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Abstract
We present the first formalisation of a blockchain-based
distributed consensus protocol with a proof of its consis-
tency mechanised in an interactive proof assistant.
Our development includes a reference mechanisation

of the block forest data structure, necessary for imple-
menting provably correct per-node protocol logic. We
also define a model of a network, implementing the pro-
tocol in the form of a replicated state-transition system.
The protocol’s executions are modeled via a small-step
operational semantics for asynchronous message passing,
in which packages can be rearranged or duplicated.

In this work, we focus on the notion of global system
safety, proving a form of eventual consistency. To do so,
we provide a library of theorems about a pure functional
implementation of block forests, define an inductive sys-
tem invariant, and show that, in a quiescent system state,
it implies a global agreement on the state of per-node
transaction ledgers. Our development is parametric wrt.
implementations of several security primitives, such as
hash-functions, a notion of a proof object, a Validator
Acceptance Function, and a Fork Choice Rule. We pre-
cisely characterise the assumptions, made about these
components for proving the global system consensus,
and discuss their adequacy. All results described in this
paper are formalised in the Coq proof assistant.

1 Introduction
The notion of decentralised blockchain-based consensus
is a tremendous success of the modern science of dis-
tributed computing, made possible by the use of basic
cryptography, and enabling many applications, includ-
ing but not limited to cryptocurrencies, smart contracts,
application-specific arbitration, voting, etc.

In a nutshell, the idea of a distributed consensus pro-
tocol based on blockchains, or transaction ledgers,1 is
rather simple. In all such protocols, a number of stateful
nodes (participants) are communicating with each other
in an asynchronous message-passing style. In a message,
a node (a) can announce a transaction, which typically
represents a certain event in the system, depending on

1Hereafter, we will be using the terms “(transaction) ledger” and

“blockchain” interchangeably.
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the previous state of the node or the entire network (we
intentionally leave out the details of what can go into
a transaction, as they are application-specific); a node
can also (b) create and broadcast a block that contains
the encoding of a certain vector of transactions, cre-
ated locally or received via messages of type (a) from
other nodes. Each recipient of a block message should
then validate the block (i.e., check the consistency of
the transaction sequence included in it), and, in some
cases, append it to its local ledger, thus, extending its
subjective view of the global sequence of transactions
that have taken place in the system to date. The process
continues as more messages are emitted and received.

In order to control the number of blocks in the system,
distributed ledger protocols rely on certain cryptographic
primitives, such as a hash-function hash defined both
on transactions and blocks, a notion of a proof object
necessary for defining the validity of a block, and an im-
plementation of a Validator Acceptance Function (VAF)
that is used to ensure that a block 𝑏 is valid wrt. to a
proof object pf . Having a block 𝑏 and a proof object pf ,
one can check very fast whether VAF 𝑏 pf is true or false.
What appears to be difficult is to produce an instance of
a proof object pf , as it requires computing a pre-image
of the hash function with respect to the current state of
the local ledger of a specific node. The exact specifics of
designing a VAF and a discipline for minting blocks with
VAF -valid proof objects, is a subject of active research,
which is far beyond the scope of this paper, with the
best known approaches being Proof-of-Work [8, 23] and
Proof-of-Stake [2]. The computational hardness or prob-
abilistic rarity of minting valid blocks is what controls
the overall block population.

However, this setup by itself does not deliver a global
consensus between the nodes. Indeed, in an asynchronous
network, where messages can be rearranged, duplicated,
or arbitrarily delayed, two different nodes 𝑛1 and 𝑛2

can receive different, or even conflicting, sets of valid
blocks and decide to adopt them in their local ledgers.
Assuming that initially all nodes share the same initial
block (so-called Genesis Block), at any further state of
the network, each two nodes’ ledgers can be in a fork
relation, when neither of them is a prefix of the other.
The consensus is enabled by fixing a globally known Fork
Choice Rule (FCR) function, that provides a decidable
strict total order on all possible chains of blocks and is
transitive and irreflexive. Thus, upon receiving a block,
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a node must check whether appending it to its local
ledger is going to increase the ledger’s “weight”, and
keep it if so, discarding it otherwise. Assuming every
node follows the same FCR-imposed discipline for chain
comparison, all participants will eventually share the
same blockchain/transaction ledger instance.

Alas, the reality is a bit more complicated than the de-
scription above. For example, in a realistic fault-tolerant
system implementation, nodes cannot afford to ignore
blocks that arrive “out of order”, which is not uncom-
mon in an asynchronous setting. Not registering such
blocks in a node’s local state would pose serious liveness
problems, as such nodes would be stuck with a “stale”
local ledger, unable to progress along with the rest of the
world. Furthermore, some nodes may not be active or
known system-wide at the very beginning of communi-
cation, so they will start by first manifesting themselves,
interacting only with a small set of peers they know. Fi-
nally, any node in the system should be able to request
from its peers the set of publicly announced blocks these
peers have witnessed in the past, so it would be possible
for the node to “catch up” with the global state of the
system, if, for instance, it has joined the network late or
has been offline for some time.

In light of these and multiple other possible scenarios
of distributed interaction, we believe that having a clean
and principled model for rigorous formal reasoning about
system-wide properties of distributed blockchain-based
protocols is of paramount importance for gaining trust in
the foundational principles of algorithms underlying, in
particular, implementations of modern cryptocurrencies,
such as Bitcoin [23], Ethereum [36] and Tezos [12].

In this work we provide such a model.

1.1 Our Contributions

The aim of this work is to develop a formal model of a
blockchain-based consensus protocol, along with a set
of necessary reference data structures and a network
semantics, with an agenda to formally study its prop-
erties, abstracting away the implementation details of
security-related primitives. Our contributions towards
this goal include the following formal artifacts:

∙ A description of a minimal set of security primitives:
hash, VAF , FCR, along with a set of laws (axioms)
they should abide, and a discussion of these laws’ ade-
quacy wrt. real-world implementations;

∙ A reference implementation of block forests—a purely
functional data structure implementing the local state
of a node in the protocol in the presence of adopted
out-of-order blocks, as well as a library of theorems
about block forests, necessary for proving the consensus
property of the system;

∙ A definition of a replicated state-transition machin-
ery, implementing the per-node logic of the protocol,
and semantics of the asynchronous network used for
establishing protocol invariants;

∙ A formulated eventual consistency (global consensus)
property for a blockchain network with a clique topol-
ogy, a whole-system invariant implying the consensus
in a quiescent state, and a proof of this invariant’s in-
ductivity, i.e., preservation by the network semantics.

In this work, we focus exclusively on system safety prop-
erties, i.e., proving that “nothing goes wrong”. There are,
indeed, more facts to establish about blockchain-based
protocols, involving liveness (aka chain growth), prob-
abilistic irrevocability, stronger notions of consistency,
and various security properties [10, 19]. We do not ad-
dress any of them in this paper, and consider statements
and proofs of those properties as future applications of
our formal model, discussing some of them in Section 7.

Our Coq development is publicly available online [28]:

https://github.com/certichain/toychain

1.2 Paper Outline

In the remainder of the paper, we explain, by example,
behaviours of blockchain-based networks and informally
sketch intuition for system consistency (Section 2). We
then describe the design and implementation of the core
data structures, such as block forests, and their depen-
dencies on the externally-provided security primitives in
Section 3. In Section 4, we define the protocol machinery
and the network semantics, elaborating on the statement
and the proof of the consensus property in Section 5.
We report on our mechanisation experience and lessons
learned in Section 6. We then discuss limitations and
possible future applications of our model in Section 7.
We survey related verification and formalisation efforts
in Section 8, and conclude in Section 9.

2 Overview
We begin by walking through an example that demon-
strates interactions between nodes in a blockchain-based
protocol and shows how consensus is achieved.
The goal of the consensus protocol is to guarantee

that network participants agree wrt. the order in which
transactions happened. This is achieved not by order-
ing transactions directly, but rather by grouping them
into blocks and then agreeing, via FCR—a comparison
operation on block sequences (chains), which resulting
blockchain to adopt. Assuming an agreement upon the
rules of the protocol and initial state of the system, (i.e.,
everyone has the same Genesis Block GB in the local
state, as shown in Figure 1(a)), and provided every-
one follows the rules, consensus is guaranteed once all
block-carrying messages are delivered.
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Figure 1. Progressive stages of interaction in a 3-node blockchain network, with “virtually shared” block-trees.

The stages (b)–(g) of Figure 1 demonstrate further
interactions in a 3-node blockchain-based system. Each
stage also provides, in the top-right corner, the implicit
“globally shared” tree of blocks, which will eventually
be replicated in each of the participants and will serve
to compute the globally shared ledger, thus delivering
the desired ledger consensus. At any point in time, par-
ticipants may issue transactions, which they broadcast
to all their peers. For instance, a node (1) creates and
announces a transaction tx 1 to its peers in (b). The mes-
sages containing the transactions propagate throughout
the network, and each node temporarily stores them
in its local transaction pool ({tx 1} in stage (c)). When
“minting” (i.e., creating) a new block, nodes embed the
transactions they know of inside the block and broadcast
it to all participants in the network, as is done by node
(3), which creates the block 𝐴 with the transaction tx 1

in (d), setting 𝐴’s “parent block” to be GB .
Since the system is distributed, multiple transactions

can be issued and propagated concurrently. As a result,
when a block is minted, the minter does not necessar-
ily know of all pending transactions, as the messages
containing them might still be in transit. This is what
happens in stage (e), where the node (1), which creates
block 𝐵, has yet no knowledge of tx 2. This delay in
propagation also might cause certain transactions to be
included in different, “conflicting” blocks. For example,
in (f) the transaction tx 3 has been included in both
block 𝐵, minted previously by node (1), and block 𝐶,

which is newly-minted by node (2). As such, looking at
the global tree view in the top-right corner of (f), tx 3

is part of two blockchains: [𝐺𝐵,𝐴,𝐶] and [𝐺𝐵,𝐴,𝐵].
However, this is not an issue for the global agreement:
as FCR imposes a total order on blockchains, it uniquely
determines which of the candidate chains is the correct
one—in this case, [𝐺𝐵,𝐴,𝐶] (we decide so for the sake
of this example, indicating this by the green colour in
the “shared” tree). Thus, all transactions, including tx 3,
appear only once within the correct chain. As more mes-
sages propagate, more participants agree on [𝐺𝐵,𝐴,𝐶]
to be the “correct”, i.e., canonical blockchain (g), until
finally, everyone is agreement when the system is in a
quiescent state with no messages in transit.

In the illustrative example above, we have seen how the
system evolves over time and how it resolves conflicts by
using the globally known FCR function. It is crucial for
the purpose of eventually reaching a consensus that the
FCR imposes a total order on all possible blockchains,
such that conflicts are uniquely settled. Also note that
FCR is computed locally by all participants, with no
communication needed. Intuitively, these two properties
put together imply that if two participants have the
same blocks in their local “block forests”, they will agree
wrt. what the correct global chain is. Extended to an
entire network, this means that when all blocks have
been delivered, all nodes decide upon the same chain.
Or, in other words, all nodes are in consensus.

In the following sections, we establish this formally.
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Time,Addr , N
𝑏 ∈ Block ::= { prev : Hash; txs : Tx*; pf : Proof }

𝑐 ∈ Chain , Block*

bf ∈ BForest , Hash
fin
⇀ Block

tp ∈ TxPool , 𝒫(Tx)

(a) Blocks, chains, and block forests

Hash,Proof,Tx : eqType

GB : Block

hashb : Block → Hash

hasht : Tx → Hash

mkProof : Addr → Chain → option Proof

VAF : Proof → Time → Chain → bool

FCR : Chain → Chain → bool

txValid : Tx → Chain → bool

txExtend : TxPool → Tx → TxPool

(b) Parameter primitive types and functions

Figure 2. Data structures and framework parameters.

3 Data Structures for Blockchains
We now present the data structures and primitives nec-
essary for implementing the logic of the blockchain con-
sensus protocol’s replicated state machines.

3.1 Parameters and Core Data Structures

The top part of Figure 2 shows the definitions of the
main data structures we are going to use. Some of the
primitive data types are left undefined (cf. Figure 2 (b)),
as they serve as parameters for the framework. For exam-
ple, the types of time-stamps Time, necessary for mod-
elling disciplines such as Proof-of-Stake, and network
addresses Addr (ranged over by 𝜏 and 𝑎, correspond-
ingly) are isomorphic to natural numbers N. At the
same time, the types Hash of hash values, proof objects
Proof and transactions Tx (ranged over by ℎ, pf , and tx ,
correspondingly) can be arbitrary (e.g., natural numbers,
strings, etc) as long as they come with decidable equality
checking, which is indicated by the eqType annotation.

Blocks are represented as records with three fields. The
first one, prev, stores the hash of some block (even the
very same one, although in most cases such blocks will
be deemed ill-formed). The field txs stores a sequence
of transactions, contained within this block, in the order
they are supposed to take place.2 Finally, the proof
object in pf is used to validate the block.

Two functions, hasht and hashb , for computing hash-
values of transactions and blocks correspondingly, are

2For simplicity, we consider transactions located in the same block

to be non-conflicting with each other.

hash inj : ∀𝑥 𝑦, #𝑥 = #𝑦 =⇒ 𝑥 = 𝑦

GB hash : prev GB = #GB

GB txs : txs GB = [ ]

VAF nocycle : ∀𝑏 𝜏 𝑐,VAF (pf 𝑏) 𝜏 𝑐 =⇒ 𝑏 /∈ 𝑐

FCR rel : ∀𝑐1 𝑐2, 𝑐1 = 𝑐2 ∨ 𝑐1 > 𝑐2 ∨ 𝑐2 > 𝑐1

FCR trans : ∀𝑐1 𝑐2 𝑐3, 𝑐1 > 𝑐2 ∧ 𝑐2 > 𝑐3 =⇒ 𝑐1 > 𝑐3

FCR nrefl : ∀𝑐, 𝑐 > 𝑐 =⇒ False

FCR ext : ∀𝑐1 𝑐2 𝑏, 𝑐1 ++ (𝑏 :: 𝑐2) > 𝑐1

FCR subch : ∀𝑐1 𝑐2, 𝑐1 ≺ 𝑐2 =⇒ 𝑐2 ≥ 𝑐1

txValid nil : ∀tx , txValid tx [ ] = true

Figure 3. Axioms of the framework parameters.

provided by the client of the framework. For the sake
of brevity, in the remainder of the paper, we will use
the overloaded notation #𝑥 for computing the hash of a
value 𝑥, which is either a block or a transaction, using
the corresponding hash-function. The only requirement
imposed on the hash function is it being injective, as
stated by the axiom hash inj in Figure 3.
We require the client of the framework to provide a

dedicated Genesis Block GB , which is going to serve
as an initial “seed” for all local ledgers, and is globally
known in the system. This block is slightly different
from other blocks we will observe in the system, as it
is a subject of the first two hypotheses (axioms) we
impose, which are shown in Figure 3. First, the hash
of GB should be equal to GB ’s prev value (GB hash).
This requirement seems quite artificial, but it is easy to
achieve in practice by redefining the result of a typical
hash-function for just one value, and it simplifies reason-
ing about forests, essentially ensuring that there can be
no parent block of GB , in the presence of possible cycles
between other (ill-formed) blocks referring to each other.
An alternative to this construction would be to make
a block’s prev field optional, and ensure the Genesis-
Block has no parent. The second axiom GB txs ensures
that the genesis block contains an empty transaction
sequence [ ].

Blockchains (or simply chains) are defined as sequences
of blocks, and block forests (or forests) are encoded as
partial finite maps from hashes to blocks. The notions
of “valid” chains and forests will follow below.

The next two parameter functions mkProof and VAF
work in tandem: the former is used to obtain a proof
object for a specific node and on top of a particular
chain, and it might fail, hence the option result type.
In real-world blockchain implementations, computing a
value of mkProof is an expensive operation, as it con-
trols the number of valid blocks in the system, but here
we do not model computational complexity, as it is ir-
relevant for establishing consensus, which is a safety,

4



Mechanising Blockchain Consensus CPP 2018, January 08–09, 2018, Los Angeles, CA, USA

not a liveness property. Dually, VAF is used to validate
proof objects for a chain and it also takes a system-
provided time-stamp as an additional parameter. The
only VAF -related axiom we need, VAF nocycle, ensures
that a freshly “minted” (i.e., created) block 𝑏, for which
a proof has been obtained wrt. to an “underlying” chain
𝑐, cannot be contained in the same 𝑐. An opposite situ-
ation would be an anomaly, and does not occur in real
situations, in part due to the practical rareness of hash
collisions.

The client-provided function FCR allows one to com-
pare the weights of two chains. From now on, we will
abbreviate (FCR 𝑐1 𝑐2) as 𝑐1 > 𝑐2. The axioms FCR rel ,
FCR trans, FCR nrefl ensure that the order FCR im-
poses on chains is total, transitive, and irreflexive. The
axiom FCR ext states that any non-empty extension of
a chain 𝑐1 produces a strictly “heavier” chain. In turn,
FCR subch postulates that if a chain 𝑐1 is a subchain of
𝑐2 (i.e., 𝑐1 ≺ 𝑐2 , 𝑐2 = 𝑐′ ++ 𝑐1 ++ 𝑐′′ for some 𝑐′, 𝑐′′,
such that at least one of 𝑐′ and 𝑐′′ is non-empty), then
𝑐2 is at least as “heavy” as 𝑐1.
Finally, the transaction validation function txValid

ensures the absence of conflicts between a transaction tx
and a preceding chain 𝑐, being always true for an empty
chain (as asserted by txValid nil), and txExtend , which
we did not have to constrain, is used to change a pool
of pending transactions held by a particular node.

3.2 Largest Chains and Block Forest Evolution

Block forests are the main data structures nodes use
to store incoming and locally minted blocks, and to
reconstruct the actual ledger of transactions. The ledger
of a forest bf , typeset as ⌈bf ⌉, is defined as the largest
(wrt. FCR) chain starting at GB and ending with some
block 𝑏, which has a corresponding entry in bf .

How do we construct such a chain? To do so, we should
restrict the class of forests bf we are working with to
those satisfying the following three properties:

1. ∀ℎ1, ℎ2 ∈ dom(bf ), ℎ1 = ℎ2 ⇒ bf (ℎ1) = bf (ℎ2);

2. ∀ℎ 𝑏, bf (ℎ) = 𝑏 ⇒ ℎ = #𝑏;

3. bf (#GB) = GB .

(1)

The first property states that every key in bf uniquely
identifies its entry; the second ensures that for every
block-entry in bf , its key is a hash of the corresponding
block; finally, the third property makes sure that bf
contains the Genesis Block with its key. We define a
forest bf satisfying 1–3 as valid(bf ) and will denote a
block 𝑏 having a corresponding entry #𝑏 ↦→ 𝑏 in a valid
forest bf as 𝑏 ∈ bf , slightly abusing the ∈-notation.
In the beginning of a system interaction, each node

holds the same forest bf 0 = {#GB ↦→ GB}, which is
trivially valid. As the nodes start minting new blocks
and broadcast them, local forests might be extended with

new blocks, for which we define the following operation:

bf ▷ 𝑏 ,
if #𝑏 ∈ dom(bf ) then bf else bf ⊎ {#𝑏 ↦→ 𝑏} (2)

That is, for any block, the result of bf ▷ 𝑏 is valid, if so
was bf . Thus, fixing · ▷ · as the only way to add a new
block to a forest, in the rest of the paper we will be only
dealing with valid forests, unless said otherwise.
Let us now compute the largest chain in a forest bf .

Indeed, even a valid forest might not be a tree, due to
gaps and possible cycles in the partial map that encodes
it. We model cycles, even though they are implausible in
a real-world setting, to account for the possibility that
the hash functions used by the protocol might not be
cryptographic. “Gaps“, on the other hand, will appear
frequently, as they correspond to blocks received out-of-
order. To be considered a ledger candidate, a chain 𝑐
should satisfy the following conditions:

1. It should contain no duplicate blocks;
2. For any block 𝑏 ∈ 𝑐, 𝑏 = GB or prev 𝑏 = 𝑏′,

where 𝑏′ is the block preceding 𝑏 in 𝑐;
3. The first block of 𝑐 should be GB (gb-founded 𝑐);
4. For any block 𝑏 ∈ 𝑐, and any transaction tx ∈ txs 𝑏,

txValid tx 𝑐′ should be True, where 𝑐′ is a prefix
of 𝑐, preceding 𝑏 (tx-valid 𝑐).

To deliver such a candidate, we first construct a total
function chain(bf , 𝑏) that returns a chain 𝑐, ending with a
block 𝑏 (or just one-element chain [GB ] if #𝑏 /∈ dom(bf ))
satisfying the conditions 1 and 2 above by implementing a
“backwards walk” by prev-links from 𝑏 in bf and ensuring
that we do not visit the same block twice. Such a walk
terminates if we encounter a cycle in bf or we reach GB ,
which is its own previous block. The exact code of chain
can be found in our supplementary Coq sources. Using
chain, we construct candidates considering all blocks in
bf and choose the largest one from those that satisfy
conditions 3 and 4. In set notation, for a valid bf , ⌈bf ⌉
is defined as follows:

⌈bf ⌉ , maxFCR

{︂
𝑐

⃒⃒⃒⃒
𝑐 = chain(bf , 𝑏), 𝑏 ∈ bf ,
gb-founded 𝑐 ∧ tx-valid 𝑐

}︂
(3)

The function ⌈bf ⌉ is implemented to be total so it returns
[GB ] as a default ledger, if no better one is found.
To get a better intuition on the dynamics of ⌈bf ⌉ as

the forest bf keeps being extended with new blocks, let
us take a look at Figure 4, which shows several states of
a valid block forest with prev-links depicted by gray ar-
rows. The stage (a) depicts a valid forest whose ledger is
𝑐 = [GB , 𝐴,𝐵,𝐶], with all other chains being less heavy
or prefixes of 𝑐. In stage (b), due to out-of-order arrival,
a block 𝐺 has been added to the forest, but at that
moment it is orphaned, hence a chain built from it is not
gb-founded . Once the missing block 𝐹 arrives in stage (c),
a the forest gets a new ledger, namely [GB , 𝐷,𝐸, 𝐹,𝐺],
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Figure 4. Different states of a valid block forest and its ledger chain (green) when extended with more blocks.

as it is more FCR-heavy than [GB , 𝐴,𝐵,𝐶]. Stages (d)
and (e) show block forests that we account for in our
implementation, but that will not correspond to local
states of the protocol participants during a normal, non-
Byzantine execution (we discuss Byzantine cases in Sec-
tion 7). Specifically, the forest in (d) has a block 𝑀 ,
which is non-tx-valid wrt. [GB , 𝐴,𝐵,𝐶], and therefore
does not contribute a ledger candidate, preventing all
further chains in the forest that include it from being
considered for the largest ledger. Finally, the case (e)
demonstrates a cycle between two blocks, 𝑋 and 𝑌 , so
neither of them is included into any chain to be consid-
ered a ledger candidate. In Section 4, we will show how
the protocol prevents cases (d) and (e) from happening,
when all participants are faithful.

3.3 Local Forests and System-Wide Union

The cases (a)–(c) from Figure 4 depict possible configura-
tions of local forests, owned by particular participants of
a blockchain protocol in the middle of a system’s execu-
tion, when some of the blocks have already been received,
while some others are in “in-flight” messages, i.e., yet to
be delivered. Furthermore, in the absence of Byzantine

participants, a system-wide union ̂︀bf of all locally owned
forests will be defined, valid, and furthermore satisfy the

following property, dubbed good( ̂︀bf ):
good(bf ) , ∀𝑏 ∈ bf ,

gb-founded(chain(bf , 𝑏)) ∧ tx-valid(chain(bf , 𝑏))
(4)

In other words, a good forest is a tree, such that GB is its
root, and a chain built from any of its blocks starts with
GB and has no blocks with invalid transactions. A pleas-
ant consequence of the fact gb-founded(chain(bf , 𝑏)) is
that the chain has no gaps, i.e., the result of chain(bf , 𝑏)
will not be affected by adding new blocks to bf , which
is stated formally by the following lemma:

Lemma 3.1. For a valid forest bf and a block 𝑏, if
gb-founded(chain(bf , 𝑏)) then for any block 𝑏′,
chain(bf ▷ 𝑏′, 𝑏) = chain(bf , 𝑏).

The following theorem is key for showing that locally
minting a new block, when done right, always increases
the local ledger, and, thus, has a chance to increase the
global one, i.e., the ledger of a system-wide forest union.

Theorem 3.2. If a forest bf is valid and a block 𝑏 is
such that tx-valid(⌈bf ⌉, 𝑏), prev 𝑏 = #(last ⌈bf ⌉), and
VAF (pf 𝑏) 𝜏 (⌈bf ⌉) for some 𝜏 , then ⌈bf ▷ 𝑏⌉ > ⌈bf ⌉.

That is, if a block 𝑏 is minted to extend the current bf ’s
ledger, adding 𝑏 will deliver a heavier one.

For a (multi-)set of blocks bs = {𝑏1, 𝑏2, . . . , 𝑏𝑛} and a
forest bf , we define the operator bf ▷▷ bs as follows:

bf ▷▷ {𝑏1, 𝑏2, . . . , 𝑏𝑛} , (. . . ((bf ▷ 𝑏1) ▷ 𝑏2) . . .) ▷ 𝑏𝑛 (5)

The definition (2) of ▷ implies that reordering or dupli-
cation of blocks in bs does not affect the result of · ▷▷ bs .
We define the partial order ⊑ on valid forests as follows:

bf 1 ⊑ bf 2 , ∃𝑏𝑠, bf 2 = bf 1 ▷▷ bs (6)

We conclude this section with two theorems that are
crucial for relating changes in a “node-local” ledger, due
to minting a new block wrt. a node-local forest bf , and
a “global” ledger built from the system-wide union of

forests ̂︀bf , such that bf ⊑ ̂︀bf . The first theorem states
that, if a new block is global goodness-preserving, and if
the new local ledger is heavier than the old global one,
then the new local ledger is the new global one:

Theorem 3.3. For valid forests bf , ̂︀bf and a block 𝑏,

if good( ̂︀bf ), and good( ̂︀bf ▷ 𝑏), and ⌈bf ▷ 𝑏⌉ > ⌈ ̂︀bf ⌉, and
bf ⊑ ̂︀bf , then ⌈bf ▷ 𝑏⌉ = ⌈ ̂︀bf ▷ 𝑏⌉.
The second theorem states that a correctly locally minted
block 𝑏, if it does not contribute to create a ledger heavier
than the current global one, will not change the global
ledger even when added to the global forest:

Theorem 3.4. For valid forests bf , ̂︀bf and a block 𝑏,

if good( ̂︀bf ), and good( ̂︀bf ▷ 𝑏), and tx-valid(⌈bf ⌉, 𝑏), and
prev 𝑏 = #(last ⌈bf ⌉), and VAF (pf 𝑏) 𝜏 (⌈bf ⌉), and
bf ⊑ ̂︀bf , and ⌈ ̂︀bf ⌉ ≥ ⌈bf ▷ 𝑏⌉, then ⌈ ̂︀bf ▷ 𝑏⌉ = ⌈ ̂︀bf ⌉.
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In a foresight of the development to be presented
in the following sections, it should be intuitively clear

that a ledger ⌈ ̂︀bf ⌉ of a system-wide forest union is what
consensus is going to be reached upon. That is, each
node, if it follows the rules of minting and adopting

blocks, will eventually “align” its local ledger with ⌈ ̂︀bf ⌉.
4 The Protocol and its Semantics
From the description of the core data structures, we pro-
ceed to outline the logic of the protocol itself, represented
as a family of replicated state-transition systems which
communicate by asynchronously exchanging packets.

4.1 System State-Space

Figure 5 shows all state-space components of our system
encoding. System configurations 𝜎 are pairs of a global
state ∆ and a packet soup 𝑃 . The former is a finite
partial mapping from node addresses to their local states;
described further below, while the latter is a (multi-)set
of packets.3 Packets are simply triples, with the first
component being the message sender, the second is the
address of the destination, and the third one is the
message content. We will further refer to the destination
address of a package 𝑝 as dest 𝑝.

A local state 𝛿 of a node is a quadruple ⟨this, as, bf , tp⟩.
Its first component this is the address of the node itself,
which coincides with the key of this node in the system’s
global state; the second component is a set of addresses
as representing the peers the node is aware of; the third
component is a block forest bf , described in detail in
Section 3, used to store the minted and received blocks;
finally, the last component is a pool of transactions tp,
storing locally created or received transactions to be
included into minted blocks in the future.
Specific contents of the messages the nodes can send

are defined by the data type Msg and include: NullMsg,
which has no effect and is a message-passing analogue
of the imperative skip command; ConnectMsg used by a
node to announce itself to its peers; AddrMsg as used
to propagate the set of peers as further into the system.
TxMsg tx is used to announce or propagate a new trans-
action tx , and BlockMsg 𝑏 serves the same purposes wrt.
announcing a block 𝑏. InvMsg ℎ𝑠 is sent to inform others
of the transactions and blocks a node holds locally (rep-
resented by their hashes ℎ𝑠); GetDataMsg ℎ is a request
for a transaction or a block with a hash ℎ, typically sent
after having received an InvMsg.
In addition to emitting messages, nodes can perform

internal operations, and we only capture the two that
are relevant to the protocol in our semantics: creating

3Our semantics is resilient with respect to packet duplication, so

here for simplicity we assume packet soups to be sets, while in or
mechanisation they are modeled as multi-sets.

System configurations

Δ ∈ GlobState , Addr
fin
⇀ 𝛿

𝑃 ∈ PacketSoup , 𝒫(Packet)

𝜎 ∈ Conf , GlobState×MessageSoup

Local states

𝛿 ∈ LocState , Addr × 𝒫(Addr)× BForest× TxPool

Messages, instructions and schedules

𝑝 ∈ Packet , Addr × Addr ×Msg

𝑚 ∈ Msg ::= NullMsg

| ConnectMsg

| AddrMsg (as ∈ 𝒫(Addr))

| TxMsg (tx : Tx)

| BlockMsg (𝑏 : Block)

| InvMsg (ℎ𝑠 ∈ 𝒫(Hash))

| GetDataMsg (ℎ : Hash)

𝑖 ∈ Instr ::= DoTx (tx : Tx)

| DoMint

𝑠 ∈ Selector ::= SelIdl

| SelRcv (𝑎 : Addr)

| SelInt (𝑎 : Addr) (𝜏 : Time) (𝑖 : Instr)

sc ∈ Schedule , Selector*

Figure 5. System state-space and schedules.

and announcing a transaction, and minting a new block.
A data type Instr for instructions serves to encode these
two operations. We will use instructions to encode node-
specific internal choices for modeling non-determinism
in global network executions (described in Section 4.3)
by parameterising them with schedules—finite sequences
of selectors determining which node should act next and
what is going to be its move.

4.2 Local Node Semantics

Figures 6 and 7 show the per-node transitions. While
in our implementation they are encoded as executable
Coq functions, in this paper we follow a more traditional
relational style of presenting an operational semantics.
We split the semantics into receive-transitions and

internal transitions. The former ones are of the form
𝛿

𝑝−−→𝜌 (𝛿′, ps) taking a node from a state 𝛿 and to 𝛿′

when processing a package 𝑝, also emitting a new set of

packages ps . The latter ones, 𝛿
⟨𝑖,𝜏⟩−−−−→𝜄 (𝛿

′, ps), describe

change of a state from 𝛿 and 𝛿′ with emission of packages
ps as a result of executing the instruction 𝑖 at a globally
synchronised time 𝜏 .
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Receive-step transitions: 𝛿
𝑝−−→𝜌 (𝛿′, ps)

RcvNull 𝛿
⟨from, this, NullMsg⟩−−−−−−−−−−−−−→𝜌 (𝛿, ∅)

RcvConnect
as′ = as ∪ {from} ℎ𝑠 = dom(bf ) ∪ {#tx | tx ∈ tp}

ps = {⟨this, from, InvMsg ℎ𝑠⟩}

⟨this, as, bf , tp⟩ ⟨from, this, ConnectMsg⟩−−−−−−−−−−−−−−−−→𝜌 (⟨this, as′, bf , tp⟩, ps)

RcvAddr
as1 =

{︀
𝑎 | 𝑎 ∈ as′ ∧ 𝑎 /∈ as

}︀
as2 = as ∪ as1

ps1 = {⟨this, 𝑎,ConnectMsg⟩ | 𝑎 ∈ as1}
ps2 = {⟨this, 𝑎,AddrMsg as2⟩ | 𝑎 ∈ as} ps = ps1 ∪ ps2

⟨this, as, bf , tp⟩ ⟨from, this, AddrMsg as′⟩−−−−−−−−−−−−−−−−−→𝜌 (⟨this, as2, bf , tp⟩, ps)

RcvTx
tp′ = txExtend tp tx

ℎ𝑠 = dom(bf ) ∪
{︀
#tx ′ | tx ′ ∈ tp′}︀

ps = {⟨this, 𝑎, InvMsg ℎ𝑠⟩ | 𝑎 ∈ as}

⟨this, as, bf , tp⟩ ⟨from, this, TxMsg tx⟩−−−−−−−−−−−−−−−→𝜌 (⟨this, as, bf , tp′⟩, ps)

RcvBlock
bf ′ = bf ▷ 𝑏 tp′ =

{︀
tx | tx ∈ tp ∧ txValid tx ⌈bf ′⌉

}︀
ℎ𝑠 = dom(bf ′) ∪

{︀
#tx | tx ∈ tp′}︀

ps = {⟨this, 𝑎, InvMsg ℎ𝑠⟩ | 𝑎 ∈ as}

⟨this, as, bf , tp⟩ ⟨from, this, BlockMsg 𝑏⟩−−−−−−−−−−−−−−−−→𝜌 (⟨this, as, bf ′, tp′⟩, ps)

RcvInv
ℎ𝑠1 = dom(bf ) ∪ {#tx | tx ∈ tp} ℎ𝑠′ = ℎ𝑠 ∖ ℎ𝑠1

ps =
{︀
⟨this, from,GetDataMsg ℎ⟩ | ℎ ∈ ℎ𝑠′

}︀
⟨this, as, bf , tp⟩ ⟨from, this, InvMsg ℎ𝑠⟩−−−−−−−−−−−−−−−→𝜌 (⟨this, as, bf , tp⟩, ps)

RcvGetData
𝑏𝑠 = {𝑏 | 𝑏 = bf (ℎ)} txs = {tx | tx ∈ tp ∧#𝑡 = ℎ}

𝑚 =

(︂
if 𝑏𝑠 = {𝑏} then BlockMsg 𝑏 else

if txs = {tx} then TxMsg tx else NullMsg

)︂
ps = {⟨this, from,𝑚⟩}

⟨this, as, bf , tp⟩ ⟨from, this, GetDataMsg ℎ⟩−−−−−−−−−−−−−−−−−→𝜌 (⟨this, as, bf , tp⟩, ps)

Figure 6. Local semantics, Part I: receive-transitions.

The receive-transitions (Figure 6) follow the intuition
of the corresponding messages, and are mostly straight-
forward, so we only describe a few in prose. When tak-
ing a RcvAddr step, a node not only adds the new
addresses to its local pool, but also sends a ConnectMsg-
request to the new peers it has learned about (ps1) and
propagates the new information to its current peers (ps2),
which will then themselves connect to the new peers (if
they hadn’t already). When receiving a new transaction
or a block (via RcvTx or RcvBlock), a node adds it to
its local state and informs its peers of now possessing it
by sending an InvMsg, potentially causing a lot of redun-
dant messages, which are nevertheless handled without

Internal step transitions: 𝛿
⟨𝑖,𝜏⟩−−−−→𝜄 (𝛿′, ps)

IntTx
ps = {⟨this, 𝑎,TxMsg tx ⟩ | 𝑎 ∈ as}

⟨this, as, bf , tp⟩ ⟨DoTx tx ,𝜏⟩−−−−−−−−→𝜄 (⟨this, as, bf , tp⟩, ps)

IntMint
mkProof this ⌈bf ⌉ = Some pf

VAF pf 𝜏 ⌈bf ⌉ = true

𝑏 =

⎧⎨⎩
prev := #(last ⌈bf ⌉);
txs := [ tx | tx ∈ tp ∧ txValid 𝑡 ⌈bf ⌉ ];
pf := pf

⎫⎬⎭
bf ′ = bf ▷ 𝑏 ps = {⟨this, 𝑎,BlockMsg 𝑏⟩ | 𝑎 ∈ as}

tp′ =
{︀
tx | tx ∈ tp ∧ txValid tx ⌈bf ′⌉

}︀
∖ (txs 𝑏)

⟨this, as, bf , tp⟩ ⟨DoMint,𝜏⟩−−−−−−−→𝜄 (⟨this, as, bf ′, tp′⟩, ps)

Figure 7. Local semantics, Part II: internal transitions.

any concerns for safety. Note that RcvBlock does not
check whether the block it receives is valid before adding
it to the local block forest. This seems unusual, but in
reality is the only possible option, because a block’s va-
lidity depends on the blocks that precede it, which the
node may not yet have. Finally, the last two transitions
serve to inform a node of new transactions and blocks in
the system (via RcvInv), so it could request them by
sending a GetDataMsg message, and the response to it
will be sent (via RcvGetData) in the form of TxMsg
or BlockMsg.

It is perhaps slightly non-obvious, but the rules allow
to model the possibility of a node “joining late” and even-
tually “catching up” with the rest of the system, thanks
to RcvConnect and other transitions that send known
information about blocks transactions to the package
origin from, so it could request them via RcvInv.
Figure 7 shows the two internal transitions that are

triggered by the corresponding instructions. The IntTx
simply adds a new transaction to the local pool, so it
could be included into a block later, and announces
it to the node’s peers. The IntMint transition relies
on the block forest machinery and related primitives
described in the previous section. Specifically, we (rather
optimistically) assume that a node locally checks the new
minted block 𝑏 with respect to its prefix chain, before
adding it to its local forest and sending it to its peers.
With the rules in Figures 6 and 7, we intentionally

define a non-optimal version of the protocol, such that
nodes executing the transitions populate the packet soup
with a lot of redundant messages. Yet, as we will show
in Section 5, this does not pose problems for establishing
consensus on the state of the global ledger.
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Network transitions: ⟨Δ, 𝑃 ⟩ 𝑠
=⇒ ⟨Δ′, 𝑃 ′⟩

NetDeliver
𝑝 ∈ 𝑃 dest 𝑝 = 𝑎 Δ(𝑎) = 𝛿 𝛿

𝑝−−→𝜌 (𝛿′, ps)

⟨Δ, 𝑃 ⟩ SelRcv 𝑎
=====⇒ ⟨Δ[𝑎 ↦→ 𝛿′], 𝑃 ∖ {𝑝} ∪ ps⟩

NetInternal

Δ(𝑎) = 𝛿 𝛿
⟨𝑖,𝜏⟩−−−−→𝜄 (𝛿′, ps)

⟨Δ, 𝑃 ⟩ SelInt 𝑎 𝜏 𝑖
=======⇒ ⟨Δ[𝑎 ↦→ 𝛿′], 𝑃 ∪ ps⟩

NetIdle ⟨Δ, 𝑃 ⟩ SelIdl
====⇒ ⟨Δ, 𝑃 ⟩

Figure 8. Network semantics.

4.3 Network Semantics

The network semantics rules, parameterised by a selec-
tor 𝑠, are shown in Figure 8. They are standard for model-
ing interleaved concurrency with non-deterministic inter-
nal choices and message delivery. The three rules account
for a possibility of delivering a randomly picked package
𝑝 from the soup 𝑃 to a destination 𝑎 (NetDeliver),
a node 𝑎 taking an internal step with an instruction 𝑖
(NetInternal) or doing nothing (NetIdle).

While the rules do not change the global set of node
addresses, we nevertheless can model a scenario of a
node “joining” the network, assuming that it already
has a predefined address and a correctly initialised initial
state, so it only needs to announce itself to its peers and
requests the information about transactions and blocks.4

We conclude this section by defining the notion of
reachability ( ) between two configurations as follows:

𝜎  𝜎′ , 𝜎 = 𝜎′ ∨
∃sc = [𝑠1, . . . , 𝑠𝑛], [𝜎1, . . . , 𝜎𝑛−1], s.t .

𝜎
𝑠1==⇒ 𝜎1 ∧ . . . ∧ 𝜎𝑛−1

𝑠𝑛==⇒ 𝜎′.

(7)

5 System Safety and Consensus
With the definitions of the protocol and a library of
theorems about block forests at hand, we are now ready
to establish several important safety properties, including
the eventual consistency (i.e., the consensus) of our
system. It is customary to formulate safety properties
as inductive system invariants, defined as follows:

Definition 5.1. The property 𝐼 : Conf → Prop is an
inductive invariant of a system if for the system’s initial
configuration 𝜎0, 𝐼(𝜎0) holds, and for any 𝜎, 𝜎′ and 𝑠,

such that 𝐼(𝜎) holds, 𝜎
𝑠

=⇒ 𝜎′ implies 𝐼(𝜎′).

4We could have added another internal transition rule for emitting
a ConnectMsg, but this is orthogonal to our study of system safety.

Therefore, by induction, an inductive property 𝐼 will
hold for any system configuration 𝜎, such that 𝜎0  
𝜎. Indeed, what can be proven inductive depends on
the choice of the initial system state, which we have
not specified so far. For the rest of this section, we
will consider only the initial configurations of the form
𝜎0 = ⟨GlobState0, ∅⟩, where for any 𝑎 ∈ dom(GlobState0),
GlobState0(𝑎) = ⟨𝑎, as𝑎, {#GB ↦→ GB} , { }⟩, i.e., leav-
ing only the node-specific sets of peers as𝑎 unconstrained.

5.1 System State Coherence

Before moving to the interesting (and, hence, complex)
system safety properties, we start by establishing the
inductivity of global state coherence, i.e., proving that
interaction between nodes does not violate the validity
of the components of each node’s local state. We thus
define the global system state coherence as follows:

Coh(⟨∆,−⟩) , ∀𝑎 ∈ dom(∆),∃as bf tp,
∆(𝑎) = ⟨𝑎, as, bf , tp⟩ ∧ valid(bf )

(8)

The validity of each local forest bf is via the definition (1).
Any of the 𝜎0 we consider satisfies it, and the property
Coh is inductive, because all manipulations with node-
local block forests are done using the ▷ operation (2).

5.2 Eventual Ledger Consistency

Let us now formulate the eventual consistency of the
system. Informally, it says that when there are no in-
flight messages between any of the nodes, they all should
agree on the local ledger, which can be, thus, thought of
as a globally shared one [32].
In practice, however, communication between nodes

never stops. Our protocol features many “modes of com-
munication” (announcing a block, requesting hashes,
etc), and, as it turns out, not all of them should be
ceased for reaching consensus on ledgers. What is es-
sential is to have no in-flight instances of BlockMsg.
5 Having no in-flight block-messages, however, is not
the only requirement for the universality of the consen-
sus (i.e., ensuring that each two nodes have the same
ledger): it might be the case that some nodes joined
late, and due to the delays in updating the topology,
have not yet requested all missing data from their peers.
Characterising consistency conditions in this case would
require us to take the “late joiners” into account. While
not impossible, this would make the whole consistency
statement quite complicated. To avoid this, in this paper
we decided to formulate the consistency in a simpler
setting: a clique network topology, restricting the initial
configurations to those where every node’s known peers
include all addresses in the global state.6

5The version we present is a form of quiescent consistency [1, 4].
6This situation is quite common for corporate blockchain-based
protocols, where all peers know each other from the very beginning.
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Cliq(⟨Δ, 𝑃 ⟩) ,
Coh(⟨Δ, 𝑃 ⟩) ∧
∀𝑎 ∈ dom(Δ), dom(Δ) ⊆ peers(Δ, 𝑎) ∧
∃𝑐, ̂︀bf ,̂︀𝑎 ∈ dom(Δ), such that

(𝑖) ∀𝑎 ∈ dom(Δ), ̂︀bf = forest(Δ, 𝑎) ▷▷ blocksFor(𝑃, 𝑎) ∧
(𝑖𝑖) valid( ̂︀bf ) ∧ good( ̂︀bf ) ∧ 𝑐 = ⌈ ̂︀bf ⌉ ∧
(𝑖𝑖𝑖) ∀𝑎 ∈ dom(Δ), 𝑐 ≥ ledger(Δ, 𝑎) ∧
(𝑖𝑣) ledger(Δ,̂︀𝑎) = 𝑐

where peers(Δ, 𝑎) , as, s.t. ⟨𝑎, as,−,−⟩ = Δ(𝑎)

forest(Δ, 𝑎) , bf , s.t. ⟨𝑎, bf ,−,−⟩ = Δ(𝑎)

Figure 9. Cliq system property.

We embed the clique topology assumption into the
whole-system property Cliq, whose formal definition we
postpone until Section 5.3. For now, let us present the
eventual consistency result it implies. For this, we intro-
duce two auxiliary definitions. The first one extracts a
ledger for a node 𝑎 ∈ dom(∆) from a global state ∆.

ledger(∆, 𝑎) , ⌈bf ⌉, s.t. ⟨𝑎,−, bf ,−⟩ = ∆(𝑎) (9)

The second returns all in-flight blocks for 𝑎 in a soup 𝑃 :

blocksFor(𝑃, 𝑎) , {𝑏 | ⟨−, 𝑎,BlockMsg 𝑏⟩ ∈ 𝑃} (10)

The desired theorem is as follows:

Theorem 5.1 (Consensus in a clique topology). For
𝜎 = ⟨∆, 𝑃 ⟩, if Cliq(𝜎) holds, then there exists a chain 𝑐,
such that for any node 𝑎 ∈ dom(𝜎), 𝑐 ≥ ledger(∆, 𝑎) and
blocksFor(𝑃, 𝑎) = ∅ implies ledger(∆, 𝑎) = 𝑐.

The chain 𝑐 from Theorem 5.1 statement is a globally
shared ledger, and in a quiescent state, all nodes have it.

5.3 Clique Invariant

We now show the statement of the Cliq property, high-
light its key insights, and convey the intuition of the
proof that it is indeed inductive for systems that start in
initial configurations 𝜎0 with a clique network topology.
The formal definition of Cliq, with the most impor-

tant conjuncts labelled (i)–(iv) is given in Figure 9. The
first two non-labelled conjuncts ensure that the property
holds over configurations that are coherent (8) and have
a clique topology, as discussed above. The rest of the
definition is more interesting, as it exhibits an impor-
tant property of blockchain-based protocols, which we
call the law of block conservation. The “conservation” is

expressed via the existence of a global forest ̂︀bf (fore-
shadowed as a system-wide forest union in Section 3.3),
which is a superset of the local forest of any node 𝑎, as
stated by conjunct (i), and can be obtained by adding
all blocks currently in-flight towards 𝑎 to 𝑎’s local forest.

The global forest ̂︀bf is also valid (1), good (4) and has

the “canonical” ledger 𝑐 (ii), which is larger or equal
than any local ledger (iii). Finally, there is always a
node ̂︀𝑎 ∈ dom(∆) that has the canonical ledger 𝑐, even

though ̂︀𝑎’s local forest might be a strict subset of ̂︀bf (iv).
The statement of Theorem 5.1 trivially follows from

(i)–(ii) as then the subject node’s forest is exactly ̂︀bf .
Why is Cliq inductive? In our Coq development,
we have proved that Cliq is preserved by the network
semantics. The proof is of interest, as it heavily relies on
the idempotence of the ▷ operation, and the “goodness”

of the global forest ̂︀bf , whose ledger 𝑐 (owned by at
least one node in the network) serves as the constructive
witness of what the consensus is going to be reached
upon. The trickiest parts of the proof concern “restoring”
conjuncts (ii) and (iv) when an arbitrary node takes
the IntMint transition, with a chance of either (a)
becoming the new owner ̂︀𝑎 of the global ledger 𝑐, or

(b) minting a block that is already in ̂︀bf or simply does
not deliver a heavier chain. The case (a) is handled by
Theorem 3.3, while the case (b) is what is delivered by
Theorem 3.4. The following theorem therefore holds:

Theorem 5.2. For systems that initially have a clique
network topology, Cliq is an inductive invariant.

On the clique assumption. What would the invari-
ant and the eventual consistency statements look like
without the clique assumption? At the moment, the
definition of Cliq ensures that for any node 𝑎 and any
block 𝑏 in the system, 𝑏 is either already in 𝑎’s local
forest or is “flying towards” it. With this assumption,
our proofs do not rely on the more advanced features
of the protocol, such as peer-exchange (via AddrMsg
and ConnectMsg) and on-demand data exchange (via
InvMsg and GetDataMsg). These features will become
useful in the future, when we want to prove more in-
teresting invariants. To illustrate this, let us consider a
case of a node 𝑎′ that has joined late, announcing itself
(via ConnectMsg) only to a few other participants. Then,
𝑎′ might not have yet requested or has not yet been
forwarded all the blocks already minted in the system.

Therefore, in order to relate its local state to ̂︀bf , we
would have to enhance the invariant with a conjunct for
ongoing “propagation” of the known peers in the system,
and replace (i) by it. In addition to that, we would need
to consider situations when the topology is not a con-
nected graph, in which case several “canonical” chains
would co-exist without ever being reconciled. Stating the
consensus property in such settings is our future work.

6 Elements of our Mechanisation
We mechanised all results described in this paper in Coq,
making use of the Ssreflect/MathComp libraries [22,
30]. Our implementation of block forests builds on the
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Table 1. Sizes of definitions and proofs (LOC).

Definitions Proofs
Block Forests 579 1406

Protocol and Network 409 263
Consensus Properties 241 273

library of partial finite maps by Nanevski et al. [24]. The
size of our contributed codebase is pleasantly small, as
demonstrated by the lines of code figures in Table 1.

In the proofs, we heavily relied on the small-scale reflec-
tion and rewriting machinery provided by Ssreflect [11].
For instance, our implementation of block forests fea-
tures both constructive and computable definitions of
prefix/fork relations on chains, as well as the correspond-
ing reflect-view lemmas, to switch between the two
representations. The definitions of all operations and
predicates on block forests, such as (1)–(3), and on net-
work configurations, such as (9) and (10), are also made
decidable/computable. This design choice has paid off
not only in reducing proof sizes, but also in the robust-
ness of our proof scripts in the face of changes made in
the definitions, which is surprising given how modest the
amount of automation we used in the project was.

As an anecdote from our experience, while preparing
this submission, a few days before the CPP’18 dead-
line and already after having completed proofs of all
invariants, we have noticed an odd encoding of the
rule RcvConnect. In our mechanisation to date, the
corresponding transition was only adding the sender from
to the local list of peers, but, rather selfishly, did not send
a list of available hashes back as an InvMsg. We have
changed the implementation so it would precisely match
the rule from Figure 6, and, to our surprise, no proofs of
invariants broke. We consider this an encouraging sign
to invest more time into domain-specific automation for
proofs about replicated state-transition systems.

7 Discussion
We now discuss the limitations of our protocol model
and the implications of the assumptions we made.

Network semantics and system faults. As defined
in Section 4, our network semantics is quite restricted.
For instance, it does not include notions of packets being
dropped or of participant faults. In practice, the clique
assumption means that we can largely ignore crash faults,
as we do not need other participants to relay our mes-
sages and we do not expect to receive any responses.
A possible complication arises when a participant

crashes while in the process of broadcasting a newly-
minted block, such that some peers receive it and others
do not. This scenario, which is very similar to that

of dropped packets, is difficult to accommodate in the
current invariant. However, the problem with dropped
packets would essentially disappear once we start mak-
ing use of the protocol’s peer-to-peer facilities, as they a
provide a large amount of communication redundancy.
That is, participants in the network advertise their entire
knowledge every time they update it, and they request
information they do not have from all peers that have
advertised it. For reaching the consensus eventually, it
is sufficient that one of these messages gets delivered. If
none of them is, the process repeats the next time a peer
updates its state and advertises.

Byzantine behaviours. A special case of faults is
that of Byzantine faults, in which participants exhibit
arbitrary behaviour [20]. These may arise due to software
bugs, hardware malfunctions or through the actions
of malicious actors. Our invariant is not resistant to
Byzantine faults. For example, the proof relies on the
fact that all blocks in the canonical block forest are
tx-valid . This is true under normal operation, but can be
invalidated at will by a malicious actor. In order to reason
about the ineffectiveness of Byzantine faults, we will
have to introduce to the invariant some notion of honest
participants being in the majority and in communication
with each other, and to find a way of accommodating
within the proofs the presence of “bad” blocks.

It is important to stress that these invalid blocks, as
seen in cases (d) and (e) of Figure 4, do not in any way
prevent the protocol from operating correctly (from the
perspective of faithful participants), but merely make it
more difficult to prove that it does.

Other protocol properties. In this work, we have fo-
cused exclusively on the safety of the system, i.e., the
property that all correct nodes agree wrt. which ledger
they adopt. Other properties, such as liveness and vari-
ous security properties, depend on the choice of system
parameters hash, VAF , and FCR. For example, system
security almost certainly requires that we use a crypto-
graphic hash function, i.e., a hash function that is both
collision-resistant (approx. injective) and pre-image re-
sistant (given ℎ(𝑚), finding 𝑚 is computationally hard).
For liveness, we will at the very least need to ensure,
in the form of a new axiom, that hashes for blocks do
not collide with hashes for transactions. Otherwise, in-
formation might not propagate correctly throughout the
network. Moreover, we likely want VAF to impose a
reasonable delay between consecutive block mintings,
such that messages have time to propagate throughout
the network—this would provide an adequate quiescent
state, and thus consensus can be reached. Studying the
full implications of different framework parameters is
left for future work.
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Towards a verified blockchain implementation.
Our implementation of the protocol is intentionally non-
optimal. Whenever faced with a decision of how to im-
plement a function, we always chose simplicity over ef-
ficiency. That being said, all of our functions of, e.g.,
processing block forests, are pure, so that they can be
replaced with more efficient functional or imperative
equivalents. For example, the reference implementation
of chain performs a lot of redundant computation and
would greatly benefit from a memoization strategy. Simi-
larly, the message propagation strategy is very inefficient,
and could possibly be replaced with a more sensible one.

Because our mechanisation of the protocol is encoded
as a library of computable Coq functions that implement
state transformers and message handlers, it should be
possible to extract it to OCaml and run on top of a
trusted shim implementation, thus providing a formally
verified blockchain implementation, in the same way it
has been done in the recent work on the Disel frame-
work [31, 34]. This setup, however, appears quite näıve
and would be problematic in a realistic case of Byzantine
faults, as the safety results established in this work hold
only as long as all participants follow the protocol and
use exactly the same version of the shim, which is hard
to guarantee in an adversarial distributed environment.

8 Related Work
The results we presented in this paper are related to the
latest advances in the areas of computer security, formal
methods, and distributed systems.

8.1 Consistency of Blockchain Protocols

In the past few years, there has been a lot of interest
within the security and privacy community for notions
of consistency in application to blockchain protocols.
Garay et al. considered the core protocol underlying

Bitcoin [23], focusing on its two properties, dubbed Com-
mon Prefix and Chain Quality [10]. The common prefix
property is a probabilistic version of the notion of even-
tual consistency we have established in Section 5 of this
paper. Specifically, they establish that all honest parties
in the system agree on a common ledger prefix up to 𝑘
last blocks, where 𝑘 is a parameter of the system. The
chain quality property tackles a Byzantine setting in
which malicious participants may contribute ill-formed
blocks, and states that the number of such blocks in
the system in not very large, given that the majority
of participants remain honest and follow the protocol.
Unlike our formalization, the work by Garay et al. takes
into the account possible adversarial behaviours of the
protocol participants, but restricts the communication
to fully synchronous, i.e., messages in the system are

instantly delivered without delays, whereas we allow for
arbitrary delays and permutations in message delivery.

While that work focuses on proving the properties of
Nakamoto’s consensus based on Proof-of-Work [23], in a
follow-up to that result, Kiayias et al. propose a block-
chain consensus protocol based on Proof-of-Stake [2]
and possessing the same properties, and also a new one,
Chain Growth, which ensures overall liveness for the hon-
est parties [19], under the assumption of synchronous
message delivery in the network. Finally, in a recent work,
Pass et al. provided probabilistic boundaries with respect
to chain growth and quality, as well as the analysis of
other consistency and liveness properties of blockchain
consensus in a fully asynchronous environment [26].

In contrast with those and many other works [6, 10, 19,
26] that analyse blockchain consensus from the perspec-
tive of security properties, thus, focusing on probabilistic
reasoning about a protocol modeled as a composition
of distributions, we present a simple operational model
that immediately provides an executable semantics of
the system, but only allows us to prove “coarse-grained”
correctness conditions, such as eventual consistency.

None of the proofs of security properties of blockchain
consensus we are aware of were mechanised.

8.2 Formal Methods for Blockchains

To date, the interest of the formal methods community
wrt. blockchain-based systems is predominantly in appli-
cations of the technology, rather than reasoning about
properties of the underlying protocols.
In the past two years, a number of works have been

published on formal modeling and verification of smart
contracts—a mechanism to associate executable code
with certain blockchain transactions, providing a machin-
ery for trusted decentralised arbitration, which gained
a lot of attention thanks to its highly influential im-
plementation in Ethereum [36]. Various formal seman-
tics of Ethereum Virtual Machine (EVM) and its con-
tract language Solidity were implemented in Coq [17],
Isabelle [16], F⋆ [3], Idris [27], K [14], Why3 [9], and in
custom tools for static and dynamic analysis [21].
An implementation of an efficient data structure for

transaction ledgers has been developed and verified in
Coq by White [33], yet it has not been used in the context
of verifying a protocol that employs this structure.
At the level of reasoning about protocols, Hirai has

formalised a simple variant of a Proof-of-Stake protocol
in Isabelle [15], proving a version of the protocols’ ac-
countable safety : if two conflicting blocks get adopted in
a shared block tree, then at least 1

3 of participants may
lose their entire deposits (stakes). This property is spe-
cific to Ethereum’s Casper protocol [5] and is orthogonal
to the consensus result we established in this work.
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8.3 Verification of Distributed Consensus

Several recent major efforts have fully mechanised and
verified implementations of more traditional consensus
protocols, such as versions of Paxos [7, 13, 18, 25, 29],
Raft [35, 37], or the classical Two-Phase Commit [31, 34].
Even though none of those works consider blockchain
consensus, we believe, many of those frameworks can
handle it, as long as they can adopt our model and
support reasoning about block forests. Therefore, we
see our main conceptual contribution in distilling the
protocol semantics and outlining the proof layout for
blockchain consensus.

9 Conclusion and Future Work
In this work, we have presented a formal operational
model of a distributed blockchain-based consensus proto-
col, implemented its core data structures, characterised
the primitives it relies upon, and mechanically proved a
form of the protocol’s eventual consistency, i.e., that a
system that implements it does indeed reach a consensus.

In the future, we are going to enhance our mechanisa-
tion for reasoning about relevant security properties [19],
modeling schedule-providing oracles as probabilistic dis-
tributions. We also plan to define an operational seman-
tics for transactions run on top of the protocol, using it
as a foundational platform for verified smart contracts.

Acknowledgments
We thank the CPP’18 reviewers for the careful reading
and constructive suggestions on the paper and the for-
malisation. We also thank June Andronick and Amy
Felty for their efforts as CPP’18 Program Co-Chairs.
Sergey’s research was supported by EPSRC Grant

EP/P009271/1 “Program Logics for Compositional Spec-
ification and Verification of Distributed Systems”.

References
[1] James Aspnes, Maurice Herlihy, and Nir Shavit. 1994. Count-

ing Networks. J. ACM 41, 5 (1994), 1020–1048.

[2] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. 2014. Cryp-

tocurrencies without Proof of Work. CoRR abs/1406.5694
(2014).

[3] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric

Fournet, Anitha Gollamudi, Georges Gonthier, Nadim

Kobeissi, Natalia Kulatova, Aseem Rastogi, Thomas Sibut-
Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin. 2016.

Formal Verification of Smart Contracts: Short Paper. In PLAS.
ACM, 91–96.

[4] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and
Marek Zawirski. 2014. Replicated data types: specification,

verification, optimality. In POPL. ACM, 271–284.

[5] Vitalik Buterin and Virgil Griffith. 2017. Casper the Friendly
Finality Gadget. CoRR abs/1710.09437 (2017).

[6] Phil Daian, Rafael Pass, and Elaine Shi. 2017. Snow White:
Robustly reconfigurable consensus and applications to provably

secure proofs of stake. Technical Report. Cryptology ePrint
Archive, Report 2016/919.

[7] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey.
2016. PSync: a partially synchronous language for fault-

tolerant distributed algorithms. In POPL. ACM, 400–415.

[8] Cynthia Dwork and Moni Naor. 1992. Pricing via Processing
or Combatting Junk Mail. In CRYPTO (LNCS), Vol. 740.

Springer, 139–147.
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