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Abstract

Motivation: Correct and rapid determination of Mycobacterium tuberculosis (MTB) resistance against

available tuberculosis (TB) drugs is essential for the control and management of TB. Conventional

molecular diagnostic test assumes that the presence of any well-studied single nucleotide polymor-

phisms is sufficient to cause resistance, which yields low sensitivity for resistance classification.

Summary: Given the availability of DNA sequencing data from MTB, we developed machine learn-

ing models for a cohort of 1839 UK bacterial isolates to classify MTB resistance against eight anti-

TB drugs (isoniazid, rifampicin, ethambutol, pyrazinamide, ciprofloxacin, moxifloxacin, ofloxacin,

streptomycin) and to classify multi-drug resistance.

Results: Compared to previous rules-based approach, the sensitivities from the best-performing

models increased by 2-4% for isoniazid, rifampicin and ethambutol to 97% (P < 0.01), respectively;

for ciprofloxacin and multi-drug resistant TB, they increased to 96%. For moxifloxacin and ofloxacin,

sensitivities increased by 12 and 15% from 83 and 81% based on existing known resistance alleles to

95% and 96% (P < 0.01), respectively. Particularly, our models improved sensitivities compared to

the previous rules-based approach by 15 and 24% to 84 and 87% for pyrazinamide and streptomycin

(P < 0.01), respectively. The best-performing models increase the area-under-the-ROC curve by 10%

for pyrazinamide and streptomycin (P < 0.01), and 4–8% for other drugs (P < 0.01).

Availability and implementation: The details of source code are provided at http://www.robots.ox.

ac.uk/~davidc/code.php.

Contact: david.clifton@eng.ox.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Tuberculosis (TB) was one of the leading 10 causes of death world-

wide, ranking above HIV/AIDS as the prominent cause of death

from infectious disease. Drug-resistant TB has emerged as a substan-

tial concern for public health and threatens global TB control.

The World Health Organisation (WHO) reported in 2017 (WHO,

2017) that an estimated 4.1% (95% confidence interval [CI]: 2.8–

5.3%) of new cases and 19% (95% CI: 9.8–27%) of previously

treated cases had multi-drug resistant TB (MDR-TB), defined as

being resistant to isoniazid INH and rifampicin RIF) or rifampicin-

resistant TB (RR-TB). WHO now recommends that all RR-TB cases
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be treated with an MDR-TB treatment regime (WHO, 2016). The

emergence and spread of drug-resistant TB have been reported to be

related to vulnerabilities of current TB-control efforts (Cohen et al.,

2015), biological factors (Casali et al., 2014), treatment-related risk

factors (Ford et al., 2013), compensatory evolution of bacteria

(Comas et al., 2011), population displacement and political instabil-

ity (Eldholm et al., 2016).

One critical challenge in tackling the global TB epidemic is

timely diagnosis and correct treatment. Rapid molecular diagnostic

tests help to ensure early detection and prompt treatment; these tests

assume the presence of a single nucleotide polymorphism (SNP),

which is one of the previously identified SNPs, is sufficient to cause

resistance. Such tests are effective with the most common mutations

causing resistance to drugs, but their underpinning technology

restricts them to a relatively small number of targets per drug.

Research to date has focused on the identification of the described

multivariate associations (Coll et al., 2015; Farhat et al., 2013;

Georghiou et al., 2012; Walker et al., 2015; Zhang et al., 2013).

However, methods for identifying such multivariate association can

be of limited utility in light of the fact that association is still poorly

understood for some anti-TB drugs. Compounding this effect, the

genetic basis of drug resistance is more complex than anticipated:

resistance-related genes are likely to contain nonsynonymous SNPs

associated with drug resistance as a result of drug pressure (Zhang

et al., 2013); and mutations that interact in a complex manner could

produce high-level resistance to a specific drug (Safi et al., 2013).

In countries with the highest incidence of MDR-TB, it was found

that more than 30% of MDR clinical isolates had compensatory

mutations (Comas et al., 2011).

Multivariate association between genetic variants can be

explored with predictive models based on machine learning.

Previous studies have adopted a number of such algorithms to pre-

dict Mycobacterium tuberculosis (MTB) resistance; e.g. logistic

regression (Zhang et al., 2013) and random forests (?). However,

a thorough evaluation of potentially applicable methods for the

classification of MTB drug-resistance has not been reported.

In this paper, using a large collection of MTB isolates, we eval-

uated the ability of different models to classify drug resistance for

the four first-line drugs, several second-line drugs and MDR-TB.

Our models achieved comparable or better classification of

drug resistance in comparison to the direct association that

depends solely on any resistance-determinants previously identi-

fied in the literature. Our results validate the use of machine

learning algorithms for the identification of MTB resistance, and

support the hypothesis that previously unknown multivariate

associations and interactions contribute to resistance to several

anti-TB drugs.

2 Materials and methods

2.1 Specimen and laboratory phenotyping
We included 1839 samples from Walker et al. (2015). On all study

isolates, DST was performed for each drug through an initial screen

for resistance in liquid culture, which was then confirmed using

Lowenstein Jensen methods. Up to 11 drugs were assayed, including

isoniazid (INH), rifampicin (RIF), ethambutol (EMB), pyrazinamide

(PZA), amikacin (AK), capreomycin, (CAP), ciprofloxacin (CIP),

kanamycin (KAN), moxifloxacin (MOX), ofloxacin (OFX) and

streptomycin (SM).

2.2 DNA sequencing
The details of DNA sequencing refer to Walker et al. (2015).

Nucleotide bases were called using standard filters on sequencing

and alignment quality, as well as the number of reads for each base.

After filtering, the nucleotide bases at certain positions that could

not be called with confidence were denoted as null calls and not

used in our analysis.

2.3 Genomic data pre-processing
23 candidate genes and their 100 base-pair upstream regions were

targeted in this study (As described in Supplementary Material A).

We limited our investigation to these genes because each has at least

one previously described drug-resistance mutation [the source

papers related to these genes were summarized in Walker et al.

(2015)], allowing us to focus our investigation upon those areas of

the genome in which we have a high prior belief of involvement.

M.tuberculosis lineage was assigned based on polymorphisms

described in the literature (Feuerriegel et al., 2014; Stucki et al.,

2012) and corroborated by a previously published phylogeny

(Walker et al., 2015). We reported every nucleotide site that differed

from the reference genome, identified the corresponding amino acid

substitution where there was one, and differentiated between differ-

ent amino acids at those variant sites. We therefore considered the

variant sites with amino acid substitution as SNP. The presence of a

SNP in the isolate was represented by a binary variable, with 1 indi-

cating the presence of the SNP and 0 indicating absence. The aver-

age number of SNPs per isolate was 6, ranging between 1 and 47.

Null calls were considered to be SNPs if the base with the highest

percentage of reads did not agree with the reference. In total across

the 1839 isolates, 2629 SNPs were found in the 23 candidate genes.

3 Results

3.1 Phenotype
Our study included 1839 M.tuberculosis isolates, representing all

the major TB clades [the phylogenetic tree is given in Supplementary

Fig. S1 by Walker et al. (2015)]. Each isolate underwent culture-

based drug-susceptibility testing to a maximum of 11 anti-TB drugs.

Not every isolate was tested against all drugs. The four first-line

anti-TB drugs were tested on the majority of isolates (Fig. 1, left

panel). Of the 1811 isolates that were tested against INH, 266

(15%) were resistant and 1545 (85%) were susceptible; the ratio of

the number of the resistant and susceptible isolates was approxi-

mately 1:5.7 for INH. In the case of EMB, RIF and PZA, the num-

bers of resistant isolates were only 47, 97 and 59, representing 3%,

6% and 3% of the total number, respectively. Correspondingly, the

ratio of the two classes declined to 1:36, 1:16.8 and 1:28.2, respec-

tively. Regarding the second-line drugs, no more than 400 isolates

were tested against individual drugs, meanwhile the number of the

resistant versus susceptible isolates was approximately 1:10. Since

there were few AK, KAN and CAP-resistant isolates, these three

drugs were not be investigated in the following analysis.

Co-occurrence of resistance was frequently observed for the tested

drugs in our cohort (Fig. 1, rightmost). Within the 11 drugs, single-

drug-resistant isolates only existed for INH, RIF, PZA and streptomy-

cin (SM) (only cells that correspond to INH, RIF, PZA and SM on the

diagonal are non-zero entries). Of 320 isolates that were resistant to

at least one of the eleven drugs, 65% was mono-resistant to single

drug, where 170 (53%), 8 (2.5%), 20 (6%) and 2 (0.6%) were mono-

resistant to INH, RIF, EMB and PZA, respectively. Of these 320 iso-

lates, 81 (25%) was resistant to both NIH and RIF, 19 (6%) was both
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EMB and PZA resistance. In other cases of resistance to any two first-

line drugs, the number of the isolates was similar (10–12% of the 320

isolates); they were the same for the resistance to both SM and any

first-line drug. For all other two-drug resistance co-occurrence, the

number of the isolates was no more than 16 (5%).

3.2 Clustering
We performed both principal component analysis (PCA) and a

sparse logistic version (SL-PCA) to explore the underlying structure

of genetic variation within our cohort of bacterial isolates. For these

1839 isolates, 2629 SNPs were found in 23 genes in which previous

studies had identified one or more known resistance-conferring

mutation. Both the PCA and SL-PCA reduced the dimensionality of

2629 to 2. Figure 2 shows the resulting structure, with resistance

shown in terms of INH-resistance and sub-lineage, a separate anno-

tation obtained by phylogeny analysis introduced in Section 3.3,

independent of phenotype. The use of conventional PCA results in

compact structure, with little variation for each cluster and a ‘Y’

shape in the subspace spanned by the first two principal components

(PCs), which separates the various cluster. Comparatively, SL-PCA

produces structure that reveals variation for all clusters and

the resistant/susceptible phenotype. Using the first two logistic

PCs, four clusters (EAI, Haarlem_Ghana_X, Delhi_CAS and

Bovis_Africanum) were well-separated and positioned around a cen-

tral cluster. We term this cluster C1, which is composed of isolates

from the Beijing, EuroAmer, LAM, Tur and Uganda clades. Within

this C1 cluster, conventional PCA shows poor separability between

INH-resistant and susceptible classes. Overall, SL-PCA is more

informative than PCA: SL-PCA can be used to identify clusters and

provide better separation for resistant and susceptible classes within

the cluster C1. We performed classification analysis both on entire

dataset and on several selected clusters; the latter is provided in

Supplementary Material I.

3.3 Direct association
Existing methods classify drug resistance based on the presence of

any determinant from a library of such determinants that has been

assembled from the literature; we term this method ‘direct

Fig. 1. Phenotype of 1839 isolates. left: bar plot of phenotype availability for the different drugs. right: heatmap quantifying the number of instances of co-occur-

rence of resistance between drugs normalized by total number of isolates resistant to at least one drug. Off-diagonal elements show co-occurrence of resistance

between different drugs; on-diagonal elements show cases which are resistant to a single drug

Fig. 2. PCA (upper row) and SL-PCA (lower row) for all clades [Clades are defined based on the whole genome sequences (not just resistance genes). Interested

readers are referred to Benavente et al. (2015).] (left plots) and cluster C1 (right plots) in terms of INH resistance (C1: Beijing, Euro, LAM, Tur and Uganda) (Color

version of this figure is available at Bioinformatics online.)
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association’ (DA). We examined the use of two such libraries: (i) the

‘Dream TB’ database and (ii) those described in an existing study

(Walker et al., 2015). We term the methods using these two libraries

DA-D and DA-L, respectively (as listed in Supplementary Material B

and C, respectively). To classify resistance against a given drug, we

applied an ‘OR’ rule: if any of the mutations associated with a given

drug in the library were present for a given isolate, the isolate was

labelled as being resistant to that drug. Full results for resistance

classification by the DA methods are provided in Supplementary

Material F.

3.4 Classification using machine learning methods
We investigated seven machine learning classifiers, including include

logistic regression with L1 and L2 regularisation (LR-L1 and LR-

L2), support vector machine with L2 regularisation and a radial

basis function kernel (SVM-L2 and SVM-RBF), random forest

(RF), a product-of-marginals model (PM) and a class-conditional

Bernoulli mixture model (CBMM) (the methodology details and

learning scheme are provided in Supplementary Material E and D,

respectively). While evaluating all methods, we repeatedly and ran-

domly selected the susceptible isolates from susceptible class in each

experiment, to give the same number as in the resistant class in terms

of individual drugs. The detail regarding dataset generation is illus-

trated in Supplementary Material D.

Three sets of features, F1–F3, were considered, to evaluate their

performances. Feature set F1 is the baseline feature set (all SNPs

found within 23 candidate genes, Supplementary Material A).

Feature set F2 contains only those SNPs that were previously sus-

pected of being resistance-determinants [108 SNPs reported in

(Walker et al., 2015)]. Feature set F3 is a subset of F1 given a partic-

ular drug (where genes with only resistance-determinants to that

drug are included). F3 therefore reflects what could be considered as

direct determinants, whereas F2 incorporates the possibility of using

resistance co-occurrence (Fig. 1) within all direct determinants

for 11 drugs to inform prediction, and F1 interprets resistance

co-occurrence on a larger scale.

Figure 3 shows comparisons in AUC performance for the seven

machine learning classifiers, for the three feature sets, using eight

drugs [amikacin (AK), clarithromycin (CAP) and Kanamycin (KAN)

were excluded due to under 10 resistant isolates]. The drugs can be

classified into three groups: i) the drugs where almost all classifiers

were robust on the three feature sets (INH, RIF, EMB and MDR); ii)

the drugs where the classifiers were better with feature sets F1 and

F2 (PZA and SM); iii) the drugs where the classifiers were better

with feature set F3 (MOX and OFX). Detection of resistance to

INH, RIF, EMB and MDR may be seen to be robust to the choice of

classifier, with all classifiers achieving at least 93% AUC for all fea-

ture sets (except for the RF with F1 and F3 in the case of CIP). The

AUC performances of all classifiers for PZA and SM were improved

at least 10% with F1 and F2 compared with F3, respectively (the

SNPs that were statistically important for predicting PZA and SM

resistance based on PM model, which outputs probability for

presence or absence of a SNP given a Beta prior, are listed in

Supplementary Material J). MOX and OFX resistance identification

was most challenging, with all classifiers achieving AUC values

below 90% for feature sets F1 and F2. In particular, the average per-

formance with F3 was noticeably better than those with either F1 or

F2 with at least 85% mean AUC. Based on variable importance

measures in RF, the SNPs within the suspect genes given the investi-

gated drugs are listed in Supplementary Material K.

3.5 Comparing existing methods with machine-learning

methods
We compared DA resistance classification with the seven machine

learning classifiers. We additionally performed an experiment in

which we removed a set of four commonly occurring SNPs

(gyrA_E21, gyrA_S95, gyrA_G668, katG_R463) that are known

not to be causally involved with resistance from feature set F1. As

shown in Table 1, the best-performing machine learning classifier

yielded higher AUC values in comparison to the baseline DA method

for all examined drugs (P < 0.01). Our models yielded results with

improved mean sensitivity in resistance classification for all drugs in

Fig. 3. Classification performance in AUC for seven classifiers across eight anti-TB drugs and MDR-TB with the F1, F2 and F3 feature sets. While the horizontal

axis is discrete, dashed lines are shown between data for ease of viewing (Color version of this figure is available at Bioinformatics online.)
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comparison to DA-L (P < 0.01), while maintaining mean specificity

above 90%.

Compared to DA-L method, the sensitivities from the best-

performing models increased by 2–4% for isoniazid, rifampicin and

ethambutol to 97% (P < 0.01), respectively; for ciprofloxacin and

multi-drug resistant TB, they increased to 96%. For moxifloxacin

and ofloxacin, sensitivities increased by 12 and 15% from 83 and

81% based on existing known resistance alleles to 95% and 96%

(P < 0.01), respectively. Particularly, our models improved sensitiv-

ities compared to the previous rules-based approach by 15 and 24%

to 84 and 87% for pyrazinamide and streptomycin (P < 0.01),

respectively. The best-performing models increase the area-under-

the-ROC curve by 10% for pyrazinamide and streptomycin

(P < 0.01), and 4–8% for other drugs (P < 0.01). Meanwhile, the

specificities for all drugs dropped by 4–10%. Removing the known

disassociated mutations (D.SNPs) altered the mean AUC by no more

than 0.8% for all drugs. In addition, for several interesting subclades

(e.g. EAI, CAS, Beijing and C1), the best classifiers also improved

the mean sensitivity and AUC for INh, EMB, RIF, PZA and MDR

(Supplementary Material I).

4 Discussion

A machine learning approach towards MTB resistance classification

is both viable and, particularly when the underlying biologic mecha-

nisms are less well-studied, offers improvement upon the current

clinical state-of-the-art. It is typically thought that sensitivity is most

important in our application, because failure to identify resistance

can harm patients: in such cases, treatment would proceed using

drugs that do not affect the (resistant) bacteria. Comparatively, the

DA methods are generally very specific, but not as sensitive as

machine learning methods. In our study, specificity often decreased

with the machine learning methods, which could be due to some sus-

ceptible isolates containing determinants classified as causing resist-

ance, but were labeled as drug susceptible due to limitations in the

phenotypic methods used to assess drug resistance.

The best classifiers (with feature set F1), offer improvement

upon the baseline DA method for INH and PZA, potentially because

there are additional mutations to reported resistance-determinants,

or because there may be multivariate associations (i.e. co-occurrence

of resistance) or interactions between mutations within the 23 genes

considered in this study. The fact that machine learning methods did

disproportionately better with PZA could also because that there is

a large number of contributory variants for PZA resistance, com-

pared to most of the other drugs investigated. In the case of the best

classifiers with feature set F2, the improvement regarding to EMB,

CIP and SM could result from resistance co-occurrence, upon which

the machine learning models capitalize to improve its results. For

RIF, MOX and OFX, the improvement from using the best classi-

fiers with feature set F3 suggests there may be unknown associations

within genes suspected to be related to resistance. The likely inter-

pretation associated with F3 being the best classifier for some drugs,

is that additional mutations to reported resistance-determinants or

combinations of mutations (i.e. interactions) in the suspected genes

are more sensitive for identifying resistance to the considered drug.

Relatively higher performance obtained by the best classifier with

feature set F3 for MDR-TB detection may illustrates there is poten-

tial pattern related to drug resistance co-occurrence. The additional

SNP candidates to resistance-determinants within the 23 genes are

listed in Supplementary Material H.

In general, classifier performance with the F1 feature set remov-

ing known D.SNPs gave results that still outperformed DA in

improving AUC for all drugs. Our methods achieved at least 95%

AUC, except for MOX, OFX and SM, where poorer performance

might also be due to a result of there being small numbers of resist-

ant isolates for these drugs. This indicates that the best classifiers are

robust to the removal of D.SNPs, which supports the potential

application in whole genome sequencing especially when the resist-

ance mechanisms for some drugs remains incompletely understood.

It would be interesting to explore in future work whether perform-

ance further improves, or degrades, if either synonymous SNPs

[which can rarely be associated with resistance Ando et al. (2014)]

or SNPs across the entire genome (not just in genes previously asso-

ciated with drug resistance) are considered. Both would vastly

expand the size of the feature sets.

The machine learning approaches that we have investigated pro-

vide the greatest improvements in classification performance for

those drugs in which the mechanisms of resistance are less well-

understood. For PZA and SM, the baseline DA prediction achieved

relative high specificity, but very low sensitivity (58 and 63%,

respectively). For the same drugs, the machine learning methods

improved overall AUC by 10% (attaining 86 and 89% sensitivity,

respectively, while retaining >87% specificity). This improvement is

likely to be caused by patterns of resistance to multiple drugs that

the machine learning models can exploit. For instance, if an isolate

is resistant to PZA, it is also likely to be resistant to INH or RIF.

Table 1. Comparing performance between best classifier and DA-L for resistance prediction with 8 drugs and MDR-TB

Drug DA-L Best classifier

Sens Spec AUC Classifier (Feature set) Sens Spec AUC Classifier with F1* AUC

INH 93 6 0.3 99 6 0.1 96 6 0.0 RF(F1) 97† 6 0.3 94† 6 0.4 99† 6 0.0 RF(F1) 98† 6 0.0

EMB 95 6 0.7 97 6 0.6 96 6 0.1 CBMM(F2) 97† 6 1.0 96† 6 0.6 99† 6 0.1 PM(F2) 99† 6 0.1

RIF 94 6 0.5 98 6 0.3 96 6 0.1 CBMM(F3) 97† 6 0.4 97 6 0.4 99† 6 0.1 CBMM(F3) 99† 6 0.1

PZA 69 6 1.4 100 6 0.0 85 6 0.0 PM(F1) 84† 6 1.2 90† 6 1.1 95† 6 0.2 SVM-RBF(F1) 95† 6 0.2

CIP 87 6 1.0 99 6 0.4 94 6 0.1 PM(F2) 96† 6 0.9 98 6 0.4 98† 6 0.3 PM(F2) 98† 6 0.3

MOX 83 6 1.4 93 6 0.8 87 6 0.1 PM(F3) 95† 6 1.4 93 6 1.0 95† 6 0.4 PM(F3) 94† 6 0.5

OFX 81 6 1.5 95 6 0.9 87 6 0.3 PM(F3) 96† 6 1.4 92 6 1.3 95† 6 0.5 PM(F3) 95† 6 0.6

SM 63 6 1.8 98 6 0.6 81 6 0.1 SVM-RBF(F2) 87† 6 1.5 90† 6 1.0 91† 6 0.3 PM(F2) 92† 6 0.2

MDR 90 6 0.7 100 6 0.2 95 6 0.0 PM(F3) 96† 6 0.6 98† 6 0.5 100† 6 0.1 PM(F3) 100† 6 0.0

Note: ‘D.SNPs’ refers to those SNPs known not to be causally involved with resistance mechanisms, and which are removed from F1 feature set in one experi-

ment. Sensitivity (sens) and specificity (spec) are shown with AUC, where results are reported as mean and standard error.
†

P-value is lower than 0.01 (P < 0.01). The P-value of performance measurement of the examined classifier compared to the DA-L was obtained by Wilcoxon

signed-rank test. Feature set F1* denotes the feature set F1 without D.SNPs.
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This can also be used to explain why all machine learning methods

with F1 and F2 were better than F3 for both PZA and SM in

Figure 3. While these co-occurrences may obscure the true mecha-

nistic basis of resistance, they are still practically useful when design-

ing a treatment plan for a patient.

Among the machine learning classifiers, PM and SVM-RBF rank as

the top two best-performing classifiers overall. The former integrates

prior knowledge of resistance determinant explicitly (though prior

knowledge about susceptibility determinants, lineage defining SNPs and

compensatory mutations was not included), and the latter suggests that

the method’s nonlinear model is suitable for unveiling nonlinear rela-

tionships among mutations in terms of resistance association for INH,

CIP and SM. We acknowledge our dataset was subset of the dataset in

Walker et al. (2015), from which the library of DA-L was derived. It is

expected that the DA-L would over-perform DA-D, however, this is not

true for EMB and second-line drugs (Supplementary Material F).

We note that our analysis was limited by low resistance, even for

INH and RIF there were not so many resistance cases. It is acknowl-

edged that there is trade-off between bias and variance in the

machine learning methods. We attempted to use cross-validation to

manage the trade-off for small dataset and only reported average

performance on testing set instead of training set. In the analysis of

selected clusters (Supplementary Material I), all methods resulted in

higher variance than that in the entire dataset. DA method was

more biased in the clusters than in the entire data (classification sen-

sitivity of DA was higher in clusters for INH and PZA up to 98%,

but lower for RIF, EMB and MDR-TB down to 81%); while the

machine learning classifiers gave similar performance with that

obtained when using the data as a whole.

5 Conclusion

We investigated several classifiers for resistance classification that

demonstrated the potential to model genetic data (e.g. SVM_RBF)

and take into account the prior knowledge and latent subgroup

structure (e.g. PM and CBMM). We applied the classifiers to three

different feature sets and the best-performing model outperformed

the baseline method (DA) in terms of sensitivity to resistance classifi-

cation. This work showed great potentials of machine learning in

improving resistance classification given high-dimensional genetic

data, especially when the underlying biological resistance mecha-

nism is poorly understood for many drugs. Use of the best model

examined in this paper to predict MTB resistance is promising to

improve patient outcomes and reduce risk of acquiring multi-drug

resistance. The validation on global samples will be the future work.

Limitation of our work is that the examined methods considered

ALL polymorphisms (and resistance-determining) to be the same

even though some polymorphisms might have different effects.
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