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Abstract

Adverse drug events (ADEs) are unintended responses to medical treatment. They can

greatly affect a patient’s quality of life and present a substantial burden on healthcare.

Although Electronic health records (EHRs) document a wealth of information relating to

ADEs, they are frequently stored in the unstructured or semi-structured free-text narrative

requiring Natural Language Processing (NLP) techniques to mine the relevant information.

Here we present a rule-based ADE detection and classification pipeline built and tested on a

large Psychiatric corpus comprising 264k patients using the de-identified EHRs of four UK-

based psychiatric hospitals. The pipeline uses characteristics specific to Psychiatric EHRs

to guide the annotation process, and distinguishes: a) the temporal value associated with

the ADE mention (whether it is historical or present), b) the categorical value of the ADE

(whether it is assertive, hypothetical, retrospective or a general discussion) and c) the

implicit contextual value where the status of the ADE is deduced from surrounding indica-

tors, rather than explicitly stated. We manually created the rulebase in collaboration with cli-

nicians and pharmacists by studying ADE mentions in various types of clinical notes. We

evaluated the open-source Adverse Drug Event annotation Pipeline (ADEPt) using 19

ADEs specific to antipsychotics and antidepressants medication. The ADEs chosen vary in

severity, regularity and persistence. The average F-measure and accuracy achieved by our

tool across all tested ADEs were 0.83 and 0.83 respectively. In addition to annotation

power, the ADEPT pipeline presents an improvement to the state of the art context-discern-

ing algorithm, ConText.
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Introduction

The data available within EHRs is a potentially valuable resource of information describing patient

treatment trajectories at low levels of resolution. However, along with the potential lies significant

challenges because a notable portion of the EHR is in free-text form, making it necessary to deploy

NLP tools to transform the unstructured text into semantically-meaningful annotated knowledge

that can be subsequently used to aide in clinical decision making. As a result, the literature con-

tains many efforts to detect and classify clinical named entities in EHR text [1, 2, 3, 4, 5, 6, 7] and

resulting in several tools for information extraction from clinical notes including cTAKES [8],

MedEx [9] and MetaMap [10]. Recognition of the importance and value of this task has resulted

in the creation of a number of challenges by the Informatics for Integrating Biology and the Bedside
Centre (i2b2) for clinical entity recognition and classification from free-text clinical records [11],

including a psychiatry-specific challenge for extracting symptom severity [12].

The tools developed so far have been used to identify a variety of concepts including medi-

cations, symptoms, treatments, tests and dosages. Our interest lies in annotating and classify-

ing a specific concept, namely ADEs, which represent troublesome and potentially fatal

outcomes of medication treatment and incur substantial burdens on healthcare providers

(with projections of annual ADE-related costs approaching £466m) [13]. We focus on annotat-

ing and classifying ADEs associated with antipsychotics, and antidepressants medications for

two reasons: 1) In psychiatry, many of the factors leading to variations in individual suscepti-

bility to ADEs remain unknown, making the knowledge mined from any potential tool of

great value for research and drug evaluation purposes, and 2) Psychiatric EHRs tend to contain

most of the ADE-related knowledge in free-text narratives, and therefore require an NLP

annotation pipeline for extraction.

The last decade a number of studies have used NLP to identify adverse drug reactions

(ADRs; ADEs where a causative relation with medication is established) of interest in free-text

EHR documents [14, 15, 16, 17, 18, 19, 20, 21]. However, the NLP tools developed to obtain

the results of these efforts have been study-specific, and at times using commercial tools, and

therefore neither replicable nor publically available.

Moreover, ADR detection using Psychiatric EHRs exhibit unique challenges that distin-

guish them from similar tools operating on general hospital EHRs, Adverse Event spontaneous

reporting services [22, 23, 24, 25] literature [26] and social media reports [27, 28]. Apart from

the well-studied large amounts of redundancy characterising these notes [29], clinical text con-

tains a plethora of hypothetical and retrospective text, historical discussions as well as text

negating possible diagnoses and ADRs. This is a direct consequence of the EHRs being filled

with not only direct clinical problems, but also detailed summaries of the patient activities,

social and family matters, mood, general observations, discussions or warnings given to the

patient about potential side effects. Therefore, modelling and identifying the context of an

annotation is essential for correct classification.

In our previous work, we developed a rule-based NLP annotation system using manually-

created domain expert rules to identify patients who had experienced Extrapyramidal side

effects (Dystonia, Parkinsonism, Akathisia, and Tardive Dyskinesia) and adverse drug events

(Alopecia, Convulsion, Hypersalivation, Myocarditis, Nausea, Pneumonia and Tachycardia).

The system achieved an overall performance of>0.85 precision on these specific ADEs [30].

However, this work focused on identifying patients who had experienced one of the aforemen-

tioned ADEs during the course of treatment, rather than identifying all ADE mentions for a

given patient and anchoring them to a specific point of time.

In this paper, we extend our previous work to create a rule-based framework which identi-

fies and annotates temporally anchored mentions of all ADEs present in a given clinical text
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corpus. The modular tool builds on the recommendations for concept extraction and classifi-

cation resulting from the i2b2 Challenge [11] by 1) identifying ADE mentions, 2) classifying

ADE mentions (as positive, implying that the ADE is present, or negative, implying that the

ADE is absent) and 3) refining the classification using contextual indicators found in the clini-

cal text.

Our tool comprises a multiphase pipeline targeting ADE-specific patterns in psychiatric

clinical text. Our easily expandable dictionary currently houses the vocabulary needed to iden-

tify 66 common ADEs representing a comprehensive list of antidepressant and antipsychotic

ADRs collated by our lead pharmacy partners whose ADRs are a major interest of ours.

Methods

Data source

We acquired data from the Clinical Record Interactive Search (CRIS) [31], a database contain-

ing a de-identified replica of the EHRs of four major London, UK-based psychiatric hospitals:

1) The Maudsley Hospital, 2) Bethlem Royal Hospital, 3) Lewisham Hospital and 4) Lambeth

Hospital. Conjointly, the four hospitals make up the South London and The Maudsley NHS

Foundation Trust, one of the largest mental health provider in Europe serving a population of

over 1.2 million patients and storing much of their clinical records and prescribing informa-

tion in unstructured free text format.

As of January 2017, CRIS contained over 264,000 patient records comprising around 24

million free text documents including correspondence, discharge summaries, events, ward

progress notes, mental health care plan and mental state formulations. We extracted 8,321 doc-

uments and created 32 corpora, of which around 2,310 documents in four corpora were used

for creating the rulebase and remaining around 6,011 documents in 28 corpora for testing,

ranging from 130 to 475 documents in each corpus. We created separate corpora for creating

the rulebase and testing purposes. The corpus size varies because creating a manual annotation

on each mention of ADE is time-consuming and it heavily relied on the availability of clini-

cians and pharmacist. The size of the corpus left on the expert judgment of clinicians where

they agreed the corpus have enough variety of ADEs mention and documents to make a suit-

able decision. The process we follow as:

1) we extracted all documents within CRIS containing at least one mention of one of 19

ADEs: agitation, akathisia, arrhythmia, galactorrhoea, nausea, myocarditis, cardiomyopathy,

constipation, convulsions, diarrhoea, dizziness, dry mouth, hypersalivation, pneumonia, seda-

tion, Steven Johnson syndrome (SJS), tachycardia and weight gain and 2) we further stratified

the extracted documents based on the ADE terms mentioned in the document, document

length (documents vary in length between a single line and multiple pages) and document

types (e.g. discharge summaries, ward progress notes, local GP notes, etc.). The final subset of

8,321 was randomly selected such that the subset contains a variation of document types and

lengths for every ADE term.

For creating the rulebase and verification, we manually annotated the 8,321 documents for

all mentions of the 19 ADEs in consultation with two clinical and pharmacy researchers who

identified and classified mentions of the ADEs. The 19 ADEs were chosen by the clinician and

pharmacist represent a range of ADEs ranging from mild to severe, rare to common and

short-term to persistent. The selection was based on evidence within the record itself where

possible (rare and common), but additionally based on clinical judgement where this was

more difficult to derive from the record itself. The level of agreement between the two annota-

tors for all 19 ADEs is given in Table 1 with a percentage representing the agreement and a

Cohen’s Kappa scores before removing the 1% documents where the length of the free text was
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only a single word. In the case of inter-annotator discrepancies, the annotation was reviewed

and if ambiguity remained, the document was replaced in the corpus.

Dictionary terms

To accommodate the diversity of writing styles and terminologies used in different hospitals

and clinics, and between clinicians and carers, and to account for typographic errors, we com-

piled a dictionary containing the vocabulary to be used by the different pipeline components.

The dictionary also contains variations of ADE-related terms. For example, sedation is a com-

mon side effect of antipsychotics. However, depending on context, there are several possibili-

ties to describe sedation such as feeling sleepy, drowsy, sleepiness, drowsiness, sedated, and

somnolence. The dictionaries are available for download from our github repository, https://

github.com/KHP-Informatics/ADRApp/tree/master/application-resources/ADR.

1. 632 ADE terms: The ability of the pipeline to recognise and classify additional ADEs is

constrained by the ADE terms contained within its dictionary. Our dictionary currently

accommodates 66 different ADEs related to antipsychotics and antidepressants, including

synonyms and alternate spellings. The vocabulary recogonised by the pipeline is easily

extensible with user-provided terms to accommodate additional ADE terms.

2. 2545 drug terms: derived from the BNF drug dictionary [32], and expanded to include

incorrect spellings and updated drug names to reflect coverage within a psychiatric setting

(specifically anti-psychotics, anti-depressants, mood stabilisers, hypnotics and anxiolytics).

3. 208 helping terms: the purpose of which is to indicate ADE occurrences (e.g. ‘does have’,

‘developed’ etc.) and include drug administration (e.g. ‘taking’, ‘applying’, ‘using’, ‘adminis-

tering’ etc.), monitoring (e.g. ‘assess for’, ‘monitor’, ‘screen for’, ‘signs of’, ‘watch for’ etc.),

Table 1. Annotation agreement between two clinical annotators. Annotations were retained as the

labelled dataset for predictions if the experts annotators agree on the classifications of their mentions.

ADE Agreement (%) Cohen’s Kappa Score

Agitation 88% 0.65

Akathisia 90% 0.75

Arrhythmia 89% 0.73

Cardiomyopathy 89% 0.76

Constipation 91% 0.78

Convulsions 98% 0.96

Diarrhoea 93% 0.84

Dizziness 93% 0.78

Dry Mouth 89% 0.71

Galactorrhea 92% 0.83

Hypersalivation 94% 0.74

Insomnia 92% 0.75

Myocarditis 89% 0.71

Nausea 85% 0.69

Pneumonia 93% 0.82

Sedation 96% 0.91

SJS 93% 0.82

Tachycardia 94% 0.83

Weight Gain 96% 0.90

https://doi.org/10.1371/journal.pone.0187121.t001
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negative effects (e.g. ‘side effect’, ‘adverse effect’, ‘SE’, ‘EPSE’ etc.) as well as drug link terms

(e.g. ‘as it can be’, ‘as it may’, ‘if it cause’, ‘known for’, ‘may lead’ etc.).

4. 660 contextual terms: these include subject terms (e.g. ‘mother’, ‘patient’), negation terms

(e.g. ‘does not’), hypothetical terms (e.g. ‘if’), temporal terms (e.g. ‘previously’) and termina-

tion terms (e.g. ‘however’). These terms are partly derived from the 342 terms used in the

ConText algorithm [33], an algorithm used for discerning the context surrounding men-

tions of medical episodes to aid the classification process.

Populating the dictionaries. With the help of senior pharmacists, we compiled a list of

expected ADRs associated with antipsychotics and antidepressants using the British National

Formulary (BNF 68 at the time of research), the electronic medicines compendium (eMC)

[34], the Maudsley Prescribing Guidelines 11th Edition and the Micromedex Healthcare data-

base. In addition, a list of possible spelling variations and common alternative descriptions

used to describe the ADR in clinical practice was also generated.

Development environment

We used the GATE NLP framework [35], which is a development environment for creating

language engineering applications. GATE offers language-processing, information extraction

and testing tools [36]. We used GATE’s Java Annotation Patterns Engine (JAPE) to implement

the rule base in all stages of the pipeline [37].

The Adverse Drug Event annotation Pipeline (ADEPt) [38] is composed of four sequen-

tially applied rule-based processing and annotation components. Each component is com-

posed of a set of specialised rules that use co-location and position to correctly annotate ADEs.

The overall annotation strategy of the pipeline rests on two observations we made by analysing

the structure of the text containing ADE references within the anonymised EHRs:

Observation 1: Clinical text usually takes the form of short delimiter-separated clauses with

each clause conveying information about a single ADE-related episode. Delimiters are usually

periods, commas and semicolons (with periods being the most commonly used). Therefore,

we can use delimiter-separated clauses where the annotations are located as boundaries for

classification.

Observation 2: Clinical text contains a plethora of contextual indicators surrounding ADE

mentions including hypothetical and retrospective text, historical discussions as well as text

negating possible diagnoses and ADEs. Moreover, ADE-housing clauses can contain multiple

contextual indicators. Therefore, a specialised context-discerning component which is capable

of resolving conflicts among multiple contextual indicators is necessary to correctly classify

ADE mentions.

A functional representation of the overall pipeline is shown in (Fig 1). ADEPt begins by

using the GATE pre-processing resources to prepare an input document for annotation by

tokenizing, splitting sentences and tagging parts of speech. For this component, we designed a

rule base that specifically examines clause-level boundaries and splits clauses accordingly. The

prepared document is then passed to an ADE-identification component which uses the identi-

fied boundaries to locate ADE-related terms, as defined in the dictionary, and produce an ini-

tial classification (positive or negative).

The third step comprises a set of rules that refine the annotated ADEs by discerning the

context surrounding the identified annotation. These rules are triggered when contextual indi-

cators are found in the clauses containing the ADE annotations. We used contextual references

to distinguish the subject, the temporal value and the categorical nature of the annotation (i.e.
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factual, hypothetical or negated) and to identify clauses where the ADE annotations refer to

warnings, monitoring, suggestions and ongoing investigations, and implement specialised

rules for resolving conflicts among multiple contextual indicators. The pipeline finalises the

generated annotations in a post-processing step which attaches metadata summarising the

decisions resulting in the final annotation and it’s location in the corpus.

The ADEPt pipeline has two distinguishing features: 1) the use of clauses to delimit the

annotation scope and 2) the use of ADE-related text properties to define the context surround-

ing the identified annotations.

Clause-level ADE annotation. Paragraph-level annotation does not offer sufficiently high

resolution for our co-occurrence-based annotation system as multiple ADE-containing clauses

usually exist in a single paragraph.

Examples: The examples below are adapted from real clinical notes of a single patient and

are chosen to be representative of the approach we use to extracting ADEs from free text.

1. Late shift ZZZZZ has wandered in and out of her room throughout the afternoon. No com-
plaints of dizziness.

2. He did not complain of constipation. The patient is still suffering from a light headache.

The above examples contain multiple-clause paragraphs whereby every clause is delimited

by a period (i.e. every clause is a sentence). In the first example, the entire paragraph contains

a single ADE mention. Co-location based annotation will examine negation terms co-located

with the target ADE within the annotation boundaries and will arrive at the correct decision (a

negated mention of dizziness) using both paragraph and sentence-level annotation. This is

Fig 1. The GATE NLP based ADEPt pipeline comprising four rule-based processing components. The pipeline takes as input EHR clinical notes

documents and a dictionary containing all annotation-related terms. The pipeline sequentially applies the four components accumulating new annotations

for the target annotation (ADE). The output of the pipeline is a single ADE annotation with six features (ADE type, Experiencer, Negation, Temporality,

Categorical_Value, Refinedment_Rule, ADE_status and clause).

https://doi.org/10.1371/journal.pone.0187121.g001
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because the negation term (‘No complaints’) is co-located with the ADE in the same paragraph

(and sentence).

On the other hand, the second example shows a paragraph containing two ADE mentions

(constipation and headache) in two clauses. If ADE annotation proceeds using paragraph

boundaries, the negation term ‘did not’ will lead to the rejection of both ADEs (constipation

and headache). This incorrect annotation is also likely when using models based on ‘bag-of-

words’ that make decisions dependent on the boundaries defined by the tagging algorithm.

Bag-of-word models have in the past led to inconsistent tagging and require complex bound-

ary-detection techniques that our clause-level tagging greatly simplifies. Here, sentence-level

tagging will appropriately negate the first ADE (constipation) while affirming the second

(headache).

The case of multiple ADEs in a single clause. Although clause-level parsing is sufficient

in most cases encountered, clinical notes also contain instances of clauses containing multiple

ADEs. Manual examination of 8,321 documents showed that approximately 5% of the clauses

contained multiple ADE references. Therefore, in order to make correct decisions about

ADEs, it is important to accommodate the instances which violate our single-clause, single-

ADE assumption.

To approach these situations, we increased the granularity of the annotation process by

dividing the clauses containing multiple ADEs into several single-ADE clauses. We did this by

creating additional clause-splitting rules to issue splitting actions whenever specific termina-

tion terms (as per the dictionary) were present in multi-ADE clauses. For example, the termi-

nation term ‘but’ in the clause below divides it into two independent clauses with headache

affirmed in the first and constipation negated in the second.

The patient is still complaining of headache but not constipation.

Discerning context. We designed a specialised component which uses contextual indica-

tors co-located with the ADE terms to refine the value of the identified annotations. The com-

ponent comprises a rulebase whose constituents are fired when a context-related trigger term

which falls within the scope of an identified annotation is found. For example, the trigger term

“no” is associated with a negation context. Once a trigger term is detected within the boundary

of the annotation, the context value of the annotation is changed to reflect the value associated

with the trigger term.

We built our rulebase by extending the open-source ConText algorithm [33], which identi-

fies negations, hypothetical and general discussions, as well as indicators discerning the tempo-

ral validity of the identified annotations (whether they are current or historical). We adapted

ConText to our ADE detection context in three ways. First, we customised the algorithm such

that is uses the same clause-level boundaries as identified in the previous step. This way, all

trigger terms which fall within the same clause as the annotation are captured by the algorithm

and are directed to the appropriate rule for classification. Second, although ConText comes

bundled with a set of triggering terms, many British English and ADE-relevant terms were not

present in its dictionary. Therefore, we added 318 additional terms available in the GitHub

repository [33, 38] to ConText’s working dictionary and classified them according to how they

affect the identification of an ADE as Table 2 shows. Categories include negation indicators

(e.g. ‘excluded’ and ‘not found’), possibility phrases (e.g. ‘most concerned about’ and ‘rule him

out for’), experiencer terms (e.g. ‘mother’ and ‘father’), and temporal and hypothetical indica-

tors (e.g. ‘in the past’ and ‘if’). This is in addition to the termination terms discussed in the pre-

vious section.
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Finally, although the ConText algorithm is able to correctly classify annotations based on

the surrounding context in most instances, there are situations where it is unable to do so. We

therefore created an additional set of 26 ‘removal’ and 9 ‘retention’ rules to identify and cor-

rectly annotate ADE mentions whose surrounding contextual indicators cannot be properly

interpreted by the ConText algorithm. Retention rules target annotations that ConText mis-

classified as negative, and retain them as positive mentions in ADEPT’s results, while removal
rules target annotations that ConText misclassified as positive, marking them as negative men-

tions in ADEPt’s final annotations. Removal rules are overridden by retention rules in cases

where there is additional evidence that the discussion of the ADE is positive. 26 removal and 9

retention rules are applied to correct the annotation in the following cases:

1. Retention Rules: The main aim of retention rules is to identify annotations that are sur-

rounded by negation terms but are nevertheless positive mentions. In the ConText algorithm,

a negation term is assigned a high priority and will lead to a negative annotation regardless of

the existence of additional terms. However, this overgeneralization fails in many instances in

clinical text, as negation may not be used to refer to the patient as given in the examples below:

ZZZZZ appeared to be disorientated and not taking his medication.

ZZZZZ restlessness has not worsened on the increased dose of beta-blocker.

The corresponding rules are shown in Fig 2(A) and 2(B). In the figure, the term ‘Token’

refers to any token not present in our dictionary.

2. Removal Rules: These rules operate on a number of difference clauses, mainly: a) clauses

discussing potential ADEs, ongoing investigations, warning, monitoring or explanations, etc.

as in Fig 3(A), 3(B) and 3(C) (e.g. I am changing the dose and have warned ZZZZ of dizziness,

or Signs of myocarditis, on going investigation or The patient is starting Olanzapine, explained

her as it can cause weight gain), b) clauses where there is uncertainty about whether the ADE

is present as in Fig 3(D) (e.g. She has had 4 seizures within the last 2 weeks, unstable partial

complex seizures), c) questionnaires, which tend to be pervasive in the electronic text as in Fig

3(E) and 3(F) (e.g. Fainting/ dizziness �No � Yes. I become irritable, restless and nervous x 5)

and finally d) ADEs that are part of organisational names or addresses Fig 3(G) and 3(H) (e.g.

CENTRE FOR ANXIETY DISORDERS AND TRAUMA, sjs@sydenham.lewisham.sch.uk or

www.nhs.uk/Conditions/Anxiety).

Table 2. Enrichment of the ConText algorithm trigger terms.

Triggers Terms ConText Algorithm

(n = 392)

Terms Added

(n = 318)

Current Terms

(n = 710)

Experiencer 29 46 75

Negation 197 216 413

Possibility terms & phrases 28 16 44

Termination 89 17 106

Temporality & Hypothetical 49 23 72

https://doi.org/10.1371/journal.pone.0187121.t002

Fig 2. The retention rules pattern used in the ADEPt pipeline.

https://doi.org/10.1371/journal.pone.0187121.g002
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Ruleset building and testing. From the 8,321documents used in this work, we used 2,310

documents uniformly distributed across the four hospital sites to guide the construction of the

rulebase. All documents chosen contain mentions of one of the following four ADEs: Akathisia

(common and long-term), galactorrhoea (rare, acute and mild), myocarditis (rare and severe)

and nausea (acute and common). The four ADEs chosen for rulebase vary in severity, regular-

ity and persistence. The remaining 6,011 documents were used to test the performance of the

pipeline on fourteen ADEs. The ADEs tested include the four used for rulebase in addition to

dizziness, hypersalivation, pneumonia, sedation, tachycardia, cardiomyopathy, convulsions,

diarrhoea, constipation and Steven Johnson syndrome.

Evaluation metrics. We used accuracy, precision, recall and the F-score to evaluate the

annotation pipeline (Equations 1, 2, 3 and 4). We also recorded specificity, using it along with

recall to examine the shapes of the resulting ROC curves. The metrics rely on true positive

(TP), false positive (FP), true negative (TN) and false negative (FN) values, which we defined

in terms of the agreement between our pipeline and our annotators consensus for every ADE

term found. For example, a true positive annotation is one which, given all associated contex-

tual terms surrounding the annotation, is identified as positive by ADEPt as well as the human

annotator. TP is where the subject is the patient, no negation is present and the event is

deemed recent. If the match is partial, the ADR is labelled as TN.

Error analysis

We conducted error analysis at each step of the pipeline to enhance performance. The result-

ing measures are given in Table 3 and include precision, sensitivity, specificity, accuracy and f-

measure. These measures are given for each ADR at the following stages: a) ‘paragraph’, desig-

nating the use of paragraphs as delimiters for ADR mentions, b) ‘statement’, designating the

use of statements to delimit ADR mentions, c) ‘original ConText Algorithms’ designating the

use of the off-the-shelf ConText algorithm without modification, d) ‘original ConText Algo-

rithms’ evaluates the impact of additional vocabulary to the dictionary, and e) ‘With Extra

Fig 3. The removal rules pattern used in the GATE NLP based ADEPt pipeline.

https://doi.org/10.1371/journal.pone.0187121.g003
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Terms and Refinement Rules’ shows the final performance of the pipeline. Guided by the

results obtained at each stage, we a) added more vocabulary to accommodate the unidentified

ADRs, and b) added and adjusted the refinement rules to create a more generic rulebase.

Results

Here, we present the results of running the pipeline on the manually-annotated 8,321 test set

documents for all 19 ADEs. For four ADEs (akathisia, galactorrhoea, nausea and myocarditis),

we additionally report the incremental performance increase after each step of the pipeline

(Table 3 and Fig 4).

The first and second rows of every ADE in Table 3 show the improvement resulting from

using clauses (as opposed to paragraphs) to delimit the annotation scope. Here, we manually

examined the TP, TN, FP and FN annotations using clause-level and paragraph-level bound-

aries and confirmed that: a) none of the correctly-classified ADEs using paragraph boundaries

were misclassified using clause boundaries, b) all correctly-classified ADEs using paragraph-

level boundaries are proper subsets of those identified by clause-level boundaries.

The last three rows of each ADE show the incremental improvement in classification using

contextual indicators found in the text via a) the off-the-shelf ConText algorithm, b) ConText

enriched with additional domain-specific terms and finally c) the improved ConText algo-

rithm containing the enriched vocabulary as well as additional refinement rules for conflict

resolution and implicit mentions. The incremental improvements are graphically demon-

strated using the ROC curves in Fig 4.

Apart from Akathisia, Nausea, Galactorrhea and Myocarditis, we further evaluated ADEPt

on fifteen other ADEs (see Table 4). In contrast to our earlier work, the ADEPt pipeline per-

formed well on common ADEs such as constipation, diarrhoea, sedation, hypersalivation,

Table 3. Incremental results of akathisia, galactorrhea, nausea and myocarditis.

ADE Corpus Ref Total Precision Sensitivity Specificity Accuracy F-measure

Akathisia Paragraph 215 0.73 0.87 0.33 0.69 0.80

Statement 215 0.76 0.89 0.39 0.73 0.82

Original ConText Algorithm 215 0.77 0.90 0.43 0.74 0.83

ConText With extra terms 215 0.94 0.88 0.88 0.87 0.91

With Extra Terms and Refinement Rules 215 0.96 0.90 0.93 0.91 0.93

Nausea Paragraph 369 0.84 0.82 0.52 0.74 0.83

Statement 369 0.86 0.84 0.56 0.77 0.85

Original ConText Algorithm 369 0.89 0.87 0.67 0.82 0.88

ConText With extra terms 369 0.93 0.87 0.80 0.85 0.90

With Extra Terms and Refinement Rules 369 0.95 0.86 0.84 0.85 0.90

Galactorrhea Paragraph 139 0.59 0.72 0.41 0.57 0.65

Statement 139 0.62 0.77 0.45 0.62 0.69

Original ConText 139 0.66 0.81 0.50 0.66 0.73

ConText With extra terms 139 0.73 0.89 0.61 0.76 0.80

With Extra Terms and Refinement Rules 139 0.83 0.91 0.78 0.84 0.87

Myocarditis Paragraph 188 0.28 0.70 0.30 0.41 0.40

Statement 188 0.29 0.72 0.32 0.43 0.42

Original ConText Algorithm 188 0.30 0.74 0.34 0.45 0.43

ConText With extra terms 188 0.40 0.60 0.64 0.63 0.48

With Extra Terms and Refinement Rules 188 0.51 0.75 0.71 0.72 0.61

https://doi.org/10.1371/journal.pone.0187121.t003
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tachycardia, pneumonia, sedation and performed least well in identifying convulsions. ADEPt

also performed well on rare ADEs such as cardiomyopathy and Steven Johnson syndrome.

The pipeline achieves better performance in common and long-term ADEs than it does with

rare and acute ADEs. This directly reflects the number of mentions of the corresponding ADEs

in the clinical notes, which affects the number of patterns detected upon manual examination of

the 2,310 documents we used to guide the creation of the rules. This variation in performance is

also visible upon examining the ROC curves of Fig 4. A final observation from Table 4 is that

some rare ADEs (SJS and cardiomyopathy) appear to have more mentions in the clinical notes

than common ADEs (when examining the second column of the table), which may appear

counterintuitive. However, this increased count is explained by the fact that these two ADEs are

severe, driving clinicians to document any warnings or monitoring performed for them, and

resulting a large number of negative mentions of these ADEs (as evident by the third column).

Discussion

We created a multi-phase rule-based pipeline for the recognition and classification of named

ADEs in free-text psychiatric EHRs. The rulebase was created by manually analysing 2,310 of

these documents in collaboration with domain experts to identify patterns of ADE mentions

and related contextual text. We constructed the rulebase based on four ADEs (akathisia, nau-

sea, myocarditis and galactorrhea) and evaluated its performance using these four ADEs as

Fig 4. Receiver operating characteristic curves representing the performance of the ADEPt pipeline in

identifying akathisia, nausea galactorrhea and myocarditis ADEs from free text. The increments in each

graph correspond to 1) our previous work [30], 2) using paragraph boundaries, 3) using clause-boundaries, 4)

using unrefined (off-the-shelf) ConText algorithm, 5) adding domain-specific vocabulary to ConText and 6)

final refined ConText algorithm.

https://doi.org/10.1371/journal.pone.0187121.g004
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well as 15 ADEs related to antipsychotics and antidepressants drugs in 6,011 unseen clinical

text documents by comparing with manual annotations by clinical researchers.

The clinical text contains many surface forms for any ADE mention, necessitating a unify-

ing dictionary to guide the annotation ADE process. In collaboration with pharmacists and cli-

nicians based at the South London and Maudsley NHS Foundation Trust, London, United

Kingdom, we compiled a list of 66 ADEs with corresponding surface forms, misspellings and

abbreviations. In addition to compiling agreed-upon medical terms from existing resources,

the process involved large-scale manual examination as many ADE-related terms are implied

rather than explicitly defined, e.g. a clinician may record ‘the patient cannot fit in his/her

clothes’ in lieu of explicitly documenting weight gain.

Overall, the tool performs well compared to general NLP entity recognition systems, specif-

ically the Context algorithm which we used for comparison. However, the performance varied

depending on the regularity and persistence of the ADE under investigation. There is still a

need to improve the context discerning rules for rare ADEs, which are usually discussed as

possibilities in the clinical notes as clinicians usually take a lot of care before ruling out the pos-

sibility of a rare ADE and will administer multiple tests for the patients to go through. The cur-

rent application does not have a high coverage for all the precautionary patterns surrounding

multiple ADEs, an issue to address in our current work.

The annotations generated by the tool were compared to the manually-annotated docu-

ments prepared by domain experts. In this work, we only trained and tested ADEPt using

annotations where the expert annotators agree on the classification of the ADE mention (i.e.

whether it is a positive or a negative mention). It would be interesting to see whether the anno-

tations that confused the human annotators (ones where the two experts disagree) will simi-

larly confuse ADEPt. Therefore, part of our ongoing work is to add a third classification

category corresponding to ambiguous annotations.

Table 4. Results showing the performance of the ADEPt pipeline in identifying a selection of rare to common ADEs related to antipsychotics and

antidepressants drugs.

ADE Total TP TN Precision Sensitivity Specificity Accuracy F-measure

Agitation 221 142 32 0.89 0.83 0.65 0.79 0.86

Akathisia 215 132 64 0.96 0.90 0.93 0.91 0.93

Arrhythmia 232 129 61 0.88 0.85 0.77 0.82 0.86

Cardiomyopathy 204 55 109 0.79 0.68 0.88 0.80 0.73

Constipation 475 315 99 0.91 0.91 0.76 0.87 0.91

Convulsions 148 84 37 0.92 0.81 0.84 0.82 0.86

Diarrhoea 221 140 55 0.93 0.90 0.83 0.88 0.92

Dizziness 234 130 96 0.94 0.83 0.90 0.85 0.88

Dry Mouth 211 124 56 0.91 0.87 0.82 0.85 0.89

Galactorrhea 139 68 50 0.83 0.91 0.78 0.85 0.87

Hypersalivation 193 161 18 0.97 0.95 0.78 0.93 0.96

Insomnia 189 119 38 0.84 0.93 0.62 0.83 0.88

Myocarditis 188 40 96 0.51 0.75 0.71 0.72 0.61

Nausea 369 241 75 0.95 0.86 0.88 0.90 0.92

Pneumonia 173 81 75 0.89 0.94 0.93 0.90 0.92

Sedation 189 108 54 0.89 0.89 0.81 0.86 0.89

Stephen Johnson’s Syndrome

(SJS)

333 68 205 0.60 0.88 0.82 0.82 0.72

Tachycardia 230 192 13 0.96 0.91 0.65 0.89 0.94

Weight Gain 209 108 51 0.92 0.87 0.82 0.86 0.90

https://doi.org/10.1371/journal.pone.0187121.t004
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Additional ongoing work includes improving the context-discerning rules to distinguish

rare from common ADEs. Moreover, we are investigating the merit of a hybrid approach

which learns the rules and examine the effect on performance. Our ongoing work also focuses

on linking ADE annotations obtained through ADEPt with medication and prescription infor-

mation, to create a timeline establishing the associations between ADEs and medication epi-

sodes as well as possible drug-drug interactions.

All of the ongoing efforts aim at using the annotated knowledge mined by ADEPt to

uncover unknown causal links between administered medications and the undesirable events,

therefore making the distinction between ADEs we mine from the clinical text and non-pre-

ventable Adverse Drug Reactions (ADRs) which are caused by the medication itself and not

due to mismanagement or clinical errors [39, 40].

Limitation

There are a few aspects of the ADEPt pipeline on which we are currently working. One of the

issues we faced since the inception of our work is the difficulty of finding experts to annotate

the documents and evaluate the annotation results against the annotated documents. As a

result, the annotation power of ADEPt has only been evaluated on the 19 ADRs mentioned

throughout the manuscript. However, we tried to minimise the effect of the small number of

ADRs by selecting those which vary in terms of severity as well as frequency of onset in order

to reflect the variations of mentions in the clinical text. Another consequence of the difficulty

of finding annotators is that we have used four different annotators throughout the different

stages of pipeline development, which may have induced unknown discrepancies in some of

the cases.

Another limitation of the ADEPt pipeline is due to the limited number of clinical notes dis-

cussing the onset of rare ADEs such as SJS and myocarditis. Due to their rarity (as well as

severity), discussions of these ADEs is usually done in the context of potential onset (negative

mentions), rather than positive mentions referring to the patient herself. However, for these

ADEs, ADEPt achieves better and both precision and sensitivity have improved in SJS simulta-

neously (0.60 and 0.88) and sensitivity in myocarditis (0.75).

Finally, ADEPt is developed and tested on SLaM’s psychiatric clinical notes. Work evaluat-

ing its performance on other general or psychiatric notes is currently part of our ongoing

work.

Conclusion

The tool described here demonstrates the ability to identify antipsychotics and antidepressants

related ADEs from within the free text of psychiatric EHRs. By surfacing ADEs within the

routinely collected EHR, we unlock a treasure trove of hitherto inaccessible data describing

treatment response that is the first step to tailoring treatment through patient stratification

leading to opportunities for novel interventions and studies into the genetic underpinnings

of ADEs. The tool is freely available from our online repository at: https://github.com/

KHP-Informatics/ADRApp
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