
Structured Prediction
with Adversarial Constraint Learning

Hongyu Ren
Peking University
rhy@pku.edu.cn

Russell Stewart
Stanford University

stewartr@cs.stanford.edu

Jiaming Song
Stanford University

tsong@cs.stanford.edu

Volodymyr Kuleshov
Stanford University

kuleshov@cs.stanford.edu

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

Abstract

Constraint learning is a recently proposed form of weak supervision which attempts
to reduce the labeling burden by having users specify general properties that hold
over the output space (e.g. physical laws). However, specifying constraints can be
difficult and may require extensive domain expertise. In this paper, we introduce
an adversarial constraint learning framework in which invariants are automatically
extracted from data. In this framework, users only need to provide a black-box
simulator that generates valid system outputs; at training time, we constrain the
model to produce outputs that cannot be distinguished from simulated samples by
a learned discriminator. Further providing our framework with a small number of
labeled examples gives rise to a new semi-supervised structured prediction method;
we evaluate this method on multiple tasks — object tracking and pose estimation,
and we find that our framework achieves high accuracy with only a small amount
of labels, and no labels at all in some cases.

1 Introduction

Large labeled datasets are key component in many machine learning applications [1–3], but collecting
them can be expensive. Constraint learning is a recently proposed form of weak supervision which
aims to reduce cost of collecting labels by supervising algorithms through general properties that
hold over the output space [4, 5]. Examples of such properties include logical rules [6–8], physical
laws [5], or anatomical properties of the human body. Unlike labels, which only apply to their
corresponding inputs, properties used in a constraint learning approach are specified once for the
entire dataset, providing an opportunity for more cost-effective supervision [9, 5].

However, describing the high level invariants of a dataset may also require a non-trivial amount of
effort. First, designing explicit constraints requires strong domain expertise. Second, in the case of
high dimensional outputs, encoding the constraints using simple formulas is hard. For example, it is
difficult to constrain a pedestrian detector with formulas that describe the shape of walking person.
Third, constraints may change across tasks; designing new constraints for new tasks may not scale in
many practical applications.

In this paper, we propose an implicit approach to constraint learning, in which invariants are automat-
ically learned from a small set of representative output samples (see Figure 1). These samples do not
need to be tied to corresponding inputs (as in traditional supervised and semi-supervised learning)
and may come from a black-box simulator that abstracts away physics-based formulas, examples of
outputs collected by humans or from standard datasets used in supervised learning.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

D

pθ

R
x y

ŷ

pθ

Rx y
h

Figure 1: Constraint learning allows us to learn a probabilistic model pθ(y|x) without direct labels
by specifying properties h that holds over the output space. In prior work (left), h is defined as a
formula describing known invariants. In this paper (right), we propose to instead learn h through
a discriminator network D that discriminates y (provided by pθ(y|x)) from ŷ (provided by an
additional source unrelated to x, such as a simulator).

Inspired by recent advances in generative models, we capture the distribution of outputs using
an approach based on adversarial learning [10]. Specifically, we train two distinct learners: a
primary model for the task at hand and an auxiliary classification algorithm called a discriminator.
During training, we constrain the main model such that its outputs cannot be distinguished by the
discriminator from true output samples, thus forcing it to capture the structure of the output space.
This approach forms a novel adversarial framework for performing weak supervision with learned
constraints. Our framework turns into semi-supervised learning, when given some labeled data.
Experimental results demonstrate that this method performs well on a variety of structured prediction
problems, outperforming natural baselines with very few labeled inputs.

2 Background

2.1 Structured Prediction

In this paper, we focus on structured prediction problems, in which the outputs y ∈ Y can be a
complex object such as a vector, a tree, or a graph [11]. We capture the distribution of y using
a conditional probabilistic model pθ(y|x) parameterized by θ ∈ Θ. A model pθ(y|x) maps each
input x ∈ X to the corresponding output distribution p(y) ∈ P(Y), where P(Y) denotes all the
probability distributions over Y . For example, we may take pθ(y|x) to be a Gaussian distribution
N (µθ(x),Σθ(x)) with mean µθ(x) and variance Σθ(x).

A standard approach to learning pθ(y|x) (or pθ) is to solve an optimization problem of the form

θ∗ = arg min
θ∈Θ

n∑
i=1

l(pθ(y|xi),yi) +R(pθ) (1)

over a labeled dataset DL = {(x1,y1), · · · , (xn,yn)}. A typical supervised learning objective is
comprised of a loss function l : P(Y) × Y → R and a regularization term R : P(Y) → R that
encourages non-degenerate solutions or solutions that incorporate prior knowledge [5].

2.2 Constraint-Based Learning

Let DU = {x1, · · · ,xm} be an unlabeled dataset of inputs, without their corresponding label.
Formally, constraints can be specified via a function h : P(Y) → R, which penalizes conditional
probabilistic models pθ(y|x) that are not consistent with known high-level structure of the output
space. Learning from constraints proceeds by optimizing the following objective.

θ̂∗ = arg min
θ∈Θ

m∑
i=1

h(pθ(y|xi)) +R(pθ) (2)

By solving this optimization problem, we look for a probabilistic model parameterized by θ̂∗ that is
likely a priori (through theR(pθ) term), and satisfies known constraints when applied to the unlabeled
dataset DU , such as physical laws. Note that the constraint h is data-dependent, although it does not
require explicit labels. For example, in free fall object tracking, we could ask that the predictions on
DU over time form a parabola [5] and h measures how the output distribution from pθ deviates from
the equations. The regularization term is used to avoid overly complex and/or degenerate solutions,
and may include L1, L2, and entropy regularization.

2

2.3 Adversarial Training and Implicit Probabilistic Models

Recent learning methods based on adversarial training and implicit probabilistic models play a key role
in our approach [12]. Implicit probabilistic models are defined as the result of a stochastic sampling
procedure, rather than through an explicitly defined likelihood function. Prominent examples are
generative adversarial networks (GAN), where samples G(z) are obtained by transforming some
Gaussian noise z ∼ N (0, I) through a neural network G, called the generator.

In this work, we are interested in placing constraints on a probability distribution over the output
space Y . We define this distribution implicitly by the following sampling procedure,

x ∼ pd(x) , y ∼ pθ(y|x) (3)
where pd(x) is the data distribution over the input space X , and pθ(y|x) is a conditional distribution
of outputs given inputs. The above procedure corresponds to sampling from the marginal distribution
over Y , pθ(y) =

∫
pθ(y|x)pd(x)dx. However, evaluating the marginal likelihood pθ(y) exactly is

typically intractable due to the integration over pd(x).

Given label samples DS = {y1, · · · ,yk}, implicit generative models can be trained using likelihood-
free methods that define a distance metric between distributions alternative to KL divergence.
GANs [10] are trained using an approximation of the Jensen-Shannon divergence (JSD) with the
following minimax objective, which can be optimized by stochastic gradient descent.

min
G

max
D

Ey∼ps(y)[logD(y)] + Ey∼pθ(y|x),x∼pd(x)[log(1−D(y))]

Other metrics can also be used as an objective for training implicit probabilistic models, such as
maximum mean discrepancy (MMD) [13] or Earth Mover’s distance (EMD) [14, 15].

3 Adversarial Constraint Learning

The process of describing high level constraints can be time-consuming and may require significant
domain expertise. In the sciences, discovering general invariants is often a data-driven approach,
for example, physical laws are often discovered by validating hypotheses with experimental results.
Motivated by this idea, we propose to learn constraints from a set of representative output samples.

Learning Constraints from Data. Suppose that we are given a small number of labels DS (not
necessarily associated with input data), or a black-box mechanism/simulator for generating such
labels, i.e., to sample from the empirical label distribution ps(y). We formulate the task of learning a
constraint loss h from these label samples using the framework of generative adversarial learning [10].

Our ultimate goal is to learn a conditional probability distribution pθ(y|x) that assigns high probability
to correct outputs y. To enforce this goal, we define an auxiliary classifier Dφ (parametrized by
φ) called a discriminator which scores outputs in the label space, and tries to assign higher scores
to a small set of given representative output labels DS , while assigning lower scores to samples of
pθ(y|x). Thus, the discriminator learns to effectively extract latent constraints that hold over the
output space and are implicitly encoded in the output samples DS . The goal of the pθ(y|x) is to
produce outputs that score higher under the discriminator, meeting the constraints.

We train Dφ and pθ(y|x) jointly through adversarial training, optimizing the Wasserstein GAN
objective [14, 15]

min
θ

max
φ
LA = Ey∼ps(y)[Dφ(y)]− Ey∼pθ(y|x),x∼pd(x)[Dφ(y)] (4)

where ps(y) denotes the distribution of samples in DS and pd(x) denotes the distribution of the
input data. At the optimal solution to the objectives in Eq. 4, the discriminator cannot distinguish
between the given set of labels and those predicted by the model, suggesting that the latter satisfy the
set of constraints identified by the discriminator. Figure 2(a) shows an overview of the adversarial
constraint learning framework in the context of an object tracking task.

When given a set of labeled examples, we may formulate our objective as the sum of a constraint
learning term (over both labeled and unlabeled data) and a standard regression loss term (over the
labeled data), resulting in a semi-supervised framework,

LSS = LA + α Exi,yi∼pl [l(pθ(y|xi),yi)] (5)

3

Label-Free Supervision with Adversarial Constraint Learning

f

D

Generated/Simulated?

LSTM

Simulator

T TS

Figure 2. Our architecture trains f by asking it to generate trajectories, TG, that cannot be discriminated from simulated trajectories, TS .
Training D eliminates the need for hand-engineering constraints.

3. Model
In the remainder of the paper, we ground our approach in
the specific task of label-free object detection. Our goal is
to train an object detector, f , holistically mapping images
of a mechanical system to a symbolic representation of its
joint positions y 2 Y ✓ Rk.

Each of our tasks could be accomplished with supervised
learning, but we aim to train our networks without labels by
instead providing high level supervision of the trajectories
that we hope to find. Rather than defining the salient fea-
tures of these trajectories by hand with mathematical for-
mulas, we discover these features from samples in our out-
put space and then optimize for outputs that exhibit these
features within the GAN framework (Goodfellow et al.,
2014).

Our architecture has two components, a generator, G,
and a discriminator, D. The generator network is highly
modular, mapping a regression neural network, f :
Rheight⇥width⇥3 ! Rk, across n images, resulting in a tra-
jectory, TG 2 Rn⇥k. In our experiments, we have low
dimensional, continuous output spaces (k 2 {1, 2}), but in
principle our method could scale to higher dimensional out-
put spaces as well. The discriminator network D replaces
the role of h in constraint learning, and thus h is never ex-
plicitly specified. D must attempt to distinguish between
TG and randomly sampled trajectories from the simulation,
TS . Thus, D is a function mapping Rn⇥k ! [0, 1].

Formally stated, the objective of our GAN architecture is
to find

min
G

max
D

V (D,G) =Ey⇠psim(y)[logD(y)]+

Ex⇠pdata(x)[log(1�D(Gf (x)))]

3.1. Generator and Descriminator Architecture

For our regression function, f , we choose a Convolutional
Neural Network (CNN), with 2 Conv/ReLU/Pool modules
followed by a fully connected (FC) layer with k outputs.

The discriminator must be able to distinguish between
two k-dimensional distributions of length n. Thus, we
chose to base our discriminator on a Recurrent Neural
Network (RNN) with Long Short-Term Memory (LSTM)
units. Each of the n outputs in a trajectory is first fed
through 3 FC/ReLU layers with 64 hidden dimensions and
terminating in n LSTM inputs of dimension 128. After pro-
cessing the entire sequence, we pass the final LSTM hidden
state through a single FC layer to predict the probability
that the sequence is generated or simulated. A schematic
of our generator and descriminator networks is displayed
in Figure 2.

f

(a) Our architecture trains r by asking it to generate tra-
jectories Tf that cannot be discriminated from sample
trajectories TS . Training D eliminates the need for hand-
engineering constraints.

(b) Top: frames from video used in the pendulum exper-
iment. Bottom: the network is trained to predict angles
that cannot be distinguished from the simulated dynam-
ics, encouraging it to track the metal ball over time.

Figure 3: Architecture and results of the pendulum detection experiment.

every 12 frames. Based on this observation, we write a sim-
ulator of these dynamics with a simple harmonic oscillator
having a fixed amplitude and random sample period of 10 to
14 frames. r takes in one image in 56×56 size and outputs a
scalar, representing the angle of the pendulum in the image.
D is trained to distinguish between the output of r across
5 continuous images and a random trajectory sampled from
the simulator. We train the network with the Adam optimizer
for 5, 000 iterations at a learning rate of 10−4.

Evaluation After 5000 updates, r converges to relatively
stable predictions for each frame. We then manually label
the horizontal position of the ball of the pendulum in each
frame in the test set, and measure the correlation of the pre-
dicted position with the ground truth label in pixels. We
achieve a correlation of 96.3%. Example predictions on the
test data are shown in Figure 3.

Two pendulum system To test the capability of our model
to deal with more complex dynamics, we present synthetic
images that contain two pendulums, and aim to track both of
them. The two pendulums are independent. We can achieve
a model with an average correlation of 99.2% between the
predicted angles and the ground truth angles for detecting
both pendulums. Note that r will not converge to tracking
only one pendulum with both outputs. Although it may oc-
cur early in training, D quickly learns to distinguish the cor-
related joint trajectories from the independent joint trajecto-
ries, and the adversarial loss forces r to track both.

Overall, the real world pendulum experiment shows that
using our semi-supervised framework it is possible to train
a neural network to extract object information from real im-
ages using only a simulator of physics that the object obeys.

Pose Detection
In this experiment, we benchmark the proposed model on
pose detection, which has a larger output space. We aim to
learn a regression network r : Rh×w×3 → Rk×2 , where k
denotes the number of joints we detect, each having 2 coor-
dinates. As before, r is applied to several frames to produce
a trajectory. We train the network based on a sequence of im-

ages, and output a sequence of joint locations, which should
be indistinguishable from the sample data.

The experiment is performed on CMU multi-modal ac-
tion database (MAD) (Huang et al. 2014). MAD contains 40
videos of 20 subjects (2 for each subject) performing a se-
quence of 35 actions in each video. We edit the 40 videos,
extract the frames when the subjects perform the “Jump and
Side-Kick” action and train a network to detect the location
of left/right hip/knee/foot based on the edited frames. The
processed dataset contains 620 valid frames (40 groups).

Training Details The 40 groups of motion data are di-
vided into 32 groups and 8 groups for training and testing
respectively. Each group contains 14 to 17 images. In our
experiment, we train on randomly selected intervals of 5
contiguous frames. We use PCK@0.1 (Yang and Ramanan
2013) for evaluation. The prediction is considered correct if
and only if it lies within αmax(h,w) pixels from the correct
location, where h and w denote the height and width of the
tightest bounding box that covers the whole body, and we
use α = 0.1, which is a fairly strict criterion.

Images are resized to 64 × 64 pixels before r is applied.
r takes a single image as input and outputs a 12 dimen-
sional vector, representing the location of 6 joints. Similar
to the pendulum experiment, r is applied to each frame in-
dependently, no knowledge of the neighbor frames is used in
this process. We concatenate the generator’s outputs for each
group and pass it to the discriminator. The discriminator is
LSTM-based and tries to tell the generated locations and
sample joint locations apart. We use Adam optimizer with
a learning rate of 10−4. The network is trained for 20, 000
iterations. In each iteration,D is updated 5 times and r once.
We split the dataset randomly and repeat training and testing
50 times. The results are averaged over these 50 trials.

Evaluation In this experiment, the output samples (real
inputs for the discriminator) are actual labels {y1, · · · ,yn},
but we assume we have no knowledge of the corresponding
input vectors. The results and notations are shown in table 1.
When only trained adversarially (“0%+adv”),i.e., optimiz-
ing just LA, the network is able to find the correct “shape”
of the joints for each frame, but the predictions are biased.

rrrrr

(a) Our architecture trains fθ (or in this exam-
ple, rθ) by asking it to generate trajectories
Tf that cannot be discriminated from sample
trajectories TS . Training D eliminates the
needs to hand-engineer constraints.

(b) Top: frames from video used in the pen-
dulum experiment. Bottom: the network is
trained to detect angles that cannot be distin-
guished from the simulated dynamics, encour-
aging it to track the metal ball over time.

Figure 2: Architecture and results of the pendulum detection experiment.

where LA is the adversarial constraint learning objective defined in Eq. 4, pl is the distribution for
the labeled dataset, and α is a hyperparameter that balances between fitting to the general (implicit)
output distribution (first term) and fitting to the explicit labeled dataset (second term).

Constraint Learning by Matching Distributions. Our approach can also be interpreted as match-
ing the marginal distribution over predicted labels to the label samples.

Assuming we can obtain samples from p(y), another way of formulating the constraint h is to let

Ex∼pd(x)[h(fθ(x))] = ρ(Ex∼pd(x)[pθ(y|x)], p(y)) (6)

where ρ is some divergence/metric that can be approximately computed through samples from p(y)
(such as KL divergence, MMD, JSD, or EMD). Minimizing ρ ensures that pθ(y|x) provides a
reasonable y that lies in the true manifold of labels.

4 Experimental Results

We evaluate our framework on two structured prediction problems. First, we train a network to track
the angle of a pendulum in a video using supervision provided by a physics-based simulator. Next,
we extend the output space to higher dimensions and perform human pose estimation.

In both experiments, we consider pθ(y|x) to be a Dirac-delta distribution δ(y − fθ(x)), thus we
refer to the conditional probabilistic model as the mapping fθ(x) : X → Y , implemented as a neural
network parametrized by θ. Please refer to the appendix for detailed network architectures and
training details.

4.1 Pendulum Tracking

For this task, we aim to extract the angle of the pendulum on images from a YouTube video [16],
i.e., learn a regression mapping rθ : Rh×w×3 → R. Since the outputs of rθ over continuous frames
form sine waves and are thus constrained, we concatenate continuous outputs of rθ and form a
high dimensional trajectory fθ([x1,x2, · · · ,xn]) = [rθ(x1), rθ(x2), · · · , rθ(xn)]. We also design a
simulator that produces sine waves with frequency based on observations.

We manually label the horizontal position of the ball of the pendulum in each frame in the test set,
and measure the correlation of the predicted position with the ground truth label in pixels. As shown
in Figure 2, we achieve a correlation of 96.3% while using explicit formulas to supervise training
yields 96%. Our model is generally robust against the accuracy of the simulator.

Overall, the real world pendulum experiment shows that our adversarial framework makes it possible
to extract object information from real images using only a simulator of physics that the object obeys.

4

Figure 3: Pose estimation results when 25% of the training data are labeled. The regression network
takes in single image and outputs the location of 6 joints (in green).

4.2 Pose Estimation

In this experiment, we benchmark the proposed model on pose estimation, which has a larger output
space. We use multi-modal action database (MAD) [17], and aim to detect left/right hip/knee/foot on
images. We attempts to learn a regression network rθ : Rh×w×3 → Rk , where k denotes the number
of joints we detect. As before, rθ is applied to several frames to produce a trajectory. We train the
network based on a sequence of images, and output a sequence of joint locations, which should be
indistinguishable from the sample data. Similar to the pendulum experiment, rθ is applied to each
frame independently, no knowledge of the neighbor frames is used in this process.

In this experiment, the output samples are labels {y1, · · · ,yn}, but we assume we have no knowledge
of the corresponding input vectors. The results and notations are shown in Table 1 listed in appendix.
When only trained adversarially (“0%+adv”; i.e., optimizing just LA), the network is able to find
the correct “shape” of the joints for each frame, but the predictions are biased with a minor shift
(∆x,∆y). It shows that mere adversarial training is insufficient for this task. To mitigate the problem,
we provide a small amount of labeled training data and consider the semi-supervised objective LSS .
The label loss helps adjust fθ to output the precise locations. Given just 25% of the available labeled
data, fθ converges to detecting the joints with high accuracy, as shown in Figure 3. “50%+adv”
achieves same performance as “100%” (fully supervised on all training data) on the detection of feet.

We also evaluate the following baselines. First, we test the result of pure guessing, using a randomly
picked label from the simulator for each test data as its prediction. Furthermore, we run ablative
experiments “t%”, where only t% of the labeled data is used for supervised learning. In this case,
some data points are neither trained nor tested. “t%+adv” generally shows much better results
compared to “t%”. Lastly, we test “t%+rand”, where we randomly assign labels from the simulator to
unlabeled data points, and then use supervised learning. Although this random label assignment could
be incorrect, it could still provide some signal. However, the results demonstrate that if the remaining
data are used in this random manner, the detection accuracy rarely increases. This emphasizes the
importance of our adversarial training loss.

This experiment shows that our model is robust when the output space is large; hand-crafting formula-
based constraints is tedious and error-prone. Our model avoids the problematic complexity by
extracting constraints implicitly from the output samples, which are capable of describing the feature
of output space. In cases where limited input-output pairs are given, our model can be trained in a
semi-supervised way by minimizing the label loss and the adversarial loss simultaneously.

5 Conclusion

We propose a new framework for semi-supervised structured prediction using adversarial constraint
learning. Instead of using hand-designed constraints, which are difficult to obtain and application-
specific, we instead learn the constraints from data using an implicit generative model with adversarial
loss. Experimental results on structured prediction tasks show that our method is robust against high
dimensional outputs. As future work, we plan to explore adversarial constraint learning applied to
scenarios where the output space is characterized by multiple constraints (the output distribution is
factored).

5

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” in Advances in neural information processing systems, pp. 1097–1105, 2012.

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with neural networks,”
in Advances in neural information processing systems, pp. 3104–3112, 2014.

[3] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with deep recurrent neural net-
works,” in Acoustics, speech and signal processing (icassp), 2013 ieee international conference
on, pp. 6645–6649, IEEE, 2013.

[4] I. Shcherbatyi and B. Andres, “Convexification of learning from constraints,” in German
Conference on Pattern Recognition, pp. 79–90, Springer, 2016.

[5] R. Stewart and S. Ermon, “Label-free supervision of neural networks with physics and domain
knowledge.,” in AAAI, pp. 2576–2582, 2017.

[6] M. Richardson and P. Domingos, “Markov logic networks,” Machine learning, vol. 62, no. 1,
pp. 107–136, 2006.

[7] M.-W. Chang, L. Ratinov, and D. Roth, “Guiding semi-supervision with constraint-driven
learning,” in ACL, pp. 280–287, 2007.

[8] A. Choi, G. Van den Broeck, and A. Darwiche, “Tractable learning for structured probability
spaces: A case study in learning preference distributions,” in Proceedings of 24th International
Joint Conference on Artificial Intelligence (IJCAI), 2015.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio, “Generative adversarial nets,” in Advances in neural information processing systems,
pp. 2672–2680, 2014.

[11] D. Koller and N. Friedman, Probabilistic graphical models: principles and techniques. MIT
press, 2009.

[12] S. Mohamed and B. Lakshminarayanan, “Learning in implicit generative models,” arXiv preprint
arXiv:1610.03483, 2016.

[13] Y. Li, K. Swersky, and R. Zemel, “Generative moment matching networks,” in Proceedings of
the 32nd International Conference on Machine Learning (ICML-15), pp. 1718–1727, 2015.

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of
wasserstein gans,” arXiv preprint arXiv:1704.00028, 2017.

[15] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint arXiv:1701.07875,
2017.

[16] KClassScienceChannel, “Time period of a pendulum depends on its length.” https://www.
youtube.com/watch?v=02w9lSii_Hs, 2013.

[17] D. Huang, S. Yao, Y. Wang, and F. De La Torre, “Sequential max-margin event detectors,” in
European conference on computer vision, pp. 410–424, Springer, 2014.

[18] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convo-
lutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[19] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[20] Y. Yang and D. Ramanan, “Articulated human detection with flexible mixtures of parts,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 12, pp. 2878–2890,
2013.

6

https://www.youtube.com/watch?v=02w9lSii_Hs
https://www.youtube.com/watch?v=02w9lSii_Hs

A Network Layout

We use the gradient penalty Wasserstein GAN [14] throughout the experiments since it reduces
training time and is more stable in general. In both experiments, the discriminator Dφ is a recurrent
neural network (RNN) with Long Short-Term Memory (LSTM) units. The input of Dφ is first
fed through 3 FC/ReLU layers with 64 hidden dimensions and terminating in n LSTM inputs of
dimension 128, where n is the group size, and equals 5 in both experiments. After processing the
entire sequence, we pass the final LSTM hidden state through a single FC layer to score the input
sequence. For the pendulum tracking, we use a convolutional neural network (CNN) for the regression
network rθ, with 2 Conv/ReLU/Pool modules followed by a FC layer with 1 output. In the pose
estimation experiment, we adopt a VGG-based network, instead of pooling, we follow the advice
of [18] and use strided convolution layers to downsample. After the extraction of 512 feature maps,
we use two FC layers to output a 12-dimensional vector.

B Training Details

B.1 Pendulum Tracking

We sample the 17 second video at 10 frames per second, resulting in a total of 170 images. We hold
out 34 images for evaluation. We manually observe that the pendulum completes one full oscillation
approximately every 12 frames. Based on this observation, we write a simulator of these dynamics
with a simple harmonic oscillator having a fixed amplitude and random sample period of 10 to 14
frames. rθ takes in one image in 56 × 56 size and outputs a scalar, representing the angle of the
pendulum in the image. Dφ is trained to distinguish between the output of rθ across 5 continuous
images and a random trajectory sampled from the simulator. We train the network with the Adam
optimizer for 5, 000 iterations at a learning rate of 10−4 [19].

B.2 Pose Estimation

CMU multi-modal action database (MAD) [17] contains 40 videos of 20 subjects (2 for each subject)
performing a sequence of 35 actions in each video. We edit the 40 videos, extract the frames when the
subjects perform the “Jump and Side-Kick” action. The processed dataset contains 620 valid frames
(40 groups). The 40 groups of motion data are divided into 32 groups and 8 groups for training and
testing respectively. Each group contains 14 to 17 images. In our experiment, we train on randomly
selected intervals of 5 contiguous frames. We use PCK@0.1 [20] for evaluation. The prediction is
considered correct if and only if it lies within αmax(h,w) pixels from the correct location, where h
and w denote the height and width of the tightest bounding box that covers the whole body, and we
use α = 0.1, which is a fairly strict criterion.

Images are resized to 64× 64 pixels before rθ is applied. rθ takes a single image as input and outputs
a 12 dimensional vector, representing the location of 6 joints. We concatenate the outputs of the
regression network for each group and pass it to the discriminator. The discriminator is LSTM-based
and tries to tell the generated locations and sample joint locations apart. We use the Adam optimizer
with a learning rate of 10−4. The network is trained for 20, 000 iterations. In each iteration, Dφ is
updated 5 times and rθ once. We split the dataset randomly and repeat training and testing 50 times.
The results are averaged over these 50 trials.

C Pose Estimation Results

7

PCK@0.1(%) Left Hip Left Knee Left Foot Right Hip Right Knee Right Foot
RSS 0.517 0.414 0.300 0.520 0.412 0.299

0%+rand 0.743 0.620 0.493 0.750 0.604 0.442
0%+adv 0.846 0.578 0.414 0.824 0.636 0.514
12.5% 0.820 0.794 0.717 0.813 0.729 0.625

12.5%+rand 0.789 0.623 0.498 0.819 0.598 0.464
12.5%+adv 0.857 0.831 0.783 0.939 0.823 0.668

25% 0.766 0.869 0.768 0.769 0.885 0.737
25%+rand 0.852 0.804 0.560 0.864 0.763 0.510
25%+adv 0.923 0.842 0.829 0.914 0.850 0.802

37.5% 0.912 0.884 0.813 0.913 0.897 0.796
37.5%+rand 0.896 0.714 0.591 0.899 0.743 0.579
37.5%+adv 0.944 0.916 0.858 0.951 0.898 0.867

50% 0.943 0.903 0.809 0.958 0.904 0.773
50%+rand 0.841 0.725 0.606 0.847 0.815 0.733
50%+adv 0.965 0.895 0.861 0.968 0.922 0.872

100% 0.994 0.950 0.876 0.994 0.977 0.858

Table 1: PCK@0.1 results on MAD. “Random simulator sample” (RSS) makes a prediction using
a random label from the simulator (baseline). “t%” means that we train on t% of the labeled data
(standard supervised learning). “t%+rand” means that we additionally randomly assign labels from
the simulator to the remaining (1− t%) of the training data (baseline). “t%+adv” means that we use
t% of the labeled training data (supervised loss), with the additional adversarial loss (our approach).
Our approach consistently outperforms the baselines.

8

	Introduction
	Background
	Structured Prediction
	Constraint-Based Learning
	Adversarial Training and Implicit Probabilistic Models

	Adversarial Constraint Learning
	Experimental Results
	Pendulum Tracking
	Pose Estimation

	Conclusion
	Network Layout
	Training Details
	Pendulum Tracking
	Pose Estimation

	Pose Estimation Results

