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Abstract 

In the current review, the most pessimistic events of the globe in history are addressed when we present severe impacts caused by storm surges. 
During previous decades, great progresses in storm surge modeling have been made. As a result, people have developed a number of numerical 
software such as SPLASH, SLOSH etc. and implemented routine operational forecast by virtue of powerful supercomputers with the help of 
meteorological satellites and sensors as verification tools. However, storm surge as a killer from the sea is still threatening human being and 
exerting enormous impacts on human society due to economic growth, population increase and fast urbanization. To mitigate the effects of storm 
surge hazards, integrated research on disaster risk (IRDR) as an ICSU program is put on agenda. The most challenging issues concerned such as 
abrupt variation in TC’s track and intensity, comprehensive study on the consequences of storm surge and the effects of climate change on risk 
estimation are emphasized.  In addition, it is of paramount importance for coastal developing countries to set up forecast and warning system and 
reduce vulnerability of affected areas. 
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1. Introduction 

Storm surge, an extraordinary sea surface elevation induced by atmospheric disturbance (wind and atmospheric 
pressure), is regarded as a most catastrophic natural disaster. According to long term statistical analysis, total death 
toll amounted to 1.5 million and property losses exceeded hundred billions USD globally since 18751. They could 
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forecast the surge component of water level at a port of interest based on the observed far-field tidal surge, regional 
meteorological observations and the predicted astronomical tide. The forecast surge is combined with the predicted 
tide to generate a total water level series with which to force a numerical hydrodynamic model of inundation within 
the port. The ANN-generated local water-level boundary condition allows simulation of inundation at a high spatial 
resolution without the need for a larger coastal shelf model. This hybrid surge forecasting and modelling system can 
be run almost in real-time as a cost-effective supplement to existing national storm surge warnings and forecasts. 
 

2. Approach 

2.1. Artificial Neural Network implementation 

An Artificial Neural Network (ANN) is a massively parallel computational architecture that is inspired by and 
shares some of the operational characteristics of biological neural networks within the human brain4. Of particular 
importance for our problem are networks designed for supervised training in which relationships between a data and 
a parameter domain are learned given sufficient training data. Specifically, we use a feed-forward network 
architecture (Fig. 2a) in combination with an error back-propagation algorithm5 to discern complex non-linear 
mappings between time-series for a set of metocean variables that contain useful information (the input vector or 
‘layer’) and a target time-series of the surge component of water level at the location of interest (the ‘output layer’).  

The goal of the ANN6 is to generalize a relationship of the form 
 

 Ym  f Xn             (1) 
 

where X is an n-dimensional input vector consisting of variables x1, ..., xi, ..., xn; and Y is vector consisting of the 
target variables of interest y1, . . . , yi, . . . , ym (in our case, m = 1 as we have only a single target, the surge residual at 
the port of interest). Each neuron (Fig. 2b) operates according to an activation function given, for the jth node, by 

 
yj  f X Wj  bj            (2) 

 
where Wj is the vector of input weights and bj a bias weight for node j. There are various options for the choice of 
the activation function, f  in (2). One of the more widely used is the log-sigmoid function, a bounded, monotonic, 
nondecreasing function that provides a smooth nonlinear output response. 

 A supervised ANN makes use of a suitably large set of paired input and output data values to guide a training 
process that finds an optimal set of weights and biases. Selection of suitable inputs must be guided by fundamental 
understanding of the system being modelled but also involves considerable trial and error. Other studies have 
demonstrated the potential of ANN to predict and forecast tidal and surge water levels when driven by observations 
from nearby tide gauges and metocean data such as atmospheric pressure and wind stress(e.g. 7,8). In the case of the 
North Sea, surges typically evolve along a southerly track and it seems reasonable to expect that we should see 
useful information contained in prior observations at tide gauges in NW Scotland (Fig. 1a) as well as wind and 
pressure fields. Surge-tide interaction is important in the North Sea and so the predicted astronomical tide is also a 
relevant input variable. The predictive value of the far-field ‘external’ surge is demonstrated by Fig. 3, which shows 
that the observed tidal surge residuals at Stornoway, Kinlochbervie and Ullapool (Fig. 1a) exhibit a maximum 
correlation with the surge at Immingham at a lag of about -18 to -24 hours. Trial and error sensitivity analysis 
resulted in a final input vector that included the observed surge at Kinlochbervie, together with the wind stress and 
atmospheric pressure at Foula and (more locally) Donna Nook, and the predicted tide at Immingham. Preceding 
observations of the surge residual at Immingham were also included to capture the occurrence of larger negative 
surges that are often seen to precede the larger positive surges. Inputs were subject to a range of lags to generate 6, 
12, 18 and 24-hour forecasts of the surge residual at Immingham. 

ANN models were implemented using routines in the Matlab Neural Network Toolbox (Matlab release R16a; 
www.mathworks.com). The input vector was normalized from 0 to 1 and divided into training, validation and test 
datasets in the ratio 70:15:15. A log-sigmoid function was used between the input and hidden layers and a linear 
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forecast the surge component of water level at a port of interest based on the observed far-field tidal surge, regional 
meteorological observations and the predicted astronomical tide. The forecast surge is combined with the predicted 
tide to generate a total water level series with which to force a numerical hydrodynamic model of inundation within 
the port. The ANN-generated local water-level boundary condition allows simulation of inundation at a high spatial 
resolution without the need for a larger coastal shelf model. This hybrid surge forecasting and modelling system can 
be run almost in real-time as a cost-effective supplement to existing national storm surge warnings and forecasts. 
 

2. Approach 

2.1. Artificial Neural Network implementation 

An Artificial Neural Network (ANN) is a massively parallel computational architecture that is inspired by and 
shares some of the operational characteristics of biological neural networks within the human brain4. Of particular 
importance for our problem are networks designed for supervised training in which relationships between a data and 
a parameter domain are learned given sufficient training data. Specifically, we use a feed-forward network 
architecture (Fig. 2a) in combination with an error back-propagation algorithm5 to discern complex non-linear 
mappings between time-series for a set of metocean variables that contain useful information (the input vector or 
‘layer’) and a target time-series of the surge component of water level at the location of interest (the ‘output layer’).  

The goal of the ANN6 is to generalize a relationship of the form 
 

 Ym  f Xn             (1) 
 

where X is an n-dimensional input vector consisting of variables x1, ..., xi, ..., xn; and Y is vector consisting of the 
target variables of interest y1, . . . , yi, . . . , ym (in our case, m = 1 as we have only a single target, the surge residual at 
the port of interest). Each neuron (Fig. 2b) operates according to an activation function given, for the jth node, by 

 
yj  f X Wj  bj            (2) 

 
where Wj is the vector of input weights and bj a bias weight for node j. There are various options for the choice of 
the activation function, f  in (2). One of the more widely used is the log-sigmoid function, a bounded, monotonic, 
nondecreasing function that provides a smooth nonlinear output response. 

 A supervised ANN makes use of a suitably large set of paired input and output data values to guide a training 
process that finds an optimal set of weights and biases. Selection of suitable inputs must be guided by fundamental 
understanding of the system being modelled but also involves considerable trial and error. Other studies have 
demonstrated the potential of ANN to predict and forecast tidal and surge water levels when driven by observations 
from nearby tide gauges and metocean data such as atmospheric pressure and wind stress(e.g. 7,8). In the case of the 
North Sea, surges typically evolve along a southerly track and it seems reasonable to expect that we should see 
useful information contained in prior observations at tide gauges in NW Scotland (Fig. 1a) as well as wind and 
pressure fields. Surge-tide interaction is important in the North Sea and so the predicted astronomical tide is also a 
relevant input variable. The predictive value of the far-field ‘external’ surge is demonstrated by Fig. 3, which shows 
that the observed tidal surge residuals at Stornoway, Kinlochbervie and Ullapool (Fig. 1a) exhibit a maximum 
correlation with the surge at Immingham at a lag of about -18 to -24 hours. Trial and error sensitivity analysis 
resulted in a final input vector that included the observed surge at Kinlochbervie, together with the wind stress and 
atmospheric pressure at Foula and (more locally) Donna Nook, and the predicted tide at Immingham. Preceding 
observations of the surge residual at Immingham were also included to capture the occurrence of larger negative 
surges that are often seen to precede the larger positive surges. Inputs were subject to a range of lags to generate 6, 
12, 18 and 24-hour forecasts of the surge residual at Immingham. 

ANN models were implemented using routines in the Matlab Neural Network Toolbox (Matlab release R16a; 
www.mathworks.com). The input vector was normalized from 0 to 1 and divided into training, validation and test 
datasets in the ratio 70:15:15. A log-sigmoid function was used between the input and hidden layers and a linear 
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4. Discussion and conclusions 

Numerical tide-surge models are necessarily implemented for large areas of coastal shelf, but limited bathymetric 
resolution, and a relatively coarse mesh resolution, restricts their ability to resolve the propagation of surges within 
estuaries, where many large ports are located. Our hybrid ANN-computational forecast model demonstrates the 
ability of an ANN to transfer surge forecast information from a small set of metocean forcing variables, including 
the observed far-field surge, directly to an estuarine port. While the ANN does not offer the longer-range (24 to 42 
hour) forecasting capability of a full numerical tide-surge model, it can be used to provide forecasts within a 12 to 
24 hour window that are of comparable or better accuracy. 

ANN-generated water level series can then be used as a boundary condition for a local computational 
hydrodynamic simulation of flood extent, depth, and duration for a forecast event within the port facility. The use of 
a smaller model domain and focus on a single surge event means that this simulation can be run at a very high 
spatial resolution. Simulation times of 15 - 20 minutes (or less) are well within the capability of a single multi-core 
compute node and can be completed ‘on demand’ if a predicted surge water level exceeds a port-specific threshold. 

Work is currently ongoing to further refine the ANN through the extension of the sensitivity analysis to include 
different combinations of input variables. A key aim here is to eliminate as a far as possible the slight tendency of 
the initial ANN implementation to under-predict peak water levels. Refinements to the Telemac-2D model include 
improvements to the mesh to include a more complete representation of structures in conjunction with an improved 
treatment of buildings and defensive structures and experiments with more sophisticated turbulence and friction 
parameterizations. We are also progressing towards an operational version of the forecasting system that is able to 
receive live data feeds and can therefore be used directly by the port operator. 
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4. Discussion and conclusions 

Numerical tide-surge models are necessarily implemented for large areas of coastal shelf, but limited bathymetric 
resolution, and a relatively coarse mesh resolution, restricts their ability to resolve the propagation of surges within 
estuaries, where many large ports are located. Our hybrid ANN-computational forecast model demonstrates the 
ability of an ANN to transfer surge forecast information from a small set of metocean forcing variables, including 
the observed far-field surge, directly to an estuarine port. While the ANN does not offer the longer-range (24 to 42 
hour) forecasting capability of a full numerical tide-surge model, it can be used to provide forecasts within a 12 to 
24 hour window that are of comparable or better accuracy. 

ANN-generated water level series can then be used as a boundary condition for a local computational 
hydrodynamic simulation of flood extent, depth, and duration for a forecast event within the port facility. The use of 
a smaller model domain and focus on a single surge event means that this simulation can be run at a very high 
spatial resolution. Simulation times of 15 - 20 minutes (or less) are well within the capability of a single multi-core 
compute node and can be completed ‘on demand’ if a predicted surge water level exceeds a port-specific threshold. 

Work is currently ongoing to further refine the ANN through the extension of the sensitivity analysis to include 
different combinations of input variables. A key aim here is to eliminate as a far as possible the slight tendency of 
the initial ANN implementation to under-predict peak water levels. Refinements to the Telemac-2D model include 
improvements to the mesh to include a more complete representation of structures in conjunction with an improved 
treatment of buildings and defensive structures and experiments with more sophisticated turbulence and friction 
parameterizations. We are also progressing towards an operational version of the forecasting system that is able to 
receive live data feeds and can therefore be used directly by the port operator. 
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