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Abstract
Humanoid robots have in recent years shown great promise
for supporting the educational needs of children on the autism
spectrum. To further improve the efficacy of such interactions,
user-adaptation strategies based on the individual needs of a
child are required. In this regard, the proposed study assesses the
suitability of a range of speech-based classification approaches
for automatic detection of autism severity according to the com-
monly used Social Responsiveness Scale™ second edition (SRS-
2). Autism is characterised by socialisation limitations including
child language and communication ability. When compared to
neurotypical children of the same age these can be a strong indi-
cation of severity. This study introduces a novel dataset of 803
utterances recorded from 14 autistic children aged between 4
– 10 years, during Wizard-of-Oz interactions with a humanoid
robot. Our results demonstrate the suitability of support vector
machines (SVMs) which use acoustic feature sets from multiple
Interspeech COMPARE challenges. We also evaluate deep spec-
trum features, extracted via an image classification convolutional
neural network (CNN) from the spectrogram of autistic speech
instances. At best, by using SVMs on the acoustic feature sets,
we achieved a UAR of 73.7 % for the proposed 3-class task.

Index Terms: children, autism, vocal irregularities, speech
classification, social responsiveness scale, SRS-2, spectral fea-
tures, human-robot interaction, humanoid robotics

1. Introduction
The Autism Spectrum Conditions (ASC) are a group of neuro-
developmental conditions which can be defined by difficulties
in two core domains: social and communicative behaviours,
and restricted and repetitive behaviours [1]. Often, ASC be-
comes noticeable in early childhood, as children begin to diverge
from typical developmental trajectories. Currently, the diagnosis
of ASC is based on direct behavioural observation or reports,
e. g., [2, 3], which generally focus on these two main areas of
difficulty. A number of the behaviours assessed or observed
relate to comprehension and verbal language production ability.

It is estimated that 1 in 68 children are affected by an ASC
[4]; although there is substantial variance in how and when
children are diagnosed. The early and reliable diagnosis of ASC
is crucial to enable access to appropriate services. These are
supports and teaching programmes delivered at a young age,
which have generally been shown to have more positive, long-
term effects compared to intervention at a later age [5].

This paper compares the efficacy of various acoustic feature
representations to classify autism severity of an ASC child using

vocalisations, based on Social Responsiveness Scale™, Second
Edition (SRS-2) [2] scores; a widely-used measure for assess-
ment of social and communicative behaviours. Audio-based
severity categorisation can be used as ‘shorthand’ for a range
of interaction variables, such as the complexity to which verbal
instruction is likely to be understood. Considering this, and
given that humanoid robots have been suggested for aiding ASC
education since [6], integrating such a system in this manner
could offer interaction and personalisation benefits, based on the
needs of the ASC child.

Verbal irregularities are a useful evaluation criterion for ASC,
and manifest in a variety of ways depending on severity. Children
with ASC who are verbally able may show unusual tone, pacing,
volume, and abnormal prosody [2, 7]. Supra-segmental acoustic
features relating to articulation, loudness, pitch, and rhythm have
been successfully used in speech-based interaction systems for
improving the social skills of children with ASC [8, 9]. They
have shown promising results when classifying vocalisations of
ASC or typically developing children [10].

This study utilises a brand-new corpus of 803 speech in-
stances, collected from 14 ASC children interacting with a
humanoid robot during an emotion-recognition training pro-
gramme. We investigate the suitability of three Interspeech
Computational Paralinguistics Challenge features sets from
2009 (IS09-Emotion) [11], 2010 (IS10-Paraling) [12], and 2013
(COMPARE) [13]. These representations, COMPARE in partic-
ular, have been found suitable for similar classification tasks
between the speech of typical or atypically developing chil-
dren [13–16], and for recognising spontaneous emotional expres-
sions in the vocalisations of ASC children [17].

We also investigate the suitability of the Hybrid ‘end-to-
evolution’ (e2ev) classification approach [18]. This approach
utilises a combination of deep spectrum features and competi-
tive swarm optimisation (CSO) for feature selection. The deep
spectrum features are derived from forwarding spectrograms
through very deep convolutional neural networks (CNNs) pre-
trained for image recognition. Specifically the deep spectrum
features are activations from the second fully connected layer
(fc7) of AlexNet [19]. We speculate that this approach will suit
our task, as the supra-segmental acoustic features commonly as-
sociated with ASC can be thought of being inherent spectrogram
representations.

The rest of this paper is structured as follows: SRS-2 is
detailed in Section 2, and Section 3 describes ASC vocal be-
haviours, with corpus outline in Section 4. The experimental
settings are presented in Section 5, and the results and discussion
in Section 6, followed by final remarks in Section 7.



2. The Social Responsiveness Scale™–2
The Social Responsiveness Scale™–2 [2], is a widely-used, stan-
dardised measure of reciprocal social interaction difficulties
based on ASC criteria as laid out by the Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM-5) [1]. While not in-
tended for diagnosis of autism, it is a common means for autism
assessment, and measuring socio-communicative difficulties. It
has a substantial number of questions relating to communication,
including verbal and vocal/non-verbal productions. In this study,
we use the SRS-2 School Age form, which is aimed at children
from 4–18 years. The School Age SRS-2 consists of 65 state-
ments used to assess a child’s behaviour and manner, completed
by a parent, or teacher familiar with the child. For example, “53.
Talks to people with an unusual tone of voice (for example, talks
like a robot or like he or she is giving a lecture)”; the statements
are rated on a 4-point Likert scale.

An accumulated item score produces a single raw SRS-2
score between 0–195, where higher scores are an indication of
greater social interaction difficulties. Raw scores are normalised
to T-scores (T ) using a gender-specific formula. The T-scores
categorise impairment, based on the reciprocal social interaction
skills strongly associated with a clinical diagnosis of ASC [2]:

• Below 59T–within normal limits: score is not clinically
significant.

• 60T–65T–mild: suggesting significant deficiencies in
reciprocal social behaviours, which may impact everyday
interactions.

• 66T–75T–moderate: showing substantial deficiencies
in reciprocal social behaviours leading to interference
with social interactions.

• Above 76T–severe: severely affected social behaviours
of clinical significance which highly interfere with every-
day socialisation.

3. Autistic Vocal Behaviours
Language and communication are a prominent part of many
evaluation methods for ASC. In our case, SRS-2 has 12 of its
65 questions directed at spoken interaction, verbalisations, and
auditory perception. ADOS–2 also takes into account the atyp-
ical vocal behaviours which are either unique to or commonly
observed during interaction with a particular child [3].

Echolalia is a term first coined by Kanner in 1943, to de-
scribe ‘parrot-like repetition of heard word combinations’ [7].
Also known as ‘echoed speech’, this would be the immediate
repetition of a series of statements made by the individual inter-
acting with the autistic child. Some children also show substan-
tial delayed echolalia, which would be vocalisations from much
earlier interactions or observations. Stereotyped or idiosyncratic
phrases are vocalisations which are often repeated by the child
and seem specific to them as an individual [20]. For example, in
Figure 1 we see three instances of a child in the DE-ENIGMA
corpus exhibiting this vocalisation behaviour. A clear similarity
between speech rhythm and a noticeable parallel in pitch dec-
lination can be seen. Irregular intonation is another common
verbal trait of individuals with ASC; often described as robot-
like, ASC speech can be narrow in pitch range and can show
minimal variance in frequency and intonation intensity [21].

Figure 1: Examples of stereotyped speech. Instance name from
corpus shown above; child ID (003), robot session (R) and
instance number. The phrase “Ah o-ah ah” is repeated during
the session. Pitch curve not corrected, irregular octave jumps
due to transition phenomena (laryngealisations) [22].

4. DE-ENIGMA Corpus
The data collected for this study has been provided through the
DE-ENIGMA, Horizon 2020 initiative, and is a forerunner to the
full DE-ENIGMA database which is currently being collected
and annotated. DE-ENIGMA is a research project, with the spe-
cific aim of advancing education for autistic children, through
the use of humanoid robots [23]. Autistic children from differ-
ing cultural backgrounds (Serbia and the United Kingdom) are
involved in the experiments; for our purpose, we have selected
only instances collected in the United Kingdom 1.

A data set of 803 vocalisation instances has been gathered
from 14 children who participated in the initial recordings. Ages
ranging from 4–10 years; each child selected for this study has a
prior diagnosis of ASC, and attends an autism-specific school in
the UK. Additional diagnostic instruments and assessments (e. g.,
SRS-2 and ADOS-2) were administered as part of DE-ENIGMA
in order to gain a clearer picture of each child. In our corpus,
SRS-2 scores vary from mild to severe, with no child obtaining
a T score below 59. A detailed display of instances per severity
rating can be seen in Table 1.

Within our corpus the gender is split 2:12 (female:male)
which gives us an (unavoidable) bias; however, this is represen-
tative of diagnosis rates in autism, which are currently 4.5 times
higher in boys [4]. Previous studies [24] have also shown that
gender has a less significant effect on the voice during childhood,
thus, we do not expect this to impact our results.

1Receiving full ethical approval under REC 796 DE-ENIGMA Multi–
Modal HRI for Expanding Social Imagination in Autistic Children; as
approved by the UCL IOE Research Ethics Committee.



Figure 2: Child participating in the U.K. DE-ENIGMA experi-
ment. Figure shows child identifying the emotion of Zeno–R25
(DE-ENIGMA humanoid robot) with CRAE researcher. School
staff member (in red), accompanying the child during the session.
Circled is the Wizard-of-Oz keypad interface used to control the
Zeno robot.

4.1. Data Collection and Annotation

Audio data was collected over 3–5 short daily sessions. The
children participated in a human-led or robot-led, emotion-
recognition training programme, based on the “Teaching Chil-
dren with Autism to Mind–Read” workbook [25]. Robot-led
sessions feature a Zeno–R25 [26], a humanoid-robot (controlled
using a Wizard-of-Oz interface), with the aim of advancing social
skills of ASC children.

For capturing audio, four microphones were placed in the
room: 2 boundary microphones on the left and right of the
child’s position; 1 overhead (approx . 1 .5m above the child);
and a close-talk microphone, placed on a Centre for Research
in Autism and Education (CRAE) researcher guiding the child.
The close-talk microphone was placed on the side of the child
and generally picked up more of the child’s speech; thus it was
the only recorded channel used for the segmented instances in
our data set. Speaker diarisation of each child’s session was
manually annotated by a native English speaker.

5. Key Experimental Settings
Our key experimental settings are as follows: we use a linear-
kernel support vector machine (SVM) system trained on three
different acoustic feature sets (cf. Section 5.1). We also imple-
ment a e2ev system, as proposed in [18], which combines fea-
ture extraction by deep convolutional neural networks (DCNN),
with an evolutionary swarm algorithm for feature selection (cf.
Section 5.2). The evaluation measure chosen for the tasks is
the Unweighted Average Recall (UAR), i. e., the mean value of
recognition accuracy for each class. As well as being a standard
measure for the Interspeech COMPARE challenges, we use UAR
as our corpora has an unbalanced class distributions (cf. Table 1).

5.1. Acoustic Feature Sets

Acoustic features were automatically extracted from speech
through the use of our open-source openSMILE feature ex-
tractor [27]. Three different feature sets were investigated (cf.
Table 3): 1) the Interspeech 2009 Emotion Challenge (IS09-
emotion) set [11], 2) the Interspeech 2010 Paralinguistic Chal-
lenge (IS10-paraling) set [12], and 3) the Interspeech 2013
Computational Paralinguistics Challenge (COMPARE) set [13].
COMPARE includes features which have previously been used
to classify speech corpora including social signals, conflict, emo-
tion, and autism, achieving a baseline result for the autism diag-

Table 1: Number of instances per class in the train, development
and test partitions, used for the SRS-2 classification task.

Classes Train Devel Test

Mild 30 34 28
Moderate 45 35 21
Severe 205 211 194
Σ 280 280 243

Table 2: Distribution of the different acoustic feature sets which
cover Spec(tral)/energy-related, Sou(rce)/excitation-related and
Dur(ation)-related features with different levels of detail.

Feature set Spec. Sou. Dur. Total
IS09-emotion [11] 336 48 – 384
IS10-paraling [12] 1216 212 154 1582
COMPARE [13] 4366 397 1610 6373
Deep Spectrum [31] 4096 – – 4096

nosis subset of 67.1 % [13]. An overview of distribution of the
different feature sets regarding Spectral, Source and Duration
related features is given in Table 2; a detailed description and
implementation of these feature sets is given in [28].

In order to provide ‘baseline’ results, we use the open-
source implementation provided by the WEKA data mining
software [29] – version 3.8.1. Feature standardisation, i. e., sub-
tracting the mean and dividing by the standard deviation, is
applied. In particular, we use WEKA’s SVM implementation
with the Sequential Minimal Optimisation (SMO; [30]) train-
ing algorithm, linear kernels for the classification tasks with
epsilon-insensitive loss (known to be robust against overfitting).
We optimised the complexity parameter on a logarithmic scale
(10 values between 10−5 and 10−2) and used a constant value
(10−1) for epsilon intensive – loss.

5.2. Hybrid ‘end-to-evolution’ System

As a spectrogram representation should inherently, contain all
information relating to the linguistic and paralinguistic attributes
associated with ASC, we expect that the hybrid e2ev approach
will be suited to the task at hand. For the e2ev system, we
first extract narrowband spectrograms from every instance in
the corpus. These spectra are then passed on to pre-trained
image classification CNNs, and the activations of a specific
fully connected layer are extracted, resulting in a deep spectrum
feature set containing 4 096 features [31] (cf. Table 2). These
features can be interpreted as a high-level representation of the
spectrograms as seen by the CNN.

A wrapper-based feature subset selection is performed on the
deep spectrum features using competitive swarm optimisation
(CSO). CSO is an evolutionary optimisation technique derived
from particle swarm optimisation, which has recently been pro-
posed for large-scale optimisation [32]. It evolves an optimised
feature set by allowing candidate solutions, known as particles,
to move through the search space over several generations elf
way. It has been shown that, although the deep spectrum features
alone can achieve high performance in paralinguistic recogni-
tion tasks, CSO feature selection can further boost classification
accuracy [18].

We use a linear SVM in our hybrid e2ev. Since the optimal
hyperparameter choice may be affected by subset selection, we
have evaluated CSO for several combinations of SVM complex-
ity C ∈ [10−5; 10−3], number of generations nG ∈ [100; 400],
and particle swarm size nP ∈ [100; 400].



Table 3: Classification results from the openSMILE acoustic
feature based system, reporting UAR on development and test
partitions. C: complexity parameter of the support vector ma-
chine. The chance level is 33.33 % UAR.

feature set C devel test
IS09-emotion 10−5 56.2 60.3

10−4 56.3 63.1
10−3 62.3 64.8
10−2 37.8 63.4

IS10-paraling 10−5 56.5 57.4
10−4 62.2 73.7
10−3 48.0 65.6
10−2 37.8 63.4

COMPARE 10−5 49.7 62.2
10−4 57.0 56.4
10−3 52.9 59.5
10−2 52.6 59.0

6. Results and Discussion
From our chosen acoustic feature systems, we see that the fea-
ture set IS10-paraling achieved the most promising results (cf.
Table 3). This result indicates that IS10-paraling feature set con-
tains potentially the most relevant features for the task at hand.
While both IS09-emotion and IS10-paraling achieve compara-
ble performance in the development set, IS10-paraling easily
outperforms IS09-emotion on the test partition achieving the
strongest test UAR of 73.7 % (cf. Table 3). We speculate this is
due to the increased feature dimensionality and the addition of
duration-related features (cf. Table 2).

Given the strong performance of COMPARE in similar
tasks [17, 33], our results are weaker than expected. COMPARE
feature set can be considered an omnibus feature set for paralin-
guistic tasks [34], and has been used successfully in the past
for similar tasks of automatic diagnosis for ASC child vocali-
sations [17], as well as more recently for classifying typically
developing children and children on the autism spectrum [33].
As our corpus size is relativity small (803 instances), and the
dimensionality of COMPARE large (6373 features) we speculate
the use of COMPARE introduced undesirable noise, which may
have negatively impacted the result.

From the e2ev system, we see higher results in the devel-
opment partition (77.8 %, 77.1 %, 72.2 %). However, given the
weaker test partition results, we speculate that this is most likely
a result of model overfitting. The best performing configuration
in the e2ev system (200 nG), achieved 66.9 % UAR on the devel-
opment partition, and 61.9 % UAR on the test partition, having
selected 3 137 of 4 096 deep spectrum features (sF = 76.6 %).

On the development partition, stronger e2ev performances
can be achieved with smaller feature sets, but this may result
in a lower UAR on the test partition. Considering the e2ev
systems promising combination of deep spectrum features and
competitive swarm optimisation [18], for this task, the e2ev
system consistently falls short of the acoustic feature systems on
the test partition.

As has been mentioned in [35], swarm size (nP ) should not
significantly impact the performance of the e2ev system. Our
results would agree, the best UAR result on the test partition
was 61.9 % with a nP of 200, compared to 400 iterations, which
shows no improvement (best 58.9 %, although the number of
generations (nG) may have had an effect.

Table 4: Classification results from the Hybrid ‘end-to-evolution’
system (e2ev) after differing feature selection configurations.
We report UAR on development and test partition. nG: different
numbers of generation; nP : swarm sizes; sF : the % of deep
spectrum features, and C: complexity parameter of the support
vector machine. The chance level is 33.33 % UAR.

nG nP C sF devel test
100 400 5 · 10−5 76.5 65.5 58.9

1 · 10−4 62.1 71.0 56.5
5 · 10−4 49.9 71.3 58.4
1·10−3 54.7 72.2 54.3

200 200 5 · 10−5 76.6 66.9 61.9
1 · 10−4 66.1 71.3 59.7
5·10−4 59.8 77.1 60.7

1 · 10−3 54.1 73.5 57.8
300 134 5 · 10−5 71.1 68.9 58.2

1 · 10−4 56.9 71.3 56.2
5·10−4 54.9 77.8 58.3

1 · 10−3 53.5 72.3 58.0

7. Summary and Conclusions
This study utilised a novel dataset of vocalisations from children
with varying levels of autism severity, to explore the suitabil-
ity of multiple classification approaches, based on the SRS-2
evaluation structure. We suggest, given the utilisation of hu-
manoid robots within ASC education, that the integration of
such an audio-based system could allow for discrete monitoring
for improved human-robot interaction and personalisation.

Conventional feature extraction methods were executed us-
ing popular Interspeech Computational Paralinguistics Chal-
lenge feature sets, which previously have been shown to be
suited to similar vocalisation classification tasks. Our results
also show that a ‘default-standard’ acoustic features representa-
tion, in particular the IS10-paraling feature set, combined with a
SVM backend, can achieve a high test set UAR of 73.7 %.

Results of the hybrid e2ev approach which combined com-
petitive swarm optimisation and deep spectrum feature extrac-
tion, were not as strong as anticipated. However, the strong devel-
opment partition results achieved by e2ev indicate the promise of
this technique. Considering the early stage of the DE-ENIGMA
project, we would anticipate the e2ev performance to improve
with an increase in corpus size.

In future work we will consider improving our classification
systems by exploring alternate feature selection methods, as well
as exploring methods to fuse the more conventional openSMILE
acoustic feature representations with deep spectrum features. We
also plan to do an analysis using an increased dataset of children,
to begin understanding the relationship between prosody and
autism severity, specifically in instances showing typical ASC
vocal behaviours.
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