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Abstract

We consider the problem of inference in a causal generative model where the set of
available observations differs between data instances. We show how combining
samples drawn from the graphical model with an appropriate masking function
makes it possible to train a single neural network to approximate all the corre-
sponding conditional marginal distributions and thus amortize the cost of infer-
ence. We further demonstrate that the efficiency of importance sampling may be
improved by basing proposals on the output of the neural network. We also out-
line how the same network can be used to generate samples from an approximate
joint posterior via a chain decomposition of the graph.

1. Introduction

Graphical models provide a natural framework for expressing probabilistic relationships between
random variables, and are widely used to facilitate reasoning and decision-making. Bayesian net-
works (BN), a directed form of probabilistic graphical model (PGM), have been used extensively
in medicine to capture the causal relationships between medical entities such as diseases and symp-
toms, and through inference, enable diagnosis of unobserved disease states. In sensitive domains
such as health care, the penalty for errors in inference is potentially severe. This risk can be miti-
gated by increasing the complexity of the model of the underlying process; however, this will also
increase the cost of inference, limiting the feasibility of most algorithms.

In complex models, exact inference is often computationally intractable. We therefore must resort
to approximate methods such as variational inference [Wainwright et al., 2008] and Monte Carlo
methods, e.g., importance sampling [Cheng and Druzdzel, 2000, Neal, 2001]. Variational inference
methods are fast but inexact; Monte Carlo inference is asymptotically exact, but can be slow. For
this reason, we focus on Amortized Inference, techniques which speed up sampling by allowing us
to “flexibly reuse inferences so as to answer a variety of related queries” [Gershman and Goodman,
2014]. Amortized inference has been popular for Sequential Monte Carlo and has been used to learn
in advance either parameters [Gu et al., 2015] or a discriminative model which provides conditional
density estimates [Morris, 2001, Paige and Wood, 2016]. These conditional density estimates can
be used as proposals for importance sampling (see Appendix A), an approach also explored in [Le
et al., 2017], using a fixed sequential density estimator MADE [Germain et al., 2015]. We propose
a related technique with a more general density estimator to allow arbitrary evidence.

Notation: Consider the set of random variables, X = {X1, . . . , XN}. A BN is a combination of a
Directed Acyclic Graph (DAG), with Xi as nodes, and a joint distribution P of the Xi. The distri-
bution P factorizes according to the structure of the DAG with P (Xi|Pa(Xi)) being the conditional
distribution ofXi given its parents, Pa(Xi). We denote by XO a set of instantiated nodes, XO ⊂ X,
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and their instantiations xO. To conduct Bayesian inference when provided with a set of unobserved
nodes, XU ⊂ X \XO, we need to compute the posterior marginal, P (XU |XO).

2. Universal Marginalizer

We consider a function approximator, such as a neural network (NN), trained to return the marginal
posterior distributions P (Xi|XO = xO) for each node Xi ∈ X given an instantiation xO of any set
of observations XO ⊂ X. We write x̃O for an encoding of the instantiation that specifies both which
nodes are observed, and what their values are – some suitable encodings are discussed in Section 5
below. Then, for binary Xi, the desired network maps x̃O to a vector in {0, 1}N representing the
probabilities pi := P (Xi = 1|XO = xO):

Y = UM(x̃O) ≈ (p1, . . . , pN ). (1)

To approximate any possible posterior marginal distribution (i.e., given any possible set of evidence
XO), only one model is needed. Due to this we describe this discriminative model as a Universal
Marginalizer (UM). The existence of such a network is a direct consequence of the universal func-
tion approximation theorem (UFAT) [Hornik et al., 1989]. This is simply illustrated by considering
marginalization in a BN as a function and that, by UFAT, any continuous function can be arbitrarily
approximated by a NN.

2.1. Training a UM

1. Generating Data. The UM can be trained off-line by generating unbiased samples from the BN
using ancestral sampling [Koller and Friedman, 2009, Algorithm 12.2]. Each sample is a binary
vector which are the values the classifier will learn to predict.

2. Masking. For the purpose of prediction, a subset of the nodes in the sample must be hidden,
or masked. This masking can be deterministic, i.e., always masking specific nodes, or probabilistic
over nodes. We choose to probabilistically mask a sample in an unbiased way by defining a masking
probability, p ∼ U [0, 1], which is applied to each node. This will create a dataset whose number of
observed nodes is uniformly distributed. There is some analogy here to dropout in the input layer
and so could work well as a regularizer, independently of this problem [Srivastava et al., 2014].

3. Representation of the Unobserved/Masked Nodes. Masked nodes are created for the purpose
of mimicking unobserved nodes and so the representation of masked nodes must be consistent with
the unobserved nodes at the time of inference. Different representations will be investigated and
tested in Section 5.

4. Training a neural net with Cross Entropy Loss. By [Saerens et al., 2002], the output of a
NN with any reasonable loss function can be mapped to a probability estimate, however the cross
entropy loss is the most obvious choice as the output is exactly the predicted probability distribution.
We train the network using a binary cross entropy loss function in a multi-label classification setting
to predict the state of all observed and unobserved nodes.

5. Outputs: Posterior Marginals. The desired posterior marginals are the output of the sigmoid
layer. This result can already be used as a rough posterior estimate, however results can be further
improved by combining with Importance Sampling. This is discussed in Sections 3 and 4 and is
empirically verified in Section 6.

3. Sequential UM for Importance Sampling

We now have a discriminative model which, given a set of observations XO, will approximate all
the posterior marginals. While useful on its own, the estimated marginals are not guaranteed to
be unbiased. To obtain a guarantee of asymptotic unbiasedness, while making use of the speed of
the approximate solution, we use the UM for proposals in importance sampling. A naive approach
might be to sample each Xi ∈ XU independently from UM(x̃O)i, where UM(x̃O)i is i-th element
of the vector UM(x̃O). However, the product of the (approximate) posterior marginals may be very
different to the true posterior joint, even if the marginal approximations are good. A problematic
example of this, where the variance of weights becomes very large, is highlighted in Appendix B.
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The universality of the UM makes possible a scheme we call Sequential Universal Marginalizer
Importance Sampling (SUM-IS). A single proposal sample xS is generated sequentially as follows.
First, introduce a new partially observed state x̃S∪O initialized to x̃O. Sample [xS ]1 ∼ UM(x̃O)1,
and update x̃S∪O so that X1 is now observed with this value. Now we repeat the process, at each
step sampling [xS ]i ∼ UM(x̃S∪O)i, and updating x̃S∪O to include the new sampled value. Thus,
we can approximate the conditional marginal for a node i given the current sampled state XS and
evidence XO, to get the optimal proposal Q?

i as:

Q?
i = P (Xi|{X1, . . . , Xi−1} ∪XO) ≈ UM(x̃S∪O)i = Qi. (2)

The full sample xS is thus drawn from an implicit encoding by the UM of the (approximate) poste-
rior joint distribution, as can be seen by observing the product of sample probabilities (Equation 3),
so may be expected to yield low variance importance weights when used as the proposal distribution.

Q = UM(x̃O)1

N∏
i=2

UM(x̃S∪O)i ≈ P (X1|XO)
N∏
i=2

P (Xi|X1, . . . , Xi−1,XO). (3)

The process by which we sample from these approximately optimal proposals is illustrated in Algo-
rithm 1 and in Figure 3 in Appendix C. This procedure requires that nodes are sampled sequentially,
using the UM to provide a conditional probability estimate at each step. This can affect computation
time, depending on the parallelization scheme used for sampling. However, some parallelization
efficiency can be recovered by increasing the number of samples, or batch size, for all steps. Al-
ternatively a hybrid method which approximates the joint but requires only one call of the UM is
proposed in Section 4.

4. Hybrid Proposals

The full SUM-IS process requires sequential sampling and many evaluations of the UM, which may
be costly. We also explored a heuristic scheme by which a single UM output of all marginals may
be combined with ancestral sampling, when nodes are sampled in topological order.

The proposal distribution for each node Xi is a mixture of the UM marginal UM(x̃O)i, and the
conditional P (Xi|xS∩Pa(Xi)), where xS∩Pa(Xi) encodes the (sampled or evidential) observations
of all ancestors of Xi. Note that this conditional can be calculated directly from the graph. The
scheme uses a mixture model, with

Q(Xi) = β ·UM(x̃O)i + (1− β) · P (Xi|xS∩Pa(Xi)).

Here, each node in the proposal is drawn either from the UM approximate marginal given the ob-
served evidence, independently of previously sampled nodes, or according to its prior dependence
on previously sampled nodes (and any ancestral evidence), independently of evidence nodes that fall
later in the topological sequence. This approach expects to blend these two forms of dependence,
generating a reasonable IS proposal - described in Algorithm 2 in the Appendix D. We compare
different fixed β values in Section 6. However, β can also be a function of the currently sampled
state and the observations. This is left for future work.

5. Methods

We trial feed-forward NN architectures with a hyperparameter search on the number and size of hid-
den layers. The quality of conditional marginals is measured using a test set of posterior marginals
computed for multiple sets of evidence via ancestral sampling with 300 million samples. Two main
metrics are considered - overall mean absolute error (absolute difference between the true and pre-
dicted node posterior) and mean maximum absolute error (maximum absolute difference averaged
across the evidence sets). For importance sampling results we also examine the Pearson correlation
of the true and predicted marginal vectors, as well as Effective Sample Size (ESS). Kish’s ESS is
defined as

(∑M
j=1 wj

)2
/
∑M

j=1 w
2
j . The best performing UM is used for subsequent experiments

using the hybrid proposals scheme proposed in Section 4.

We use ReLU non-linearities, apply a dropout with a probability of 0.5 after each hidden layer and
use the Adam optimization method [Kingma and Ba, 2014]. We consider two encoding schemes
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for unobserved and observed nodes: 2-bit Representation: Two binary values representation. One
binary value represents whether the node is observed, the other represents (if observed) whether it
is True or False. 33-bit Representation (1-bit + 32-bit Continuous): One binary node represents
whether the node is observed and another continuous node is in {0, 1} if observed and the prior
probability if not observed.

6. Results

UM Architecture and Representation Search. We run a hyperparameter search on network size
and unobserved representation, reporting the results in Table 1. The largest one layer network per-
forms the best. The difference between the representations is not large, but the results suggest that
providing the priors may help improve performance.

Units per hidden layer 2-bit 33-bit (priors)
|e| max(|e|) |e| max(|e|)

(2048) 0.0063 0.3425 0.0060 0.3223
(4096) 0.0053 0.2982 0.0052 0.2951

(1024, 1024) 0.0081 0.4492 0.0083 0.4726
(2048, 2048) 0.0071 0.4076 0.0071 0.4264

Table 1: Average mean absolute error (|e|) and average maximum absolute error (max(|e|)) of the
UM evaluated on the test set after training on different sized one- and two-layer NN architectures
for 20,000 iterations. Best values are highlighted in bold.

Hybrid Importance Sampling using the UM. We assess the change in performance on the evi-
dence sets with increasing number of samples. An increase in the maximum achieved correlation is
observed, as well as higher ESS (Table 2 in Appendix E). Figure 1 indicates standard IS (β = 0)
reaches 92% correlation after 2 million samples, whereas hybrid proposals with β = 0.25 exceed
95% after only 250, 000 samples, ultimately achieving 96% correlation in 2 million samples. We
achieve both a higher accuracy and a significant reduction in computational cost per inference.

Figure 1: Hybrid importance sampling performance for various values of the mixing parameter β
between pure ancestral sampling proposals (β = 0) and UM marginals independent of the sampled
state of unobserved nodes (β = 1). When β ∈ [0.1, 0.5] we see better marginal estimates in 250k
samples than obtained in all 2 million samples when not mixing in the predictions from the UM.

7. Conclusion

This paper introduces a Universal Marginalizer, a neural network which can approximate all con-
ditional marginal distributions of a BN. We have shown that a UM can be used via a chain de-
composition of the BN to estimate the joint posterior and thus the optimal proposal distribution for
importance sampling. While this process is more computationally intensive, a first-order approxi-
mation can be used requiring only a single evaluation of a UM per set of evidence. Our experiments
show that the hybrid IS procedure delivers significant improvements in sampling efficiency.
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A. Importance Sampling

We may use Importance Sampling (IS) to provide posterior marginal estimates, P (XU |XO) in BN
inference. To do so, we draw samples xU from a distribution Q(XU |XO), known as the proposal
distribution, which we can both sample and evaluate efficiently. Then, assuming that the numerator
can be evaluated (which requires that XU contain the Markov boundary of XO along with all its
ancestors), we have:

P (XU = xU |XO = xO) =
Q(xO)

P (xO)

∫
1xU (x)

P (x,xO)

Q(x,xO)
Q(x|xO)dx

= lim
n→∞

n∑
i=1

1xU (xi)
wi∑n
j=1 wj

,

(4)
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where xi ∼ Q and wi = P (xi,xO)/Q(xi,xO) are the importance sampling weights and 1xU (x) is
an indicator function for xU .

The simplest proposal distribution is the prior, P (XU ). However, as the prior and the posterior may
be very different this is often an inefficient approach. An alternative is to use an estimate of the
posterior distribution as a proposal. This is the approach we develop.

B. Sampling from the Posterior Marginals: A Problematic Example

Take a BN with Bernoulli nodes and of arbitrary size and shape. Consider 2 specific nodes, Xi and
Xj , such that Xj is caused only and always by Xi:

P (Xj = 1|Xi = 1) = 1,

P (Xj = 1|Xi = 0) = 0.

Given evidence E, we assume that P (Xi|E) = 0.001 = P (Xj |E). We will now illustrate that
using the posterior distribution P (X|E) as a proposal will not necessarily yield the best result.

Say we have been given evidence, E, and the true conditional probability of P (Xi|E) = 0.001,
therefore also P (Xj |E) = 0.001. We naively would expect P (X|E) to be the optimal proposal
distribution. However we can illustrate the problems here by sampling with Q = P (X|E) as the
proposal.

Each node k ∈ N will have a weight wk = P (Xk)/Q(Xk) and the total weight of the sample will
be

w =

N∏
k=0

wk.

The weights should be approximately 1 if Q is close to P. However, consider the wj . There are four
combinations of Xi and Xj . We will sample Xi=1, Xj=1 only, in expectation, one every million
samples, however when we do the weight wj will be wj = P (Xj = 1)/Q(Xj = 1) = 1/0.001 =
1000. This is not a problem in the limit, however if it happens for example in the first 1000 samples
then it will outweight all other samples so far. As soon as we have a network with many nodes
whose conditional probabilities are much greater than their marginal proposals this becomes almost
inevitable. A further consequence of these high weights is that, since the entire sample is weighted
by the same weight, every node probability will be effected by this high variance.

C. Process Diagrams
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1. Samples from PGM: X ∈ {0, 1}N .

2. Mask X: M : {0, 1} → {0, 1, ∗}, M : probabilistic and/or deterministic.

3. Input: M(X) ∈ {0, 1, ∗}N , Labels: X

4. Neural network with sigmoid output.

5. Output: Predicted Posterior P (X|M(X))

Cross-Entropy loss training.

Figure 2: The process to train a Universal Marginalizer using binary data generated from a Bayesian
Network

Input: X̂ ∈ {0, 1, ∗}N

NN Input: X̂ ∪ {X1, ...Xi−1} ∈ {0, 1, ∗}N

Trained neural network

Output: q = Q(Xi|X̂ ∪ {X1, ...Xi−1})

Sample node Xi with q as proposal

i = i+ 1

node sample Xi ∈ {0, 1}

Output: One sample from joint Q(X̂)

Figure 3: Importance Sampling + UM: The part in the box is repeated N times, for each node i in
topological order

D. Algorithms
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Algorithm 1 Sequential Universal Marginalizer importance sampling
1: Order the nodes topologically X1, ...XN , where N is the total number of nodes.
2: for j in [1,...,M ] (where M is the total number of samples): do
3: x̃S = ∅
4: for i in [1,...N ]: do
5: sample node xi from Q(Xi) = UM(x̃S∪O)i ≈ P (Xi|XS ,XO)
6: add xi to x̃S
7: [xS ]j = x̃S
8: wj =

∏N
i=1

Pi

Qi
(where Pi is the likelihood, Pi = P (Xi = xi|xS∩Pa(Xi)) and Qi =

Q(Xi = xi))

9: Ep[X] =
∑M

j=1 Xjwj∑M
j=1 wj

(as in standard IS)

Algorithm 2 Hybrid UM-IS
1: Order the nodes topologically X1, ...XN , where N is the total number of nodes.
2: for j in [1,...,M ] (where M is the total number of samples): do
3: x̃S = ∅
4: for i in [1,...N ]: do
5: sample node xi from Q(Xi) = βUM(x̃O)i + (1− β)P (Xi = xi|xS∩Pa(Xi))
6: add xi to x̃S
7: [xS ]j = x̃S
8: wj =

∏N
i=1

Pi

Qi
(where Pi is the likelihood, Pi = P (Xi = xi|xS∩Pa(Xi)) and Qi =

Q(Xi = xi))

9: Ep[X] =
∑M

j=1 Xjwj∑M
j=1 wj

(as in standard IS)

E. Additional Results

Table 2: Effective sample size for hybrid UM-IS scheme with 2 million samples

β 0.0 0.1 0.25 0.5 0.75 1.0

ESS 7678 15458 11779 1218 171 92
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