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Purpose: To examine the features of the tapetal-like reflex (TLR) in female carriers of
RPGR-associated retinopathy by means of adaptive optics scanning light ophthalmoscopy
(AOSLO) and spectral domain optical coherence tomography.

Methods: Nine molecularly confirmed RPGR carriers and three healthy controls
underwent ocular examination and the following retinal imaging modalities: color photog-
raphy, near-infrared reflectance, fundus autofluorescence, spectral domain optical coher-
ence tomography, and AOSLO. After identifying TLR areas across all imaging modalities,
normalized local contrast of outer retinal bands on spectral domain optical coherence
tomography was calculated and AOSLO-acquired photoreceptor mosaic analysis was
performed.

Results: Seven carriers had TLR areas, which colocalized with increased rod photore-
ceptor reflectivity on confocal AOSLO and reduced cone photoreceptor densities.
Parafoveal TLR areas also exhibited reduced local contrast (i.e., increased reflectivity) of
the outer retinal bands on spectral domain optical coherence tomography (inner segment
ellipsoid zone and outer segment interdigitation zone). Healthy controls did not show TLR.

Conclusion: The cellular resolution provided by AOSLO affords the characterization of
the photoreceptor mosaic in RPGR carriers with a TLR. Features revealed include reduced
cone densities, increased cone inner segment diameters, and increased rod outer segment
reflectivity.
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Retinitis pigmentosa is a clinically heterogeneous
group of progressive disorders characterized by

night blindness and constriction of peripheral visual
field in the early stages, leading to subsequent central
visual loss, and is associated with over 100 different
genes.1–6 X-linked retinitis pigmentosa (XLRP) is
often of earlier onset and more rapidly progressive
than other forms, and accounts for between 10% and
20% of all cases, with 70% to 80% of these because of
sequence variants in the retinitis pigmentosa GTPase
regulator (RPGR) gene.1,7–9 There are multiple RPGR
isoforms arising from alternative splicing or posttrans-
lational modification,10 which are variably expressed
in different tissues (lung, kidney, retina, brain, and
testis), suggesting tissue-specific splicing with tissue-
specific functions.11 The 2 major isoforms are the con-
stitutive RPGR exon 1 to 19 and RPGR ORF15, with
the latter representing the most highly expressed in

photoreceptors.12 Previous reports suggest that
disease-causing variants are found in exons present
in isoform RPGR ORF15, with only one in exons 15
to 19, supporting the importance of RPGR ORF15 in
photoreceptors.13–15 Although RPGR protein function
is not completely characterized, it is believed to play
a role in ciliary transport, with malfunction leading to
early onset of visual symptoms usually in the first or
second decade of life and progressing rapidly, with
severe visual impairment by the fourth decade.1,3,12,16

Obligate XLRP carriers may either be asymptomatic
or mildly affected, but are rarely as severely affected
as men.1,17–22 Observed deficits include visual field
constriction23 and loss of rod and cone responses on
psychophysical testing17,18 and electroretinogra-
phy.17,19,22 The most common observation in obligate
XLRP carriers is a radial pattern of hyperreflectivity,
frequently called a tapetal-like reflex (TLR). Unlike
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a “true” tapetal reflex seen in the eyes of certain verte-
brates,24 which is a contiguous reflecting surface, the
hyperreflectivity in XLRP carriers manifests as patchy
radial streaks of golden-appearing retina.
A few studies have explored the appearance of the

TLR and its cellular origin ex vivo and even fewer
in vivo. Cideciyan and Jacobson25 measured the size
of hyperreflective particles by digitally magnifying
film-based color fundus photographs, and deemed
the hyperreflective particles to be consistent with the
size of cone inner segments. A few years later, Berend-
schot et al26 provided evidence that it was rather rod
and cone photoreceptor outer segments that contribute
to the TLR appearance in three XLRP carriers. More
recently, Pyo Park et al27 investigated XLRP carriers
with a TLR (n = 5) using an adaptive optics scanning
light ophthalmoscope (AOSLO) but without being
able to resolve rods.
In this study, we have undertaken deep phenotyping

of molecularly confirmed carriers of RPGR-associated
RP. Color fundus photography, near-infrared (NIR)
reflectance, fundus autofluorescence (FAF), spectral
domain optical coherence tomography (SD-OCT),
and confocal/nonconfocal AOSLO were used to
explore the spatial correlation and composition of the
fundus TLR. Here, we show that the TLR manifests as

1) increased reflectivity (or in other words, diminished
local contrast) in the appearance of outer retinal bands
in SD-OCT scans, and 2) bright reflecting rod photo-
receptor outer segments, reduced cone densities, and
enlarged cone inner segment diameters in AOSLO
images of the photoreceptor mosaic.

Methods

Subjects

Nine molecularly confirmed RPGR carriers (28–
62 years of age) and three noncarrier women (24–29
years of age) were enrolled. All carriers studied were
from unrelated families. Seven consisted of the
mothers of affected men, one was the sister of an
affected man (MM_0010), and one was the maternal
aunt of an affected man (MM_0039). The study
adhered to the tenets of the Declaration of Helsinki
and was approved by the Moorfields Eye Hospital
Ethics Committee. Informed consent was obtained
from all participants after explanation of the nature
and potential consequences of the study before
enrollment.
Pupils were dilated using one drop each of phenyl-

ephrine (2.5%) and tropicamide (1%) before retinal
imaging. Axial length was measured using a Zeiss
IOLMaster (Carl Zeiss Meditec, Jena, Germany) to
correct the lateral scale of OCT and AOSLO images.

Retinal Spectral Domain Optical Coherence
Tomography, Color Reflectance, Near-Infrared
Reflectance, and Fundus Autofluorescence

All participants underwent SD-OCT using an
Envisu system (Bioptigen, Morrisville, NC). Hori-
zontal and vertical (where possible) rectangular (7
· 1 mm) volume scans (750 A-scans/B-scan, 10 B-
scans/volume, each derived from an average of 15
frames) were acquired while asked to fixate on the
center of a cross. The foveal center was estimated as
the location where inner retinal thickness was min-
imal. At least 20 frames belonging to the foveal
center were subsequently registered (to correct for
eye motion) and averaged (to improve signal to
noise ratio) using the ImageJ28 plugin StackReg.29

Pixel intensities in the linear display (converted
from the original logarithmic scale) were first
measured for the outer retinal bands corresponding
to the inner segment ellipsoid zone (EZ), outer
segment interdigitation zone (IZ), and retinal pig-
ment epithelium/Bruch membrane (RPE/BrM). A 5-
pixel–wide longitudinal reflectivity profile was
obtained (averaging the values across five
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Fig. 1. Multimodal imaging in carriers of RPGR-associated RP. Color fundus photographs (where available), NIR reflectance, and FAF of all our
RPGR-associated RP carriers. White rectangles indicate areas that were imaged with AOSLO on a cellular scale. The photoreceptor mosaic could not be
resolved for MM_0061 and MM_0082. Concentric rings on FAF are centered on the fovea and correspond to 1 mm (inner) and 2 mm (outer) away from
it to aid comparison across modalities (including OCT analysis).
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consecutive lateral positions) at the foveal center
(0 mm), and at 1 mm and 2 mm temporally/nasally/
superiorly and inferiorly to the foveal center.30

These locations were chosen to represent regions
(in carriers) with a TLR (2 mm) and without a TLR
(0 mm) and the respective transition zones (1 mm)
as shown in Figure 1 with the aid of red concentric
rings. Normalized local contrast was then calcu-
lated using a previously defined formula.31 Com-
parison of these contrast values per eccentricity and
retinal layer was performed by means of box plots
(depicting the interquartile range, median, and
whiskers extending out to 1.5 · interquartile range).
Statistical analyses were conducted using Origin
(OriginLab, Northampton, MA).
Subjects also underwent fundus color photography

(macula centered, 50° field of view) using a mydriatic
retinal camera (Topcon Ltd, Newbury, United
Kingdom) and NIR (815 nm) reflectance fundus imag-
ing (30° field of view) followed by blue (486 nm) FAF
imaging (55 or 30° field of view) using the Heidelberg
SPECTRALIS (Heidelberg Engineering, Heidelberg,
Germany). Each FAF image was created from a regis-
tered average of at least 12 raw frames by means of the
automatic real-time feature.

Photoreceptor Mosaic Imaging

At least one eye from each subject was imaged
using a custom-built AOSLO that captured confocal
images (focused on the outer segments of the
photoreceptor layer) as previously described.32

Briefly, the imaging light source was a 790-nm
super luminescent diode (Superlum, Carrigtwohill,
County Cork, Ireland), whereas wavefront sensing
was performed using an 850-nm super luminescent
diode (also from Superlum). Monochromatic wave-
front aberrations were corrected using a 97-actuator
deformable mirror (ALPAO, Biviers, France) with

a 14-mm clear aperture. Image sequences consisting
of 150 frames were recorded at different locations
across the central fovea and parafovea using a fixa-
tion target. The raw frames from these sequences
were first desinusoided and then registered33 before
being manually tiled into a single montage (Adobe
Photoshop CS6; Adobe Systems, Inc, San Jose,
CA). Simultaneous confocal and nonconfocal
split-detection AOSLO images34 were obtained in
absolute spatial and temporal registration during the
follow-up of one carrier (MM_0048).
Tapetal-like reflex areas were identified in mac-

roscopic modalities and guided the (microscopic)
photoreceptor mosaic AOSLO imaging session to
obtain TLR locations (white rectangles, Figure 1)
for further cellular analysis. Two paired regions,
one within a TLR area and another outside a TLR
but adjacent to one (#50 mm), were selected from
seven RPGR carriers after acquisition. Matched
eccentricities were used for analysis in the three
noncarrier controls. All cone photoreceptors in the
cropped regions (100 · 100 mm) were manually
identified—their number was divided by that area
to derive an estimate of the cone density for each
image.
Serial photoreceptor mosaic images were ob-

tained in a subset of carriers (MM_0037,
MM_0039, and MM_0048) to longitudinally assess
the TLR appearance on a cellular scale. Finally,
with the aid of the nonconfocal split-detection
AOSLO modality, cone (both outer and inner
segments) and rod (outer segments) photoreceptors
were identified in a TLR area (MM_0048) and their
reflectivity values were measured. Pixel intensities
from the center of all identified photoreceptors were
plotted for direct comparison between cones and
rods and between a carrier and an unaffected
individual. If rod outer segments did not waveguide
light back to the detector and thereby appeared dark

Table 1. Clinical Characteristics and Genetic Results of RPGR-Associated RP Carriers (n = 9)

Carrier ID Age
BCVA (OD,

OS)
Moorfields Eye Hospital

Pedigree Exon Mutation Protein Change

MM_0010 28 6/5, 6/5 13724 Exon 8/Intron 8 c.836_934+1276del Splicing
MM_0030 49 6/5, 6/6 20372 Exon 10 c.1243_1244delAG p.Arg415Glyfs*37
MM_0037 43 6/48, 6/6 66 ORF15 c.2624_2643del20 p.Glu875Glyfs*197
MM_0039 62 6/5,6/9 4549 ORF15 c.2650 G.T p.Glu884*
MM_0048 55 6/9, 6/9 180 ORF15 c.2045_2046dupGT p.Arg683Valfs*15
MM_0061 62 6/12,6/9 18426 ORF15 c.2236_2237delGA p.Glu746Argfs*23
MM_0073 34 6/6, 6/6 20844 ORF15 c.2405_2406delAG p.Glu802Glyfs*32
MM_0079 52 6/5, 6/6 3878 ORF15 c.2907_2910delAGGA p.Gly970Lysfs*118
MM_0082 47 6/6, 6/5 5201 ORF15 c.2238delA p.Glu747Argfs*68

Reference sequence NM_001034853.1.
BCVA, best-corrected visual acuity; ORF, open reading frame.
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in confocal AOSLO, they were not included in the
reflectivity analysis because their exact location and
number could not be identified from the nonconfo-
cal image (because of their much smaller diameter),
in direct contrast to cone photoreceptors. This also
precluded any rod counting analysis.

Results

Carrier demographics, best-corrected visual acuity,
and genotypes are summarized in Table 1. Ophthalmic
appearances are shown in Figure 1. Carriers
MM_0061 and MM_0082 were excluded from analy-
sis due to poor scans/image quality and the inability to
resolve photoreceptor mosaics in sufficient quality.

Color Fundus, Near-Infrared Reflectance, and
Fundus Autofluorescence Retinal Imaging

Apart from color fundus images that were obtained
in five of nine carriers, all other modalities were
obtained in all RPGR carriers (Figure 1). In all carriers,
a TLR was observed in color fundus (where available)
and NIR reflectance, albeit to a varying intensity and
extent, both between eyes of the same carrier and
across carriers (intrafamilial variability and ocular
asymmetry). Fundus autofluorescence imaging in our
carrier cohort revealed radial patterns of increased

autofluorescence signal in all images. These patterns
did not always colocalize with the TLR areas observed
in other modalities, but direct comparison could not be
performed universally because of the different fields of
view across modalities. None of the noncarrier con-
trols showed a TLR in any modality. MM_0061 was
severely affected, presenting with asymmetrical
peripheral pigmentary changes, RPE atrophy, and vas-
cular attenuation.

Outer Retinal Hyperreflective Bands on Spectral
Domain Optical Coherence Tomography

Fundus TLR was associated with changes in
appearance of the outer retinal layers (EZ and IZ) on
SD-OCT (Figure 2). This is quantitatively analyzed
and presented in Figure 3, which shows the contrast
reduction in those layers while traversing from central
(0 mm) non-TLR areas towards more peripheral (2
mm) TLR areas in all four directions (superior, infe-
rior, temporal, and nasal). Asterisks denote statistically
significant differences at the 0.05 level (paired t test).
There was a significant reduction in the EZ local con-
trast between 0 mm (0.75 ± 0.1) and 2 mm (0.57 ± 0.1)
inferiorly (t(7) = 4.25, P = 0.0037) and between 0 mm
and 2 mm superiorly (0.59 ± 0.1) (t(7) = 3.08, P =
0.017). Similar significant contrast reductions were
noted in the IZ layer between 0 mm (0.48 ± 0.09)

Fig. 2. Outer retinal SD-OCT
local contrast measured in car-
riers with a TLR. Transfoveal
SD-OCT scans from a non-
carrier female control and two
carriers with representative
outer retinal layers exhibiting
a TLR. White arrow on each
image corresponds to the loca-
tion of the five-pixel–wide lon-
gitudinal reflectivity profile
shown to the left of the scans.
Every arrow is 2 mm away from
the foveal center. MM_0073’s
longitudinal reflectivity profile
revealed 2 instead of 3 (as in the
control scan, above) hyper-
reflective peaks. MM_0048’s
longitudinal reflectivity profile
revealed all 3 outer retina layers
but with diminished local con-
trast compared with the control.
EZ, ellipsoid zone; IZ, interdig-
itation zone; RPE/BrM, retinal
pigment epithelium/Bruch
membrane.
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and 2 mm (0.27 ± 0.1) temporally (t(7) = 2.75, P =
0.028) and between 0 mm (0.46 ± 0.1) and 2 mm (0.31
± 0.1) inferiorly (t(5) = 4.24, P = 0.008).

Qualitative and Quantitative Analysis of the
Photoreceptor Mosaic

The photoreceptor mosaic could be resolved in the
confocal AOSLO images from seven of nine carriers at

the regions of interest (eight eyes in total). The fundus
TLR observed on color fundus and NIR reflectance
images colocalized with areas of highly reflective rod
photoreceptors in these seven carriers. Although the
locations imaged by means of AOSLO (white rec-
tangles, Figure 1) were chosen so as to represent TLR
areas appearing in the macroscopic modalities, this
could not be achieved in all cases (MM_0030 and
MM_0073). Lack of color fundus images in these

Fig. 3. Comparison of normal-
ized local contrast across
eccentricities for carriers ex-
hibiting a TLR. Left column (A,
C and E) plots are for horizontal
and right column (B, D and F)
are for vertical transfoveal SD-
OCT line scans of carriers ex-
hibiting a TLR with available
SD-OCT scans. Box plots depict
the interquartile range, median,
and whiskers extend to 1.5 ·
interquartile range. Dashed lines
join the median values. Filled
squares indicate mean values
and filled circles indicate out-
liers. Outer retina layers are
designated as ellipsoid zone
(EZ), interdigitation zone (IZ),
and retinal pigment epithelium/
Bruch membrane (RPE/BrM),
top to bottom rows. Normalized
local contrast values at the
foveal center (0 mm) were
compared with those parafo-
veally at 1 mm and at 2 mm.
Statistically significant differ-
ences are denoted with asterisks
(paired t tests at the 0.05 level).
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two carriers also hindered the confirmation of a TLR
pattern macroscopically.
Cone photoreceptor density in the 14 regions of

interest (2 each from 7 carriers) in TLR regions
were, on average, 29.4% (range 12.9–47.8%)
reduced compared with the immediately adjacent,
non-TLR regions of interest (Figure 5). By contrast,
six adjacent regions from the noncarrier controls (2
each from 3 controls) had an average difference of
1.7% (range 0.6–4.0%).
Reflectivity analysis of a TLR area in one of the

carriers (MM_0048) approximately 2.2° away from
the fovea revealed that 96% (24 of 25) of cone pho-
toreceptor outer segments had a dim appearance of
an average (±SD) intensity value of 103 (±48),
whereas rod photoreceptor outer segments were on
average (±SD) brighter (148 ± 80), with 39% of
them (26 of 66) having intensities of at least 200
(see Figure 1, Supplemental Digital Content 1,
http://links.lww.com/IAE/S774). Reflectivity values
of cones (n = 83) and rods (n = 85) from an unaf-
fected individual (MM_0136) were substantially
lower (59 ± 20 and 21 ± 10, respectively). Carriers’
cone photoreceptors have evidently enlarged inner
segment diameters qualitatively illustrated in the
nonconfocal image compared with the noncarrier
control.

Longitudinal Observation of Tapetal-Like Reflex in
the Photoreceptor Mosaic

Representative TLR appearances of the photorecep-
tor mosaic for the three carriers that were imaged 19
weeks apart (MM_0037 and MM_0039) and 42 weeks
apart (MM_0048) are presented in Supplemental Dig-
ital Content 2 (see Figure 2, http://links.lww.com/
IAE/A775). The increased reflectivity of these TLR
areas colocalized across time with no apparent bright-
ness changes (qualitatively assessed).

Discussion

Fundus autofluorescence appearances in most of our
carrier cohort showcased the radial patterns of
increased AF in the rod-rich ring-shaped area around
the fovea at the eccentricity of the optic disk,
corroborating previous reports.35,36 In some of our
carriers, images are limited to a 30° field of view pre-
cluding confirmation of these patterns. Future relevant
studies should aim for wider field of view (55°) FAF
imaging.
Optical coherence tomography reflectivity analysis

revealed reduced normalized contrast across outer
retinal layers in TLR areas compared with non-TLR
areas indicating higher reflectivity originating from the

Fig. 4. Tapetal-like reflex
appearance in carriers of RPGR-
associated RP—colocalization
of NIR reflectance and confocal
AOSLO modalities. Shown are
confocal AOSLO and matching
NIR reflectance images from
two carriers (MM_0039 and
MM_0079). The rectangles on
the NIR reflectance images
indicate the areas enlarged on
the right. The TLR patterns seen
in NIR reflectance are clearly
visible in the cellular arrange-
ment, with rods of increased
brightness in contrast to cones.
Scale bars are 100 mm.
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EZ and IZ photoreceptor interfaces. Because of the
low transverse resolution of SD-OCT, it is not possible
to distinguish the relative contribution of cones and
rods populating these layers; hence, AOSLO imaging
was the next step to achieve this goal.
Our study is the first to characterize the photore-

ceptor mosaic of TLR areas in RPGR carriers in vivo.
Namely, the carriers’ photoreceptor mosaic features
are shown to comprise reduced cone densities within
TLR areas compared with non-TLR areas, increased
cone inner segment diameters compared with controls,
and increased rod outer segment reflectivity compared
with cone outer segments. Previous studies reported
that the TLR likely originates from cone photorecep-

tors25,27; in our cohort, this was not the case, with only
a very small percentage of cones appearing highly
reflective (in direct contrast with rods). Overall, it
seems that both rod and cone photoreceptors contrib-
ute toward the TLR, that is, are on average brighter
than their noncarrier counterparts. Berendschot
et al26 were the first to report that the TLR originates
at the outer segment of (both cone and rod) photo-
receptors; our study provides evidence that more spe-
cifically it is almost exclusively rod photoreceptor
outer segments (and not cones) which give the TLR
appearance macroscopically (Figures 4 and 5). This
conclusion is drawn from the evidence that high-
resolution imaging offers: configuration of small

Fig. 5. Tapetal-like reflex areas are associated with localized cone loss compared with non-TLR areas in carriers of RPGR-associated RP. Shown is
a region of temporal retina from a healthy control (MM_0136) and two RPGR-associated RP carriers with a highlighted region of interest (square, top
row) in the nasal and temporal retina, respectively (MM_0010 and MM_0048) containing both TLR and non-TLR regions. These region of interests in
the top row NIR reflectance images correspond to the location of the confocal AOSLO images below. The squares correspond to either regions of
photoreceptor mosaic outside the TLR regions or to photoreceptor regions within the TLR. Scale bar is 100 mm. Adjacent regions in the noncarrier
woman show virtually no difference in cone densities. Conversely, in RPGR-associated RP carriers the TLR regions are associated with decreased cone
densities and increased rod outer segment brightness.
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circular structures around larger cone-sized areas of
reduced reflectivity (see Figure 1, Supplemental
Digital Content 1, http://links.lww.com/IAE/S774).
By definition, light from the RPE and inner segments
is rejected by confocal AOSLO; hence, the rod outer
segments alone are contributing to this increased
reflectivity.
Whether the TLR appearance is the result of

disruption of cones, rods, or both with/without
other factors cannot be answered from this study.
Functional testing in XLRP carriers has revealed
that both cones and rods are equivalently
affected37,38; however, because of the variability
both between and within carriers (interocular),
definitive conclusions cannot be drawn for all
carriers.
Identifying the objects (here, rod outer segments)

that appear brighter than their surroundings to give
rise to the TLR appearance macroscopically does not
necessarily answer a more complicated question of
what is the cause of such appearance. Although our
study was not designed to objectively establish the
latter, we can suggest potential mechanisms of the
origin of the TLR. The media surrounding rods
(either the cones, or the organization of the RPE
apical extensions, or both) may be disrupted in the
form of an altered refractive index and this may in
turn cause the TLR appearance partly because the
rod signal is believed to depend on the refractive
index difference between the interface of the rods
and their surroundings. So, if the pair of adjacent
media refractive indices closer matches one another
(rather than differ), less light is waveguided and thus
reflected (TLR).
Because the RPGR gene product has been shown to

be ubiquitously expressed in tissue-specific splice
forms,10,12,39 at least two different hypotheses could
hold true for the TLR mechanism. The first is that
aberrant RPGR in the RPE alters the interaction
between the apical appendages of the RPE cells and
the rod outer segment tips, thus changing the refractive
index and altering the observed signal. Second, RPGR
expressed in the rod photoreceptors alters their shape
and composition (because of trafficking defects) and
thus, changes their interaction with the RPE and the
optical signal they generate, as has been suggested in
Oguchi disease.40 However, multiple studies have
sought to identify RPGR expression patterns; the
ORF15 containing isoform is only found in photore-
ceptors.10,39 This suggests that RPGR expressed in
RPE is likely a different isoform than that expressed
in photoreceptors and is potentially unaffected by the
ORF15 sequence variants in most of our carriers’
cohort. Further work from Beltran et al suggested both

cone and rod opsin mislocalization (in the same retinal
patches) to the inner segments and outer nuclear layer
in two canine models of RPGR-associated disease.41 If
such structural changes exist and to what extent they
affect the appearance of the photoreceptor mosaic in
RPGR carriers remains to be elucidated.
Our results corroborate ex vivo retinal histopathol-

ogy studies in RPGR carriers (humans and animal
models) showing reduction in photoreceptor num-
bers.41–43 In addition, loss of the outer segment, non-
uniform cone spacing, and both shorter and broader
cone inner segments (similar rod changes, but to
a lesser extent) have been documented throughout
the retina, including the perifoveal region. To assess
outer segment length in vivo, AO-OCT would prove
a complementary imaging modality with better axial
and lateral resolution compared with SD-OCT toward
a more complete and precise characterization of outer
retinal structure in RPGR carriers.
The increased reflectivity of the rod outer segments

in confocal AOSLO images was broadly consistent
across all seven carriers. An area that should be further
explored in the future is microperimetry in TLR
areas.20,44 Previous studies suggest that there was
a reduction in photopic and scotopic performance in
TLR areas; however, stimuli positioning may have not
been accurate enough to exclusively target small
streaks of such golden strands. New, adaptive optics
and high-fidelity eye-tracking schemes allow stimulus
presentation with cellular precision45 and have been
demonstrated in other retinal conditions.46 Application
of these techniques in RPGR carriers expressing pat-
terns of fundus TLR would be informative.
Our study has some limitations. First, we did not

obtain color retinal photographs from four carriers to
assess the full macroscopic TLR appearance across our
cohort. Second, we did not control for the adaptation
state (photopic versus scotopic vision) before each
imaging modality47 to compensate for potential fluc-
tuations of the TLR appearance with varying retinal
exposure to light. Nevertheless, we have (qualita-
tively) shown that three of our carriers showed no
fluctuations in TLR intensities across visits. Third,
our sample size was relatively limited (n = 7), albeit
—to the best of our knowledge—it is the only study
with in vivo cellular imaging down to rod resolution.
Lastly, the lack of nonconfocal split-detection AOSLO
imaging for all but one of the carriers precluded the
expansion of our photoreceptor reflectivity analysis
because of the challenges in reliably discriminating
between cone and rod photoreceptors, as well as dis-
tinguishing neighboring bright rods as individual pho-
toreceptors rather than potentially confusing them for
cones, using the confocal modality alone.
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Cideciyan and Jacobson25 drew attention to the
increased reflectivity in color fundus reflectance
images taken in XLRP carriers, and this finding
has been supported by other imaging studies. Struc-
tural and functional cellular mosaicism because of
random X-chromosome inactivation has also been
reported in other X-linked conditions such as cone
dystrophy, blue cone monochromatism, X-linked
retinoschisis, and choroideremia.48–52 We extend
these aforementioned observations in a cohort of
molecularly confirmed carriers of XLRP harboring
disease-causing sequence variants in RPGR and
provide evidence that cone density is reduced in
TLR areas compared with adjacent non-TLR ones
and that increased rod outer segment reflectivity
accounts for the observed TLR in these same areas.
It remains to be determined whether baseline pho-
toreceptor TLR and associated cellular changes
observed on AOSLO are prognostic indicators of
the magnitude and/or rate of progression a carrier
may experience over time.

Key words: adaptive optics, carriers, heterozygotes,
imaging, retinitis pigmentosa, tapetal-like reflex.
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