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Abstract Solving dynamic problems for fluid saturated

porous media at large deformation regime is an inter-

esting but complex issue. An implicit time integration

scheme is herein developed within the framework of the

u−w (solid displacement – relative fluid displacement)

formulation for the Biot’s equations. In particular, liq-

uid water saturated porous media is considered and the

linearization of the linear momentum equations taking

into account all the inertia terms for both solid and fluid

phases is for the first time presented. The spatial dis-

cretization is carried out through a meshfree method, in

which the shape functions are based on the principle of

local maximum entropy LME. The current methodol-

ogy is firstly validated with the dynamic consolidation

of a soil column and the plastic shear band formulation

of a square domain loaded by a rigid footing. The feasi-
bility of this new numerical approach for solving large

deformation dynamic problems is finally demonstrated

through the application to an embankment problem

subjected to an earthquake.
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1 Introduction

Predicting the dynamic behavior of saturated porous

media at large deformation regime is undoubtedly in-

teresting and complex at the same time. This is evi-

denced by the very limited literature available in this

field [10,22,27,45]. It is mainly attributed to the fact

that the widely-used displacement-water pressure u−pw
formulation for the Biot’s equations, though effective

for dynamic but low frequency loading [2,12,39,44,45],

is not capable to capture high frequency oscillations

for all the permeability [44]. By contrast, the u − w
formulation (where u denotes the solid phase displace-

ment and w represents the relative fluid displacement

with respect to the solid phase) is particularly suited for

solving dynamic and wave propagation problems when

the effect of inertia cannot be ignored, since both solid

and fluid accelerations are included in the governing

equations. In addition, it is more stable than the com-

plete formulation based on the total displacement of

the fluid phase, U , as nodal unknowns, since the later

employs one unique material point for both solid and

fluid phases, making it unstable when large deforma-

tions occur in the fluid phase [17,32].

Even though explicit solutions for the coupled prob-

lem can be found in literature using the total displace-

ment of the water [41], the traditional manner to solve

this kind of problems for complete and u− w formula-

tion is through implicit schemes.

Since the derivatives of the governing equations are

required, linearization of the terms which are not neg-

ligible for large deformation dynamic problems becomes

indispensable. However, such complex mathematical op-

erations have not been presented in the literature so

far. The most recent advances on this field are made

by Sanavia et al. [33] who employed some neglected
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terms of the previous works [6,7] and extended the ap-

plication of the methodology to unsaturated soils [35]

and thermo-mechanical analyses [8]. The current work

is the first application of the implicit u−w formulation

at large elastic or elasto-plastic strains and it is the first

time that the complete Biot’s equations are linearized

for an implicit Lagrangian scheme.

The mentioned implicit numerical scheme is imple-

mented within a meshfree framework, in particular, the

shape functions based on the principle of maximum en-

tropy [3,31] are chosen for spacial discretizations. In ad-

dition, the coupling between the solid and fluid phases

is carried out through a single set of material points.

This is computationally more effective compared to al-

ternative implementations such as those of Material

Point Schemes (MPM) [4,9], where two sets of material

points were employed. Following the Optimal Trans-

portation Meshfree (OTM) scheme by Li et al. [20],

the nodal and material points are reconnected on the

fly, which facilitates the simulation of large deformation

problems. Regarding the constitutive material models,

the modification of the Neo-Hookean material by Ehlers

and Eipper [13] for elastic behavior and the Drucker-

Prager yield criterion for plastic deformation [26] based

on [35] are adopted.

The rest of the paper is organized as follows. The

u − w equations developed in the deformed configura-

tion are presented next. The employed implicit method-

ology is developed in Section 3. The constitutive models

for the solid behavior are given in Section 4. Applica-

tions to various benchmark problems are illustrated in

Section 5 whereas the performance of the method in

an embankment loaded by an earthquake load is pre-

sented in Section 6. Relevant conclusions are drawn in

Section 7.

2 The u− w formulation for the coupled

problem

For the sake of completeness, we briefly explain here the

notations involved for the Biot’s equations [5] to solve

the coupled problem of a porous medium (solid-fluid

mixture). Then the equations for the balance of linear

momentum and mass conservation by Lewis and Schre-

fler [19] are introduced in the spatial setting, which are

based on averaging procedures and derived within the

Hybrid Mixture Theory. For the kinematic equations

the interesting reader can see [19] or [35].

Hereinafter, the vectors and matrices are represented

with bold symbols, whereas scalar variables are denoted

with regular letters. The symbol ‘·’ denotes the scalar

product between two vectors (a · b = aibi), while the

symbol ‘:’ denotes a double contraction of (adjacent)

indices of two tensors of rank two or/and higher (e.g.

c : d = cijdij , e : f = eijklfkl). Cartesian coordinates

are used throughout.

In the following, u, U and w respectively stand for

displacement vectors of the solid skeleton, the absolute

displacement of the fluid phase and relative displace-

ment of the fluid phase with respect to the solid one.

In addition, w is related with u and U through the

porosity, n, and the degree of water saturation, Sw as

follows [23],

w = nSw (U − u). (1)

It needs to be clarified that (U − u) is often coined

as uws in the literature [19]. In Eq. (1), the porosity is

calculated as

n =
dvh

dvh + dvs
, (2)

where dvh and dvs are the volumes of the voids and

solid grains in the deformed configuration respectively.

Note that in the current work, totally saturated porous

medium is assumed, i.e., dvh coincides with the water

volume, which results in Sw equal to 1.

The parameters n and Sw also map out the mixture

density, ρ, with that of the fluid and solid particles, ρw
and ρs, as follows

ρ = (1− n)ρs + nSwρw. (3)

Likewise, the volumetric compressibility of the mixture,

Q, is related with the bulk modulus of the solid grains,

Ks, and the compressive modulus of the fluid phase

(water), Kw, [43] i.e.,

Q =

[
α− n
Ks

+
n

Kw

]−1
. (4)

where α is the Biot’s coefficient:

α = 1− K

Ks
(5)

being K the bulk modulus of the solid skeleton. For

soils, since the solid grains are much less compressible

than the porous skeleton, α can be considered equal

to 1.

With respect to the sign criterion for stresses and

strains, tensile ones are assumed positive, except for the

pore pressure, pw, which is negative for tension.

The Terzaghi’s effective stress [38], σ′, is related

with the total Cauchy stress tensor, σ, and the pore

pressure, pw, as follows,

σ′ = σ + αpwI, (6)

where I is the second order unit tensor.
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2.1 Systems of equations for the linear momentum

balance

On the one hand, starting from the general form of

Darcy’s law for any fluid phase, the system equations of

the linear momentum balance for saturated soil accord-

ing to Lewis and Schrefler [19] are expressed as follows,

nSwv
ws =

k

µw
[−grad pw + ρw(g − as − aws)] (7)

where, as previously mentioned, the degree of satura-

tion, Sw, is equal to one; the relative velocity of the

fluid, vws, is defined as ẇ/n, where �̇ represents the

material time derivative of ut with respect to the solid;

as ≡ ü denotes the solid phase acceleration, aws =

ẅ/n is the relative acceleration of the fluid respect to

the solid phase, g represents the external acceleration

vector, µw denotes the dynamic viscosity of the water

and k is the intrinsic permeability tensor, which be-

comes a unit tensor multiplied by the scalar k, intrinsic

permeability, when isotropic permeability is assumed.

Consequently, Eq. (7) can be re-written as

−grad pw −
µw
k
ẇ + ρw

(
g − ü− ẅ

n

)
= 0. (8)

The relationship vws = ẇ/n has been derived from

Eq. (1) computing the material time derivative of w

with respect to the solid and neglecting the material

time derivative of the porosity with respect to the solid

for simplicity.

On the other hand, Lewis and Schrefler [19] also give

the linear momentum balance equation for the multi-

phase system under saturated conditions as the sum-

mation of the dynamic equations for the individual con-

stituents relative to the solid as

div σ − ρas − nρwaws + ρg = 0. (9)

Taking into account Eq. (6), we obtain the system

equations for the linear momentum balance as

div [σ′ − αpw I]− ρü− ρwẅ + ρg = 0. (10)

Both linear momentum balance equations of the mix-

ture and the fluid were presented by Zienkiewicz et al.

[43] with the convective terms, which can be neglected

in the present research as the vorticity is relatively small

compared to the rest of the terms.

2.2 Mass balance equation

The mass balance equation of the liquid water in a

isothermal totally saturated media with compressible

grains and water is [19](
α− n
Ks

+
n

Kw

)
˙pw + αdiv(u̇) +

div(ρwẇ)

ρw
= 0 (11)

Taking into consideration Eq. (4) and considering con-

stant water density and α equal to 1 we obtain the mass

balance equation as follows:

ṗw
Q

+ div u̇+ div ẇ = 0. (12)

The above equation can be integrated over time to ob-

tain the pore pressure as

pw = −Q [div(u) + div(w)] + pw0
, (13)

where pw0
is the initial pore pressure.

It needs to be pointed out that, if accelerations of

the solid and the fluid are negligible, as in a quasi static

u−pw formulation, and the solid grain and the fluid can

be considered incompressible, substituting Darcy’s law

into Eq. (12), the liquid water mass balance equation

can be simplified as [34,35]

div u̇+ div

[
k

µw
(−grad pw + ρwg)

]
= 0. (14)

2.3 The weak form of system equations for the u− w
formulation

The weak form of the system equations for the u − w
formulation is obtained applying the principle of virtual

displacements to the linear momentum equation of both

the solid and fluid phases, Eqs. (8) and (10).

Let δu represent the virtual displacement vector for

the solid phase, the weak form of the linear momentum

balance equation (10) reads∫
B

[div (σ)− ρü− ρwẅ + ρg] · δu dv = 0 (15)

where B is the volume of the spatial domain. Applying

the Green’s Theorem to Eq. (15), we obtain

−
∫
B

σ : grad(δu) dv +

∫
B

[−ρü− ρwẅ + ρg] · δu dv

+

∫
δB

t · δu ds = 0. (16)

being δB the boundary where the traction t is applied.

Taking into account Terzaghi’s definition of the effective

stress and mass conservation, the terms in Eq. (16) can
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be arranged to yield the final expression of the weak

form for the mixture as follows

−
∫
B

σ′ : grad(δu) dv −
∫
B

Qdiv(u)I : grad(δu) dv

−
∫
B

Qdiv(w)I : grad(δu) dv (17)

+

∫
B

[−ρü− ρwẅ + ρg] · δu dv +

∫
δB

t · δu ds = 0.

Let δw stand for the virtual displacements for the

fluid phase, the corresponding weak form of the linear

momentum equation (8) is written as∫
B

[
−grad(pw)− µw

k
ẇ + ρw(g − ü− ẅ

n
)

]
· δw dv = 0.

(18)

Applying the Green’s Theorem to the above equation,

we have∫
B

pwI : grad(δw) dv −
∫
B

µw
k
ẇ · δw dv +∫

B

ρw(g − ü− ẅ
n

) · δw dv −
∫
δB

tw · δw ds = 0. (19)

being tw the traction of the fluid phase. Taking into

account Eq. (13), the final weak form of the linear mo-

mentum equation of the liquid water is obtained as fol-

lows,

−
∫
B

Qdiv(u)div(δw) dv −
∫
B

Qdiv(w)div(δw) dv

−
∫
B

µw
k
ẇ · δw dv −

∫
B

ẅ
ρw
n
· δw dv

+

∫
B

ρw(g − ü) · δw dv −
∫
δB

tw · δw ds = 0. (20)

3 Time and spatial discretization and

consistent linearization

In this Section, we describe in detail the implicit time

integration scheme, including the linearization process

and the Newton-Raphson algorithm and the meshfree

spatial discretization based on LME shape functions.

3.1 Implicit solution and Newton-Raphson algorithm

As mentioned before, the framework of the u − w for-

mulation, also known as the complete formulation (since

no additional assumption is required), each node con-

tains both solid and fluid degrees of freedom, u and

w, whereas the pore pressure, pw, is calculated at the

Table 1 The α-parameters of the Newmark scheme.

α1 = 1
β∆t2 α2 = 1

β∆t

α3 = 1
2β − 1 α4 = γ

β∆t

α5 = 1− γ
β α6 =

(
1− γ

2β

)
∆t

α7 = 1 α8 = 1

material point afterwards. By contrast, in the more tra-

ditional u−pw formulation, pw is considered directly as

an additional nodal unknown. Consequently, the impo-

sition of impervious boundary conditions is a bit more

complicated.

In a two-dimensional problem, the nodal unknowns

can be written as:

u∗ = [ux uy wx wy]
T
.

After assembling the elementary matrices, the final sys-

tem of equations can be simplified as

Rk+1 +C u̇k+1 +M ük+1 = P k+1, (21)

where R, C and M respectively denote the internal

forces vector and damping and mass matrices, whereas

P is the external forces vector, which contains both

gravity acceleration and external nodal forces. k + 1

represents the current step.

In order to solve Eq. (21) in an implicit way, the

Newmark equations are written in terms of the incre-

mental displacements, i.e.

ük+1 = α1∆uk+1 − α2u̇k − α3ük, (22)

u̇k+1 = α4∆uk+1 + α5u̇k + α6ük, (23)

where the α-parameters are listed in Table 1 accord-

ing to Wriggers [40]. These coefficients can be easily

extended to any other time integration schemes.
In the current work, solutions are obtained with

a traditional Newmark time integration scheme with

γ =0.6 and β =0.325.

Inserting Eqs. (22-23) to Eq. (21), the equations for

the unknowns can be re-written as:

Gk+1 = M [α1∆uk+1 − α2u̇k − α3ük]

+ C [α4∆uk+1 + α5u̇k + α6ük]

+ α7Rk+1 − P k − α8∆P k+1 = 0, (24)

or in the compact form:

G(χ,η) = 0, (25)

where χ = [χu,χw]
T

is the deformation mapping

and η = [δu, δw]
T
, ∆u∗ = [∆u, ∆w]

T
.

To solve the above non-linear equations, Taylor’s series

are employed in the current configuration. After the

linearization of χ, Eq. (25) becomes

G(χ,η, ∆u∗)i+1
k+1
∼=

G(χ,η)ik+1 +DG(χ,η)ik+1 ·∆u∗i+1
k+1

∼= 0, (26)
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where χ is the linearized deformation mapping. Taking

into account the fact that operator G is composed in

two parts, the derivatives taking the following form:

DG ·∆u∗ =

[
DGLMS ·∆u+DGLMS ·∆w
DGLMW ·∆u+DGLMW ·∆w

]
, (27)

where DGLMS and DGLMW represent the derivative of

the linear momentum equations Eq. (17) and Eq. (20),

of the solid phase and the fluid phase respectively.

According to Wriggers [40], any Newton method can

be applied to determine the unknown displacements.

We first calculate the tangential stiffness matrix, i.e.

K(uik+1) = Ki
k+1 =

∂R

∂u

∣∣∣∣
uik+1

. (28)

that allows us to solve the system equations in an iter-

ative manner (iteration index i). The iteration finishes

when Gi
k+1 is lower than a given tolerance:[

α1M + α4C + α7K
i
k+1

]
∆ui+1

k+1 = −G(uik+1), (29)

where ui+1
k+1 = uik+1 +∆ui+1

k+1.

Rewritting Eq. (24) to separate the current (k+ 1) and

previous (k) terms, since the later ones are not suscep-

tible of linearization as they are constants that come

from the previous step, we have

Gk+1 = [α1M + α4C]uk+1 + α7R(uk+1)− α8P k+1

+ [α1Muk − α2Mu̇k − α3Mük]

+ [α4Cuk + α5Cu̇k + α6Cük]− αfP k

= [α1M + α4C]uk+1 + α7R(uk+1)

− α8P k+1 + F intk . (30)

Consequently, after integration in time, Eq. (17) and

Eq. (20) are written at time k+1 and transformed as

follows

−α7

∫
B

σ′ : grad(δu) dv − α7

∫
B

Qdiv(u)div(δu) dv

−α7

∫
B

Qdiv(w)div(δu) dv − α1

∫
B

[ρu+ ρww] · δu dv

+α8

∫
B

ρg · δu dv + α8

∫
δB

t · δu ds = 0 (31)

−
∫
B

α7Qdiv(u)div(δw) dv −
∫
B

α7Qdiv(w)div(δw) dv

−α4

∫
B

µw
k
w · δw dv − α1

∫
B

ρw
n
w · δw dv

−α1

∫
B

ρwu · δw dv + α8

∫
B

ρwg · δw dv

−α8

∫
δB

tw · δw ds = 0. (32)

The results of the linearization process for Eq. (31) and

Eq.(32) are given in Eq. (33) and Eq. (34) respectively,

whereas the details are described in Appendix A.

– Linear momentum of for the solid phase

− α7

∫
B

grad(δu) : cep : grad(∆u) dv

− α7

∫
B

σ′ : gradT (δu) grad(∆u) dv

− α7

∫
B

grad( δu) : (Q [div(∆u) + div(∆w)] I) dv

− α7

∫
B

grad( δu) : pw gradT (∆u)dv

− α7

∫
B

grad( δu) : pw
1− n
n

div(∆u)Idv

− α1

∫
B

δu · [ρ∆u+ ρw∆w + ρwdiv(∆u) (u+w)] dv

+ α8

∫
B

ρwδu · g div(∆u) dv (33)

– Linear momentum for the fluid phase:

− α7

∫
B

grad( δw) : (Q [div(∆u) + div(∆w)] I) dv

− α7

∫
B

grad( δw) : pw gradT (∆u)dv

− α7

∫
B

grad( δw) : pw
1− n
n

div(∆u)Idv

− α4

∫
B

µw
k
δw ·

[
∆w + div(∆u)

(
1− 1− n

k

∂k

∂n

)
w

]
dv

− α1

∫
B

ρw
n
δw ·

[
∆w +

2n− 1

n
div(∆u)w

]
dv

− α1

∫
B

ρwδw · [∆u+ div(∆u)u] dv

+ α8

∫
B

ρwδw · g div(∆u) dv (34)

3.2 Spatial discretization

The shape function employed is based that of Arroyo

and Ortiz [3], who defined exponential functions based

on the principle of the local maximum entropy (LME).

For a node a, it reads,

Na(x) =
exp

[
−β |x− xa|2 + λ∗ · (x− xa)

]
Z(x,λ∗(x))

, (35)

where

Z(x,λ) =

Nb∑
a=1

exp
[
−β |x− xa|2 + λ · (x− xa)

]
. (36)

Nb representes the neighborhood size. The parameter

β defines the shape of the neighborhood and λ∗(x)

comes from the minimization of the function g(λ) =
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logZ(x,λ) to guarantee the maximum entropy. The

first derivatives of the shape function are then obtained

from differentiating the shape function itself to get the

Hessian matrix J in the following expression:

∇N∗a = −N∗a (J∗)−1 (x− xa). (37)

A modified Nelder-Mead algorithm developed by Navas

et al. [26] is used for the minimization process in the

current work.

4 Material models for the solid phase

Since the first term of Eq. (33) contains cep, which de-

pends on specific material models, we illustrate in this

Section the constitutive models employed for the solid

phase based on hyperelasticity or hyperelastoplasticity.

4.1 Elastic material model: the Neo-Hookean solid

In order to predict the non-linear elastic behavior for

solids undergoing large deformations and to be able

to take into consideration the effect of the compaction

point, the variation of the volume and the initial poros-

ity in soils, the modified Neo-hookean material model

proposed by Ehlers and Eipper [13] is adopted. It reads

as follows,

τ ′k+1 = G(bk+1 − I) + λn20

(
J

n0
− J

J − 1 + n0

)
I, (38)

where τ ′ is the effective Kirchhoff stress tensor (τ ′ =

Jσ′), J represents the Jacobian determinant of the de-

formation gradient at step k + 1, b is the left Cauchy-

Green tensor, n0 is the initial porosity, G and λ are the

Lamé constants. Consequently, the continuous variation

of the tangent moduli, ce, is depicted as

ce = 2

[
G− λn0J

J − 1

J + n0 − 1

]
1

λ

[
n0J

J2 + (1− n0)(1− 2J)

(J + n0 − 1)2

]
(I⊗ I), (39)

where 1 and I represent the respective fourth and sec-

ond order unit tensors.

4.2 Elasto-plastic material model: the Drucker-Prager

yield criterion

The elasto-plastic behavior of the solid skeleton at finite

strains is based on the multiplicative decomposition of

the deformation gradient of the solid F s into an elas-

tic and plastic part originally proposed by Lee [18] for

crystals

F s = F seF sp (40)

Table 2 Parameters for the Drucker-Prager (DP) yield cri-
teria

DP: Plane strain DP: Outer cone

α
F

tanφ√
(3+4 tan2 φ)

√
2
3

2 sinφ
3−sinφ

√
2
3

α
Q

tanψ√
(3+4 tan2 ψ)

√
2
3

2 sinψ
3−sinψ

√
2
3

β 3√
(3+4 tan2 φ)

√
2
3

6 cosφ
3−sinφ

√
2
3

This decomposition states the existence of an inter-

mediate stress free configuration and its validity has

been suggested for cohesive-frictional soils by Nemat-

Nasser [30]. The elasto-plastic behavior is assumed isotropic.

The constitutive equations, their algorithmic formula-

tion based on the product formula algorithm proposed

for the single phase material by Simo [37] and the return

mapping and the consistent tangent operator can be

found in [35]. Here it is recalled that the formulation is

written in terms of the effective Kirchhoff stress tensor

and the logarithmic principal values of the elastic left

Cauchy-Green strain tensor. The yield function restrict-

ing the stress state is developed in the form of Drucker-

Prager, to take into account the dilatant/contractant

behavior of dense or loose sands, respectively. The sin-

gular behavior of the Drucker-Prager yield surface in

the zone of the apex is solved using the concept of mul-

tisurface plasticity.

This approach is selected due to its computational

efficiency, because, by defining a limit pressure, plim,

given by Eq. (41), the location of a given stress state

(on the cone or over the apex) can be determined before

the plastic strain is known.

plim =
3α

Q
K

2G
‖strialk+1 ‖

+
β

3α
F

(
‖strialk+1 ‖

2G
H
√

1 + 3α2
Q

+ ck

)
, (41)

where K and G are the bulk and shear modulus, ck+1 is

the current cohesion and its derivative, H, is the hard-

ening modulus; β and α
F

are Drucker-Prager parame-

ters related to the friction angle, φ, whereas α
Q

depends

on the dilatancy angle, ψ. These parameters are illus-

trated in Tab. 2. In addition, ‖strialk+1 ‖ represents the

norm of the deviatoric trial stress tensor in the time

step k+ 1, strialk+1 , calculated from pressure and the trial

logarithmic strain [11,35]. Once the stress state is lo-

cated, the yield condition of either classical (Φcl) or

apex (Φap) region is used.

Φcl = ‖strialk+1 ‖ − 2G∆γ + 3α
F

[ptrialk+1 −
−3Kα

Q
∆γ]− βck+1, (42)



u− w formulation for dynamic problems in large deformation regime solved through an implicit meshfree scheme 7

Φap =
β

3α
F

[
ck +H

√
∆γ21 + 3α2

Q
(∆γ1 +∆γ2)2

]
−ptrialk+1 + 3Kα

Q
(∆γ1 +∆γ2) . (43)

where ∆γ1 =
‖strialk+1 ‖

2G , ∆γ and ∆γ2 are the objective

functions to be calculated in the Newton-Raphson scheme

for the classical or apex regions accordingly.

The above implementation, recently tested for ex-

plicit integrations within the framework of Optimal Trans-

portation Meshfree schemes [26], is herein extended for

implicit time integrations. According to Sanavia et al [35],

depending on where the current stress state is located,

the corresponding tangent moduli are calculated as:

– Non-corner zone:

cep = K

[
1−

9α
Q
α
F
K

c1

]
(I⊗ I)

+2G

[
1− 2G∆γ

‖strialk+1 ‖

]
(1− 1

3
I⊗ I)

−
6α

Q
KG

c1
(I ⊗ ntrk+1)− 6α

F
KG

c1
(ntrk+1 ⊗ I)

−4G2

[
1

c1
− ∆γ

‖strialk+1 ‖

]
(ntrk+1 ⊗ ntrk+1), (44)

where

c1 = 9α
F
α
Q
K + 2G+ βH

√
1 + 3α2

Q
]. (45)

– Corner zone:

cep = Kc2(I⊗ I) +
Kc2

2α
Q
G∆γ

T

(I⊗ strk+1), (46)

where

c2 =
α
Q
βH∆γ

T

3α
Q
K
√
∆γ21 + 3α2

Q
∆γ2

T
+ α

Q
βH∆γ

T

, (47)

and

∆γ
T

= ∆γ1 +∆γ2. (48)

In the above equations, ntrk+1 is the normalized unit

tensor of the trial deviatoric stress tensor, strk+1, i.e.,

ntrk+1 =
strk+1

‖strk+1‖
. (49)

5 Validation

In this Section, we validate the developed implicit La-

grangian scheme through three benchmark problems.

The first one is the elastic dynamic consolidation of a

soil column proposed by Zienkiewicz et al. [44] to assess

the performance of the complete formulation when high

frequencies are involved. The second one is a large de-

formation consolidation of the same soil column. The

third one deals with the formation of a plastic shear

band.

P=P(t)

Γ1

Γ2

Γ3

Γ4

H
T =

 1
0 

m

L = 1 m

Γ1 :  ux=0,  wx=0
Γ2 :  uy=0,  wy=0
Γ3 :  ux=0,  wx=0
Γ4 :  free

A)

C)

Pmax

P(t)

tt0

Large deformation consolidation

Pmax

P(t)

t

T

B) Dynamic consolidation

Fig. 1 A) Geometry and boundary conditions of the column
of soil; Loading of B) the dynamic consolidation and C) large
deformation consolidation problems.

5.1 Dynamic consolidation of a soil column

The dynamic consolidation of a soil column is studied

using the geometry given in Fig. 1.A. The column is

loaded at the top boundary, Γ4, by a harmonic surface

loading, Pmax cos(ωt), see Fig. 1.B, where the angu-

lar frequency ω is defined as 2π/T . This problem was

first analytically solved by Zienkiewicz et al. [44] in

1980s, and more recently by Navas et al. using either

implicit Eulerian method [29] or explicit Lagrangian

schemes [28] employing LME shape functions.

The soil behavior studied in dependent on the solid

skeleton properties, the permeability and the frequency

of the harmonic load. Three zones, defined in Fig. 2 are

characterized by the values of Π1 and Π2, which are

defined as follows:

Π1 =
k V 2

c

g
ρf
ρ ω H2

T

=
k ω

g
ρf
ρ Π2

, Π2 =
ω2H2

T

V 2
c

(50)

whereHT is the column height, Vc is the p-wave velocity

calculated as:

Vc =

√(
D +

Kw

n

)
1

ρ
, where D =

2G(1− ν)

1− 2ν
. (51)

Zone I is characterized as slow phenomenon where

both solid and fluid accelerations can be neglected; Zone II

is typical of moderate speed behavior, where only the

fluid phase inertia is negligible; in Zone III, however,

inertial contributions from both solid and fluid phases

are significant and cannot be neglected. The four dif-

ferent points studied herein are shown in Fig. 2, where
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Table 3 Material parameters of the dynamic consolidation
problem

G [MPa] 312.5 Kw [MPa] 104

ν 0.2 Ks [MPa] 1034

n 0.333 ρw [kg/m3] 1000

Vc [m/s] 3205 ρs [kg/m3] 3003

π2

102

π1
10210-2

10-3

10-2

1

(III)

(II)

(I)

10-1

1

101

P3 P2 P1

P4

Zone (I) - Slow phenomena: ü and w can be neglected
Zone (II) - Moderate speed: w can be neglected
Zone (III) - Fast phenomena: only full Biot eq. valid

¨

¨

P1

P2

P3

P4

102

100

10-2

101

10-3

10-3

10-3

10-1

10.14

10.14

10.14

101.4

3.22 · 10-2

3.22 · 10-4

3.22 · 10-6

3.22 · 10-2

π1
π2
          ω 

[rad/s]
  k 
[m/s]

Fig. 2 Three zones that characterize the soil behavior in the
Π1-Π2 space (See [44]), and tabulated parameter values for
the different points to be studied.

the loading frequency, ω, and the soil permeability, k,

are also listed.

In order to evaluate the performance of the cur-

rent implicit methodology, the maximum envelope of

the dimensionless pore pressure along the column is de-

picted in Fig. 3. This figure shows an excellent agree-

ment between the solutions given by the semi-analytical

solution proposed by Zienkiewicz and coworkers [44],

the explicit Lagrangian [28] scheme, and the one ob-

tained with the present implicit Lagrangian method-

ology. The solution given by the current methodology

presents more stability than the explicit one, even for

the point P4, which lies in the Zone III.

5.2 Large deformation consolidation of a soil column

In order to validate the developed methodology against

large deformation problems, the problem proposed by

y Li, Borja and Regueiro [21] is studied. The geometry

of the soil is the same as the previous example, see

Fig. 1.A, whereas the load history is given in Fig. 1.C,

where t0 = 0.05 s, Pmax=8 MPa. Parameters of the

soil skeleton are provided in Tab. 4. The Neo-Hookean

material model described in Section 4.1 is employed in

this case since is more suitable to simulate the reduction

1

0.5

0
0

Semi-Analytical solution
(Zienkiewicz et al. 1980)

Explicit Lagrangian scheme 
(Navas et al. 2017)

1

0.5

0
P/Pmax0 1

P1

P2 
P3

z/H

P4

Implicit Lagrangian scheme
(Current methodology)

Fig. 3 Maximum envelopes of the isochrones of the pore
pressure for points P1 to P4 solved through three different
numerical schemes.

Table 4 Material parameters of the dynamic consolidation
problem

λ [MPa] 29 Kw [MPa] 2.2 · 104

G [MPa] 7 Ks [MPa] 1034

n 0.42 ρw [kg/m3] 1000

k [m/s] 0.1 ρs [kg/m3] 2700

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.0       0.1             0.2      0.3              0.4                  0.5
t (s)

Explicit Lagrangian scheme 
(Navas et al. 2017)u y (

m
)

Small deformation
Finite deformation

Li et al. (2001):

Complete formulation:

Implicit Lagrangian scheme 
(Current methodology)

Fig. 4 Comparison between the settlement obtained by Li et
al., the explicit solution and with the proposed methodology
for the large deformation consolidation.

of the pores volume, i.e. the compaction, which leads

to soil hardening of the soil with less settlement. The

obtained solution is compared against those of Li, Borja

and Regueiro [21] and Navas et al. [28] in Fig. 4. Quite

similar settlement histories are obtained by the implicit

and explicit Lagrangian schemes based on the u − w

formulation, in particular, the dynamic branch around

0.3 s are captured. By contrast, the solution based on
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uy = t / 200 [m]

Γ1

Γ2

Γ3

Γ4

10
 m

10 m

Γ5

5 m

K = 8333 kN/m2

G = 3486 kN/m2

c0 = 100 kN/m2

H = -10 kN/m2

Φ = 20º
Ψ = -10º, 0º, 10º, 20º

Kw = 50000 kN/m2

k = 0.0001 m/s
n = 0.33
ρs = 2700 kg/m3

ρw = 1000 kg/m3

Γ1 :   ux=0,  wx=0
Γ2 :   uy=0,  wy=0
Γ3 :   wx=0
Γ4 :   uy=uy(t),  wy=0
Γ5 :   free

P

Material Points Nodes

Fig. 5 Geometry, spatial discretization, material parameters
and boundary conditions of a square domain of water satu-
rated porous material.

the u− pw formulation by Li, Borja and Regueiro [21],

the dynamic phenomenon has been smoothed out, since

no acceleration terms were taken into account.

5.3 Shear band formation in a square domain of

water saturated soil

The last validation is concerned with the formation of

a shear band within a representative square domain of

water saturated soil. The top right half of the domain

is loaded by a rigid footing. The same problem was pre-

viously studied by Sanavia et al. [33,34] in quasi-static

conditions and [28] in dynamic conditions. The geome-

try and material properties are those shown in Fig. 5.

A displacement of one meter is gradually imposed with

a velocity of 5 mm/s over a duration of 200 s. The

spatial discretization is also seen Fig. 5. It consists of

128 material points and 81 nodes. As it can be seen in

the figure, no finer discretization has been assumed in

the area where the shear band is expected to be found

during the computation.

The distributions of the equivalent plastic strain and

the pore pressure at 200 s for four different dilatancy

angles are depicted in Fig. 6 and Fig. 7 respectively.

No significant variations of the equivalent plastic strain

are perceived for positive dilantancy angles (dilatant

material), whereas large plastic strain is obtained for

the negative one (contractive material). In addition,

decreased shear band slopes are observed for smaller

dilatancy angles. From Fig. 7, the effect of the plas-

tic dilatancy (contractancy) is evidenced by the neg-

ative (positive) pore pressure within the shear band

0.075 0.15 0.220.0 0.3

εp

Ψ = 20º Ψ = 10º

0.075 0.15 0.220.0 0.3

εp

0.1 0.2 0.30.0 0.4

εp

Ψ = 0º

0.15 0.3 0.450.0 0.6

Ψ = -10º

εp

Fig. 6 Equivalent plastic strain spatial distribution at the
final of the simulation for the four dilatancy angles.

zone, meanwhile in the case of zero dilatancy angle no

marked pore pressure variation is observed within the

shear band zone. Despite the coarse spatial discretiza-

tion excellent results can be observed, mainly in the

shear band zone.

Moreover, in the case of ψ = 20◦, it can be noted in

Fig. 8 that the negative water pressure within the shear

band is smaller than the cavitation pressure at ambi-

ent temperature (-98986 Pa), indicating the occurrence

of cavitation, as experimentally observed in [25]. This

phenomenon should be modeled by extending the for-

mulation of this paper to unsaturated conditions and

adding the water vapor phase, e.g. as in [14].

In order to study the evolution of the principal re-

sults of the problem, the histories of the pore pressure

and equivalent plastic strain in a material point close

to the shear band (P, see Fig.5) have been extracted

and depicted in Figs. 9 and 10 respectively. The evo-

lution of the pore pressure shows an increase of when

contractive material is employed meanwhile a reduc-

tion occurs for positive dilatancy angles, as expected.

The higher plastic strain values for contractive mate-

rials is seen in Fig. 10. The evolution of the reaction

forces against the footing (Fig. 11) also provides inter-

esting information. Once the material plastifies, the 0
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-8.0e+4 -4.0e+4 0-1.2e+05 4.0e+04

Pore Pressure

Ψ = 20º

-2.0e+4 0 2.0e+4-5.0e+04 5.0e+04

Ψ = 10º

Pore Pressure

62500 1.2e+5 1.9e+50.0 2.5e+05

Ψ = -10º

18750 37500 562500.0 7.5e+04

Ψ = 0º

Pore PressurePore Pressure

Fig. 7 Pore pressure distribution (in Pa) at the final of the
simulation for the four dilatancy angles.

-1.5e+05 -9.899e+04
Pore Pressure [Pa]

Fig. 8 Pore pressure distribution (in Pa) below the cavita-
tion value (98.99 kPa) for dilatancy equal to 20◦ at the final
of the simulation.

Ψ = -10º

Ψ = 0º

Ψ = 10º

Ψ = 20º

Time (s)

Po
re

 P
re

ss
ur

e 
(k

Pa
)

0

250

300

200
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50

-50

-100
0 50 100 150 200

Fig. 9 Evolution of the pore pressure along the time in the
point P.

εp

Time (s)

Ψ = -10º

Ψ = 0º

Ψ = 10º

Ψ = 20º

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 10 Evolution of the equivalent plastic strain along the
time in the point P.

dilatancy angle material keeps the reaction constant,

dilatant materials obtain a post-peak hardening while

the contractive material feels the loss of the resistance

which explains the occurrence of larger plastic strains

and can be interpreted as the fracture of the soil.

The aspects of the regularization properties of the

u−w multiphase model at localization are not analyzed

in this paper and will deserve further studies. For the

u−pw model, the interested reader can see [36] and [8],

while its internal length scale lw is presented in [42].
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R
ea

ct
io

n 
(M

N
)

Time (s)

Ψ = -10º

Ψ = 0º

Ψ = 10º

Ψ = 20º

−1

0

1

2

3

0 50 100 150 200

Fig. 11 Reaction forces of the soil for the different dilatancy
angles.

6 Application to an embankment loaded by a

horizontal, harmonic, gravitational acceleration

As mentioned before, the main advantages of the u−w
formulation in comparison to a u − pw one lie in its

better suitability to accurately reproduce the soil be-

havior when high frequency dynamic loadings are in-

volved. In this Section, we apply the developed implicit

Lagrangian scheme to a realistic embankment loaded

by a horizontal sinusoidal acceleration, representing the

action of an earthquake with an amplitude of g/2, and

a frequency of 1 Hz, i.e.

a =
g

2
sin(2πft)

The geometry and material properties of the Drucker-

Prager soil are given in Fig. 12. The boundary condi-

tions of the solid and fluid phases are also depicted in

the figure, where the foundation borders (Γ1, Γ2, and

Γ3) are impermeable. Two dilatancy angles, 5◦ and

−3◦, are adopted for this study. Unlike the previous

examples, the gravity is necessarily considered here as

initial stresses throughout the whose domain before the

earthquake occurs are required to start the time inte-

gration. Consequently, an initial state was computed

until an steady state of the pore pressure was achieved,

and after that, the dynamic acceleration was applied.

The seismic load is applied for a duration of 20 s (or

until soil failure) as horizontal acceleration to all the

nodes of the domain. Initial pore pressure conditions

are hydrostatic, as shown in Fig.13. The distributions

of the equivalent plastic strain at different times are

illustrated in Fig. 14 and Fig. 15 for dilatancy angles

of 5◦ and −3◦ respectively. Note that for the former

20

140

26

40
30º

E = 50000 kN/m2

G = 19230 kN/m2

c0 = 50 kN/m2

H = -20 kN/m2

Φ = 15º
Ψ = -3º, 5º

Kw = 10000 kN/m2

k = 0.00001 m/s
n = 0.322
ρs = 2647 kg/m3

ρw = 1000 kg/m3

Γ1 :   ux=0,  wx=0
Γ2 :   ux=0,  wx=0
Γ3 :   uy=0,  wy=0
Γ4, Γ5, Γ6, Γ7, Γ8 :   free

Γ1 Γ2

Γ3

Γ4 Γ5

Γ6

Γ7

Γ8

A

C

B

Fig. 12 Geometry (in m), material parameters and bound-
ary conditions of the embankment problem.

5e+4 1e+5 1.5e+50    2.0e+5

Pore Pressure

Fig. 13 Initial pore pressure conditions.

0.1

0.2

0.3

0.0

0.4
εp

t=6 s

t=12 s

t=20 s

Fig. 14 Distribution of the equivalent plastic strain in the
soil at 6, 12 and 20 s, ψ = 5◦. (The displacements have been
amplified by a factor of two)

(dilantant soil), the maximum plastic strains are con-

centrated around the area where the embankment in-

tercepts the foundation, whereas global failure which

involves particularly the foundation is observed for the

latter (contractive soil). In addition, for the dilatancy

angle of −3◦, since soil breakage occurred around 12 s,

no further calculations were carried out.

In order to gain more insights into the failure pro-

cess, three points located around the expected failure



12 Pedro Navas et al.

0.25

0.5

0.75

0.0

1.0
εp

t=6 s

t=12 s

Fig. 15 Distribution of the equivalent plastic strain in the
soil at 6, 12 s, ψ = −3◦. (The displacements have been am-
plified by a factor of two)
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t (s)

Fig. 16 Evolution of ru and εp at point A (see Fig. 12).

zone are chosen (A, B and C), see Fig. 12. Besides the
equivalent plastic strain, the liquefaction ratio, ru, is

also employed. It is defined as the overpressure incre-

ment of water with respect to the initial pore pressure,

normalized by the the initial average effective stress, p′0,

i.e.

ru =
pw − pw0

p′0
. (52)

This ratio measures the state of pressures in the satu-

rated soil under an earthquake load, having in mind

that a value of 1.0 points to the liquefaction of the

points where this is reached.

The evolutions of both the liquefaction ratio (con-

tinuous lines) and the equivalent plastic strain (discon-

tinuous lines) are plotted in Figs. 16, 17 and 18 for

the points A, B and C respectively. The results for di-

latancy angles of 5◦ are shown in blue color, whereas

those for −3◦ are represented in red. Note that for dila-

tant soil, the evolution of the liquefaction ratio reaches a

harmonic steady state of the same frequency (1 Hz), at

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0 2 4 6 8 10 12 14 16 18 20

0−1.5
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−0.5

0

0.5

1

1.5

2

2.5

3

3.5 εpru
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εp

Ψ = -3º

Ψ = 5º

t (s)

Fig. 17 Evolution of ru and εp at point B (see Fig. 12).
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εp
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Fig. 18 Evolution of ru and εp at point C (see Fig. 12).

the same time, a near-constant equivalent plastic strain

is attained at all three points and shows that liquefac-

tion cannot occur as expected for dilatant materials. By

contrast, an abrupt increase of both the liquefaction ra-

tio and the equivalent plastic strain at 12 s causing soil

failure is observed for the dilatancy angle of −3◦.

7 Conclusions

The main goal of this paper is the design of a method-

ology capable to model the full dynamic behavior of a

saturated soil under large deformation conditions. The

application of an implicit time integration scheme in

the resolution of the motion equations implies a strong

mathematical formulation, since it is necessary to lin-
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earize the derivatives of the linear momentum equations

of both solid and fluid phases (see Appendix A).

This research supposes the first development of the

linearization of the u-w formulation, useful to solve

large deformation problems with several computational

methods. Despite the higher mathematical effort re-

quired by this formulation, as well as the more labo-

rious implementation compared to the explicit one, the

range of applicability of this implicit scheme is wider

than the explicit one, the formulation of which is much

simpler than the one proposed in this paper. However

explicit formulations are only suitable for high load-

ing rates problems, as the time intervals required for

convergence in such methodologies are prohibitive in

terms of computational efforts. On the other hand, in

the same range of problems, with similar spatial dis-

cretizations, the implicit approach presents higher sta-

bility, which is crucial when the deformations become

higher.

The derivation of the motion equations is success-

fully reached and subsequently validated against ref-

erence examples through a meshfree framework, LME,

which is more suitable for large deformation problems.

The performance of three different aspects were as-

sessed in this research: the behavior under high fre-

quency loads; the results of large settlement in a consol-

idation problem; and the applicability of the methodol-

ogy for different constitutive materials. The main con-

clusion derived from the obtained results is the better

stability achieved in comparison with the explicit so-

lution previously reported by [28]. This fact may be

evidenced by observing the evolution of the pore pres-

sures along time for the different tests carried out in

this paper: the convergence is smoother and more sta-

ble. In addition, the results are in good agreement with

the results of the referenced research, suggesting a good

accuracy of the methodology as well. The spatial distri-

bution of the pore pressure also indicates the strength

of the methodology.

Although the validation tests offer excellent results,

they only lie on the academic field. Thus, the employ-

ment of the proposed method in the study of the behav-

ior of a realistic embankment loaded by an earthquake

helps us to complete this study with a more realistic

dynamic problem. In this case, the liquefaction is the

main subject of research since it may be a measurement

of the failure of the material. This behavior has been

studied in both dilatant and contractive material, the

last being more in our interest since the typical increase

of the pore pressure, which occurs in this type of soils,

may lead to the rise of the liquefaction ratio, as it is

shown in this paper. Therefore, we can conclude that

the proposed methodology is also capable to capture

liquefaction failures in saturated, granular soils when

dynamically loaded.

Finally, once the method is tested, future research

may employ it with different constitutive models in or-

der to simulate different soils, depending on the differ-

ent material properties. Also, it is required the assess-

ment of the usage of different time integration schemes

(see [29] and [1]) in order to improve the performance

of the proposed methodology.
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A Appendix: Consistent Linearization

As the linearization is referred to the undeformed domain, B0,
since it is time independent, it is necessary to move Eqs. (31-
32) to the reference configuration. From the transport theo-
rems we know that dv = J dV and ds = JF−T dS and the
Piola transformation states that Div(u) = J div(u) (See [24,
35] for more information). Starting from these points, the
equations to be linearized yield

−α7

∫
B0

τ ′ : grad(δu) dV − α7

∫
B0

QDiv(u)div(δu) dV

−α7

∫
B0

QDiv(w)div(δu) dV − α1

∫
B0

[ρ0u+ Jρww] · δu dV

+α8

∫
B0

ρ0g · δu dV + α8

∫
δB0

T · δu dS = 0 (A.1)

−α7

∫
B0

QDiv(u)div(δw) dV − α7

∫
B0

QDiv(w)div(δw) dV

−α4

∫
B0

Jµw

k
w · δw dV − α1

∫
B0

Jρw

n
w · δw dV

−α1

∫
B0

Jρwu · δw dV + α8

∫
B0

Jρwg · δw dV

−α8

∫
δB0

Tw · δw dS = 0, (A.2)

where τ ′ is the effective Kirchhoff stress tensor and T
and Tw are respectively the traction vectors of solid and fluid
phases computed respect the undeformed configuration.

Before linearizing the different terms of the target equa-
tion, the linearization of some useful terms is carried out
against ∆u:

Du [J ] = J div(∆u) (A.3)

(From [16]) Also the linearization of n will be useful for the
derivation of other quantities:

Du [n] = Du

[
1 −

1 − n0

J

]
= −(1 − n0)

−1

J2
Du [J ]

=
1 − n0

J
div(∆u) = (1 − n)div(∆u) (A.4)

From tensor analysis [15] we determine that:

Du [grad(u)] = Du
[
Grad(u)F−1

]
= Grad(Du [u])F−1 + Grad(δu)Du

[
F−1

]
= Grad(∆u)F−1 − Grad(u)F−1grad(∆u)

= grad(∆u) − grad(u)grad(∆u) (A.5)

Du [div(δu)] = I : Du [grad(δu)]

= I :
[
((((

((((Grad(Du [δu])F−1 − grad(δu)grad(∆u)
]

= −grad(δu) : gradT (∆u) (A.6)

Du [Div(u)] = Du [I : Grad(u)] = I : Du [Grad(u)] (A.7)

= I : Grad(Du [u]) = I : Grad(∆u) = Div(∆u)

So, the term we can see in the linear momentum balance
equations is linearized as follows:

Du [Div(u)div(δu)] = Du [Div(u)] div(δu)

+Div(u)Du [div(δu)]

= grad(δu) : [Div(∆u)I

−Div(u)gradT (∆u)] (A.8)

Other important linearizations can be derived from Eq.A.4:

Du [k] = (1 − n)
∂k

∂n
div(∆u) (A.9)

(See also [35])

Du

[
J
µ

k

]
=
µ

k
J div(∆u) − J

µ

k2
Du [k]

= J
µ

k

[
1 −

1 − n

k

∂k

∂n

]
div(∆u) (A.10)

Du [Q] = Du

[
Kw

n

]
= Kw

∂

∂n

[
1

n

]
∂n

∂u
= −

Kw

n2
Du[n]

= −
Kw

n2
(1 − n)div(∆u) (A.11)

Du

[
J
ρw

n

]
=
ρw

n
J div(∆u) − J

ρw

n2
(1 − n)div(∆u)

= J
ρw

n

2n− 1

n
div(∆u) (A.12)

As the reference density is defined as

ρ0 = Jρ = J nρw + J(1 − n)ρs

= Jρw − (1 − n0)ρw + (1 − n0)ρs, (A.13)

the linearization of the density yields:

Du [ρ0] = Du [Jρw] = Jρwdiv(∆u). (A.14)

The linearization will be stated for the weak form with re-
spect to the reference configuration. Hereinafter the lineariza-
tion of the terms that upon the deformation field are pre-
sented. All other terms will take part of the Newton scheme in
the sense that it presented in Section 3. In the following equa-
tions superscripts represent the different terms of both Linear
Momentum Balance equation of mixture and fluid phases re-
spectively.

– DGLMS ·∆u:

DG 1
LMS ·∆u = Du [τ ′ : grad(δu)]

= grad(∆u)τ ′ : grad(δu)

+J grad(∆u) : Cep : grad(δu) (A.15)

where Cep is the material elasto-plastic constitutive tan-
gent operator. This linearization is widely developed in
literature [40].

DG 2
LMS ·∆u = Du [QDiv(u)div(δu)] (A.16)

= Du [Q] Div(u)div(δu)

+QDu [Div(u)div(δu)]

= Q (−
1 − n

n
div(∆u)Div(u)div(δu)

+grad(δu) :
[
Div(∆u)I − Div(u)gradT (∆u)

]
)

= J Q grad(δu) : (div(∆u)I

−div(u)

[
gradT (∆u) +

1 − n

n
div(∆u)I

]
)
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DG 3
LMS ·∆u = Du [QDiv(w)div(δu)] (A.17)

= Du [Q ] Div(w)div(δu)

+QDu [Div(w)] div(δu)

+QDiv(w)Du [div(δu)]

= −J Q grad(δu) : (div(w)[gradT (∆u)

+
1 − n

n
div(∆u)I])

DG 4
LMS ·∆u = Du [ρ0u+ Jρww] · δu (A.18)

= Du [Jρw] (u+w) · δu+ JρDu[u] · δu
= J [ρ∆u+ ρwdiv(∆u) (u+w)] · δu

– DGLMS ·∆w:

DG 2
LMS ·∆w = Dw [QDiv(u)div(δu)] = 0 (A.19)

DG 3
LMS ·∆w = Dw [QDiv(w)div(δu)]

= J Q grad(δu) : div(∆w)I (A.20)

– DGLMW ·∆u:

DG 1
LMW ·∆u = Du [Qdiv(u)div(δw)] (A.21)

= J Q grad(δw) : (div(∆u)I

−div(u)

[
gradT (∆u) +

1 − n

n
div(∆u)I

]
)

DG 2
LMW ·∆u = Du [Qdiv(w)divδw]

= −J Q grad(δw) : (div(w)[gradT (∆u)

+
1 − n

n
div(∆u)I]) (A.22)

DG 3
LMW ·∆u = Du

[
J
µw

k
w · δw

]
(A.23)

= Du[J ]
µw

k
w · δw + JDu

[
µw

k

]
w · δw

+
Jµw

k
���Du[w] · δw

= J
µw

k

[
div(∆u)

(
1 −

1 − n

k

∂k

∂n

)
w

]
· δw

DG 4
LMW ·∆u = Du

[
J
ρw

n
w · δw

]
(A.24)

= Du[J ]
ρw

n
w · δw +Du

[
ρw

n

]
Jw · δw

+
Jρw

n
���Du[w] · δw

=
Jρw

n

[
2n− 1

n
div(∆u)w

]
· δw

DG 5
LMW ·∆u = Du [Jρwu · δw]

= [Du[J ]ρwu+ JρwDu[u]] · δw
= Jρw [∆u− div(∆u)u] · δw (A.25)

– DGLMW ·∆w:

DG 1
LMW ·∆w = Dw [Qdiv(u)div(δw)] = 0 (A.26)

DG 2
LMW ·∆w = Dw [Qdiv(w)div(δw)]

= J Q grad(δw) : div(∆w)I (A.27)

Finally, using the different terms carried out in the Eqs. (A.15-
A.27), the linearization of Eqs. (A.1-A.2) gives the following
result:

− α7

∫
B

grad(δu) : cep : grad(∆u) dv

− α7

∫
B

σ′ : gradT (δu) grad(∆u) dv

− α7

∫
B

grad( δu) : (Q [div(∆u) + div(∆w)] I) dv

− α7

∫
B

grad( δu) :

(
pw

[
gradT (∆u) +

1 − n

n
div(∆u)I

])
dv

− α1

∫
B

δu · [ρ∆u+ ρw∆w + ρwdiv(∆u) (u+w)] dv

+ α8

∫
B

ρwδu · g div(∆u) dv (A.28)

− α7

∫
B

grad( δw) : (Q [div(∆u) + div(∆w)] I) dv

− α7

∫
B

grad( δw) :

(
pw

[
gradT (∆u) +

1 − n

n
div(∆u)I

])
dv

− α4

∫
B

µw

k
δw ·

[
∆w + div(∆u)

(
1 −

1 − n

k

∂k

∂n

)
w

]
dv

− α1

∫
B

ρw

n
δw ·

[
∆w +

2n− 1

n
div(∆u)w

]
dv

− α1

∫
B

ρwδw · [∆u+ div(∆u)u] dv

+ α8

∫
B

ρwδw · g div(∆u) dv (A.29)
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17. Jeremić, B., Cheng, Z., Taiebat, M., Dafalias, Y.: Numer-
ical simulation of fully saturated porous materials. Inter-
national Journal for Numerical and Analytical Methods
in Geomechanics 32, 1635–1660 (2008)

18. Lee, E.: Elastic-plastic deformation at finite strains. J.
Appl. Mech. 36, 1–6 (1969)

19. Lewis, R., Schrefler, B.: The finite element method in
the static and dynamic deformation and consolidation of
porous media. John Wiley & Sons Ltd. (1998)

20. Li, B., Habbal, F., Ortiz, M.: Optimal transportation
meshfree approximation schemes for fluid and plastic
flows. International Journal for Numerical Methods in
Engineering 83, 1541–1579 (2010)

21. Li, C., Borja, R.I., Regueiro, R.A.: Dynamics or porous
media at finite strain. Computed Methods in Applied
Mechanics and Engineering 193, 3837–3870 (2004)
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