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The properties of MnO have been calculated using generalised gradient approximation (GGA-) and hybrid
(h-) density functional theory (DFT), specifically variants of the popular PBE and PBESol exchange–corre-
lation functionals. The GGA approaches are shown to be poor at reproducing experimental magnetic cou-
pling constants and rhombohedral structural distortions, with the PBESol functional performing worse
than PBE. In contrast, h-DFT results are in reasonable agreement with experiment. Calculation of the
Néel temperatures using the mean-field approximation gives overestimates relative to experiment, but
the discrepancies are as low as 15 K for the PBE0 approach and, generally, the h-DFT results are significant
improvements over previous theoretical studies. For the Curie–Weiss temperature, larger disparities are
observed between the theoretical results and previous experimental results.
� 2017 The Authors. Published by Elsevier B.V. This is an open access articleunder the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Transition metal oxides (TMOs) are popular materials for study-
ing fundamental physical properties because of their relative struc-
tural simplicity and intriguing magnetic behaviour, where a
transition from paramagnetic to antiferromagnetic (AFM) ordering
occurs below their respective Néel temperature (TN) [1]. MnO is a
classic representation of the family of first row TMOs: at room
temperature, it is paramagnetic (PM) and adopts a cubic structure
with a lattice constant (a) of 2.223 Å [2–4]; short-range magnetic
ordering occurs below the Curie–Weiss temperature (h) of � 550
K [5] and then, below the TN of 118 K [6], MnO adopts a long-
range ordered AFM spin configuration [7]. The AFM configuration

is with the magnetic moments of the d5 valence electrons on the
Mn2+ cations aligned in parallel along the diagonal (111) plane
[7], with small modulated out-of-plane components recently
identified using total neutron scattering [8]. The AFM spin
configuration results in a small rhombohedral-type distortion:
the unit cell angle, a, is reported as being 90.60–90.62�, with an
accompanying a of 2.215–2.216 Å [9–11], though Goodwin et al.
highlight that the distortion cannot be truly rhombohedral due
to symmetry constraints [8].

Insight into the fundamental properties of TMOs, such as spin
configuration and associated coupling constants, is aided by com-
putational simulations; however, MnO has a long-standing reputa-
tion of being a challenge to simulate using modern density
functional theory (DFT) due to strong on-site Coulomb repulsion
by the 3d states [12–14]. At the local and semi-local level of DFT,
such as the local density approximation (LDA) and generalised gra-
dient approximation (GGA), problems exist due to the inadequacy
of the exchange–correlation (XC) functionals at localising the
valence d electrons [15–17], partly due to inherent self-
interaction errors [18–20], which leads to underestimation of the
electronic band gap. MnO is considered a prototypical Mott–Hub-
bard insulator with a key d-d intra-atomic Coulomb repulsion.
Attempts to use on-site Coulomb-repulsion corrected DFT, namely
DFT + U, have shown promise in simultaneously reproducing
experimental structures, electronic band gaps and, for MnO, spin
coupling constants [21–24], though the empirical parameterisation
of this approach leaves scope for technical improvements. A more
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robust ab initio solution is the use of hybrid-DFT (h-DFT), where a
fraction of the exchange energy in the density functional is
replaced with Hartree–Fock (HF) exact exchange [25,26]. In h-
DFT, the explicit two-electron consideration of electron–electron
interactions, rather than the mean-field approach of DFT, means
that the localisation of electrons is improved, which typically leads
to better agreement with experiment, compared to GGA
approaches, for a range of materials and properties [22,26,27].
However, the accuracy of h-DFT comes with an additional compu-
tational overhead that increases computation time by an order of
magnitude, relative to traditional DFT, and so justification for using
h-DFT must be made carefully.

To compare systematically different levels of DFT theory when
studying the properties of MnO, one can consider the energetics
of the several competing low-temperature magnetic configura-
tions: the relative energy differences between spin configurations
can be used to derive observables such as TN and h. The AFM con-
figuration of MnO, where neighbouring cations have some of their
spins anti-aligned as shown in Fig. 1, can take one of two forms:
AFM(I), as shown in Fig. 1A, where the unpaired electrons on each
cation are aligned ferromagnetically along one primary crystallo-
graphic plane, e.g. (100), but anti-parallel between adjacent
planes; or AFM(II), as shown in Fig. 1B, where the unpaired elec-
trons on each cation are aligned ferromagnetically along a diagonal
plane, e.g. (111), and anti-parallel again between adjacent planes
[13]. Alternatively, in a ferromagnetic (FM) spin configuration,
the unpaired electrons are aligned across all cation centres. Exper-
iment has only identified the AFM(II) phase at low-temperature,
whilst calculations have confirmed the hierarchy of energetic
ordering for these different spin configurations, placing the AFM
(II) and AFM(I) phases lower in energy than the FM or PM arrange-
ments [12,22,24,27,28].

In this work, we build on previous computational investigations
by calculating and comparing the magnetic coupling constants and
transition temperatures for MnO using several popular exchange–
correlation (XC) density functionals of similar theoretical origins,
specifically considering a recent reparameterisation for solid-
state materials and contrasting this to the original derivation made
using free atom assumptions. Our results are obtained by calculat-
ing the energy differences between the various spin configurations,
as outlined in Section 2, and these data are used to parameterise a
Heisenberg Hamiltonian with which coupling constants and transi-
tion temperatures can be derived. The results are presented in
Fig. 1. Magnetic ordering for antiferromagnetic spin configurations: (A) AFM(I), with spin
(II), with the spins aligned on the diagonals (111) axis and anti-parallel perpendicular to
down configurations; red spheres are the anionic oxygen species. (For interpretation of th
of this article.)
Section 3, and Section 4 concludes with comments as to the
observed strengths and weaknesses of the methods presented.
2. Methodology

Calculations were performed using a periodic planewave
methodology, as implemented in the VASP software package [29–
31], with a planewave cutoff of 900 eV and the projector augmented
wave (PAW) representation for the core electrons. A C-point-
centred k-grid of 9� 9� 9 was used for the FM and AFM(I) calcula-
tions, which respectively contained 2 and 8 atoms (N) in the unit
cell, and a k-grid of 5� 5� 5 was used for the larger AFM(II) calcu-
lation (N ¼ 16); these grids correspond to a well converged
reciprocal-space sampling of one k-point per 0.04 Å�1 (or less). A
convergence threshold of 10�8 eV was used for the self-consistent
field cycle. Calculations were performed initially using the PBE
and PBE0 XC functionals [32,33], before complementing these with
studies using the solid-state reparameterised version of the PBE XC
functional, namely PBESol [34], as well as its hybrid equivalent,
PBESol0, where 25% exact exchange is included in the place of the
GGA exchange [25,33].

To calculate equations of state for each magnetic configuration,
single point calculations were performed for fixed unit cells with
internal bond angles set to 90� (i.e. cubic) and either FM, AFM(I)
or AFM(II) spin configurations. The cohesive energy per atom,
Ecoh, is calculated for each spin configuration as:

Ecoh ¼ Etot

N
�

EMn
atom þ EO

atom

� �

2
ð1Þ

with Etot; E
Mn
atom and EO

atom corresponding to either the total energy of
the FM, AFM(I) or AFM(II) unit cells, the energy of the gas-phase Mn
atom and the energy of the gas-phase O atom, respectively. In order
to validate the accuracy of using differing unit cells for differing spin
configurations, Ecoh was calculated for FM and AFM(I) magnetic
orderings using the PBE XC functional with the N ¼ 16 unit cell
and compared to the results for the reduced-size unit cells: differ-
ences of < 0:1 meV and < 0:6 meV were respectively calculated,
justifying our approach. Internal geometry and stress tensor optimi-
sation were used, where discussed, with a convergence criteria of
0.001 eV Å�1 for forces. Collinear spin was used throughout.
s aligned on the horizontal (100) axis and anti-parallel on the vertical axis; (B) AFM
this. Purple and green spheres represent manganese cations with spin-up and spin-
e references to colour in this figure legend, the reader is referred to the web version
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3. Results

Equations of state (Ecoh vs. a) for the FM, AFM(I) and AFM(II) spin
configurations in the cubic MnO phase are presented in Figs. 2 and
3 for GGA and hybrid-DFT methods, respectively. The lowest
energy spin configuration is AFM(II) in all cases, with a parabolic
fit of the data points giving an optimal a of 2.219, 2.186, 2.215
and 2.193 Å when using the PBE, PBESol, PBE0 and PBESol0 XC
functionals. The observations for PBE and PBE0 are comparable
with previous results of Schrön et al. (2.221 Å) and Franchini
et al. (2.22 Å) [22,24]. The structural differences are observed as
varying marginally between XC functional choices, but the PBE
XC functionals clearly result in larger a than PBESol. The PBE
results are closer to experiment, which is reported as being
2.2155 �0:0005 Å. In addition, it is noted that PBESol-based XC
functionals give Ecoh as being � 0:4 eV lower than for the PBE-
family of XC functionals.

For comparison, a ¼ 2.216, 2.178, 2.213 and 2.191 Å for the
same respective XC functionals in the stress-tensor optimised
rhombohedral unit cell, as measured by the bond distance between
an Mn and a nearest neighbour O atom, and an internal angle (a) of
91.63, 92.36, 90.91 and 91.02�, as measured between an Mn, a
nearest neighbour O and a next nearest neighbour same-spin Mn
atom; the optimised unit cells are provided in the Supporting
Information (SI). In all cases, there is a very small contraction of
a, relative to the cubic models, with a biggest change of 0.008 Å
for PBESol. Overall, h-DFT gives the smallest rhombohedral distor-
tions and the PBE (PBE0) result is comparable with previous com-
putational reports of a ¼ 91:66 and 91:75� (a ¼ 90:88�) [22,24].
Furthermore, a is closest to experiment (a ¼ 2:2155� 0:0005 Å)
Fig. 2. Energetics of different magnetic configurations as a function of lattice constant, as
green and aqua, respectively. The top graph gives the cohesive energy (Ecoh) per atom w
triangles, circles and squares, respectively, and the bottom graph displays the energy dif
with the lattice constant given in Å. (For interpretation of the references to colour in th
when using PBE, whilst a is closest for PBE0 (a ¼ 90:60� 90:62�)
[9–11], with the remaining difference of 0:2� perhaps attributable
to low-temperature thermal effects neglected in our simulations.
We associate the size of the rhombohedral distortions to the inter-
action between neighbouring Mn cations with the spins aligned
and anti-aligned: for PBESol, the distance between same-spin
cations is 3.141 Å and then 3.021 Å between spin anti-aligned
cations; in comparison, for PBESol0 the respective values are
3.125 and 3.07 Å i.e. the repulsion (attraction) between parallel
(anti-parallel) spin is exaggerated by GGA methods. Despite the
structural differences discussed for cubic and rhombohedral unit
cells, the difference in Ecoh between these two structures is < 7
meV for AFM(II) spin configurations using the PBESol XC func-
tional, and lower still for all other XC functionals, which shows
the importance of high numerical accuracy when modelling these
systems.

The coupling constants J1 and J2, which are respectively associ-
ated with nearest neighbour (NN) and next-nearest neighbour
(NN) spin coupling as shown in Fig. 4, can be calculated by compar-
ing the relative energies of the different magnetic configurations.
Taking the Heisenberg Hamiltonian and neglecting the longitudi-
nal and transverse spin fluctuations, one gets a generalised Ising
model with matrix components [24]:

Hi ¼
X
l¼1;2

z""l � z"#l
� �

JlSiSl ð2Þ

where Hi is the matrix element for atom i, index l runs over all the
shells of NN (1) and NNN (2) atoms, Si and Sl are the corresponding
spins of the indexed atoms, Jl is the coupling constant between
atom i and each atom in shell l, and z""l and z"#l denote the number
calculated for MnO using the GGA density functionals: PBE and PBESol are coloured
hen using the FM, AFM(I) and AFM(II) magnetic configurations, as represented by
ference between the AFM(II) and FM phases (diamond symbols). Energies are in eV,
is figure legend, the reader is referred to the web version of this article.)



Fig. 3. Energetics of different magnetic configurations as a function of lattice constant, as calculated for MnO using the hybrid density functionals: PBE0 and PBESol0 are
coloured blue and purple, respectively. The top graph gives the cohesive energy (Ecoh) per atom when using the FM, AFM(I) and AFM(II) magnetic configurations, as
represented by triangles, circles and squares, respectively, and the bottom graph displays the energy difference between the AFM(II) and FM phases (diamond symbols).
Energies are in eV, with the lattice constant given in Å. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Fig. 4. Illustration of the interactions represented by coupling constants between
Mn cations (purple circles). J1 (black dashed arrow), relates to the strength of
interaction between nearest neighbour cation species, with coupling through an
adjoining oxygen (red circles) at a bond angle of ~90� (blue dashed line). J2 (black
solid arrow), relates to the strength of interaction between next-nearest neighbour
cation species, with coupling through an adjoining oxygen at a bond angle of ~180�

(blue solid line). (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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of neighbours in each shell l with spins aligned parallel and anti-
parallel to atom i, respectively. It is noted that our definition of Hi

does not contain a double summation, hence removing a factor of

1/2 seen elsewhere in the literature [24]. There is a high-spin d5

electron configuration on each Mn2+ cation, thus the formal defini-
tion of S is 5/2; one can alternatively derive S from the DFT calcula-
tions, where the spin densities are summed within the defined
Wigner Seitz radii (rs). Both definitions have been considered here,
with the DFT-calculated S taken from the results using the lowest-
energy AFM(II) unit cell with rs ¼ 1:164 Å, as defined by the chosen
PAW configuration. The calculated magnetic moments, l (= 2S) are
4.17, 4.11, 4.37 and 4.35 lB for the rhombohedral unit cells when
using PBE, PBESol, PBE0 and PBESol0 XC functionals, respectively;
identical values of l are calculated for the cubic unit cell. Table 1
shows l is 0.2 lB compared to previous calculations, which could
be attributable to our choice of rs. Illustrations showing variation
in lwith respect to unit cell volume and spin ordering are provided
in the SI.

By considering the differing quantities of spin-equivalent and
spin-inequivalent NN and NNN in FM, AFM(I) and AFM(II) spin
configurations, J1 and J2 can be derived from Eq. (2) as [13,28]:

J1 ¼ EFM � EAFMðIÞ

8S2kB
ð3Þ
J2 ¼ EFM � EAFMðIIÞ

6S2kB
� J1 ð4Þ

where the energy per formula unit (eV) of the FM, AFM(I) and AFM
(II) phases is denoted as EFM ; EAFMðIÞ and EAFMðIIÞ, respectively, and
division by the Boltzmann constant (kB = 0.086173 meV K�1) con-
verts to the traditional units of K. With this choice of Hamiltonian,
positive and negative values of J correspond to energy gain for anti-
parallel and parallel spin configurations, respectively.



Table 1
Calculated magnetisation of the Mn2+ cation (l), coupling constants (J1 and J2), Néel Temperatures (TN) and Curie constants (h), given in bold, compared against previous
literature (PBE, h-DFT and HF). l is given in units of lB , with all other values in K. TN and h given in italics have been calculated by inserting J1 and J2 into Eqs. (5) and (6), and are
given in parentheses if accompanying a previously reported result; values marked with ⁄ were calculated using S ¼ l=2, rather than the formal definition of S ¼ 5=2. a Original
value multiplied by 2, as considered elsewhere [14,24]. b Calculated via Monte Carlo simulations. c Calculated via Mean Field Theory.

Method [Ref] l J1 J2 TN h

Exp. [35] 4.54 – – – –
Exp. [36] – 10 11 192.5 540
Exp. [37] – 8.47a 9.63a 170.59 476.01
Exp. [38] – 9 10.4 180.74 493.48
Exp. [6] – – – 116 610
Exp. [9] – – – 120 425.4
Exp. [39] – – – 116 461
TB [13] – 16.36 4.04 141.4 643.3

PBE [22] 4.31 17.6 27.9 488.25 1104.25
PBE [24] 4.3 15.09 27.85 487.39 1015.40
PBE⁄ [24] 4.3 19.73 38.29 520 (518.70) 1060 (1053.13)
PBE [14] 17.64 27.67 249b (373.26) 849.23
PBE 4.17 14.32 15.89 278.06 779.33
PBE⁄ 4.17 20.62 22.88 293.94 823.84
PBESol 4.11 20.69 16.66 291.63 1015.63
PBESol⁄ 4.11 30.64 24.69 309.72 1078.64

PBE + U [22] 4.69 8.2 4.3 75.25 362.25
PBE + U [24] 4.59 11.60 11.60 203.08 609.24
PBE + U⁄ [24] 4.59 13.93 13.93 210 (210.61) 630 (631.83)
PBE + U [40] 10.40 5.20 90.98 454.90
PBE + U [40] 10.58c 9.65c 168.96 539.38

B3LYP [28] 4.73 9.8 20.5 358.75 701.75
PBE0 [22] 4.52 11.5 13.7 239.75 642.25
HSE03 [24] 4.53 13.93 12.76 223.39 710.78
HSE03⁄ [24] 4.53 16.25 15.09 230 (223.13) 720 (703.71)
HSE06 [14] 13.00 14.48 125b (253.44) 708.34
PBE0 4.37 6.79 7.59 132.83 370.54
PBE0⁄ 4.37 8.90 9.94 138.31 385.83
PBESol0 4.35 7.38 8.36 146.24 404.52
PBESol0⁄ 4.35 9.76 11.05 152.51 421.86

HF [41] 4.92 – – 94 –
HF [22] 4.7 2.7 4.3 75.25 169.75
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The calculated coupling constants are presented in Table 1: for
PBE, we obtain J1 ¼ 14:32 and J2 ¼ 15:89 K, whereas for PBESol,
J1 ¼ 20:69 and J2 ¼ 16:66 K. The results for J1 are similar to previ-
ous PBE calculations (15.09–19.73 K), whereas J2 is noticeably
smaller (27.67–38.29 K). Improvements in J2 are made if S ¼ 5=2
is replaced with S ¼ l=2, although this also raises J1. Testing of
the planewave cutoff illustrates that this is not the cause of dis-
crepancy (Table 1, SI). Thus, as J1 is dependent on EFM and EAFMðIÞ,
the discrepancy of J2 with respect to previous results is most likely
attributable to differences in EAFMðIIÞ: as an example, a decrease in
Ecoh of 10 meV leads to an increase of 3.1 K for J2 for the PBE XC
functional. For h-DFT, J1 and J2 are calculated respectively as being
6.79 and 7.59 K for PBE0, and 7.38 and 8.35 K for PBESol0: these
results are much closer to experiment (J1 ¼ 8:47� 10 K;
J2 ¼ 9:63� 11 K) than those of the GGA. However, the results are
again lower than previously reported PBE0 calculations (J1 ¼ 11:5
K; J2 ¼ 13:7 K) though, in this instance, both our J1 and J2 values
are reduced compared to previous reports. This is different to the
GGA results and implies an influence of EFM and/or EAFMðIIÞ: an
increase of Ecoh by 10 meV for the FM configuration raises J1 and
J2 by 2.32 and 0.77 K, respectively, when using our PBE0 results.
It is noted also that the error on reported experimental results is
not insignificant: �10% from Lines et al. [36], �3:5% from Pepy
[37] and �3% from Koghi et al. [38].

Clearly, the localisation of the d electrons is key to decreasing
the coupling constants, which is consistent with previous work:
[12] the generalised gradient approximation (GGA), with 0% exact
exchange, has previously given J1 ¼ 15:9� 17:6 and
J2 ¼ 27:85� 27:9 K (PBE) [22,24], whilst HF calculations, with
100% exact exchange, gave J1 ¼ 2:7 and J2 ¼ 4:3 K [22]. The param-
eterised PBE + U and unparameterised h-DFT approaches, with the
latter typically containing � 25% exact exchange, give intermedi-
ates to these extremes: J1 ¼ 11:5 and J2 ¼ 13:7 K for PBE0 [22];
J1 ¼ 13:93 and J2 ¼ 12:76 K for HSE03 [24]; and J1 ¼ 13:00 and
J2 ¼ 14:48 K for HSE06 [14]. The h-DFT results closely match
experiment; however, h-DFT is not universally accurate, with
J1 ¼ 9:80 and J2 ¼ 20:5 K for B3LYP [28]. Previously, Franchini
et al. observed a ratio of J2=J1 ¼ 1:1 from experiment that is well
replicated by h-DFT [22]: we obtain similar ratios of 1.12 and
1.13 for PBE0 and PBESol0, respectively. PBE and PBESol, in com-
parison, give ratios of 1.11 and 0.81, respectively, with the dis-
tinctly lower ratio for PBESol arising from an over-stabilisation of
AFM(I) that affects J1.

Using our calculated J1 and J2 values, the transition temperature
between AFM(II) and PM phases, namely the Néel temperature
(TN), is obtained in the mean-field approximation (MFA) as
[24,42,43]:

TN ¼ SðSþ 1Þ
3

X
l¼1;2

z""l � z"#l
� �

Jl ¼ 2SðSþ 1ÞJ2 ð5Þ

and additionally the Curie constant (or Curie–Weiss Temperature),
h, can be obtained as [24,36,43]:

h ¼ SðSþ 1Þ
3

X
l¼1;2

z""l þ z"#l
� � ¼ SðSþ 1Þð4J1 þ 2J2Þ: ð6Þ

The interpretation of these observables is aided by an under-
standing of the effect any variation in J1 and J2 has on the transition
temperatures: an increase of 1 K in J1, which also then reduces J2
by 1 K (Eq. (4)), results in a decrease (increase) of 17.5 K for TN
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(h); an increase of 1 K in J2 decreases both TN and h by 17.5 K, with
the inverse also applying for decreases in either of the coupling
constants.

From our calculations, TN (h) is 278.06 (779.33), 291.63
(1015.63), 132.83 (370.54) and 146.24 (404.52) K for PBE, PBESol,
PBE0 and PBESol0; the respective experimental values are 116–
120 and 424–610 K [9,6,36,39], with error bars of < 1% for TN

and unstated for h. Thus, TN is surprisingly well reproduced with
h-DFT, with only a slight overestimate by � 20 K; the same is
not true for h, which the MFA clearly underestimates, but quantita-
tive comparison with experiment is hindered by the range of
reported values. The only previously reported calculations of TN

using the MFA approach give TN = 520 and 230 K for the PBE and
(PBE0-comparable) HSE03 XC functionals, respectively [24]; alter-
natively, tight-binding theory gives TN ¼ 142 K and h ¼ 643 K,
which is in better agreement with the experimental results
reported by Kittel [6] though the coupling constants, of
J1 ¼ 16:36 K and J2 ¼ 4:04 K, deviate significantly from experiment.

Given the numerous reports of coupling constants in the litera-
ture but the absence of estimates to TN and h, we have calculated
missing values in Table 1 using an assumption of S ¼ 5=2 unless
otherwise stated. The LDA and GGA XC functionals consistently
overestimate TN and h, with a notable exception being the param-
eterised DFT + U approach, which gives TN ¼ 75:25� 210 K. In con-
trast, HF underestimates TN (75.25 K) and h (169.75 K), which is
due to its tendency for strong electron localisation that consequen-
tially reduces spin coupling. As with our own calculations, the h-
DFT approach gives the best agreement with experiment. The use
of S = l=2 in the calculations of Schrön et al. leads to an increase
in the discrepancy between theory and experiment; to comple-
ment their analysis, the on-site spin density was extracted from
our calculations for the Mn2+ cation, in order to re-evaluate Eqs.
(3)–(6). For us, this improves the match between computational
and experimental values of J1 and J2, though the resulting TN and
h are increased by up to 10% (Table 1), which illustrates somewhat
the inherent limitations of the MFA approach. Therefore, whilst it is
tempting to suggest improvements can be achieved by the use of
non-collinear spin in future work, we assume that greater gains
are to be made by replacing the MFA with more accurate methods
of deriving TN and h. As noted in Table 1, Archer et al. report signif-
icant improvements in their predictions of TN when using Monte
Carlo (MC) approaches [14], obtaining TN ¼ 125 K for HSE06 rather
than 253 K as calculated using the MFA. A more thorough range of
simulation techniques, both numerical and analytical, are pre-
sented by Fischer et al. [23]: MC and random-phase approximation
(RPA) both give underestimates of TN by > 25 K, whereas the MFA
overestimates by only 10 K. Furthermore, Fischer et al. show that
including up to the 11th neighbour shell can reduce the difference
between experiment and theory further, with TN reduced from 129
to 122 K. Such approaches are of merit to investigate further,
though it is noted that parameterisation of a Heisenberg Hamilto-
nian for 11th neighbour interactions would perhaps require per-
forming calculations with large supercell models that remain
exhaustive on most current computing infrastructures.
4. Conclusions

In summary, the magnetic properties of MnO have been rigor-
ously investigated using the popular PBE and PBESol GGA-DFT
methods, and also their respective h-DFT counterparts PBE0 and
PBESol0. The GGA approaches do not match experiment, but h-
DFT reproduces experimental results for magnetic coupling con-
stants and transition temperatures to a satisfactory degree of accu-
racy. Generally, it is noted that the solid-state reparameterisation,
namely PBESol, proves less accurate than its parent density func-
tional when calculating the structural properties of MnO. The lim-
itations observed when comparing computed coupling constants
and transition temperatures to experiment are noted as being
inherent to the mean-field approximation, rather than the levels
of theory at which energetic quantities are obtained, though vari-
ance in the experimental data, especially for h, also hampers
progression.
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