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Abstract  

Objective: Differential diagnosis of autosomal recessive cerebellar ataxias can be 

challenging. A ranking algorithm that predicts the molecular diagnosis based on the 

clinical phenotype of a patient has been developed to guide genetic testing and to 

align genetic findings with the clinical context. 

Methods: An algorithm that follows clinical practice, including patient history, 

clinical, MRI, electromyography and biomarker features, was developed following a 

review of the literature on 67 autosomal recessive cerebellar ataxias and personal 

clinical experience. Frequency and specificity of each feature were defined for each 

autosomal recessive cerebellar ataxia, and corresponding prediction scores assigned. 

Clinical and paraclinical features of patients are entered into the algorithm, and a 

patient’s total score for each autosomal recessive cerebellar ataxia is calculated, 

producing a ranking of possible diagnoses. Sensitivity and specificity of the algorithm 

were assessed by blinded analysis of a multinational cohort of 834 patients with 

molecularly confirmed autosomal recessive cerebellar ataxia. The performance of the 

algorithm was assessed versus a blinded panel of autosomal recessive cerebellar 

ataxia experts. 

Results: The correct diagnosis was ranked within the top 3 highest-scoring diagnoses 

at a sensitivity or specificity of >90% for 84% and 91% of the evaluated genes, 

respectively. Mean sensitivity and specificity of the top 3 highest-scoring diagnoses 

were 92% and 95%, respectively. The algorithm outperformed the panel of ataxia 

experts (P=0.001). 

Interpretation: Our algorithm is highly sensitive and specific, accurately predicting 

the underlying molecular diagnoses of autosomal recessive cerebellar ataxias, thereby 

guiding targeted sequencing or facilitating interpretation of next-generation 

sequencing data. 

 

Keywords: Ataxia; Molecular genetics; Cerebellar function; Genetics: movement 

disorders; Clinical practice 
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Introduction 

Clinical heterogeneity and rarity of some neurological disorders may challenge the 

ability of clinicians to make timely diagnoses. This is true for autosomal recessive 

cerebellar ataxia (ARCA), a complex group of rare disorders 1-4. The revolution in 

molecular genetics, especially next-generation sequencing (NGS) 5, has led to the 

identification of new ARCA-causing genes or novel phenotypes of known 

ARCA-causing genes, improving our understanding of these disorders and our ability 

to diagnose them 6, 7. However, NGS generates a huge amount of data, including 

variants of unknown significance (VUS) that may be difficult and time-consuming to 

correctly interpret and establish relationships between potential pathogenic variants 

and observed phenotypes 8.  

There is therefore an unmet need for a tool to assist physicians and geneticists in 

providing a comprehensive and balanced differential diagnosis (DD) of ARCAs. A 

DD tool that predicts the gene responsible for a phenotype by converting clinical and 

paraclinical data into a shortlist of likely molecular diagnoses could significantly 

increase the speed and yield of diagnosis for ARCAs, subsequently improving patient 

care, particularly in cases where treatments are available.  

Our study aimed to create and validate a tool for the DD of patients with suspected 

ARCA.  

Materials and methods 

The Recessive Ataxias ranking differential DIagnosis ALgorithm 

(RADIAL) 

A diagnostic algorithm for ARCA based on literature and expert opinion has been 

produced to guide neurologists who may encounter patients with ataxia in clinical 

practice (Fig. 1). Recessive disorders (herein referred to as entities, each defined by 

mutations in specific gene(s)) with ataxia as a common, but not necessarily an initial 

or prominent feature, were identified from the literature according to previously 

published recommendations 1, 2.  
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Publications were identified by PubMed search for English language articles between 

January 1995–January 2016, using the following terms: “recessive cerebellar ataxia”, 

“recessively inherited cerebellar ataxia”, or “inherited cerebellar ataxia”, and screened 

for reports of molecularly confirmed cases of recessively inherited disorders with 

cerebellar ataxia in order to include the majority of the most common ARCA; 281 

manuscripts were used to describe the entities included in the algorithm 

(Supplementary Table 2). To describe entities, 124 individual clinical and 

paraclinical findings including routine biomarkers (so-called features), were identified 

and refined by expert opinion.  

The relationship between each feature and each entity was defined by frequency 

and/or specificity according to the literature and clinical experience of CT and MA, as 

follows: 

 High frequency (H) – feature occurs in ≥50% of patients with the entity 

 Low frequency (L) – feature occurs in <50% of patients with the entity. Where 

not clearly definable, low frequency is assumed 

 Specific (S) – feature presents in <10% of entities  

 Not present (0) – feature not considered to be associated with the entity 

 Not known (NK) – feature not reported with the entity, but with insufficient 

evidence to exclude association 

These classifications were combined as necessary, e.g. HS, high frequency and 

specific; LS, low frequency and specific.  

For each entity, scores were assigned based on an assessment of the frequency and 

specificity of features, with more frequent and specific features scoring highest, and 

weighted based on the perceived importance for DD. Based on the opinion of MA, 

NK, 0, L, H, LS, and HS were arbitrarily scored 0, −1, 1, 3, 7 and 9, points 

respectively, for clinical features, neuroimaging and electromyography, whereas 

scores were doubled for age of onset, severity of disease progression and biomarkers 

(Table 1). For example, if a patient with suspected ARCA has a cataract, they would 

score +3 points for cerebrotendinous xanthomatosis, in which cataract is high 
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frequency (H), but would score -1 points for Friedreich’s ataxia, in which cataract is 

not reported (0). A second patient who does not present with cataract would score 0 

points for both cerebrotendinous xanthomatosis and Friedreich’s ataxia. 

The outcome of this process was RADIAL, comprising a knowledgebase that defines 

the association of each clinical and paraclinical feature with each entity, with a 

corresponding score assigned to each feature-entity association (Supplementary File 

1). 

ARCA patient clinical features data collection 

Diagnostic performance of RADIAL was assessed by applying it blindly to a 

population of patients with molecularly confirmed ARCA, for whom a description of 

clinical and paraclinical features at the time of molecular diagnosis was available. 

The clinical and paraclinical features recorded at the time of molecular diagnosis of a 

worldwide patient cohort were collected by retrospective chart review between 

February–May 2016. The persons responsible for data collection from collaborating 

centres were blinded to the scoring and weighting of features within the algorithm.  

All patient data were blinded by the contributor so that names, addresses or other 

identifying information were not available to any other party involved in the analysis 

or review of the data. All investigators adhered to local privacy laws and regulations 

to ensure patient confidentiality. Patients gave written consent and ethical approval 

for the study was provided by the local ethics committee of the Strasbourg University 

Hospital, France. 

Statistical analysis 

Performance assessment of RADIAL 

Features of each patient were assessed against the knowledgebase according to the 

aforementioned calculation method. For each patient, the sum of scores for each 

feature was calculated for each entity. The total score for each entity defined its 

position on a ranked list of most likely (highest score) to least likely (lowest score) 

molecular diagnoses. Algorithm performance was a measurement of sensitivity, and 

specificity. Correct patient classification was defined as a ranking of the correct 
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diagnosis within the first, third, and fifth highest scores. The primary outcome of the 

performance assessment was the ability of RADIAL to correctly predict entities 

within the Top 3 highest scores. Other outcomes were: correctly predicting entities 

within the Top 1 and Top 5 highest scores; average sensitivity and specificity for all 

patients; the ability of RADIAL to correctly identify an entity compared to that of a 

panel of ARCA experts and correlation between performance and the total number 

and/or number of specific clinical features per entity. 

Blind evaluation against an ARCA expert panel 

The ability of RADIAL to correctly identify an entity within the Top 3 highest scores 

was compared against a blind evaluation by a panel of five ARCA experts (FM, MP, 

MS, CT and BW) in a sample of 100 patients for each expert, randomly selected from 

the patient cohort. The experts were given the same list of features provided by the 

investigators for the algorithm assessment, and produced a ranked shortlist of the 

three most likely diagnoses for each patient. The experts were able to consult the 

literature (e.g. PubMed) and were allowed as much time as required to complete the 

task. The three most likely diagnoses were compared against the Top 3 diagnoses 

provided by RADIAL for the same 100 patients. For mutations in FXN gene, the 

diagnosis was considered correct when Friedreich’s ataxia, LOFA and v-LOFA was 

proposed. Statistical differences were assessed by McNemar’s exact test. 

Correlation was tested using Pearson correlation coefficient. All statistical analyses 

were performed using the statistical package SAS v9.3. 

Results  

The RADIAL 

The algorithm knowledgebase contains 67 individual ARCAs (Supplementary 

Table 3), and was populated using the clinical findings of a total of 2,906 patients 

from the 281 manuscripts (Supplementary Table 2) and clinical experience. The 

well-described variants LOFA and v-LOFA were considered a single entity distinct 

from Friedreich’s ataxia within the knowledgebase and these analyses 9, 10. The 

RADIAL knowledgebase contains 8,308 individual correlations between 67 entities 

and 124 features (Supplementary File 1). 
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Details of the patient cohort 

Data of 834 patients from 18 different countries and representing 45 distinct entities 

were collected (Supplementary Table 4). Among these 834 patients, 618 (74%) were 

reported in the literature used to create the knowledgebase, corresponding to 21% of 

the 2,906 patients used to create the knowledgebase.   

A broad symptomatology was reported in the patient cohort; a summary of the 

symptomatology observed in the entire cohort and in the 8 entities with ≥30 patients is 

presented in Supplementary Table 5.  

Algorithm performance 

Of the 45 entities tested, 91% (41/45) were ranked within the Top 3 highest-scoring 

diagnoses at a specificity of >90% and 84% (38/45) at a sensitivity of >90% 

(Supplementary Table 6). Among these entities, the correct diagnosis was the 

highest scoring in 23 entities (51%), and was always found within the Top 16 highest 

scoring entities. The Top 3 highest scoring diagnoses had an average sensitivity and 

specificity of 92.2% and 95.4%, respectively (Supplementary Table 7 and Fig. 2). 

The highest scoring diagnosis had an average sensitivity and specificity of 77.1% and 

99.3% respectively. The Top 5 highest scoring diagnoses had an average sensitivity 

and specificity of 96.8% and 91.1%. Average sensitivity and specificity plots 

including all tested disorders are shown in Fig. 2. ADCK3 11, OPA1 12, PNPLA6 13, 

STUB1 14 and SYNE1 15 and LOFA/vLOFA 9, 10 were not identified within the Top 3 

scores with a sensitivity >90%. 

Assessment of the correlation between the number of specific features associated with 

each entity and RADIAL performance, and between the total number of features 

associated with each entity and RADIAL performance, showed that neither the 

number of total signs (r=0.052, P=0.730) nor specific signs (r=−0.033, P=0.830) 

influence discriminatory ability (Fig. 3).  

RADIAL versus expert panel challenge  

RADIAL performed well compared with a panel of 5 ARCA experts. In five series of 

100 patients randomly selected from the patient cohort, RADIAL placed the correct 
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diagnosis in the Top 3 highest scoring entities in 95.2% of patients versus 77.8% 

identified by the experts (P<0.001; McNemar’s exact test) and as the highest scoring 

entity in 80.6% of patients versus 67.6% identified by the experts (P<0.001; 

McNemar’s exact test). The experts required an average of 7.2 hours [range: 6–10] to 

complete their 100 cases. 

Discussion 

This study describes RADIAL, an algorithm that aims to improve the DD approach 

towards ARCA by using patients’ features to predict the underlying responsible gene. 

Sensitivity and specificity of the algorithm in correctly identifying the diagnosis 

within the Top 3 highest scoring entities was excellent, even outperforming a panel of 

ARCA experts.  

In clinical practice, use of RADIAL should be considered in all patients suspected 

with ARCA. The diagnostic workup outlined in Fig. 1 takes a stepwise approach to 

the patient with ataxia 1, 2, 16, 17, also indicating how the point of suspecting ARCA is 

reached. 

Performance of RADIAL depends on accurate identification of the patient's features, 

and could be impaired in the absence of sufficiently detailed information. In such 

cases, the algorithm could be used to guide clinical investigations based on the 

features of the highest scoring entities from the knowledgebase. The knowledgebase 

could also clarify the clinical phenotype in a ‘genotype-first’ 18, 19 (i.e. genotyping 

before phenotyping), or ‘reverse phenotyping’ (i.e. phenotyping following genotyping 

according to genetic results) method 20. However, due to the risk of missing a correct 

diagnosis, we would not recommend a ‘genotype-first’ approach, and ‘reverse 

phenotyping’ should be considered with caution. Regardless of where in the 

diagnostic workup it occurs, a sufficiently detailed phenotypic evaluation is always 

mandatory. RADIAL could also be used to identify one high likelihood entity which 

can be confirmed by single gene sequencing. Thus, in this ‘phenotype-first’ approach, 

the algorithm could also guide molecular analyses. Whether the ‘phenotype-first’ or 

‘genotype-first’ approach is followed, the entity ranking provided by RADIAL 

supports identification of the gene responsible for the phenotype. Indeed, RADIAL 
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should be considered as an interface between phenotype and genotype, enabling each 

one to complement the other.  

Beyond its efficacy to predict the underlying molecular defect based on clinical data, 

RADIAL will provide guidance on best-practice for the diagnostic work-up of 

patients with suspected ARCA, including medical history, clinical examination, and 

paraclinical signs, serving as a reminder to assess many features that may otherwise 

be overlooked.  

Given the performance of RADIAL, it could facilitate the interpretation of large 

volumes of data provided by NGS (panel gene sequencing, whole exome or whole 

genome sequencing), and pathogenicity of VUS could be more easily determined 21. 

For instance, the probability of a VUS being pathogenic when the affected gene is not 

within the Top 16 entities should be very low, whereas a VUS in a high-ranking gene, 

especially one within the Top 3, is much more likely, facilitating interpretation of 

NGS data and guiding searches for a second mutation in the same gene. The good 

sensitivity of RADIAL is important to avoid a missed diagnosis. Conversely, the good 

specificity provides confidence in the identified top scoring genes, especially when 

use of RADIAL follows molecular analyses. In such cases, RADIAL could be helpful 

to identify which VUS are pathogenic mutations responsible for the phenotype and 

which VUS are polymorphisms.  

RADIAL also represents an up-to-date knowledgebase comprising clinical 

descriptions of 67 individual ARCAs based on the integration of numerous references 

and expert clinical experience. The 67 entities described in the knowledgebase include 

the majority of the most common ARCAs, but are not an exhaustive list since there 

are several other recessively inherited diseases that may include cerebellar ataxia. 

Some of these diseases have not been included in the current knowledgebase as they 

lack sufficiently detailed information on their clinical features (e.g. KIAA0226) 22, 23. 

Several other entities included in the knowledgebase could be viewed as 

controversial, as cerebellar ataxia is not the initial or most prominent feature of the 

disease. However, the entities were included in the knowledgebase because cerebellar 

ataxia was sufficiently well-described as a clinical feature. Following this initial 

study, periodic updates of the knowledgebase as the literature grows could add or 

redefine associations between features and entities further improving performance of 
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RADIAL, particularly for entities that are currently poorly characterised, and allowing 

addition of new entities. One may hypothesize that increasing the number of entities 

covered by the algorithm, may increase its superiority to the experts. 

RADIAL performance is limited by the quality and completeness of data published in 

the literature. The knowledgebase should be helpful to any physician facing ataxia, or 

interested in becoming more specialised within this field. The extensive list of 

features allows a very precise description of each entity (124 features equates to over 

2.1 x1037 pairwise combinations) leading to good differentiation between entities, 

even those with similar but non-identical phenotypes. The performance and flexibility 

of RADIAL means that an exhaustive assessment of all the signs in patients suspected 

with ARCA is not required for good performance, and that accurate diagnoses for 

many patients are possible with few clinical features. A second class of entities, 

including ADCK3 11, OPA1 12, PNPLA6 13, STUB1 14 and SYNE1 15, are still poorly 

recognised by RADIAL. These entities are unlikely to appear near the top of the 

ranked lists, but should be considered as DD when genetic analyses are inconclusive 

and the clinical phenotype does not clearly match the highest scoring entities. The 

poorer performance of RADIAL in recognising these entities might be attributable to 

an intrinsic difficulty in their identification due to pleiotropic, overlapping clinical 

phenotypes (e.g. pure cerebellar ataxia in ADCK3 and SYNE1) 11, 15, the lack of 

helpful biomarkers, or limitations in our classification of their specific clinical 

features due to their novelty (e.g. PNPLA6 and STUB1) 24, 25. RADIAL was not able 

to recognise vLOFA and LOFA as effectively as Friedreich’s ataxia. However, given 

that the former are variants of Friedreich’s ataxia, the performance of RADIAL is 

successful at identifying FXN gene mutations. Moreover, Friedreich’s ataxia, 

including LOFA and v-LOFA, is not diagnosed by NGS, therefore validating a VUS 

on the basis of such diagnoses is not pertinent. 

The use of real-life clinical data to test the accuracy of RADIAL addresses many of 

the limitations discussed above, as the excellent diagnostic performance suggests that 

the knowledgebase provides a good representation of the clinical characteristics of 

each entity. This is reinforced by the algorithm outperforming an ARCA expert panel 

in correctly identifying diagnoses in both the Top 1 and Top 3 positions, a method 

commonly used to validate the performance of diagnostic algorithms, despite recent 
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evidence showing that the superiority of the physician is maintained over several 

algorithms 26. In the same way, the potential interest of computer based evaluation of 

photos to diagnose facial dysmorphism has been recently studied 27.  

The true incidence of ARCAs observed in clinical practice is not reflected in the 

patient cohort. We were particularly interested in testing the algorithm with a broad 

sample of entities, especially those that are not well known and/or difficult to 

diagnose, which is not the case for Friedreich’s ataxia, the most frequent ARCA 1. 

Since the ranking calculation does not take into account the prevalence/incidence of a 

disease we do not believe that this negatively impacted the validation. To obtain a 

sufficient quantity of data to robustly validate RADIAL performance, it was necessary 

to obtain previously reported patient data with clear-cut molecular diagnoses by 

retrospective chart review. Unfortunately the main limitation of this approach is that 

many patients who were used to assess the final algorithm were also used to construct 

the knowledgebase; this is more problematic with the rarer entities for which the 

published cases may represent the majority of the global patient population. 

Regardless, many more patients whose data were used in construction of the 

knowledgebase were not assessed in the study. It is also of worth considering that the 

data reported in the literature are generally less precise and detailed that the clinical 

data provided by the collaborators. Thus, even if we used the same patients, their data 

to create the tool and to evaluate the tool were not identical. Moreover, the strength of 

RADIAL is not only to identify a specific disorder, but rather to identify a specific 

disorder amongst 67 other entities, which is much more difficult. Finally, that the 

expert panel were able to correctly identify the diagnosis in the majority of cases also 

supports the accuracy of the phenotypic definitions of each entity that were used to 

construct the knowledgebase. Taken together, these arguments support the genuinely 

very good diagnostic performance of RADIAL.  

Another consideration, is the difficulty in accurately determining the frequency and 

specificity of clinical features, especially in rare entities where reported patient 

numbers are low. Future large-scale prospective real-world validation of RADIAL 

should be undertaken to address these concerns, further validate and, if necessary, 

refine RADIAL. A prospective study would also allow the opportunity to assess 

utility of RADIAL for interpretation of NGS-derived data, and assess whether 



 

13 

 

RADIAL can predict the pathogenicity of novel VUS. For this purpose, RADIAL is 

available to all healthcare professionals as a free-to-use electronic application. 

RADIAL can be accessed online at http://radial-ataxia-algorithm.com/ or as an offline 

version in the manuscript supplementary material (Supplementary File 2). 

This algorithmic approach may be of further interest for many other diseases with 

inherent diagnostic difficulties, including neurological (e.g. autosomal dominant 

cerebellar ataxias, hereditary spastic paraplegias, neuropathy, myopathy, complex 

dystonia, and early dementia) and non-neurological disorders.  

In summary, we have developed a tool that facilitates the differential diagnosis of 

autosomal recessive cerebellar ataxias. RADIAL uses patient’s features to produce a 

list of potential diagnoses ranked by likelihood, and which may be used to inform 

further confirmatory clinical or genetic testing, and assist the interpretation of next-

generation sequencing data.  

http://radial-ataxia-algorithm.com/
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Figure legends 

 

Figure 1: Algorithm outline. 

 

Figure 2: Average sensitivity and specificity for all patients related to the window 

size, defined as the position of the entity in the ranking list. 

 

Figure 3: Relationship between the total number of features (x-axis), the number of 

specific features (y-axis), and the required window size, defined as the position of the 

entity in the ranking list, to reach 90% sensitivity (diameter of bubble increases as 

performance decreases). The figure shows the lack of association between 

performance of the algorithm and the number of features. Pearson correlation 

coefficient for total number of features vs window size: r=0.052, P=0.730; specific 

number of features vs window size: r=−0.033, P=0.830.  
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Table 1: Convention for notation and scoring for frequency and/or specificity for 

each category of signs and symptoms included in the algorithm. 

Category 
Clinical 

features 

Neuro-

imaging 

Electro-

myography 

Age of 

onset 

Rapid 

disease 

progression 

Biomarkers 

NK 0 0 0 0 0 0 

0 -1 -1 -1 -2 -2 -2 

L 1 1 1 2 2 2 

H 3 3 3 6 6 6 

LS 7 7 7 14 14 14 

HS 9 9 9 18 18 18 

0, No association; L, Low frequency (<50% of patients); LS, Low frequency (<50% 

of patients) and specific (<10% of entities); H, High frequency (≥50% of patients); 

HS, High frequency (≥50% of patients) and specific (<10% of entities); NK, extent of 

association not known. 


