tion of the Hessian, where each block corresponds to the
weights in a single feedforward layer. These blocks are
Kronecker factored and can be efficiently computed and in-
verted in a single backward pass.

– As a corollary of our recursive calculation of the Hes-
sian, we note that for networks with piecewise linear trans-
fer functions the error surface has no differentiable strict
local maxima.

– We discuss the relation of our method to KFAC
(Martens & Grosse, 2015), a block-diagonal approxima-
tion to the Fisher matrix. KFAC is less generally appli-
cable since it requires the network to define a probabilistic
model on its output. Furthermore, for non-exponential fam-
ily models, the Gauss-Newton and Fisher approaches are in
general different.

– On three standard benchmarks we demonstrate that
(without tuning) second-order methods perform compet-
itively, even against well-tuned state-of-the-art first-order
methods.
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2. Properties of the Hessian
As a basis for our approximations to the Gauss-Newton ma-
trix, we first describe how the diagonal Hessian blocks of
feedforward networks can be recursively calculated. Full
derivations are given in the supplementary material.

2.1. Feedforward Neural Networks

A feedforward neural network takes an input vector a0 = x
and produces an output vector hL on the final (Lth) layer
of the network:

hλ = Wλaλ−1; aλ = fλ(hλ) 1 ≤ λ < L (1)

where hλ is the pre-activation in layer λ and aλ are
the activation values; Wλ is the matrix of weights and
fλ the elementwise transfer function1. We define a loss
E(hL, y) between the output hL and a desired training
output y (for example squared loss (hL − y)2) which
is a function of all parameters of the network θ =[
vec (W1)

T
, vec (W2)

T
, . . . , vec (WL)

T
]T

. For a training
dataset with empirical distribution p(x, y), the total er-
ror function is then defined as the expected loss Ē(θ) =
E [E]p(x,y). For simplicity we denote by E(θ) the loss for
a generic single datapoint (x, y).

2.2. The Hessian

A central quantity of interest in this work is the parameter
Hessian, H , which has elements:

[H]ij =
∂2

∂θi∂θj
E(θ) (2)

The expected parameter Hessian is similarly given by the
expectation of this equation. To emphasise the distinction
between the expected Hessian and the Hessian for a sin-
gle datapoint (x, y), we also refer to the single datapoint
Hessian as the sample Hessian.

2.2.1. BLOCK DIAGONAL HESSIAN

The full Hessian, even of a moderately sized neural net-
work, is computationally intractable due to the large num-
ber of parameters. Nevertheless, as we will show, blocks
of the sample Hessian can be computed efficiently. Each
block corresponds to the second derivative with respect
to the parameters Wλ of a single layer λ. We focus on
these blocks since the Hessian is in practice typically block-
diagonal dominant (Martens & Grosse, 2015).

The gradient of the error function with respect to the
weights of layer λ can be computed by recursively applying

1The usual bias bλ in the equation for hλ is absorbed into Wλ

by appending a unit term to every aλ−1.

the chain rule:2

∂E

∂Wλ
a,b

=
∑
i

∂hλi
∂Wλ

a,b

∂E

∂hλi
= aλ−1

b

∂E

∂hλa
(3)

Differentiating again we find that the sample Hessian for
layer λ is:

[Hλ](a,b),(c,d) ≡
∂2E

∂Wλ
a,b∂W

λ
c,d

(4)

= aλ−1
b aλ−1

d [Hλ]a,c (5)

where we define the pre-activation Hessian for layer λ as:

[Hλ]a,b =
∂2E

∂hλa∂h
λ
b

(6)

We can re-express (5) in matrix form for the sample Hes-
sian of Wλ:

Hλ =
∂2E

∂vec (Wλ)∂vec (Wλ)
=
(
aλ−1a

T
λ−1

)
⊗Hλ (7)

where ⊗ denotes the Kronecker product3.

2.2.2. BLOCK HESSIAN RECURSION

In order to calculate the sample Hessian, we need to eval-
uate the pre-activation Hessian first. This can be computed
recursively as (see Appendix A):

Hλ = BλW
T
λ+1Hλ+1Wλ+1Bλ +Dλ (8)

where we define the diagonal matrices:

Bλ = diag (f ′λ(hλ)) (9)

Dλ = diag
(
f ′′λ (hλ)

∂E

∂aλ

)
(10)

and f ′λ and f ′′λ are the first and second derivatives of fλ
respectively.

The recursion is initialised withHL, which depends on the
objective function E(θ) and is easily calculated analyti-
cally for the usual objectives4. Then we can simply apply
the recursion (8) and compute the pre-activation Hessian
for each layer using a single backward pass through the
network. A similar observation is given in (Schaul et al.,
2013), but restricted to the diagonal entries of the Hessian

2Generally we use a Greek letter to indicate a layer and a Ro-
man letter to denote an element within a layer. We use either sub-
or super-scripts wherever most notationally convenient and com-
pact.

3Using the notation {·}i,j as the i, j matrix block, the Kro-
necker Product is defined as {A⊗B}i,j = aijB.

4For example for squared loss (y−hL)2/2, the pre-activation
Hessian is simply the identity matrixHL = I .
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Figure 1. Two layer network with ReLU and square loss. (a) The objective function E as we vary W1(x, y) along two randomly chosen
direction matrices U and V , giving W1(x, y) = xU + yV , (x, y) ∈ R2. (b) E as a function of two randomly chosen directions within
W2. (c) E for varying jointly W1 = xU , W2 = yV . The surfaces contain no smooth local maxima.

rather than the more general block-diagonal case. Given
the pre-activation Hessian, the Hessian of the parameters
for a layer is given by (7). For more than a single dat-
apoint, the recursion is applied per datapoint and the pa-
rameter Hessian is given by the average of the individual
sample Hessians.

2.2.3. NO DIFFERENTIABLE LOCAL MAXIMA

In recent years piecewise linear transfer functions, such as
the ReLU functionf(x) = max(x, 0), have become popu-
lar5. Since the second derivative f ′′ of a piecewise linear
function is zero everywhere, the matrices Dλ in (8) will be
zero (away from non-differentiable points).

It follows that if HL is Positive Semi-Definite (PSD),
which is the case for the most commonly used loss func-
tions, the pre-activation matrices are PSD for every layer.
A corollary is that if we fix all of the parameters of the net-
work except for Wλ the objective function is locally con-
vex with respect to Wλ wherever it is twice differentiable.
Hence, there can be no local maxima or saddle points of
the objective with respect to the parameters within a layer6.
Note that this does not imply that the objective is convex
everywhere with respect to Wλ as the surface will con-
tain ridges along which it is not differentiable, correspond-
ing to boundary points where the transfer function changes
regimes, see Figure 1(c).

As the trace of the full HessianH is the sum of the traces of
the diagonal blocks, it must be non-negative and thus it is
not possible for all eigenvalues to be simultaneously neg-
ative. This implies that for feedforward neural networks

5Note that, for piecewise linear f , E is not necessarily piece-
wise linear in θ.

6This excludes any pathological regions where the objective
function has zero curvature.

with piecewise linear transfer functions there can be no
differentiable local maxima - that is, outside of patholog-
ical constant regions, all maxima (with respect to the full
parameter set θ) must lie at the boundary points of the non-
linear activations and be ‘sharp’, see Figure 1. Addition-
ally, for transfer functions with zero gradient f ′ = 0, Hλ
will have lower rank thanHλ+1, reducing the curvature in-
formation propagating from the output layer back up the
network. This suggests that it is advantageous to use piece-
wise linear transfer functions with non-zero gradients, such
as max(0.1x, x).

We state and prove these results more formally in Ap-
pendix E.

3. Approximate Gauss-Newton Method
Besides being intractable for large neural networks, the
Hessian is not guaranteed to be PSD. A Newton update
H−1g could therefore lead to an increase in the error. A
common PSD approximation to the Hessian is the Gauss-
Newton (GN) matrix. For an error E(hL(θ)), the sample
Hessian is given by:

∂2E

∂θi∂θj
=
∑
k

∂E

∂hLk

∂2hLk
∂θi∂θj

+
∑
k,l

∂hLk
∂θi

∂2E

∂hLk ∂h
L
l

∂hLl
∂θj

(11)

Assuming that HL is PSD, the GN method forms a PSD
approximation by neglecting the first term in (11). This
can be written in matrix notation as:

G ≡ JhLθ
T
HLJhLθ (12)

where JhLθ is the Jacobian of the network outputs with re-
spect to the parameters. The expected GN matrix is the
average of (12) over the datapoints:

Ḡ ≡ E
[
JhLθ

T
HLJhLθ

]
p(x,y)

(13)
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Whilst (13) shows how to calculate the GN matrix exactly,
in practice we cannot feasibly store the matrix in this raw
form. To proceed, similar to the Hessian, we will make a
block diagonal approximation. As we will show, as for the
Hessian itself, even a block diagonal approximation is com-
putationally infeasible, and additional approximations are
required. Before embarking on this sequence of approxi-
mations, we first show that the GN matrix can be expressed
as the expectation of a Khatri-Rao product, i.e. blocks of
Kronecker products, corresponding to the weights of each
layer. We will subsequently approximate the expectation of
the Kronecker products as the product of the expectations
of the factors, making the blocks efficiently invertible.

3.1. The GN Matrix as a Khatri-Rao Product

Using the definition of Ḡ in (13) and the chain rule, we can
write the block of the matrix corresponding to the parame-
ters in layers λ and β as:

Ḡλ,β = E
[
JhλWλ

T
JhLhλ

T
HLJhLhβ J

hβ
Wβ

]
(14)

where [JhLhλ ]i,k ≡ ∂hLk
∂hλi

. Defining Gλ,β as the pre-activation
GN matrix between the λ and β layers’ pre-activation vec-
tors:

Gλ,β = JhLhλ
T
HLJhLhβ (15)

and using the fact that JhλWλ
= aT

λ−1 ⊗ I we obtain

Ḡλ,β = E
[(
aλ−1a

T
β−1

)
⊗ Gλ,β

]
(16)

We can therefore write the GN matrix as the expectation of
the Khatri-Rao product:

Ḡ = E [Q ? G] (17)

where the blocks of G are the pre-activation GN matrices
Gλ,β as defined in (16), and the blocks of Q are:

Qλ,β ≡ aλ−1a
T
β−1 (18)

3.2. Approximating the GN Diagonal Blocks

For simplicity, from here on we denote by Gλ the diagonal
blocks of the sample GN matrix with respect to the weights
of layer λ (dropping the duplicate index). Similarly, we
drop the index for the diagonal blocks Qλ and Gλ of the
corresponding matrices in (17), giving more compactly:

Gλ = Qλ ⊗ Gλ (19)

The diagonal blocks of the expected GN Ḡλ are then given
by E [Gλ]. Computing this requires evaluating a block di-
agonal matrix for each datapoint and accumulating the re-
sult. However, since the expectation of a Kronecker prod-
uct is not necessarily Kronecker factored, one would need

to explicitly store the whole matrix Ḡλ to perform this ac-
cumulation. With D being the dimensionality of a layer,
this matrix would have O(D4) elements. For D of the or-
der of 1000, it would require several terabytes of memory
to store Ḡλ. As this is prohibitively large, we seek an ap-
proximation for the diagonal blocks that is both efficient to
compute and store. The approach we take is the factorised
approximation:

E [Gλ] ≈ E [Qλ]⊗ E [Gλ] (20)

Under this factorisation, the updates for each layer can be
computed efficiently by solving a Kronecker product form
linear system – see the supplementary material. The first
factor E [Qλ] is simply the uncentered covariance of the
activations:

E [Qλ] =
1

N
Aλ−1A

T
λ−1 (21)

where the nth column of the d×nmatrixAλ−1 is the set of
activations of layer λ−1 for datapoint n. The second factor
E [Gλ], can be computed efficiently, as described below.

3.3. The Pre-Activation Recursion

Analogously to the block diagonal pre-activation Hessian
recursion (8), a similar recursion can be derived for the pre-
activation GN matrix diagonal blocks:

Gλ = BλW
T
λ+1Gλ+1Wλ+1Bλ (22)

where the recursion is initialised with the Hessian of the
outputHL.

This highlights the close relationship between the pre-
activation Hessian recursion and the pre-activation GN re-
cursion. Inspecting (8) and (22) we notice that the only
difference in the recursion stems from terms containing the
diagonal matrices Dλ. From (7) and (16) it follows that in
the case of piecewise linear transfer functions, the diagonal
blocks of the Hessian are equal to the diagonal blocks of
the GN matrix7.

Whilst this shows how to calculate the sample pre-
activation GN blocks efficiently, from (20) we require the
calculation of the expected blocks E [Gλ]. In principle, the
recursion could be applied for every data point. However,
this is impractical in terms of the computation time and a
vectorised implementation would impose infeasible mem-
ory requirements. Below, we show that when the number of
outputs is small, it is in fact possible to efficiently compute
the exact expected pre-activation GN matrix diagonals. For
the case of a large number of outputs, we describe a further
approximation to E [Gλ] in Section 3.5.

7This holds only at points where the derivative exists.
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3.4. Exact Low Rank Calculation of E [Gλ]

Many problems in classification and regression deal with a
relatively small number of outputs. This implies that the
rank K of the output layer GN matrix GL is low. We use
the square root representation:

Gλ =

K∑
k=1

CkλC
k
λ

T
(23)

From (22) we then obtain the recursion:

Ckλ = BλW
T
λ+1C

k
λ+1 (24)

This allows us to calculate the expectation as:

E [Gλ] = E

[∑
k

CkλC
k
λ

T
]

=
1

N

∑
k

C̃kλ

(
C̃kλ

)T
(25)

where we stack the column vectors Ckλ for each datapoint
into a matrix C̃λk , analogous to (21). Since we need to store
only the vectors Ckλ per datapoint, this reduces the memory
requirement to K × D × N ; for small K this is a com-
putationally viable option. We call this method Kronecker
Factored Low Rank (KFLR).

3.5. Recursive Approximation of E [Gλ]

For higher dimensional outputs, e.g. in autoencoders,
rather than backpropagating a sample pre-activation GN
matrix for every datapoint, we propose to simply pass
the expected matrix through the network. This yields the
nested expectation approximation of (22):

E [Gλ] ≈ E
[
BλW

T
λ+1 E [Gλ+1]Wλ+1Bλ

]
(26)

The recursion is initialised with the exact value E [GL]. The
method will be referred to as Kronecker Factored Recursive
Approximation (KFRA).

4. Related Work
Despite the prevalence of first-order methods for neu-
ral network optimisation, there has been considerable re-
cent interest in developing practical second-order methods,
which we briefly outline below.

Martens (2010) and Martens & Sutskever (2011) exploited
the fact that full Gauss-Newton matrix-vector products can
be computed efficiently using a form of automatic differ-
entiation. This was used to approximately solve the linear
system Ḡδ = ∇f using conjugate gradients to find the pa-
rameter update δ. Despite making good progress on a per-
iteration basis, having to run a conjugate gradient descent
optimisation at every iteration proved too slow to compete
with well-tuned first-order methods.

The closest related work to that presented here is the KFAC
method (Martens & Grosse, 2015), in which the Fisher ma-
trix is used as the curvature matrix. This is based on the
output y of the network defining a conditional distribution
pθ(y|x) on the observation y, with a loss defined as the KL-
divergence between the empirical distribution p(y|x) and
the network output distribution. The network weights are
chosen to minimise the KL-divergence between the condi-
tional output distribution and the data distribution. For ex-
ample, defining the network output as the mean of a fixed
variance Gaussian or a Bernoulli/Categorical distribution
yields the common squared error and cross-entropy objec-
tives respectively.

Analogously to our work, Martens & Grosse (2015) de-
velop a block-diagonal approximation to the Fisher ma-
trix. The Fisher matrix is another PSD approximation to
the Hessian that is used in natural gradient descent (Amari,
1998). In general, the Fisher and GN matrices are differ-
ent. However, for the case of pθ(y|x) defining an expo-
nential family distribution, the Fisher and GN matrices are
equivalent, see Appendix C.3. As in our work, Martens
& Grosse (2015) use a factorised approximation of the
form (20). However, they subsequently approximate the
expected Fisher blocks by drawing Monte Carlo samples
of the gradients from the conditional distribution defined
by the neural network. As a result, KFAC is always an ap-
proximation to the GN pre-activation matrix, whereas our
method can provide an exact calculation of E [G] in the low
rank setting. See also Appendix C.4 for differences be-
tween our KFRA approximation and KFAC.

More generally, our method does not require any proba-
bilistic model interpretation and is therefore more widely
applicable than KFAC.

5. Experiments
We performed experiments8 training deep autoencoders on
three standard grey-scale image datasets and classifying
hand-written digits as odd or even. The datasets are:

MNIST consists of 60, 000 28×28 images of hand-written
digits. We used only the first 50, 000 images for train-
ing (since the remaining 10, 000 are usually used for
validation).

CURVES contains 20, 000 training images of size 28×28
pixels of simulated hand-drawn curves, created by
choosing three random points in the 28 × 28 pixel
plane (see the supplementary material of (Hinton &
Salakhutdinov, 2006) for details).

8Experiments were run on a workstation with a Titan Xp GPU
and an Intel Xeon CPU E5-2620 v4 @ 2.10GHz.
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FACES is an augmented version of the Olivetti faces
dataset (Samaria & Harter, 1994) with 10 different im-
ages of 40 people. We follow (Hinton & Salakhutdi-
nov, 2006) in creating a training set of 103, 500 im-
ages by choosing 414 random pairs of rotation angles
(−90 to 90 degrees) and scaling factors (1.4 to 1.8) for
each of the 250 images for the first 25 people and then
subsampling to 25× 25 pixels.

We tested the performance of second-order against first-
order methods and compared the quality of the different
GN approximations. In all experiments we report only the
training error, as we are interested in the performance of
the optimiser rather than how the models generalise.

When using second-order methods, it is important in prac-
tice to adjust the unmodified update δ in order to dampen
potentially over-confident updates. One of our central in-
terests is to compare our approach against KFAC. We there-
fore followed (Martens & Grosse, 2015) as closely as pos-
sible, introducing damping in an analogous way. Details
on the implementation are in Appendix B. We emphasise
that throughout all experiments we used the default damp-
ing parameter settings, with no tweaking required to obtain
acceptable performance9.

Additionally, as a form of momentum for the second-order
methods, we compared the use of a moving average with a
factor of 0.9 on the curvature matrices Gλ and Qλ to only
estimating them from the current minibatch. We did not
find any benefit in using momentum on the updates them-
selves; on the contrary this made the optimisation unstable
and required clipping the updates. We therefore do not in-
clude momentum on the updates in our results.

All of the autoencoder architectures are inspired by (Hinton
& Salakhutdinov, 2006). The layer sizes are D-1000-500-
250-30-250-500-1000-D, whereD is the dimensionality of
the input. The grey-scale values are interpreted as the mean
parameter of a Bernoulli distribution and the loss is the bi-
nary cross-entropy on CURVES and MNIST, and square
error on FACES.

5.1. Comparison to First-Order Methods

We investigated the performance of both KFRA and KFAC
compared to popular first-order methods. Four of the
most prevalent gradient-based optimisers were considered
– Stochastic Gradient Descent, Nesterov Accelerated Gra-
dient, Momentum and ADAM (Kingma & Ba, 2014). A
common practice when using first-order methods is to de-
crease the learning rate throughout the training procedure.
For this reason we included an extra parameter T – the de-

9Our damping parameters could be compared to the exponen-
tial decay parameters β1 and β2 in ADAM, which are typically
left at their recommended default values.

cay period – to each of the methods, halving the learning
rate every T iterations. To find the best first-order method,
we ran a grid search over these two hyperarameters10.

Each first-order method was run for 40, 000 parameter up-
dates for MNIST and CURVES and 160, 000 updates for
FACES. This resulted in a total of 35 experiments and
1.4/5.6 million updates for each dataset per method. In
contrast, the second-order methods did not require ad-
justment of any hyperparameters and were run for only
5, 000/20, 000 updates, as they converged much faster11.
For the first-order methods we found ADAM to outperform
the others across the board and we consequently compared
the second-order methods against ADAM only.

Figure 2 shows the performance of the different optimisers
on all three datasets. We present progress both per parame-
ter update, to demonstrate that the second-order optimisers
effectively use the available curvature information, and per
GPU wall clock time, as this is relevant when training a net-
work in practice. For ADAM, we display the performance
using the default learning rate 10−3 as well as the top per-
forming combination of learning rate and decay period. To
illustrate the sensitivity of ADAM to these hyperparameter
settings (and how much can therefore be gained by param-
eter tuning) we also plot the average performance resulting
from using the top 10 and top 20 settings.

Even after significantly tuning the ADAM learning rate and
decay period, the second-order optimisers outperformed
ADAM out-of-the-box across all three datasets. In particu-
lar on the challenging FACES dataset, the optimisation was
not only much faster when using second-order methods,
but also more stable. On this dataset, ADAM appears to
be highly sensitive to the learning rate and in fact diverged
when run with the default learning rate of 10−3. In contrast
to ADAM, the second-order optimisers did not get trapped
in plateaus in which the error does not change significantly.

In comparison to KFAC, KFRA showed a noticeable speed-
up in the optimisation both per-iteration and when measur-
ing the wall clock time. Their computational cost for each
update is equivalent in practice, which we discuss in detail
in Appendix C.4. Thus, to validate that the advantage of
KFRA over KFAC stems from the quality of its updates, we
compared the alignment of the updates of each method with
the exact Gauss-Newton update (using the slower Hessian-
free approach; see Appendix F.2 for the figures). We found
that KFRA tends to be more closely aligned with the exact
Gauss-Newton update, which provides a possible explana-

10We varied the learning rate from 2−6 to 2−13 at ev-
ery power of 2 and chose the decay period as one of
{100%, 50%, 25%, 12.5%, 6.25%} of the number of updates.

11For fair comparison, all of the methods were implemented
using Theano (Theano Development Team, 2016) and Lasagne
(Dieleman et al., 2015).
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(a) CURVES (b) FACES (c) MNIST

Figure 2. Comparison of the objective function being optimised by KFRA, KFAC and ADAM on CURVES, FACES and MNIST. GPU
benchmarks are in the first row, progress per update in the second. The dashed line indicates the use of momentum on the curvature
matrix for the second-order methods. Errors are averaged using a sliding window of ten.

tion for its better performance.

5.2. Non-Exponential Family Model

To compare our approximate Gauss-Newton method and
KFAC in a setting where the Fisher and Gauss-Newton ma-
trix are not equivalent, we designed an experiment in which
the model distribution over y is not in the exponential fam-
ily. The model is a mixture of two binary classifiers12:

p(y|hL) = σ(hL1 )σ(hL2 )yσ(−hL2 )1−y+

(1− σ(hL1 ))σ(hL3 )yσ(−hL3 )1−y (27)

We used the same architecture as for the encoding layers of
the autoencoders –D-1000-500-250-30-1, whereD = 784
is the size of the input. The task of the experiment was to
classify MNIST digits as even or odd. Our choice was mo-
tivated by recent interest in neural network mixture models
(Eigen et al., 2013; Zen & Senior, 2014; van den Oord &
Schrauwen, 2014; Shazeer et al., 2017); our mixture model
is also appropriate for testing the performance of KFLR.
Training was run for 40, 000 updates for ADAM with a
grid search as in Section 5.1, and for 5, 000 updates for the
second-order methods. The results are shown in Figure 3.

For the CPU, both per iteration and wall clock time the
second-order methods were faster than ADAM; on the
GPU, however, ADAM was faster per wall clock time.
The value of the objective function at the final parame-
ter values was higher for second-order methods than for

12In this context σ(x) = (1 + exp(−x))−1.

ADAM. However, it is important to keep in mind that all
methods achieved a nearly perfect cross-entropy loss of
around 10−8. When so close to the minimum we expect
the gradients and curvature to be very small and potentially
dominated by noise introduced from the mini-batch sam-
pling. Additionally, since the second-order methods invert
the curvature, they are more prone to accumulating numer-
ical errors than first-order methods, which may explain this
behaviour close to a minimum.

Interestingly, KFAC performed almost identically to
KFLR, despite the fact that KFLR computes the exact pre-
activation Gauss-Newton matrix. This suggests that in the
low-dimensional output setting, the benefits from using the
exact low-rank calculation are diminished by the noise and
the rather coarse factorised Kronecker approximation.

6. Rank of the Empirical Curvature
The empirical success of second-order methods raises
questions about the curvature of the error function of a
neural network. As we show in Appendix D the Monte
Carlo Gauss-Newton matrix rank is upper bounded by the
rank of the last layer Hessian times the size of the mini-
batch. More generally, the rank is upper bounded by the
rank of HL times the size of the data set. As modern
neural networks commonly have millions of parameters,
the exact Gauss-Newton matrix is usually severely under-
determined. This implies that the curvature will be zero
in many directions. This phenomenon is particularly pro-
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Figure 3. Comparative optimisation performance on an MNIST
binary mixture-classification model. We used momentum on the
curvature matrix for all methods, as it stabilises convergence.

nounced for the binary classifier in Section 5.2, where the
rank of the output layer Hessian is one.

We can draw a parallel between the curvature being zero
and standard techniques where the maximum likelihood
problem is under-determined for small data sets. This ex-
plains why damping is so important in such situations, and
its role goes beyond simply improving the numerical sta-
bility of the algorithm. Our results suggest that, whilst in
practice the Gauss-Newton matrix provides curvature only
in a limited parameter subspace, this still provides enough
information to allow for relatively large parameter updates
compared to gradient descent, see Figure 2.

7. Conclusion
We presented a derivation of the block-diagonal structure
of the Hessian matrix arising in feedforward neural net-
works. This leads directly to the interesting conclusion that
for networks with piecewise linear transfer functions and
convex loss the objective has no differentiable local max-
ima. Furthermore, with respect to the parameters of a sin-
gle layer, the objective has no differentiable saddle points.
This may provide some partial insight into the success of
such transfer functions in practice.

Since the Hessian is not guaranteed to be positive semi-
definite, two common alternative curvature measures are
the Fisher matrix and the Gauss-Newton matrix. Unfortu-
nately, both are computationally infeasible and, similar to
Martens & Grosse (2015), we therefore used a block di-
agonal approximation, followed by a factorised Kronecker
approximation. Despite parallels with the Fisher approach,
formally the two methods are different. Only in the spe-
cial case of exponential family models are the Fisher and
Gauss-Newton matrices equivalent; however, even for this
case, the subsequent approximations used in the Fisher ap-
proach (Martens & Grosse, 2015) differ from ours. Indeed,
we showed that for problems in which the network has a
small number of outputs no additional approximations are
required. Even on models where the Fisher and Gauss-
Newton matrices are equivalent, our experimental results
suggest that our KFRA approximation performs marginally
better than KFAC. As we demonstrated, this is possibly due
to the updates of KFRA being more closely aligned with
the exact Gauss-Newton updates than those of KFAC.

Over the past decade first-order methods have been pre-
dominant for Deep Learning. Second-order methods, such
as Gauss-Newton, have largely been dismissed because
of their seemingly prohibitive computational cost and po-
tential instability introduced by using mini-batches. Our
results on comparing both the Fisher and Gauss-Newton
approximate methods, in line with (Martens & Grosse,
2015), confirm that second-order methods can perform ad-
mirably against even well-tuned state-of-the-art first-order
approaches, while not requiring any hyperparameter tun-
ing.

In terms of wall clock time on a CPU, in our experiments,
the second-order approaches converged to the minimum
significantly more quickly than state-of-the-art first-order
methods. When training on a GPU (as is common in prac-
tice), we also found that second-order methods can perform
well, although the improvement over first-order methods
was more marginal. However, since second-order methods
are much faster per update, there is the potential to further
improve their practical utility by speeding up the most ex-
pensive computations, specifically solving linear systems
on parallel compute devices.
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