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Micro-CT provides 3D volume imaging with spatial resolution at the micrometre scale. We investigated
the optimal human placenta tissue preparation (contrast agent, perfusion pressure, perfusion location
and perfusion vessel) and imaging (energy, target material, exposure time and frames) parameters.

Microfil (Flow Tech, Carver, MA) produced better fill than Barium sulphate (84.1%(±11.5%)
vs70.4%(±18.02%) p ¼ 0.01). Perfusion via umbilical artery produced better fill than via chorionic vessels
(83.8%(±17.7%)vs78.0%(±21.9%), p < 0.05), or via umbilical vein (83.8%(±16.4%)vs69.8%(±20.3%), p < 0.01).
Imaging at 50 keV with a molybdenum target produced the best contrast to noise ratio. We propose this
method to enable quantification and comparison of the human fetoplacental vascular tree.
© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Fetal health and development is intricately bound with human
placental circulation, yet there is no validated quantitative method
with which to assess vascularisation of the human placenta.
Developing a quantitative method may improve our ability to
investigate, and therefore understand, normal placental function
and pathologies such as fetal growth restriction, stillbirth and twin-
to-twin transfusion syndrome.

Micro-focus Computed Tomography (micro-CT) provides three-
dimensional volume imaging with spatial resolution at the micro-
metre scale. The technique has been used to investigate the
branching structure and tortuosity of the fetoplacental circulation
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of mouse placentae [1] [2], and shown differences in vascular
density of the human placenta between normally grown and
growth restricted pregnancies [3], [4].

This study was designed to develop optimised tissue-specific
preparation and micro-CT imaging parameters, in order to pro-
vide a validated approach to human placenta micro-CT.
2. Method

This series of experiments is divided into two sections; inves-
tigating tissue preparation techniques, and then micro-CT imaging
parameters. The full experimental methodology is described in
supplementary data.
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2.1. Tissue acquisition

Experimental procedures were approved by Bloomsbury Na-
tional Research Ethics Service Committee and by University College
London Hospital Research and Development (REC Reference
number 133888). Placentas delivered by elective term caesarean
section were taken directly to the laboratory, had the membranes
trimmed, and the amnion removed.
Vascular Fill ð%Þ ¼
�

Total Perfused Vessel Area
Total Perfused Vessel Areaþ Total Unperfused Vessel Area

�
� 100 (1)
2.2. Tissue preparation comparators

We designed experiments to compare (Table 1):

� Contrast agent e comparing Barium sulphate with Microfil
(Flow Tech, Carver, MA.).

� Perfusion pressure e comparing manual pressure with no
quantification of perfusion pressure, with controlled pressure of
60 mmHg, physiologically relevant to fetal life [5e7].

� Cannulation location e comparing perfusion via the umbilical
artery with perfusion via a chorionic artery.

� Arterial or Venous Cannulation e comparing perfusion via
cannulation of the umbilical artery with perfusion via the um-
bilical vein.

The fetal vessel of interest was cannulated, and a cutmade in the
main draining vessel close to the point of cannulation, to create a
fluid exit vent. 0.9% sodium chloride solution with 5IU heparin/ml
was perfused until the outflow ran clear, then contrast agent was
perfused until the chorionic vasculature was fully perfused and
contrast agent was seen in the draining vessel. The vessel was
Table 1
Comparison of placental tissue preparation and micro-CT imaging parameters used in th
results of this study. SNR ¼ signal to noise ratio.

Langheinrich [4]
(Human)

Rennie et al.[10]
(Mouse)

Assessme

Tissue Preparation
Contrast Agent Microfil and BaSO4 in

gelatin
Microfil Microfil a

Perfusion Pressure
(mmHg)

74 Not reported Manual p

Perfusion Location Chorionic (peripheral)
perfusion

Umbilical (central)
Perfusion

Chorionic
(central)

Perfusion Vessel Chorionic plate artery Umbilical Artery/
Umbilical Vein

Chorionic
vein

Tissue sampling
technique

8 � 2 mm full thickness
blocks

Whole placenta 8 � 2 cm

Micro CT Imaging
Cone-beam energy

(keV)
60 80 30-100 in

Target material Not reported Not reported Tungsten
Isotropic voxel size (mm) 13 and 4 13 13

Radiograph exposure
time (ms)

2400 Not reported 500/1000

Number of projections 400 720 3141/628
occluded and the contrast agent was left to set. The placenta was
dissected into 2� 2cm full thickness blocks, which were fixed in 4%
formalin for a minimum of 48 h. One full thickness section stained
with hematoxylin and eosin (H&E) was cut for every block and 6
micrographs at x100 magnification taken (see supplementary
material).

Histological analysis was done in FIJI (ImageJ Version 2.0.0-rc-
54/1.51f) [8]. Vascular fill was calculated for each micrograph as
shown in equation one.
2.3. Micro-CT imaging comparators

We designed experiments to compare (Table 1).

� Energy level e from 30 to 100 keV in 10 keV increments.
� Target material e comparing Tungsten, Copper and
Molybdenum.

� Exposure timee500 and 1000 ms
� Averaged frames per projectione1 and 2

A 2 � 2cm full thickness block of human placenta was repeat-
edly imaged (XT H 225 ST Micro-CT, Nikon Metrology, Tring, UK)
adjacent to a 3 mm internal diameter tube filled with Microfil.
Scans were reconstructed using a modified Feldkamp filtered back
projection algorithm with proprietary software (CTPro3D; Nikon
Meterology), and the average greyscale values of recorded areas of
interest drawn over placenta, Microfil and air were calculated. The
contrast to noise ratio was calculated as shown in equation two.
is study and in two previous studies, and optimised protocol as determined by the

nt Parameters Optimised Protocol

nd BaSO4 in gelatin Microfil

ressure and 60 No difference Manual and 60 mmHg give
equivalent results

(peripheral) and umbilical
perfusion

Central vessel, ideally umbilical vessel

artery/Umbilical artery/Umbilical Artery

full thickness blocks Dependent on magnification and field of view
required

10 keV increments 50

, Molybdenum, Copper Molybdenum
Dependent on magnification and field of view
required
Balance with throughput 1000 gives good SNR

2/12564 Balance with throughput
3141 gives good SNR



Contrast to Noise ratio ðCNRÞ ¼ ðPlacenta Grey Scale Value�Microfil Grey Scale ValueÞ
Standard Deviation of Signal of Air

(2)
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2.4. Statistical analysis

Data is presented as mean ± SD. Statistical analysis was done in
SPSS Statistics (IBM version 23). Group comparison was performed
using independent sample t-tests with significance set at 95%.

3. Results

3.1. Tissue preparation comparators

There was lower mean vascular fill with barium sulphate than
Microfil (70.4% (±18.02%) BaSo4 vs 84.1% (±11.5%) Microfil,
(p¼ 0.01)) and barium sulphatewas seen in the extravascular space
in all three blocks sampled (47% of micrographs), whereas Microfil
was never seen in the extravascular space.

There was no significant difference in vascular fill between
manual or controlled 60 mmHg perfusion pressure (77.8%(±13.9%)
manual vs 78.0%(±21.9%) controlled pressure p ¼ 0.95). Perfusion
via an umbilical artery achieved higher vascular fill than perfusion
via a more peripheral chorionic vessel (83.8%(±17.7%) umbilical
artery vs 78.0%(±21.9%) chorionic artery, p < 0.05). Umbilical
arterial perfusion produced higher vascular fill than umbilical
venous perfusion (83.8%(±16.4%) umbilical artery vs 69.8%(±20.3%)
Fig. 1. Identifying optimal micro-CT imaging parameters for Contrast to Noise Ratio (CNR)
arbitrary units) between placenta and Microfil grey scale value with increasing energy for M
image noise, with increasing energy for Molybdenum, Tungsten and Copper target. C: Contr
D: Effect of increasing the exposure time and the averaged frames per projection on the CN
umbilical vein p < 0.01) (see Table 1 for summary, and supple-
mentary data Table 1 for full results).

3.2. Micro-CT imaging parameters

Contrast and noise were both greatest at the lower energy levels
(Fig. 1A/B). The optimal CNR was with Molybdenum target at
50 keV (Fig. 1C). Increasing exposure time from 500 ms to 1000 ms
and averaged frames per projection reduced the noise and
improved the CNR (Fig. 1D) at the cost of imaging time and
throughput (Table 1).

4. Discussion

We have established optimal tissue and imaging parameters for
placental angiographic micro-CT (Table 1). Our studies show that
Microfil is a superior contrast agent to barium suphate, and that
central and arterial perfusion are superior to peritheral and venous
perfusion. Contrast to noise ratio is optimal when imaging with
50 keV energy, with a Molybdenum target. Increasing the number
of projection and exposure time improves CNR at the cost of
throughput. Our studies found 1000 ms exposure time and 3141
projections over 360� rotation produced good CNR with a 54 min
. A: Contrast (defined as Microfil Grey Scale value e placental issue Grey Scale value,
olybdenum, Tungsten and Copper target. B: Standard deviation of the signal in air, the
ast to noise ratio with increasing energy for Molybdenum, Tungsten and Copper target.
R.
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scan time.
This approach can be used to investigate the microcirculation of

the human placenta. The technique benefits from its high resolu-
tion and large field of view, allowing images of the vascular tree to
be captured from the chorionic plate to the intermediate villous
vessels (see supplementary data for images).

Micro-CT allows measurement of vascular density and analysis
of the structure of the vascular trees, which could improve our
understanding of the heterogeneity within normal placentae, and
the structural changes associated with diseases such as early and
late intrauterine growth restriction.
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